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Plasmons are elementary quantum excitations of conducting materials with Fermi surfaces. In two dimensions
they may carry a static dipole moment that is transverse to their momentum which is quantum geometric in
nature, the quantum geometric dipole (QGD). We show that this property is also realized for such materials
confined in nanowire geometries. Focusing on the gapless, intrasubband plasmon excitations, we compute the
transverse dipole moment D, of the modes for a variety of situations. We find that single chiral fermions
generically host nonvanishing D,, even when there is no intrinsic gap in the two-dimensional spectrum, for
which the corresponding two-dimensional QGD vanishes. In the limit of very wide wires, the transverse dipole
moment of the highest velocity plasmon mode matches onto the two-dimensional QGD. Plasmons of multivalley
systems that are time-reversal symmetric have a vanishing transverse dipole moment but can be made to carry
nonvanishing values by breaking the valley symmetry, for example, via a magnetic field. The presence of a
nonvanishing transverse dipole moment for nanowire plasmons in principle offers the possibility of continuously
controlling their energies and velocities by the application of a static transverse electric field.

DOLI: 10.1103/PhysRevB.106.165125

I. INTRODUCTION

Plasmons are fundamental excitations of metals, in which
electronic charge oscillates against the fixed positively
charged background of a material, with accompanying electric
fields that allow for self-sustaining collective motion [1-4].
The behavior can be understood at a semiclassical level by
solving Maxwell’s equations in the presence of a frequency-
dependent conductivity, which encodes information about the
electron dynamics in the material [5]. Beyond their bulk real-
ization, plasmons may be confined to the surfaces of some
solids, with charge oscillations whose amplitudes evanesce
quickly inside the material [6,7]. The development of two-
dimensional electron systems in semiconductors [8] allowed
such confined plasmons [9,10] to be realized with a degree
of tunability not possible at the surface of a bulk material. In
more recent years, the advent of van der Waals materials, par-
ticularly graphene, has greatly enriched the set of interesting
physical possibilities for two-dimensional plasmons [11-16].
These include a myriad of applications and phenomena, in
areas as diverse as terahertz radiation, biosensing, photode-
tection, quantum computing, and more [17-30].

Beyond all this, plasmons are interesting for basic phys-
ical reasons: they represent quantum, bosonic excitations of
charged fermions with a Fermi surface [31,32]. Their quantum
nature can in principle become evident through manifestations
of their quantum geometry. In two-dimensional materials
this nature becomes particularly important because it makes
possible strong light-matter interactions, allowing for probes
well below the wavelength of light at plasmonic frequencies
[33-36]. Moreover, Berry curvature in the electronic structure
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of the host material may lead to chiral behavior even in the ab-
sence of a magnetic field [37]. More generally quantum effects
may lead to nonreciprocal behavior of plasmons [38,39]. In-
deed, in some systems plasmons have internal structure in the
form of a static dipole moment, which leads to nonreciprocity
in their scattering from point impurities or other circularly
symmetric scattering centers [40]. This quantum geometric
dipole (QGD) moment is present in collective excitations of
insulators—excitons—as well [41]. In both cases the QGD is
transverse to the momentum of the collective mode.

An interesting question is whether effects of this transverse
dipole moment can be directly observed, independent of its
impact on scattering. One way to approach this question is to
consider its effect on plasmons in a confined geometry, which
may tend to orient the dipole moment in a way that allows
coupling to electric fields. The simplest such geometry is
quasi-one-dimensional, in which one might expect the dipole
moment to align perpendicular to the channel axis. This is
the subject of our study. Our principle results demonstrate
that such transverse dipole moments are relatively common in
this geometry: they can appear even when the corresponding
two-dimensional bulk system does not carry a QGD.

In what follows, we consider a system that supports a
plasmonic QGD, a layer of gapped chiral fermions, in which
the single-particle states are confined to be within a nar-
row channel. Such systems arise naturally in the context
of transition-metal dichalcogenides (TMDs) [42] and for
graphene, which, when placed on a boron nitride or silicon
carbide substrate, may develop a gap at its Dirac points as
large as 0.5 eV [43,44]. The single-particle electronic struc-
ture of such nanowires is sensitive to the precise nature of

©2022 American Physical Society
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FIG. 1. Sketch of a plasmon mode in a nanowire. (a) Ground-
state density, with heavier shading indicating regions of higher
electron density. (b) Snapshot of a plasmon mode in a nanowire of a
conventional electron gas. Regions of heavier shading indicate larger
electron density. Arrows in interior of wire indicate direction of
current at that moment in time. The charge density oscillates spatially
with wave vector 27 /K,, where K, is the longitudinal momentum.
(c) Snapshot of a plasmon mode in a nanowire of chiral fermions.
The oscillating charge density is shifted transverse to the wire axis,
yielding a dipole moment D;.

their edges [45—48] and may or may not involve the mixing
of valleys [46,49]. For simplicity, our studies focus on infinite
mass boundary conditions [50] for which there is no such
valley mixing.

Plasmons in nanowires of chiral fermions [51] share many
properties with those of scalar fermions [52,53]. Prominent
among these are the presence of collective modes with an
essentially linear dispersion and gapped intersubband modes.
As we explain below, for a single chiral fermion, all these
modes support transverse dipole moments with magnitude
proportional to the longitudinal momentum of the plasmon.
This orthogonality of the dipole moment and momentum is
exactly as one finds for the QGD in two dimensions [40,41].
A sketch of this phenomenon is illustrated in Fig. 1. Interest-
ingly, in these quasi-one-dimensional systems it appears even
when there is no intrinsic gap in the spectrum, so that the
QGD vanishes in the corresponding two-dimensional system
[40,41], the gaps introduced by the transverse confinement
stabilize the dipole moment.

Another feature of quasi-one-dimensional chiral fermions
is that they may host edges states. Because the charge as-
sociated with these states is located near the channel edges,
they potentially could have important consequences for the

transverse dipole moment hosted by a plasmon state. We find
generically that their effect is more quantitative than qual-
itative, but under some circumstances they can distinguish
the number of plasmon modes with significant nonvanishing
dipole moment values.

For systems with pairs of Dirac points connected by time-
reversal symmetry, the transverse dipole moment vanishes,
but nonvanishing values can be introduced into their plasmons
by breaking this symmetry, for example, with a magnetic field.
An interesting physical consequence of this physics is that
this dipole moment can be coupled to a transverse electric
field [54], allowing a degree of continuous control over the
plasmon frequency and velocity that is unavailable in other
nanowire systems.

This article is organized as follows. In Sec. II we discuss
the single-particle wave functions for the confined states,
and, when appropriate, for edge states of the massive chi-
ral fermions we consider, assuming infinite mass boundary
conditions. These states are the system-specific inputs to the
calculations of plasmon modes. In Sec. III we explain our
method for deriving the plasmon modes, both their energies
and wave functions. The latter are used to compute dipole mo-
ments for the states, and we explain how this is done at the end
of this section. A description of our numerical results follows
in Sec. IV. We begin there by presenting results for a generic
system, and then for parameters relevant to TMD materials,
showing that the latter are somewhat unusual in having many
modes with different dispersions but the same dipole moment.
We then demonstrate that, for large system widths, the dipole
moments tend to the values expected of two-dimensional sys-
tems. Finally, we consider more realistic TMD systems with
two valleys, for which the transverse dipole moment must
vanish when there is time-reversal symmetry. We show that
introducing a magnetic field breaks the symmetry between
valleys and allows a dipole moment to emerge. Finally, we
conclude in Sec. V with a summary of our results, discussions
of their experimental relevance, as well as interesting open
questions.

Our paper also contains three Appendixes. Appendix A
presents further details of how the single-particle states are
derived. In Appendix B we explain qualitatively why there are
multiple gapless plasmon modes in the systems we consider,
focusing on the case of a system with two occupied transverse
states as an example. Finally, Appendix C presents an explicit
expression for the plasmon transverse dipole moment, which
is appropriate for infinite mass boundary conditions, showing
how under appropriate circumstances modes of different en-
ergies can have the same dipole moment.

II. CHIRAL FERMIONS ON A NANOWIRE:
SINGLE-PARTICLE STATES

We begin by deriving the single-particle states for our
nanowire models. The Hamiltonian we adopt for the nonin-
teracting system in two dimensions is

_ m —iTd, — 0y
Hy = (—it&x +a, —m )’ 1)

where T = %1 indicates a valley degree of freedom, where in
TMD materials t = 1(—1) corresponds to the K(K') valley.
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We have adopted units such that i = v = 1, where vp is
the velocity of the chiral particles in the absence of the mass
parameter m. Its spectrum has a gap A = 2m. This Hamilto-
nian is an appropriate long-wavelength description of TMD
materials when excitations involving spin flips are ignored,
and in the limit m — O it also describes the single-particle
physics of graphene [42,55,56]. Eigenstates of Hy consist of
right- and left-moving solutions in the X direction,

Edm 1\ sicarity
£k, + ik, ’

E = /m?+k}+k:. 2)

We choose an orientation in which the electrons are confined
in the X direction and are free to move along y. To confine
the electrons, we adopt for simplicity infinite mass boundary
conditions [50],

with energies

Y1
V)

where 1o = sgn(C) is the sign of the Chern number outside
the wire, and in writing this we have assumed m > 0. (Details
of how one arrives at Eq. (3) are presented in Appendix A.)
Note that, without loss of generality, we may assume a Chern
number (of magnitude 1/2 [57]) for each valley in the material
(i.e., inside the wire) with the sign of A given by t. This
choice of boundary condition has the advantage of admitting
confined solutions without admixing valleys, but the resulting
confined states depend on their momentum k, along the wire.
This latter property is generic for chiral fermions [46,48,51],
although in the special case where there are only two valleys,
with equal momentum components along the wire direction,
this momentum dependence is lifted [46] (at the cost of ad-
mixing valleys). The momentum dependence of the confined
wave functions is a significant difference from the typical
situation for electrons with scalar single-particle states [52].
Note that the parameter Ay enters the boundary condition,
because one must choose the mass term outside the wire to
tend to either oo or —oo, and the choice of this sign determines
whether the wire supports edge states, as we discuss further
below.

Eigenstates of Hy which satisfy the boundary conditions
have the form (see Appendix A)

= ik, (3)
x=0,L

e _ac o EHmO\ ikatiky
w]; (r) —A('L', k)(ka + iky>e

7 E+m —ikx-tikyy
+B(r;k)(_,k +ik)e by @)
X y

with
A(T:F) = rN\/(E +mP + (thy — iky2y/m + ihothe, (5)

B(:R) = —tN\J(E +m)? + (thy + iky)2y/m — ikothe,
(6)

with a normalization constant given by

N = {8L,E(E +mP[L(m* + k) + rorm]} %, (D)

in which L, and L are the length and the width of the wire, re-
spectively. The allowed values of k, satisfy the transcendental
equation

Gkl _ m — ilgTk,

= , 8
m—+ iloTk, ®)
which in turn quantizes their values,
ke
kL = —\(T arctan (—) + nm, ®
m

wheren=1,2,3,....

In addition to these confined states, there may also be edge
states, depending on the relative sign of the wire and the
vacuum Chern numbers. Potentially these could be important,
as their location near the sample edges suggests they can make
large dipole moment contributions. Thus in our calculations
below we will consider both systems with and without edge
states. We will see that ultimately in most cases their impact
is quantitative but not qualitative.

In systems with time-reversal symmetry, edge states come
in pairs on each edge running in opposite directions, with
the member of each pair associated with one or the other
valley. For systems with a single chiral fermion, for which
time-reversal symmetry is necessarily broken, a single edge
state is present on each edge. These edge states exist only
when the wire material and vacuum are topologically distinct,
i.e., the signs of their Chern numbers are opposite,

Aoh = —1. (10

The edge states correspond to evanescent solutions of the
Hamiltonian equation (see Appendix A) with wave functions

TT oy .7 m+E —kyx—+ikyy
woj(r)_Ao(r,k)(i(rkx i ky)>e ,

.7 m+E kox-tikyy
+B0(Tsk)(l~(_l,kx+ky))e ) (11)

and

A ('L') =1 [(m + E)2 - (Tkx - ky)z](m + kx)
T BEE + mPLy[m — L(m? — k)]

. (12)

2 _ 2 —
Bomz_f\/[(’"*“ (the ko P0m —k) |

8E(E +m)>Ly[m — L(m* — k2)]

and energy

E= /m2—2+k2. (14)

In these expressions the evanescent wave vector k, satisfies
the transcendental equation

2k L |m|_kx
R 15
¢ ml + &, (15)

Note that Eq. (15) only has solutions when the wire is wider
than a minimal value (L*), given by

hv
Lr=—", (16)
m
where we have replaced the explicit functional dependence on

hvp. Examples of the single-particle dispersions relevant to
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FIG. 2. (a) Lowest three positive-energy electric subbands for a single-valley chiral fermion with two confined states (solid lines) and an
edge state (dashed line). The vacuum and wire have opposite Chern number signs Axo = —1. The half gap m = 0.8eV, wire width is L = 50A,
vphi = 3.39eV - A. (b) Lowest two positive-energy electric subbands for a single-valley chiral fermion with no edge state. The vacuum and
wire have the same Chern number signs, Axg = 1. The half gap m = 0.8 eV, wire width is L = 50A, vyhi = 3.39 eV - A.

our model are given in Figs. 2(a) and 2(b). Knowing how to
construct these wave functions and energies, we next describe
how they are used to compute the plasmon modes and their
dipole moments.

III. PLASMON WAVE FUNCTIONS, ENERGIES, AND
DIPOLE MOMENTS

In our study we are interested in the intrinsic dipole
moment of plasmon states of a one-dimensional channel.
Most previous studies of these focus on the dielectric func-
tion, as computed in the random phase approximation (RPA)
[52,58,59]. This reveals the plasmon frequencies and their
impact on the charge response of the system to applied electric
fields. For our purpose we need access to the plasmon wave
functions. The approach we adopt casts the plasmon wave
function as a linear combination of particle-hole excitations
around a Fermi sea ground state. While equivalent to RPA, it is
best understood as a time-dependent Hartree approximation.
In this section we explain how this approach is implemented
and how the intrinsic transverse dipole moment may be ex-
tracted from it.

A. Hamiltonian and plasmon raising operator

Our Hamiltonian is a sum of single-particle and interaction
parts, Hy + V. The first of these is

Hy =" En:(k)ch . (k)emeshky), (A7)
m ky, TS
where ¢, (k) creates an electron in subband m with lon-

gitudinal momentum k,, with valley and spin indices 7 and
s, respectively. E,, - (ky) is the single-particle energy, as com-
puted in the previous section. For the interaction term we write

(18)

where the (vector) field operator \_Pj (7) creates an electron of
spin s in the two orbitals of the chiral fermion system at the
location 7, and : @ : denotes normal ordering of an operator
O. We expand the field operator in terms of single-particle
wire states,

(B = Y enesk)Py (7). (19)

n,ky,t

In writing this we have identified k= (ky(n), ky), allow-
ing us to adopt a simplified indexing for the single-particle
states &53(7) which correspond to the states annihilated by

c,,,rys(ky).’ Adopting the same notation for these annihilation
operators, ¢z . = Cp,s(ky), brings the interaction to a form
which may be written as

v=>
s,

T1,72,13,74 T i
Z et e e
kika,ks ks ki,Ti,s' ko o,s K3.T3.S kaTas
ni,nz,n3,ng
ky1,ky2,ky3, kya
T1,12,73,T4

(20)
v = 3 [dr [P DRV -
7,/)1;,;2(7/)* . J;(?’). In writing this we have taken note of
the fact that for each subband there is a single quantized
transverse momentum magnitude, k.(n), whose states
with positive and negative values are admixed to form
the transverse states discussed in the last section.

In what follows we adopt a contact interaction V(¥ — 7') =
upd (7 — 7). This yields intrasubband plasmon modes that dis-
perse linearly with longitudinal plasmon momentum K,. If
a 1/r potential is instead used, one expects to find w(K,) ~
K, In K, for at least one gapless plasmon mode; however, in
practice the divergence of the slope is extremely difficult to
see [52]. Thus the contact interaction introduces significant
simplification in the computation of the matrix elements,
without loss of any essential qualitative behavior in the plas-
mon mode. In practice, we choose the value of uy to match
results for the slope of a plasmon mode as computed using the
Coulomb interactions in a graphene system [60].

where
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Collective excitations of the system can be obtained from
operators satisfying the equation [31,61]

[A. Ok | = hwk, O - @1)

In general, analytic solutions to Eq. (21) are not available.
However, in the case of plasmons, corresponding to charge
density excitations in the system, one ‘may approximate the
form of the plasmon raising operator Q’ k, as a linear combina-
tion of single particle-hole pairs [31], '

Ok =2,

m ,mg,k;,,r,s

mymy,w (K Kb, (K + K)o, .5 (K,

(22)
and then treat the commutator [V, Q;Q] in the time-dependent
Hartree approximation: ‘

[V.ox]~2>. 2. 2.2,

§,8" N1,12,13,04 T1,T4,T kyy K],

X Vo Ky tk, Kyt Ky + Ky, k)
X Qpy,ny,t a(kylaK )C,l 1.8 (Kv + k;)

X Cn4,T4,‘Y’(ky)[nF(n27 ylv T)
—np(n3, Ky + kyp, 7)1 (23)

Together with the commutator involving the single-particle
Hamiltonian Hj, one arrives at an eigenvalue equation for
the particle-hole weights ay, n, - (ky; K,) and the plasmon
frequency w(K,):

2y ZZV 5Ky + K kgt Ky + Ky, k)

ni,ny kyy o T8
X anl,nz,t,s(kyl 5 Ky)[”F(”Z» kyl s ‘E) —nr (I’l] B Ky + kyl s ‘C)]

= [wa - En’l,r’(Ky + k;) + En’z,r’(k},r)]an/l,n’z,r’,s’ (k;’ Ky)-
(24)

In this work we work strictly in the zero-temperature limit,
so that np(n, ky, T) = 1(0) if the state (n, ky, T) is occupied
(unoccupied) in the ground state.

We solve Eq. (24) numerically by retaining a discrete set
of points in the k, sum so that it becomes a matrix eigen-
value equation. Because we are interested in the lowest-lying
plasmon modes, we further simplify the equation by retain-
ing only intraband particle-hole excitations, so that we take
Qny oy, 7,5 (ky; Ky) # 0 only when ny = ny; we have verified that
keeping intersubband excitations has little effect on our re-
sults. We have further verified that increasing the number of
ky points used for the results reported below have little effect
on them.

B. Plasmon dipole moment

In previous work [40,41] we demonstrated that two-body
excitations, including excitons and plasmons, may carry an
internal dipole moment that is tied to the quantum geometry
of their wave functions. One sees this by defining Berry con-
nections specific for the electrons (¢ = 1) and holes (¢ = 2),

A@(K) = i{uk o| Vi UK o)

with
luk o) = €™ |Dx),

where |®k) is the wave function of the excited state. These
connections can be directly related to the average electric
dipole moment d of a plasmon,

d = e{Pxk|r| — 1| Pk)

= ie[(ux 1| Vilux 1) — (ux 2| Vi|ux 2)]
= [AV(K) — AP (K)] = eD(K), (25)

where D is the quantum geometric dipole. This quantity
is relevant to plasmons because they may be understood as
particle-hole excitations around a Fermi surface. In a two-
dimensional system one finds D(K) is orthogonal to K, and
for small K it is linear in K. This geometry suggests that
when plasmons carry a nonvanishing D in a two-dimensional
material, plasmons confined to a one-dimensional channel of
the same system may carry a transverse dipole moment. We
can check this by computing the plasmon dipole moment di-
rectly. For a wire oriented along the § direction, following the
reasoning above, for a plasmon state |®g, ) with momentum
K, along the wire one may write ‘

Di(Ky) = AVD — AP = (0g |x. — x| Px ). (26)
Recalling the notation above in which a vector k = (k. (n), ky)
specifies an electron state with longitudinal momentum K, in
a transverse state n, we write 1/[’ — wf . yielding an explicit

expressmn

DX(K}‘) = Z Z am’ n, 13( y,Ky)aml,mz,r,s(ky;Ky)

m,m, ky,t,s
mymj

T TH - %4 >\ 72
X (81112,m’2 /X1//mf],ky+1<y(r) : Ilfm],ky-ﬂ{y(r)d r

— Sy / ANGE w,mk(r)dz) 27

In our numerical calculations, Eq. (27) is used to compute
the dipole moment of a plasmon state. As we shall see,
one finds that plasmons of a single chiral Dirac fermion
nanowire generically have nonvanishing D, (K, ), but with in-
creasing wire width, this vanishes unless the corresponding
two-dimensional system has a nonvanishing quantum geo-
metric dipole. Having explained in this and the previous
section how the plasmons and their dipole moments can be
computed, we now turn to our numerical results.

IV. RESULTS

In this paper we focus on intraband plasmons, which for
our contact interaction disperse linearly with momentum from
zero energy. In general, we find that the number of such
gapless plasmon modes is equal to the number of subbands
which cross the Fermi energy, all of which may carry nonva-
nishing transverse dipole moments. We begin by considering
the computationally simplest case of a single chiral fermion
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FIG. 3. Intraband plasmon energies and transverse dipole moments for K valley excitations. The wire width is L = 60A, assumed gap
A =0.4eV, vphi = 3.94 eVA, Fermi energy ¢r = 0.806 ¢V for (a) and (b), Fermi energy ¢ = 1.128 eV for (c¢) and (d). (a) Plasmon energies
when four subbands are occupied (no edge state due to boundary condition). There are four plasmon modes in total. (b) Transverse dipole
moments corresponding to (a). (c) Plasmon energies when 5(= 4 + 1) subbands (including an edge state) are occupied. (d) Transverse dipole
moments corresponding to (b). Insets: The single-particle spectrum and the dashed line indicating the Fermi energy.

flavor. In principle, such a system might be created on the sur-
face of a topological insulator infused with ferromagnetically
ordered dopants that gap the surface states everywhere except
in a narrow channel, where plasmons can be hosted. We also
consider single chiral fermions for parameters similar to those
of TMD materials, for which we find that nearly all the modes
have the same dipole moment. An exception to this behavior
occurs when there are edge states, in which case there is a
single plasmon mode with nearly vanishing dipole moment.

A surprising aspect of our results is that transverse dipole
moments seem to occur rather ubiquitously for the quasi-
one-dimensional chiral fermions we examine, whereas in
two dimensions one finds a nonvanishing QGD only when
the single-particle Hamiltonian carries a nonvanishing Chern
number [40]. To understand this we consider the limit of
wide ribbon widths and find that indeed the transverse dipole
moment quantitatively matches the two-dimensional QGD, so
that there is no contradiction in these results.

Finally, for this section we turn to more common situations
for nanoribbons of van der Waals materials, for which the
effects of multiple valleys and time-reversal symmetry lead
to a vanishing transverse dipole moment. We show that this
can be made nonvanishing by breaking the symmetry between
valleys with a magnetic field.

A. Single chiral fermion

Our model Hamiltonian for a single chiral fermion is
H =Hy+V, with Hy and V given by Eqgs. (17) and (18),
respectively, in which only a single-valley flavor 7 is retained.
For such systems we need to choose whether the vacuum
outside the system has the same or opposite Chern number
as the one-dimensional system, i.e., whether ALy = 1 or —1,
as discussed in Sec. II. This determines whether the wire
hosts edge states. For the realization described above, one
may toggle between the two cases by flipping the direction of
the magnetic impurities defining the channel. The qualitative
behavior of the system turns out to be the same irrespective of
whether the wire hosts edge states.

We begin with typical results, illustrated in Figs. 3(a)-3(d)
for a 50-A-wide system, choosing Hamiltonian parameters
and Fermi energies such that the subbands are reasonably
well separated in energy and that a small number of trans-
verse subbands are occupied in the ground state. Figures 3(a)
and 3(b) illustrate results for boundary conditions in which
there are no edge states (AAg = 1.) One observes several gap-
less plasmons, which at long wavelengths disperse linearly
with momentum, as expected for this model. The gapless
modes illustrated all lie above the energies of the particle-hole
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FIG. 4. Intraband plasmon energy and transverse dipole moments for K valley excitations. Parameters are given by L = 86A, A = 1.6eV,

vphi = 3.94 eVA, Fermi energy &p =

1.007eV. (a) Intraband plasmon energies when four subbands are occupied. (b) Transverse dipole

moments corresponding to (a). (c) Intraband plasmon energies when five modes are occupied (including edge states). (d) Transverse dipole

moments corresponding to (c).

continuum. In general, the number of gapless modes is equal
to the number of occupied subbands; we demonstrate this ex-
plicitly for the case of two occupied subbands in Appendix B.
Importantly, all the plasmon modes exhibit nonvanishing
transverse dipole moments, with magnitudes proportional to
the plasmon momentum. As we discuss below, while this
behavior is consistent with the (two-dimensional) quantum
geometric properties of the system hosting the wire, it can
be present in the wire geometry even when absent in the
corresponding two-dimensional system.

An interesting possibility for these systems is that they may
host edge states. These appear in our system when Axy = —1.
As explained above, because of their physical location, one
might expect them to have notable consequences for the trans-
verse dipole moments of the nanoribbons. In fact, we find that
for these kinds of generic parameters, the qualitative results
are largely unaffected by the presence of edge states. This
is illustrated in Figs. 3(c) and 3(d). We see the results are
qualitatively rather similar to those of Figs. 3(a) and 3(b).

Surprising behavior of the transverse dipole moment
emerges for systems with relatively large gaps. Figure 4(a)
illustrates such a case, in which the Hamiltonian parameters
have been chosen to model a single valley of WSe, [42]
and AAg = 1 (no edge states on the wire). Figure 4(b) illus-
trates the transverse dipole moment of these plasmon modes.

Remarkably, one finds essentially the same value for all the
modes. This can be understood by close examination of the
expression for the plasmon dipole for small-momentum K,
which we show in Appendix C to have the form

'L'K (Lm—i—)» 'L') |ann a(kr,K )l
Dx(Kv) = Z ° ZZ - A)Orm
no ky,s

T Mtk ()2

+ O(Kyz), (28)
where k,(n) is the quantized transverse momentum of the
nth subband. Note that in this expression, in the present case
where we consider a single valley (indexed by ), one may set
Ao = TAg. In situations where the gap parameter m is large,
the last term in the denominator becomes negligible, so that
the remaining sum »_, >, | n,zs(ky; K,)|? is determined
only by the normalization of the plasmon wave function, and
the resulting dipole moment becomes independent of the spe-
cific plasmon mode.

Figures 4(c) and 4(d) illustrate the corresponding results
for the same parameters but with Aly = —1. In this case the
systems host edge states in addition to the confined single-
particle states, so that there are five occupied subbands. Here
all but one of the plasmon modes host the same nonvanishing
dipole moment, while the remaining mode does not. The result
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for a gapless chiral fermion. Parameters are L = 50A, A=0 eV, vph =3.94 eVA, Fermi energy &r = 1.007eV. (a) Plasmon energies.

(b) Corresponding transverse dipole moments.

again can be understood from Eq. (28). In this case one finds
that the mode with vanishing dipole moment has nearly all
its weight in the edge state, for which k,(n) & im, so that the
denominator becomes divergent. More physically, because of
the relatively large gap, the penetration length of the edge state
into the bulk becomes independent of k,, as does the single-
particle transverse wave function. In this case the plasmon
cannot sustain a transverse dipole moment. It is interesting
to note that the difference in behaviors apparent in Figs. 4(b)
and 4(d) in principle offers a way to distinguish when the
one-dimensional channel is in a topological setting from a
situation in which it is not: with the application of a transverse
electric field coupling to the dipole moment, the energies and
corresponding velocities of all the plasmon modes would shift
in the nontopological case, whereas in the topological case
one of these modes will be insensitive to the electric field.

B. Relationship to two-dimensional QGD

While the presence of an intrinsic dipole moment asso-
ciated with plasmons in these one-dimensional systems is
consistent with the presence of a QGD D in their two-
dimensional realizations [40], it is not necessary for D # 0
for these one-dimensional plasmons to carry a transverse
dipole moment. Figures 5(a) and 5(b) illustrate this for the
situation in which the gap parameter m vanishes, so that
D = 0 for plasmons in this system in two dimensions [40].
Clearly one finds a nonvanishing transverse dipole for such
plasmons, and indeed the results are qualitatively similar to
those found for ALy = 1. Note that one does not expect the
one-dimensional system to host edge states when A = 2m =
0.

While for these relatively narrow systems we see little dif-
ference in the behavior of one-dimensional plasmons between
systems in which D 3 0 and D = 0, the distinction becomes
relevant as the conducting channel gets wider. We illustrate
this by computing the plasmon transverse dipole moment both
for a chiral fermion system with vanishing gap (m = 0), for
which D vanishes [40], and for a gapped chiral fermion, for
which it does not, and examine the plasmon behavior as the
width L increases while the Fermi energy ¢r is held fixed.

Figure 6(a) illustrates the behavior of the velocity of the fastest
plasmon for a system with m = 0, and the associated dipole
moment can be seen to vanish as L becomes large [Fig. 6(b)].
Figures 6(c) and 6(d) illustrate the corresponding quantities
for a system with m # 0, for which the transverse dipole mo-
ment matches onto the (two-dimensional) quantum geometric
dipole magnitude |D|. The robustness of the plasmon dipole
moment with increasing L is thus a signature of its quantum
geometric nature.

C. Multiple valleys: Vanishing dipole for time-reversal
symmetric systems

While the systems discussed above involve relatively
simple Hamiltonians, their physical realizations require time-
reversal symmetry breaking, for example, via ferromagnetic
insulating films which would need to be patterned onto
the surface of a topological insulator. A much simpler sys-
tem to realize would be a nanoribbon of transition-metal
dichalcogenide (TMD) material, which in most cases pre-
serves time-reversal symmetry. Such systems typically have
two valleys, which are time-reversal partners of one another.
With time-reversal symmetry intact, one does not expect plas-
mon modes to carry an intrinsic dipole moment. Figures 7(a)
and 7(b) illustrate such a situation.

Nonvanishing dipole moments in such systems can be in-
duced by breaking the symmetry between valleys. In TMD
materials, spin-orbit coupling leads to a splitting between
spin-up and spin-down states in opposite directions for the
two valleys [42], so that a magnetic field imbalances the
populations of the valleys through the Zeeman coupling. For
magnetic fields that are not too large, such that the magnetic
length ¢ = \/hc/eB, with B the magnetic field, larger than
the ribbon width, the orbital motion of the electrons will
largely be unaffected by the field. To a good approximation
one then only needs to include the spin dependence of the
Fermi surfaces to account for the field.

Figures 7(c) and 7(d) illustrate such a situation in a ribbon
of width L = 50 A, for system parameters modeled after the
hole bands of WSe,, with a magnetic field B = 10T, for
which ¢ ~ 81 A. While the bands for each valley have the

165125-8



PLASMONIC TRANSVERSE DIPOLE MOMENT IN CHIRAL ...

PHYSICAL REVIEW B 106, 165125 (2022)

o

o

o

#occupied bands

o
o
n
o
S

1000

200 800 1000

161

IS
=)

155+

#occupied bands
n
o

o

1000
157

145"

14+t | |
0 200 800 1000

(b)
0.035

log|D,| = —log(L)+0.20

0.03

0.025

0.02

0 200 800 1000

1.21

5.949
log|D, — | D|| = —log(L) — 3.22

1.195-

0 200 1000

800
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105 A=, Results are shown for the highest energy intraband plasmon. (a) Plasmon velocity for fixed Fermi energy 0.252 eV with zero gap.
Horizontal axis shows the width of the wire. The energy gap is set to zero, so that a two-dimensional quantum geometric dipole D vanishes.
The cusps in the curve correspond to level anticrossings. (b) Transverse plasmon dipole moments corresponding to (a). Inset is a log-log plot
of the same results. This quantity extrapolates to zero in this case. (c) Plasmon velocity for fixed Fermi energy 1.007 eV. Horizontal axis shows
the width of the wire. The energy gap is that of the WSe,, i.e., A = 2m = 1.60 eV. The cusps in the curve correspond to level anticrossings.
(d) Transverse plasmon dipole moments corresponding to (c). Inset is a log-log plot of the same results. The L — oo value of the dipole
moment |D| & 6.00 x 10~ for these system parameters. The limiting value is the same as the two-dimensional QGD.

same dispersion, the Zeeman coupling leads to a difference
of ~8 meV in the extrema of the K and K’ bands, yielding
different carrier populations in each of them. While this leads
to little change in the plasmon dispersions [compare Figs. 7(a)
and 7(c)], the plasmons now carry dipole moments with small
magnitudes [Fig. 7(d)]. Interestingly, these dipole moments
can have either sign. At the more extreme end, this effect can
used to completely depopulate one of the valleys of carriers.
This situation is illustrated in Figs. 8(a) and 8(b). Interestingly,
this yields a plasmon dipole moment that is relatively large.

V. SUMMARY AND DISCUSSION

In some two-dimensional conducting systems, plasmon
excitations come with an intrinsic dipole moment that is
quantum geometric in nature [40]. In this work we have
explored conditions under which this kind of dipole mo-
ment might be found for quasi-one-dimensional geometries
of the corresponding systems, using an RPA approach. Our
studies focused on chiral fermions, as might be found on

the surface of a topological insulator, or in two-dimensional
van der Waals materials such as graphene or TMDs, and
we adopted a simplified model with infinite mass boundary
conditions at the system edges. We found that the pres-
ence of a transverse dipole moment is more ubiquitous in
the wire geometry than in the two-dimensional system: the
opening of a gap in the spectrum due to transverse confine-
ment is sufficient to stabilize it, even when the corresponding
gapless spectrum has no such dipole moment in two dimen-
sions. The connection with the quantum geometric dipole
is made by considering the wide wire limit, for which the
plasmons retain dipole moments when the corresponding two-
dimensional system has a nonvanishing quantum geometric
dipole.

These plasmons differ from the corresponding modes
of more conventional semiconducting quantum wires (e.g.,
GaAs): the topological character of the chiral fermions al-
low the possibility that they support edge states, which we
find are present for sufficiently wide wires. Their presence
increases the number of gapless plasmon modes supported by
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1.008 eV. (b) Transverse dipole moment corresponding to (a). Due to the symmetry, all the plasmon modes have vanishing dipole. (c) Plasmon
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in the K’ valley er(t = —1) = 1.000 eV. The different effective Fermi energies can be induced by a magnetic field coupling to electron spins.
(d) Transverse dipole moments corresponding to (c). Due to broken valley symmetry, all the plasmon modes yield a nonvanishing dipole.

the systems, but they only differ in their qualitative behavior
for systems with relatively large gaps. In this limit we found
that the dipole moments of the plasmon modes supported by
the transverse confined states became degenerate across the
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modes, whereas a single plasmon associated with the edge
states has vanishing dipole moment.

Single chiral fermion flavors can only be found in sys-
tems with broken time-reversal symmetry. In principle, a
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FIG. 8. Plasmon energies and transverse dipole moments in a 50-A wire with Fermi energy e = —0.838 eV for a typical TMD (WSe;)
half gap of 0.8 eV and Zeeman splitting of 8 meV. The boundary condition is chosen so that there are no edge modes. Only one subband of
one valley is occupied in this situation. (a) Plasmon energies. (b) Transverse dipole moments.
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conducting channel of these could be fabricated on the sur-
face of topological insulator with ferromagnetically ordered
magnetic ions on its surface, with a one-dimensional channel
cut through. Systems with both chiral fermions and time-
reversal symmetry support multiple flavors of chiral fermions
(valleys), which are time-reversal partners of one another.
Plasmons in these systems do not carry dipole moments. How-
ever, in TMDs they can be induced by the introduction of a
magnetic field, which due to spin-orbit coupling imbalances
the carrier populations in different valleys. For low carrier
densities one may find complete depletion of some valleys,
leading to relatively large transverse dipole moments in the
plasmons.

A transverse dipole moment associated with a plasmon in
a nanowire will in principle be signaled by a sensitivity of its
frequency and speed to the application of a transverse electric
field [54]: these will both vary linearly with electric field. For
example, for the system parameters considered in Figs. 8(a)
and 8(b), an external electric field of 0.01 V A~! will modify
the speed of the plasmon by approximately 3.2 x 10° m/s and
its energy by approximately 3%. Control of plasmon energies
in such a continuous way in a single system could in principle
bring new capabilities to plasmonic systems incorporating
such nanowires.

Our studies suggest further directions for exploration. Be-
yond the gapless plasmons we have focused on in this work,
nanowires support gapped, intersubband plasmons at higher
frequencies [52]. Preliminary work [62] indicates that these
also obtain nonvanishing dipole moments in chiral fermion
settings, and they offer a way to detect this physics at higher
frequencies. One may also consider the presence and role
of transverse dipole moments in more complicated settings
than considered in this work. For example, understanding the
behavior of nanowire plasmons for other classes of bound-
ary conditions, in particular those for which valley mixing
is induced at the single-particle level [46,48], would likely
be important for many types of nanowires. While we ex-
pect more realistic boundary conditions to modify details
of the transverse dipole moment when the two valleys are
coupled, a nonvanishing value should still be expected when
time-reversal symmetry is broken. In particular, for systems
where the chiral fermions have a nonvanishing mass in their
Hamiltonians, we expect a transverse dipole moment to be
particularly stable with respect to boundary conditions at the
edge. The robustness of the effect in this case is emphasized
by the results illustrated in Fig. 6, where we see the transverse
dipole moment limits to the two-dimensional value for wide
ribbons. This suggests that bulk behavior plays an important
role in this physics.

Finally, one may also consider the effects of transverse
dipole moments on plasmon nanochannel networks, which
arise naturally in moiré superlattices, and which have been
shown to support their own unique dynamics [25,29,30].
Such systems under some circumstances may become spon-
taneously valley-polarized, opening another avenue for the
broken time-reversal symmetry needed for transverse dipole
moments.

Plasmon modes can be generally understood as collective
oscillations of the electric dipole moments of conducting sys-
tems. That such oscillations can occur with a static component

which depends on the plasmon momentum is a relatively new
insight, allowing the possibility of new physical phenomena.
Nanowires offer a setting in which the direction of these
dipole moments are fixed so that they can be interrogated
with electric fields. For systems that support them, we expect
they will admit new plasmonic phenomena of fundamental
interest.
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APPENDIX A: NANOWIRE WITH INFINITE MASS
BOUNDARY CONDITION

In order to model chiral Dirac fermions confined to a quasi-
one-dimensional channel, we consider a two-dimensional
system with a position-dependent mass term:

A(x) = m, O<x<lL,
mx) = Vo, x<Oorx>L.

The Hamiltonian of the system is, in general,

. m ithky — ik,
= <irkx +ik,£ - )

where 7 is the valley index. We find stationary states by
matching eigenstates of H in the regions —oo < x < 0 (re-
gion 1), 0 < x < L (region II), and x > L (region III) at
the locations x = 0 and x = L. We ultimately take the limit
Vo — =oo (infinite mass boundary conditions [50]), but some
care must be taken with regard to whether the Chern numbers
in the central and outer regions are the same or different.
These Chern numbers are given by C = t sgn(m)/2, so that
the two cases are distinguished by the sign of mVj. For the
regions outside the nanowire, we denote the sign of the Chern
numbers by Ag = sgn(tVj). Outside the wire one has for
region I

Ira\ VO +E kix—+ikyy
YviF) =0 (i(—l’okl I ky))e )

with k12 = VO2 —-E?+ kyz,, where E is the energy of the state,
while in region III,

I = W+ E —kaxtikyy
dj (I") - C3 (i(f()k3 + ky)>e )

with k3 = Vi — E* + k. Writing the upper and lower compo-
nents of the spinors as v, and v, respectively, with the limit
[Vo| — oo we obtain [50]

"
()

= iAo, il

Al
x=0 wz ( )

= —ikg.

x=L
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In the interior of the wire (region II), the general form of
the wave function is

ety

V2E(E + m)

E+m ikox E+m —ikyx
x |:A<rkx + iky>e +B(—rkx + iky>e }

(A2)

Vi (F) =

with A and B constants to be determined. Using Egs. (A1) one
finds

é . _E +m— l.)j.()(—ka +.iky) (A3)
B E +m — iro(tky + iky)
and
A — _e—ZikaE + m+iko(—7k, + iky) (Ad)

B E +m+iro(tky + iky)
These two equations are consistent provided

62”{"[’ _ m — i)\.()'lka B
m—+ i)»()‘L'kx

. ky
6721)\0r arctan( 5% ) ,

or equivalently,

kL = —\o7 arctan (—x> + nr.

m

Using Eqgs. (A3) and (A4), one obtains the expressions

A=A@: ) = INJ(E +m? + (th, — ik, P/ + kot
and

B = B(z;k)

= —rN\/(E + m)? + (thky + iky)>/m — idoTk,,

where N is a normalization constant,

N = {SL,E(E + my[L(m® + k2) + rorm]} ",
with L, the length of the one-dimensional region.

In addition to these confined states, the wire edges may
support edge states. This can occur only if the Chern num-
bers of the interior and exterior regions have different Chern
numbers, which occurs when

Ao = —1,

with A = 7sgn(m). One finds these states by considering
states that are evanescent not just in regions I and III but also

J

L
Uup i . - . -
Virnaons na (k1 kyo s ky3, kya) = ELy/ dx[(A1 e helmx Bll.k“le’kx(”‘)’“) (A,
0 -

ni,ky1

in region II. These have the form

oy m+E —kyx-ikyy
Y (F) _A(i(rkx—i—ky))e

m+E Jeox+ik,y
+B(i(—1:kx ¥ ky)>e )
where k2 = m* — E* + kf.. Applying Egs. (A1) gives
A(m+E)+B(m+E) N
= —Ao,

= (AS)
A(tky + ky) — B(tk, — ky)

A(m + E)e %L + B(m + E )&kt

A(thky + ky)e kL — B(tk, — ky)ekd

By eliminating A and B in Egs. (AS) and (A6), we arrive at a
transcendental equation for k,:

—2k,L — |m| + )\O)ka

Im| — oAk

Equation (A7) may be solved if and only if oA = —1 and

mL > 1. These are the conditions under which the quasi-one-

dimensional system hosts edge states. Using Eqgs. (AS5) and
(A6), the explicit forms for the coefficients turn out to be

_ _ [(m+E)2 - (Tkx _ky)z](m+kx)
A== ’\/ SEGE 1 mPLy[m— L — 2]

= Ao. (A6)

(A7)

and

_ __Jlm+ E) — (ths + ky)*1(m — k)
B =By(r) = r\/ 8E(E + m>Ly[m — L(m? — k2)]

APPENDIX B: ANALYTICAL SOLUTION FOR
INTRABAND PLASMONS AT SMALL MOMENTUM

The appearance of multiple plasmon modes may appear
surprising. In this section we show that this is to be expected,
given the structure of the transverse wave functions for the
systems we consider. To do this we first develop an alternative,
equivalent formalism by which one may find the plasmon
excitations and then apply it to the simple situation of two
occupied subbands to show that there is more than a single
gapless plasmon mode.

1. Equivalent dielectric formalism

For simplicity, we consider a massless chiral fermion
system (m = 0), which is equivalent to a single val-
ley of graphene, for which we set v =1. First, we
start from Eq. (24) and obtain the equivalent dielec-
tric formalism for calculating the plasmon frequency. The
contact interaction matrix element may be written in
the form

ke B —ik,
,kv4el ' (ng)x + Bn4,ky4e i (114))()]’

>

TF —iky( il ik, ik ( D —iky(n3).
[, e 4 B, O - (B 4 By O],

ny,kya
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where the spinor coefficients An,kv and I§,ka may be read
off from Eq. (A2), and k,(n) are the quantized wave vectors
defined in Appendix A. By defining

L
f01,02,03,(f4 =/ dxe*itflkx(m)X*itfzkx(nz)XJrl'szx(ﬂ})XHUAkx(M)X
ny,na,n3,ng

0

and

5 _ An,k\‘v o = 17
n,ky,o = E ’ _ 1
n,kyv o =—1,

the interaction matrix elements can be written in the compact
form

Vn],nz,n3,n4 (kyl ’ ky2a ky3a ky4)

u ,
ZEOLy Z [D;,k,,l,m

01,02,03,04

° Dn4,kv4,a4]

i N ] 01,02,03,04
[Dn2 ky2,02 Dﬂmkys,(ﬁ fnl,nz,n3,n4 .

In the single-valley case, the self-consistent equation for
the plasmon wave function [Eq. (24)] can now be written as

l/t()Ly
— Sml (k)/] + Ky) + sz(k/ Z Z

n2,n3,ky01,02,03,04

Amy.my, (k(;’ Ky) =

ke,
= & . -
x [Dml,k}’,+K}._g, .Dm2~k§~‘74][Dn2,kyl,a2 : Dn3,ky1+Ky,a3]
X ot mamaoms 0 (n2. ky1) — np (n3, kyy + K;y)]
X all},ﬂz (kyl;Ky)-
Defining
91,0 = 01,072,030
XKD =Ly D Y b,
n,n3,ky1 02,03
X [Dr’zz,kvl,(rz : D’l},kyl-‘rk)w%][nl’ (n2, kyl)

—nr (I’l}, kyl + Ky)]anS,nz (kyl 5 I(\)

and
— i N o
%-ml,mz,ky(Ky) = Z [Dml ky+Ky,01 : sz ky m]Xml] (;,22( y)a
01,02
one finds

Em’lm’z,k( (K})

L fo'l ,02,071, 0'2
y Jmy,my, m2
0{,0},02,01

- - - -

x [D ’,k;,+Kv,0; Dm/zk)/gz,] [Drlnz,ky,az .Dml’k,v+K,wUI]

Eml,mz,ky (Kv)

B

y [nr(ma, ky) — np(my, ky, + K))]
wky — Em, (ky + K)) + Emy (ky)

J

0{,02,01,0, + s . o N
Z fm my,my,m, [Dm KK,y o] Dmi'kiwgz/][Dml,ky,az ' Dmlaky“rKvaU]] ~ L2
Y

'
01,04,02,01

The quantity & may be understood as a dielectric func-
tion, with the expression inside the square brackets of
Eq. (B1) representing a generalized polarization function
l'Iml,mz,ky;m«],m/z,k;(l(y,a)). Nontrivial solutions to this equa-
tion must obey

det[l — uoI(K,, w)] = 0.

2. Intrasubband solutions for two subbands

We now show how this equation leads to multiple gap-
less plasmons. As a simplest concrete example we consider
a massless chiral fermion system (e.g., single valley of
graphene) with two subbands, both of which are occupied
in the ground state, and include only intrasubband exci-
tations in the analysis. In Eq. (B1) this entails retaining
only pairs of indices satisfying m; = m» and m} = mj. One
then has

ij_m’l . k‘/ (Kv)

_ UI 072,01, (72
- MOL}’ z : |: z : fm Jmy,my,m\

myky Lo{,0},00,01
L q - o
[D 1k 4Ky 0 ’ Dm/pk\’w(’z/][Dml,kv,oz : Dmlwkv+K\'vo-l]

[nF (I’l’l] s ky) - nF(ml» ky + Ky)]
wr, — Emy (ky + Ky) + €y (ky)

i|€ml,m1,ky (Ky)
(B2)
The relevant spinors entering D can be evaluated as

1 k + ky + ik,

An. v .
k= JML’&@+k,tw+k ik;)

and

3 1 —(k + ky, — ik,)
= mm —i(k + ky + ko))

where k, = k.(n) and k = /kf+k3. We next note that

for small K,, the k, momentum sums involve only
very small intervals, so that one may set all the val-
ues of k, in the various Dm,ky,(, and D;lkm factors
appearing in Eq. (B2) to their values where the sub-
bands cross the Fermi energy, k, — kr(m), where krp(m) =

— [Avpk,(m)]?/hvp, with er the Fermi energy and

vr the velocity of the chiral fermion. After some algebra,
one finds

1+ -

1[ L ke (m)F }
2 mi ml

&F
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Specializing to the case of just two occupied subbands, using the notation &, , k. m) — &n, one finds to linear order in K,

kF(l)

(g, (K, )) o[ S
£1(K,) hKw)
where vy = ‘;ggi ,vph =1, and
K, [t dk,
o) = [ } .
EF Jkp(m)—K, Pk, — Em(ky + Ky) + Sm(ky)
(B3)
Nontrivial solutions to Eq. (B3) exist when
[a11i(Ky, 0) = vy ' |[axha(Ky, @) — v ]
- Il (K)N w)IZ(K)N Ll)) = 01 (B4)

where a,, = 1 + kr(m)*/2¢%.

For small K, Eq. (B3) can be evaluated directly. Writing
the (noninteracting) speed of a particle along the wire in an
occupied subband m at the Fermi energy as v,,, for small K,
one finds

K?/e
I, = L (B5)
® — v, K,
Direct substitution of Eq. (BS5) into Eq. (B4) generates a
quadratic equation for  in terms of K, with solutions

w:(Ky) = 3{v1 + v + (a1 + a2)iig £ [(v2 + ariig — vy

— aaiig) + 412(2)]1/2}1@,

where #iy = up/L. Thus we generate two nondegenerate col-
lective modes with frequencies different from those of the
noninteracting particle-hole excitations.

APPENDIX C: DEGENERACY OF TRANSVERSE
DIPOLE MOMENTS

In Sec. IV A it was shown that under certain circumstances
the transverse dipole moment D, (K, ) can be the same for mul-
tiple plasmon modes at small K, even when the frequencies
of these modes are quite different. This behavior is explained
by Eq. (28), in which one may see that D,(K,) becomes
independent of the details of plasmon wave function when
m > hvpk,(n) for the subbands n involved in the plasmon
wave function. [Note in Eq. (28), 7 and vr have been set to
1.) In this Appendix we present some details of the derivation
of Eq. (28).

Our starting point is Eq. (27), and we consider only
intrasubband particle-hole excitations in constructing the low-
energy plasmon wave functions. This means the quantities we
need to focus on have the form

dnth) = [ x5, 0 Ty o
Writing the plasmon wave functions, Eq. (4), in the form

—ikx+ikyy
,

w]; (7) - Am,k}.e

ik x+ikyy +E e
m,ky

w) L(Ky, ) (El(Ky)>
(1 + 285 (K,, ) J\52(K)) )°

(

where k, = k,(m), one finds

5 2 -
dn(ky) = —=(1Anx " + Bk |)) + 2L, Re(4,,

X /xe_z’kxxdx.

Reading off the forms of me, k, and Em, k, from the wave func-
tions in Sec. II, one finds

Bm,ky)

1 m —l—k2
2L L(m2 + kz) + rotm’

A |* = 1B, |* =

where we have set i = vp = 1. Remarkably, these combi-
nations are independent of k,; because ﬁ(Ky) involves the
difference of c?m (k) at two different k, values, terms involving

| A1, 1> and |B,,, |* do not contribute to the dipole moment of
the plasmon. For small K, the transverse component of the
dipole moment can now be written as D, = ) D, ,,, where
the sum is over occupied subbands, and

Dym(Ky) =K, <2L Re(Amk B, / xe_Zik*)‘dx>>

ky=kr
+ O(K,)*.
With some algebra one may show
A’m’ky By = — (mE + ithok,)(m — iroth,)

2L,E[L(m? + k2) + AoTm]’

and using this relation, after performing the integration one
finds

ZL},Re<A'L,kV ~§m_k)_ / xe_Zik*"dx)

_ m)\.()l'
B 2[L(m? 4+ Kk2) + AoTm]

tky(Lm + AoT)
2E[L(m? + k2) + AoTm]

The first term is independent of k, and therefore does not
contribute. Using

ky m* + k2
ak,v o = 3 ’
EJ =k €F
we arrive at
K, t(Lm+ Aot
Dem(Ky) = —= & rm + Aor) i )+(’)(Kv2).
28F L + mé)_,'_kz :

Thus, to linear order in K, the transverse plasmon dipole
moment is

Dx(Ky) _ Z 'L'K (Lm+)»()1’) ZZ |ann1: ?()‘0”1’1( )| ’

T m2+k (n)?

which is Eq. (28).
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