
1

Online Learning based Fast-Convergent and
Energy-Efficient Device Selection in Federated

Edge Learning
Cheng Peng, Qin Hu, Zhilin Wang, Ryan Wen Liu, Zehui Xiong

Abstract—As edge computing faces increasingly severe data
security and privacy issues of edge devices, a framework called
federated edge learning (FEL) has recently been proposed to
enable machine learning (ML) model training at the edge,
ensuring communication efficiency and data privacy protection
for edge devices. In this paradigm, the training efficiency has
long been challenged by the heterogeneity of communication
conditions, computing capabilities, and available datasets at
devices. Currently, researchers focus on solving this challenge
via device selection from the perspective of optimizing energy
consumption or convergence speed. However, the consideration
of any one of them is insufficient to guarantee the long-term
system efficiency and stability. To fill the gap, we propose an
optimization problem to simultaneously minimize the total energy
consumption of selected devices and maximize the convergence
speed of the global model for device selection in FEL, under
the constraints of training data amount and time consumption.
For the accurate calculation of energy consumption, we deploy
online bandit learning to estimate the CPU-cycle frequency
availability of each device, based on an efficient algorithm, named
Fast-Convergent Energy-Efficient Device Selection (FCE2DS), is
proposed to solve the optimization problem with a low level of
time complexity. Through a series of comparative experiments,
we evaluate the performance of the proposed FCE2DS scheme,
verifying its high training accuracy and energy efficiency.

Index Terms—Edge computing, federated learning, reinforce-
ment learning, online bandit learning.

I. INTRODUCTION

S INCE the traditional Internet of Things (IoT) mainly rely
on network connections and computing services in the

cloud or data center, sending data back and forth between IoT
devices and the cloud can result in heavy response delay and
low operation efficiency. As a distributed architecture for data
storage and computing at the edge of the network, edge com-
puting provides efficient computing services to edge devices
with timely communications. Thanks to the short distance
between IoT devices and the connected edge servers, edge
computing can significantly reduce the communication delay,
thereby improving computing and communication efficiency.
However, since the data of edge devices will be exposed

This work is partly supported by the US NSF under grant CNS-2105004.
Cheng Peng, Qin Hu (Corresponding author), and Zhilin Wang are

with the Department of Computer and Information Science, Indiana
University-Purdue University Indianapolis, IN 46202, USA. E-mail: {cp16,
qinhu,wangzhil}@iu.edu

Ryan Wen Liu is with the School of Navigation, Wuhan University of
Technology, Wuhan 430063, China. E-mail: wenliu@whut.edu.cn

Zehui Xiong is with the Information Systems Technology and Design Pillar,
Singapore University of Technology and Design, Singapore 119260. E-mail:
zehui xiong@sutd.edu.sg

during transmission to the edge server, the risk of being
tampered with or stolen makes devices vulnerable to various
data security and privacy threats [1]. To protect the data
privacy in edge computing, federated learning (FL) enables
edge devices to only share machine learning (ML) model
parameters to the edge server after training the global model
using their own data. This can effectively resolve the security
and privacy problems caused by direct data transmission from
local devices to edge servers, thus being termed as federated
edge learning (FEL). Combining edge computing and FL,
FEL can complete ML model training tasks at the edge while
ensuring communication efficiency and protecting data privacy
for edge devices.

However, the generated data of devices in edge computing
are usually non-independent and identically distributed (non-
IID); besides, their communication conditions and computing
capabilities are also heterogeneous, which greatly challenges
the training efficiency of FEL. Considering these compli-
cate factors, many studies are devoted to improving training
efficiency through communication compression [2], [3] and
resource allocation [4], [5]. Although these studies reduce the
communication or computing time of the devices to a cer-
tain extent, the participation of devices with poor computing
and communication capabilities or inadequate local data may
reduce the training efficiency of FEL.

To fundamentally improve the training efficiency of FEL,
it is necessary to filter participated devices before each com-
munication round. Currently, researchers mainly focus on the
perspectives of energy consumption [6]–[9] and convergence
speed [10]–[17] to select devices for training. In general,
both energy consumption and convergence speed are important
factors affecting the performance of FEL systems, but almost
all existing studies only consider one of them. If only the
energy consumption is taken into account, it may take a long
time to complete the training process, and the efficiency of the
FEL system can be sacrificed. While, if only convergence rate
is considered, devices with poor communication conditions
and weak computing power consume too much energy to
participate in local training, which may cause unexpected shut-
downs of batter-powered devices and affect the performance
of FEL.

To overcome these shortcomings, we formulate an optimiza-
tion problem to simultaneously minimize the total energy con-
sumption of selected devices and maximize the convergence
speed of the global model in every communication round,
under the constraints of total data amount and time consump-

2

tion. However, there exist two major challenges in solving the
optimization problem. First, the accurate calculation of energy
consumption is closely related to the CPU-cycle frequency
of each device, which is often dynamically fluctuated as the
CPU can be occupied by multiple tasks at the same time and
cannot be known a priori. Second, as an aggregation result,
the convergence speed reflects the contribution of all devices
participating in the training for the global model, which makes
it difficult to analyze the contribution of every single device
for selection.

To address the first challenge, we use an online bandit learn-
ing method [18] to estimate the frequency of each device in a
more accurate manner so as to better optimize the calculated
energy consumption. For the second challenge, since devices
with higher local losses can speed up the convergence of the
global model due to their local data diversity as proved in [15],
we are inspired to select devices based on their loss values for
fast convergence.

However, after solving these challenges, we find that there
is no trivial solution for the optimization problem. Since
each edge device has one of two possible states in each
communication round of FEL, i.e., selected or unselected,
an arbitrary solution requires exponentially increasing time
complexity as the number of devices increases, which burdens
the server and reduce the overall efficiency. To solve the
optimization problem with a lower time cost, we come up with
an algorithm called Fast-Convergent Energy-Efficient Device
Selection (FCE2DS). The main contributions of this work are
summarized as follows:

• To accelerate the convergence speed of the global FEL
model, we propose an energy-efficient loss model that
can be used by the server to collect the local loss value
of each device.

• Considering the time limit of each communication round
and the required data diversity for FEL training, we
propose an optimization problem to minimize the total
energy consumption of selected devices in the communi-
cation and computing processes, as well as maximize the
convergence speed of the global model.

• To facilitate the accurate calculation of time and en-
ergy consumption, we introduce a reinforcement learning
method to estimate the CPU-cycle frequency of each
device.

• To achieve the optimization goal with reduced time
complexity, we reformulate the proposed optimization
problem and propose a solution named FCE2DS with
high efficiency to select devices in each communication
round of FEL.

• To evaluate the performance of our proposed FCE2DS
scheme, a series of comparative experiments are con-
ducted to verify its high accuracy and energy efficiency.

The rest of this paper consists of the following five sections.
Section II summarizes the most related work about device
selection in FEL. Section III introduces our system model
and problem formulation, which is reformulated and solved in
Section IV. Then our proposed scheme is evaluated in Section
V. Section VI concludes the whole paper.

II. RELATED WORK

With the wide deployment of FL at the edge, extensive
research has been conducted to optimize the training efficiency
of FEL system [2]–[5]. However, due to the heterogeneity
of computing power, communication conditions and data sets
owned by devices, it turns out to be unreasonable to randomly
select a subset of devices or simply include all devices for local
training in FEL. For devices with negligible impact on model
convergence or consuming excessive energy and time, the
performance of the FEL system will be significantly sacrificed.
To this end, the selection of devices for each communication
round of FEL has become an important research topic. Gener-
ally, the research about device selection in FEL can be realized
by considering two factors: energy consumption [6]–[9] and
convergence speed [10]–[16].

As for the research about device selection considering
energy consumption, Zeng et al. [6] proposed a bandwidth al-
location and scheduling scheme that provides selection priority
for each device based on the the communication condition,
so as to reduce energy consumption during communication.
Kim et al. [7] proposed the AutoFL framework to optimize
energy efficiency, selecting devices according to features such
as data heterogeneity and runtime variance. Besides, AdaSplit
was proposed in [8] to split and train the global models
asynchronously, and an advantage function was designed to
select devices so as to reduce energy consumption during
data communication. In addition, Peng et al. [9] proposed
a scheme named E2DS to select devices considering energy
consumption and time consumption in both communication
and local computing processes.

With the consideration of the convergence speed, Wu et al.
[10] proposed a scheme named FedProf to estimate the data
dissimilarity of each device, which is used as the selection
probability for training. Zhang et al. [11] analyzed the data
importance of each device by studying the model parameters
uploaded by devices, and then selected devices to participate in
local training according to the data importance, so as to reduce
the impact of non-IID data on convergence. By utilizing the
superposition feature of wireless to achieve multiple access
channels, Yang et al. [12] proposed a concurrent transmission
device selection method to shorten the aggregation time and
improve the training efficiency. Marnissi et al. [13] studied
the relationship between gradients locally trained by devices
and the impact on global model convergence, revealing that the
device with the highest gradient norm is more important for the
convergence of the global model. Tang et al. [14] proposed the
FedGP algorithm to model the loss changes of devices for cap-
turing data correlations, based on which devices are selected
for training to accelerate the convergence speed. Besides, Cho
et al. [15], [16] investigated the relationship between the
loss value and convergence speed. By selecting devices with
higher local training loss values, the convergence speed can be
greatly accelerated and the communication efficiency can be
improved. By solving the linear programming problem, Ko et
al. [17] studied device selection and appropriate bandwidth
allocation for devices in each round, so as to reduce the
communication time and accelerate the convergence of the

3

global model.
However, it is clear that almost all the existing studies only

consider either the effect of energy consumption or conver-
gence speed on the FEL system. If only energy consumption is
considered, the FEL system may select less number of devices
with higher energy efficiency for local training, which would
reduce the diversity of data, resulting in a slow convergence
speed and reducing the training efficiency of the FEL system.
While if only the convergence rate is considered, the energy
required to complete the training for the selected devices
can be uncontrollable, which can make the battery-powered
devices exhausted quickly. To overcome these limitations, we
propose a more comprehensive device selection scheme that
considers energy and time consumption in the local computing
and communication processes, as well as optimizes loss values
of devices so as to increase the convergence speed in a more
direct way. Overall, through the device selection process be-
fore local training, the total energy consumed during the FEL
process will be significantly reduced with fast convergence of
the global model.

III. SYSTEM MODEL

In this paper, we consider a federated edge learning (FEL)
system, consisting of one edge server in charge of aggregating
the global model and multiple devices registered on the server
to train local models based on their own private data. The set of
devices on the edge is denoted by K = {1, 2, · · · , k, · · · ,K}.
In fact, since there are a large number of devices on the
edge with diverse communication and computing capabilities,
device selection in each communication round becomes a
feasible method to improve the training efficiency of FEL.
Specifically, we consider the trade-off between the resource
consumption of devices and the convergence speed of the
global model to select devices, where the required number of
data samples have to be provided by selected devices for model
training while the local training and update time constraints
need to be satisfied.

In the following, we introduce the FEL system and process
in Section III-A, and then establish the time and energy
consumption models in Section III-B. Besides, the loss model
is presented in Section III-C, the convergence cost function is
defined in Section III-D, and the overall problem formulation
is elaborated in Section III-E.

A. FEL Process

In an FEL task, the time limit of waiting for devices to
upload model updates is usually predefined as a constant
parameter by the edge server, which can be denoted as Twait.
For the FEL system with device selection, six main steps are
involved, as illustrated in Fig. 1, and can be introduced as
follows:

• At the beginning of each communication round, the
server needs to conduct the step of Device Information
Collection to prepare essential device parameters for de-
vice selection, such as local data size, computing power,
transmission power and bandwidth information.

• When the server receives necessary information from
devices1, the server calculates the best set of devices to
optimize the FEL system performance in Device Selec-
tion. The detailed problem formulation and solution will
be discussed in the following sections.

• After the determination of device selection in this com-
munication round, the server sends the global model to
all devices in the step of Selection Results and Global
Model Distribution.

• Once devices receive parameters, they will use their local
data to train the received global model in the step of Local
Learning at Devices.

• In the Learning Results and Local Model Uploading
step, after training the local model based on all the local
data, each selected device sends the local model updates
back to the server. While unselected devices send their
estimated loss values to the server.

• In the step of Global Model Aggregation2, the server
aggregates the received model updates uploaded by Twait

to derive the updated global model. Then the server
finishes this communication round of FEL and starts the
next round from the first step, i.e., Device Information
Collection.

Local
learning at

devices

Learning
results and

local model
uploading

Device
information
collection

 Device
selection

Global
model

aggregation

Device

 set

Edge

server

···
Selection

results and

global model
distribution

Fig. 1. The working process of an FEL communication round.

B. Time and Energy Consumption Models

To ensure training efficiency of the FEL system without
wasting too much time for waiting, the server selects the
optimal set of devices for local training in each communication
round by limiting the maximum waiting time for devices
submitting model updates as Twait. Due to the relatively
powerful computing and communication capabilities at the
server, the time and energy consumption in multiple steps
main involving the server’s operation can be negligible, such as
Device Information Collection, Device Selection, and Global
Model Aggregation, which cannot be further optimized by
selecting appropriated participated devices. While other steps
closely related to devices are worthy of analysis and optimiza-
tion, including the steps of Selection Results and Global Model

1For devices not returning required information, the server considers them
as disconnected for this round of FEL training and will not include them for
device selection.

2This step can be performed jointly with the step of Device Information
Collection in the next communication round to reduce the time consumption
of the overall FEL system.

4

Distribution, Local Learning at Devices, and Learning Results
and Local Model Uploading.

Here we use TD
k (t) to denote the time spent by device k

in round t during the Selection Results and Global Model
Distribution step and TU

k (t) to represent the time spent in
the Learning Results and Local Model Uploading step. In
general, TD

k (t) and TU
k (t) are jointly determined by the size

of the model parameters, denoted as Dp, and the transmission
speeds in the downloading and uploading processes, which can
be calculated as:

TD
k (t) =

Dp

V D
k (t)

, (1)

TU
k (t) =

Dp

V U
k (t)

. (2)

In the above equations, V D
k (t) and V U

k (t) are the downloading
and uploading transmission speeds in round t that are closely
related to the condition of the communication channel. Specif-
ically, V D

k (t) and V U
k (t) can be calculated as:

V D
k (t) = BD

k (t) log(1 +
Pk(t)hk(t)

2

N0
), (3)

V U
k (t) = BU

k (t) log(1 +
Pk(t)hk(t)

2

N0
). (4)

In (3) and (4), BD
k (t) and BU

k (t) are respectively the down-
loading and uploading bandwidth of device k’s communication
channel in round t, Pk(t) and hk(t) are respectively the
transmission power and the channel gain [19], and N0 is the
background noise.

Then, we define the energy consumption of device k in steps
of Selection Results and Global Model Distribution and Learn-
ing Results and Local Model Uploading in round t, denoted
by ED

k (t) and EU
k (t), respectively. As the energy consumption

during transmission is the product of the transmission power
and the transmission time, ED

k (t) and EU
k (t) can be calculated

as:

ED
k (t) = TD

k (t)Pk(t),

EU
k (t) = TU

k (t)Pk(t).

Next, to calculate the time and energy consumption of
devices during the local learning process, we denote ck(t)
as the number of CPU cycles for each device k to complete
training using one data sample in round t, which can be
measured locally and then reported to the server. Via defining
Dk as the size of device k’s local dataset, the total number
of CPU cycles needed for device k to finish local training
in round t is ck(t)Dk. Besides, we denote the CPU-cycle
frequency of device k in round t as Fk(t). Based on these
notations, the time spent in the local learning step of device
k in round t, denoted by TLC

k (t), can be represented as [20]:

TLC
k (t) =

ck(t)Dk

Fk(t)
. (5)

Since CPU can be occupied by multiple tasks at the same
time, the CPU-cycle frequency may vary greatly during local

computing and cannot be known a priori. To obtain an esti-
mated value, we use the expected value fk(t) as the CPU-cycle
frequency of device k in round t, which is shown as:

fk(t) = E[Fk(t)]. (6)

Similar to the time consumption in the step of Local
learning at devices, the energy consumption of device k in
round t, denoted as ELC

k (t), is also closely related to its local
data amount and CPU-cycle frequency. In detail, ELC

k (t) can
be expressed as [21]:

ELC
k (t) =

αk

2
ckDkFk(t)

2,

where αk is the effective capacitance coefficient of the com-
puting chip-set in device k.

Overall, by combining the time spent in each step, the total
time and energy consumption of device k in round t, denoted
as Tk(t) and Ek(t), respectively, can be calculated as:

Tk(t) = TD
k (t) + TLC

k (t) + TU
k (t), (7)

Ek(t) = ED
k (t) + ELC

k (t) + EU
k (t).

C. Loss Model

To facilitate the selection of devices, we define a binary
variable xk(t) ∈ {0, 1} to indicate whether device k is selected
or not in round t, where xk(t) = 1 denotes that device k is
selected for local training in this FEL round while xk(t) = 0
means not being chosen.

In the environment of federated learning, the loss value of
each device after local training can reflect the heterogeneity
of local data to some extent, affecting the convergence speed
of the global model [15], which can be used as a metric to
help facilitate the selection of participated devices in the next
round. If device k is selected in round t, the loss value can be
generated after completing the local learning process, which
is denoted by Gc

k(t). For devices that are not selected in the t-
th round, their accurate loss values cannot be derived without
completing the local training. In order to obtain approximate
values for these devices with less energy waste for computing,
each unselected device is required to train a mini-batch of the
local data to have an estimated loss value, denoted by Ge

k(t),
which is calculated as:

Ge
k(t) =

∑
ξ∈ξ̂k(t)

Lk(w, ξ, t)

|ξ̂k(t)|
.

In the above equation, ξ̂k(t) is the mini-batch data owned by
device k, which is sampled uniformly at random from Dk

in round t. Lk(w, ξ, t) is the loss function of device k with
parameters of the global model w and the sample data ξ from
ξ̂k(t) in round t. Based on these two ways to efficiently collect
loss values of all devices, we can calculate the loss value of
device k in communication round t, denoted as Gk(t), by

Gk(t) =

{
Ge

k(t), if xk(t) = 0,

Gc
k(t), if xk(t) = 1.

5

D. Convergence Cost Function

Given the fact that edge devices are usually battery-powered
with limited energy supply, it is necessary to minimize the
total energy consumption of all participating devices to avoid
accidental device disconnection, thereby improving the cost-
effectiveness of FEL. In addition, since devices with higher
loss values can contribute more to the convergence of the
trained global model due to their data heterogeneity [15],
selecting these devices to join in the local training step
can speed up the convergence in the real federated learning
scenario.

Considering the impacts of the above two important factors
on device selection, we define a convergence cost function
Rk(t) to describe the contribution of device k to the global
model in round t, which can be expressed as:

Rk(t) = (ηEk(t)−Gk(t− 1))xk(t), (8)

where η > 0 is a scalar for value balance. In detail, Rk(t) is
the difference between the energy consumption and the loss
value of the selected device k, indicating that the device with a
lower Rk(t) contributes more to the convergence of the global
model while consuming less energy. Note that since the loss
value result can only be obtained after the local training, here
we use Gk(t − 1) updated in round t − 1 for calculating the
convergence cost in round t.

E. Problem Formulation

As mentioned above, it is necessary to reduce the error for
each device in calculating energy consumption caused by the
fluctuation of the CPU cycle frequency while considering the
loss value, which can be implemented by minimizing the time-
averaged convergence cost Rk(t) over time duration T .

Furthermore, the amount of training data will also signif-
icantly affect the performance of FEL, where too little data
will lower the convergence speed and model precision. Here
we define a parameter a ∈ (0, 1) for the edge server to
adjust the ratio of data required in FEL to the total amount
of data Dall =

∑K
k=1 Dk. Moreover, the time limit Twait

for the server to collect local model updates should also be a
constraint considered for all devices.

To achieve the goal of speeding up the global model
convergence with device energy consumed as less as possible
while meeting constraints mentioned above, we formulate the
following optimization problem:

min :
1

T

T−1∑
t=0

E[
K∑

k=1

Rk(t)], (9)

s.t. : xk(t) ∈ {0, 1}, (9a)

Tk ≤ Twait, (9b)
K∑

k=1

Dkxk(t) ≥ a ·Dall. (9c)

In the above equations, the optimization goal (9) is to minimize
the expected convergence cost of the selected devices. The first
constraint (9a) ensures that the selection indicator xk(t) should

only be 0 or 1. The constraint (9b) guarantees that the total
time consumption of each selected device should be less than
the maximum waiting time Twait set by the server. And the
last constraint (9c) specifies that the total data volume of the
selected devices have to be sufficient to train the model in
each communication round.

IV. ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE
SELECTION WITH FAST CONVERGENCE

In this section, we mainly introduce a reinforcement learn-
ing method to approach the CPU-cycle frequency of each
device, and then design an algorithm to solve the optimization
problem (9) after reformulation. Firstly, we introduce the
general idea of overcoming the uncertainty of CPU-cycle
frequency based on the online bandit learning in Section IV-A,
where the specific calculation is represented in Section IV-B.
After that, we reformulate the problem in Section IV-C, and
design the algorithm FCE2DS in Section IV-D.

A. General Idea

Since the CPU of each device could be occupied by multiple
tasks at the same time, the CPU-cycle frequency that can be
used for the FEL task is more or less lower than the rated
frequency in the practical situation. To obtain an accurate
estimation of CPU-cycle frequency that can be used for local
training at each device, we introduce the combinatorial multi-
armed bandit (CMAB) algorithm to learn the CPU-cycle
frequency for approaching the real situation.

In detail, the edge server is regarded as a player, each
device is treated as an arm, and the action of selecting an
appropriate set of devices by the server at the beginning of
every communication round is considered as pulling multiple
arms. Since the goal of our problem is to minimize the total
convergence cost

∑K
k=1 Rk(t), devices with smaller Rk(t) are

more likely to be selected. Thus, here the reward of pulling
any arm, i.e., selecting a device, is −Rk(t) in the CMAB
problem, and the device with a larger reward should be more
worthy of being selected for FEL training.

Specifically, by obtaining the communication and comput-
ing power of all devices at the Device Information Collection
step, the server can calculate the energy and time consumption,
as well as the loss value in the previous round, as a reference
for device selection in the current communication round. In
practice, however, the CPU-cycle frequency that affects time
and energy consumption is unknown and only the rated value,
instead of the frequency value dedicated to the FEL task, is
available to the server. Therefore, after the local training in
each communication round, the server calculates the true CPU-
cycle frequency based on the information of time consumed
by devices, and then updates the frequency information for
each device based on the feedback.

In this case, to learn the CPU-cycle frequency of each device
in every round more accurately, we need to solve the trade-
off problem of “exploitation” and “exploration” in the CMAB
problem. In this model, “exploitation” refers to choosing
the arm (i.e., device) with a larger reward to participate in
local training; “exploration” refers to choosing a new arm

6

(device) that has never been chosen before to participate in
local training. After obtaining the trade-off reward value, we
dynamically adjust the device selection strategy under the
constraints of waiting time and training data size to maximize
the sum of the trade-off reward value. Therefore, inspired by
the CMAB problem, we can propose an algorithm to solve
the problem of device selection with unknown CPU-cycle
frequency.

B. Specific Calculation

We can get the real communication and calculation time
of device k by recording the time difference between the
server sending model parameters to this device in the Selection
Results and Global Model Distribution step and receiving the
result from device k in the Learning Results and Local Model
Uploading step in round t, which is denoted as TFinal

k (t).
Then, according to the definition of Tk(t) in (7), as well as
other relevant equations (1), (2), and (5), the real value of
CPU-cycle frequency of device k in round t, i.e., Fk(t), is
calculated as:

Fk(t) =
ck(t)Dk

TFinal
k (t)− TD

k (t)− TU
k (t)

. (10)

According to (10), the optimization goal in (9) can be
rewritten as:

1

T

T−1∑
t=0

E[
K∑

k=1

Rk(t)]

=
1

T

T−1∑
t=0

E[
K∑

k=1

(
ηDp

BD
k (t) log(1 +

Pk(t)h2
k(t)

N0
)
Pk(t)

+
αk

2
ηckDkFk(t)

2 +
ηDp

BU
k (t) log(1 + Pk(t)hk(t)2

N0
)
Pk(t)

−Gk(t− 1))xk(t)].

Under the consideration that the CPU-cycle frequency Fk(t)
is independent of other parameters and fk(t) = E[Fk(t)]
according to (6), the above equation can be updated as:

1

T

T−1∑
t=0

E[
K∑

k=1

Rk(t)]

=
1

T

T−1∑
t=0

K∑
k=1

{E[(ηDp

BD
k (t) log(1 +

Pk(t)h2
k(t)

N0
)
Pk(t)

+
ηDp

BU
k (t) log(1 + Pk(t)hk(t)2

N0
)
Pk(t)

−Gk(t− 1))xk(t)] +
αk

2
ηckDkfk(t)

2E[xk(t)]}.

(11)

To minimize (11), it is required to learn the unknown CPU-
cycle frequency of each device, i.e., fk(t). To aim this, we
denote nk(t) as the number of communication rounds that
device k is selected to participate in local training with this
FEL task in the first t communication rounds, and it can be
calculated as:

nk(t) =
t−1∑
τ=0

xk(τ). (12)

Then, in order to record a stable CPU-cycle frequency for
each device, we maintain an average value for the previous t
rounds of device k, which is defined as f̄k(t). According to
the value of the CPU-cycle frequency of the previous t rounds
Fk(t) and the number of times that device k is selected in (12),
we can calculate the average value f̄k(t) as:

f̄k(t) =

∑T−1
τ=0 Fk(τ)xk(t)

nk(t)
.

Therefore, after receiving the real CPU-cycle frequency
Fk(t) in each communication round, the server will update
f̄k(t) and nk(t) for each device, regardless of whether it is
selected to participate in this round of training. Respectively,
nk(t) and f̄k(t) can be updated by:

nk(t) =

{
nk(t− 1), if xk(t) = 0,

nk(t− 1) + 1, if xk(t) = 1,
(13)

f̄k(t) =


f̄k(t− 1), if xk(t) = 0,

nk(t− 1)f̄k(t− 1) + Fk(t)

nk(t)
, if xk(t) = 1.

(14)
Once the average CPU-cycle frequency of each device is

updated in each round, we complete the “exploitation” part
of reinforcement learning. To allow the devices that have not
been selected to have more opportunities to update the CPU-
cycle frequencies for approximating their true values, which
is the “exploration” part, we introduce the variable f̃k(t) as
the estimated value of the CPU-cycle frequency of device k in
round t. In this article, we use the Upper Confidence Bound
(UCB) [22] [23] algorithm to update f̃k(t), which is shown
below:

f̃k(t) = f̄k(t) +

√
2 lnK

nk(t)
.

In the above equation, f̃k(t) is composed of two parts,
considering both the “exploitation” and the “exploration”
parts. Specifically, f̄k(t) represents that with more times being
selected, the confidence interval of the device will be narrower
and the uncertainty of the estimation is lower. In the contrast,
those devices with larger f̄k(t) have more probabilities to
be selected. Meanwhile,

√
2 lnK
nk(t)

refers to that the fewer the
number of attempts for a device, the wider the confidence
interval and the higher the uncertainty, which means the device
with a wider confidence interval tends to be selected multiple
times.

Therefore, the variable f̄k(t) represents the CPU-cycle
frequency closest to the true value of the device, and f̃k(t)
gives suggestions for the next round of device selection, based
on the perspectives of giving chances to all devices to update
their real information. By doing so, the situation of selecting
only the devices with better initial performance is avoided, and

7

the server also gives opportunity to devices with poor initial
performance to be selected and update their information.

Base on this, we define S̃(T) as an average expected
convergence cost that considers the whole FEL task from the
beginning to the T -th round, which can be rewritten as:

S̃(T) =
1

T

T−1∑
t=0

E[
K∑

k=1

Rk(t)]

=
1

T

T−1∑
t=0

K∑
k=1

{E[(ηDp

BD
k (t) log(1 +

Pk(t)h2
k(t)

N0
)
Pk(t)

+
ηDp

BU
k (t) log(1 + Pk(t)hk(t)2

N0
)
Pk(t)

−Gk(t− 1))xk(t)] +
αk

2
ηckDkf̃k(t)

2E[xk(t)]}.

C. Problem Reformulation

Now, we can rewrite the optimization problem in Section
III-E as follows:

min : S̃(T), (15)
s.t. : (9a)(9b)(9c).

It is clear that the optimization problem is to select the
optimal subset of devices that minimizes the total convergence
costs under the constraints of time consumption and training
data size. Thus, the above optimization problem requires
complex combinatorial optimization. An intuitive solution to
this problem is to traverse all device combinations and then
compare them to obtain the best set of devices. However,
considering that each device has two states, i.e., selected and
unselected, it will take O(2K) time complexity to traverse
all devices, which will not only consume a huge amount of
time in each communication round but also severely reduce
the training efficiency. To avoid this situation, we transform
the above optimization problem into an effective maximization
problem, and propose a solution with lower time complexity
based on dynamic programming.

Since in each communication round, the devices registered
on the edge are known, the calculated convergence cost of
each device is fixed after the information of all devices is
collected. Regarding the energy cost, we can find that the total
energy consumption of all devices in each round is fixed, and
there are only two choices for devices in each communication
round, i.e., to be selected or not to be selected to participate
in local training. Based on this, selecting a set of devices with
lower energy consumption to participate in FEL is equivalent
to excluding a set of devices with higher energy consumption
and allowing the rest to participate in training. As for the
convergence speed, after devices with lower loss values are
selected, the rest of devices will have the higher loss values.
Therefore, we can see that if a set of devices with a higher sum
of convergence cost in round t can be selected and removed,
the rest of devices are the optimal set of devices that solves
our optimization problem.

As defined earlier, the state indicator of device k ∈ K is
xk(t), which is equal to 1 when device k is selected in round
t. To better distinguish the selected set and the unselected set
of devices, we denote yk(t) to indicate the state of device
k which is not selected for participating in FEL in round
t, so we have yk = 1− xk. Then, to solve the reformulated
optimization problem in (15), we define S̃y(T) as the average
expected sum of cost convergence from the beginning to the
T -th round of the FEL task, which can be calculated as:

S̃y(T) =
1

T

T−1∑
t=0

K∑
k=1

{E[(ηDp

BD
k (t) log(1 +

Pk(t)h2
k(t)

N0
)
Pk(t)

+
ηDp

BU
k (t) log(1 + Pk(t)hk(t)2

N0
)
Pk(t)

−Gk(t− 1))yk(t)] +
αk

2
ηckDkf̃k(t)

2E[yk(t)]}.
(16)

In this case, according to (16), the problem in (15) can be
rewritten as:

max : S̃y(T), (17)
s.t. : yk(t) ∈ {0, 1}, (17a)

Tk ≤ Twait, (17b)
K∑

k=1

Dkyk(t) ≤ (1− a) ·Dall, (17c)

where the data size constraint (17c) means the total data size
of selected devices not participating in FEL should be less
than (1 − a) · Dall to guarantee enough data size of devices
participating in training.

After reformulating the optimization problem into a maxi-
mum problem with an upper limit of total training data size
rather than a lower limit, we can solve the optimization using
a dynamic programming method, which will be elaborated in
the below.

D. Algorithm Design

As discussed above, the sum of convergence costs for all
devices registered on the edge server in each communication
round is fixed. Based on the complementary relationship of
selected and unselected devices, we transform the minimiza-
tion problem defined in (15) into a maximization problem
in (17). To solve it, we propose a Fast-Convergent Energy-
Efficient Device Selection (FCE2DS) algorithm and specify it
in Algorithm 1.

Generally, the above maximization problem with an upper
limit constraint can be transferred to a 0-1 Knapsack problem3.
In the 0-1 knapsack problem, there are many items with
their respective values and a knapsack with limited capacity.
By choosing whether putting each item into the backpack
or not, the total value of the backpack can be maximized
under the capacity constraint. Inspired by this problem, here

3For the classical 0-1 Knapsack problem, dynamic programming has been
proved to be an optimal solution in many studies [24]. So we omit the proof
details in this paper for brevity.

8

we propose a DeviceSelection algorithm to solve the problem
of selecting devices with different convergence costs under
the data size constraint defined in (17). In detail, for every
communication round t, there are K different devices that can
be selected or not for joining FEL, and the capacity is the
maximum remaining data size (1− a) ·Dall with an extra
constraint of time consumption. For simplicity, we denote
Dcap = (1− a) ·Dall as the data size capacity of unselected
devices, and vk(t) = Rk(t) as the value of device k in round t.
Then a sequence V(t) = {v1(t), v2(t), · · · , vK(t)} is defined
to contain the convergence cost values of all devices, while the
sequence of data sizes is denoted by D = {D1, D2, · · · , DK}.

After device selection, the selected devices will participate
in one communication round of local computing to update
the global model. Meanwhile, the real CPU-cycle frequency
data of each selected device can be calculated, so as to learn
the expected CPU-cycle frequency using the bandit learning
method. The expected CPU-cycle frequency will continue to
improve the accuracy of energy consumption calculation, and
then impact the device selection in the next communication
round.

Algorithm 1 FCE2DS
Input: the number of current communication round t, the

number of devices K, the size set of devices D =
{D1, D2, · · · , DK}, the data size capacity of unselected
devices Dcap

1: for k ∈ {1,2,· · · ,K} do
2: f̄k(0) ← 0
3: nk(0) ← 1
4: end for
5: for communication round t = 1, 2, · · · do
6: Calculate the value set of devices V(t) =

{v1(t), v2(t), · · · , vK(t)}
7: {x1, x2, · · · , xK} ← DeviceSelection(K,V,D, Dcap)
8: for k ∈ {1,2,· · · ,K} do
9: Local learning at devices according to xk and update

Gk

10: nk(t) =

{
nk(t− 1), xk(t) = 0

nk(t− 1) + 1, xk(t) = 1

11: f̄k(t) =


f̄k(t− 1), xk(t) = 0

nk(t− 1)f̄k(t− 1) + Fk(t)

nk(t)
, xk(t) = 1

12: f̃k(t) = f̄k(t) +
√

2 lnK
nk(t)

13: end for
14: end for

As shown in Algorithm 1, there are four input parameters:
the number of current communication round t, the number of
devices K, the size set of devices D = {D1, D2, · · · , DK},
and the data size capacity of unselected devices Dcap. To
initiate the whole algorithm, for every device logged in the
edge server, the average CPU-cycle frequency in the first
communication round f̄k(0) is set to 0 (Line 2). Since nk(t)
will be used as a divisor in the following equation, we set
its initial value to 1 (Line 3). Then, in each communication
round, we start by calculating the convergence cost value of

each device according to the function defined in (8) (Line 6),
and next calculate the optimal device selection solution using
DeviceSelection algorithm (Line 7), which will be specifically
demonstrated in Algorithm 2. After selection, the selected
device will participate in the local training process and update
training results to the server (Line 8). Then, with the latest
updated parameters, the number of each device being selected
nk(t), the average frequency value f̄k(t), and the estimated
frequency value f̃k(t) are learnt and updated according to (13)
and (14) (Lines 9-12).

Algorithm 2 DeviceSelection
Input: the number of devices K, the value set of devices
V = {v1, v2, · · · , vK}, the size set of devices D =
{D1, D2, · · · , DK}, the data size capacity of unselected
devices Dcap

Output: the state indicators of all devices {x1, x2, · · · , xK}
1: for D ← 0 to Dcap do
2: DSA(0, D)← 0
3: end for
4: for i← 1 to K do
5: DSA(i, 0)← 0
6: end for
7: for i← 1 to K do
8: for D ← 1 to Dcap do
9: if Di ≤ D then

10: if vi + DSA(i − 1, D − Di) > DSA(i − 1, D)
then

11: DSA(i,D)← vi +DSA(i− 1, D −Di)
12: else
13: DSA(i,D)← DSA(i− 1, D)
14: end if
15: else
16: DSA(i,D)← DSA(i− 1, D)
17: end if
18: end for
19: end for
20: for i← K to 1 do
21: if DSA(i,Dcap) > DSA(i− 1, Dcap) then
22: y[i]← 1
23: Dcap ← Dcap −D[i]
24: else
25: y[i]← 0
26: end if
27: end for
28: for i← 1 to K do
29: xi ← 1− yi
30: end for
31: return {x1, x2, · · · , xK}

In Algorithm 2, the convergence cost value set of all
devices V is input with K, D, and Dcap to select devices.
Firstly, a two-dimensional array DSA(K,Dcap) is used to
store and update intermediate results of dynamic programming
(Lines 1-19). Then, the output result of unselected devices are
calculated according to DSA(K,Dcap) table (Lines 20-27).
Finally, the indicator yk(t) of unselected devices is converted

9

to the indicator xk(t), which represents that device k will be
selected in round t (Lines 28-31).

Overall, the computational overhead of our solution is
mainly determined by the DeviceSelection part, so the time
complexity of our FCE2DS algorithm is O(KDcap), where
K is the number of devices that logged in the edge server
in the FEL task, and Dcap is the data size capacity which is
equal to (1− a) ·Dall.

V. EXPERIMENTAL EVALUATION

A. FEL Environment Simulation
To evaluate the effectiveness and performance of our pro-

posed scheme FCE2DS, we establish a simulation environ-
ment of FEL and perform experimental verification. We also
simulate the traditional FL (TFL) process without device
selection and the energy-efficient device selection scheme
E2DS proposed in [9]. All three schemes are implemented on
a desktop with Intel(R) Core(TM) i7-9750 CPU @2.60GHz
and 16GB RAM running Windows 10 OS.

In order to make a reasonable and sufficient comparison,
most of the parameter settings used in the E2DS experi-
ments are also applied here. Specifically, for the wireless
communication simulation, a circular area with a radius of
50 meters is used as the coverage area of the edge server for
the experiment, with the edge server located at the center. In
the FEL task, there are 50 devices logged in the edge server,
which are uniformly distributed with a range of 2 meters to 50
meters from the center of the circle. The channel gain hk of
device k follows the exponential distribution with the equation
g0(d0/d)

4, where the reference distance d0 = 1 meter, and
g0 = −40 dB [21]. The download bandwidth of each device
BD

k is set to follow the normal distribution with the mean and
standard deviation being 5 MHz and 4 MHz, and as a practical
bandwidth limitation, the upload bandwidth of devices BU

k

would be lower than the download bandwidth, which follows
the normal distribution with the mean and standard deviation
of 1 MHz and 0.1 MHz. The transmission power Pk is set as a
normal distribution where the mean is 0.6 W and the standard
deviation is 0.2 W. For other fixed values, we assume the
background noise N0 as 10−8 W, and the data size of model
parameters is set as Dp = 25, 000 nats, which is approximately
equal to 4.5 KB.

For the local learning step, the training size Dk of each
device is set as a normal distribution with the mean and
standard deviation being 5 MB and 4 MB. To simulate the
FEL scenario with non-IID data distribution, we distribute
30% of data from the same class to each device, and randomly
select 70% of data from the remaining classes. We set the
effective capacitance coefficient αk = 2×10−28. The number
of CPU cycles ck is normally distributed with the mean of 15
cycles/bits and the standard deviation of 10 cycles/bits, and
the expected CPU-cycle frequency fk follows the rule of a
normal distribution with the mean of 0.5 GHz and the standard
deviation of 0.1 GHz.

B. Model Training Settings
For the experiment of the FEL task, the dataset we use to

train and test is MNIST which includes 60,000 handwritten

digital images for training and 10,000 for testing with 10
classes. We compare our proposed FCE2DS algorithm with
the other two schemes, i.e., TFL and E2DS [9]. In order to
make the comparative experiment more convincing, we control
the constraints unchanged, which means that all three schemes
satisfy the constraints (17a), (17b) and (17c). Specifically, TFL
randomly selects devices until the sum of data size reach
(1−a) ·Dall for training, and E2DS refers to the optimization
of energy consumption and the number of devices under time
constraints when selecting devices.

We use the same convolutional neural network as the global
model for all three schemes, including three linear convolution
layers. Specifically, the first layer contains 32 channels, while
the second one has 64 channels and the third one has 128
channels. All layers are followed with 2×2 max pooling,
which are activated by the ReLU function, and a final Softmax
output layer afterward.

Then, we set the ratio of the necessary amount of data to
the total amount of data for each round of FEL as a = 0.75
unless otherwise specified, which means there are three-
quarters of the data used in each FEL round. In addition, the
maximum waiting time in each round Twait is set as 10 min
unless specified. For the E2DS scheme, we set the parameters
according to [9]. In FCE2DS, we set the weight of energy
consumption as η = 0.1.

C. Evaluation Results

In this part, we first verify whether the FCE2DS algorithm
performs better by evaluating the loss trend, the accuracy
trend, the number of devices and the energy consumption of
the three schemes. Then, we evaluate the learning performance
and cost of the FCE2DS algorithm, which testifies the usability
of our proposed scheme. To reduce the experimental error, we
repeat each experiment 20 times and take the average value
as the final result to ensure the reliability of experiments.

1) Comparison Experiments: To explore the effectiveness
of FCE2DS scheme, we study the performances of TFL
scheme, E2DS scheme, and FCE2DS scheme.

(a) Loss trend (b) Accuracy trend

Fig. 2. The comparison results of loss and accuracy trends in different
schemes.

Firstly, we compare the loss and accuracy trends in different
schemes, where the results are shown in Fig. 2. Specifically,
as shown in Fig. 2(a), all three schemes converge after 50
communication rounds, but the loss of FCE2DS is the smallest
among them. In the final round 50, the loss of FCE2DS reaches
0.274, while the losses of TFL and E2DS are respectively
0.369 and 0.357, both larger than that of FCE2DS. Since the

10

loss value is the most obvious result to show the convergence
speed, it is clear to see that FCE2DS has a better performance
in convergence. Then, in Fig. 2(b), we can see that after
50 communication rounds, all the three schemes reach a
high training accuracy. Separately, the accuracy of E2DS
scheme is 96.47%, which is a little larger than the accuracy
of TFL (96.06%), while FCE2DS scheme gets the highest
accuracy of 97.48%. Above all, the FCE2DS scheme shows
the best performance and wins the comparison of not only the
convergence speed but the accuracy.

0 10 20 30 40 50
Communication round

15
20
25
30
35

Nu
m

be
r o

f d
ev

ice
s TFL

E2DS
FCE2DS

(a) Number of devices

0 10 20 30 40 50
Communication round

10
20
30
40
50
60
70
80

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

TFL
E2DS
FCE2DS

(b) Average energy consumption of
each device

Fig. 3. The comparison results of device quantity and energy consumption
in different schemes.

Then, Fig. 3 shows the comparison results of three schemes
regarding the number of devices and the average energy
consumption of each device. As shown in Fig. 3(a), FCE2DS
scheme selects more devices in each communication round,
i.e., about 38 devices, which is larger than both the E2DS
and TFL schemes (about 10-25 devices in each round). We
know that in a practical FEL environment, more devices mean
that the model has more diverse data, which is better for the
model to have a fast convergence performance. The result that
FCE2DS scheme selects more devices confirms that it can get
the lowest loss value (shown in Fig. 2(a)). For the unusual
number of selected devices in the FCE2DS scheme for the first
communication round, only 19 devices are selected, which is
because the FCE2DS scheme will randomly choose devices in
the initialization stage to take part in the beginning round.
For the energy consumption, Fig. 3(b) shows the average
energy consumption of each device in different schemes.
Since the number of selected devices is different for all the
three schemes, it is more appropriate to compare the average
energy consumption per device instead of the total energy
consumption. We can see that the average energy consumption
of both FCE2DS scheme and E2DS scheme are around 15-
25 J per device, which is much less than the average energy
consumption of TFL (about 40-70 J). By comparing FCE2DS
scheme and E2DS scheme, in most of the communication
rounds, the energy in FCE2DS scheme consumes less and
is more stable. In conclusion, FCE2DS scheme has a better
performance on energy consumption optimization.

2) Learning Performance and Cost: To explore the optimal
parameters for training, we change the data size rate a to 0.25,
0.5, and 0.75, and see how the proposed FCE2DS algorithm
performs, with the results shown in Fig. 4. Specifically, Fig.
4(a) shows the difference of training loss values in each
communication round. From the figure we can see that the
FEL system has the fastest convergence speed when a = 0.75.

0 10 20 30 40 50
Communication round

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

ni
ng

 lo
ss

a=0.75
a=0.50
a=0.25

(a) Training Loss

0 10 20 30 40 50
Communication round

20

40

60

80

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

a=0.75
a=0.50
a=0.25

(b) Training Accuracy

Fig. 4. Training loss and accuracy trends with different a.

Similarly, the FEL system gets the highest training accuracy
when a = 0.75. Therefore, 75% of the data size rate to select
devices is optimal for this FEL task to reach a high accuracy
and fast convergence speed.

TABLE I
COMPARISON OF LEARNING RESULTS WITH DIFFERENT TIME LIMITS.

Twait Communication Round t
t = 10 t = 30 t = 50

Accuracy

5 min 89.49% 96.14% 96.81%
7.5 min 94.61% 96.99% 97.60%
10 min 92.12% 96.71% 97.48%
15 min 90.85% 94.37% 96.00%

Loss

5 min 0.88 0.41 0.35
7.5 min 0.67 0.36 0.28
10 min 0.76 0.35 0.27
15 min 1.25 0.58 0.41

Then, by changing Twait to 5 min, 7.5 min, 10 min, and 15
min, we study how the time limit influences the performance
and energy consumption of the FEL system. The comparison
results of learning performance with different time limits are
shown in Table I, including accuracy and loss at different
communication rounds. Besides, the comparison results of
device quantity and energy in different time limits are shown
in Fig. 5.

0 10 20 30 40 50
Communication round

0
5

10
15
20
25
30
35
40

Nu
m

be
r o

f d
ev

ice
s

Twait = 5 min
Twait = 7.5 min
Twait = 10 min
Twait = 15 min

(a) Number of devices

0 10 20 30 40 50
Communication round

10
15
20
25
30
35
40

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

Twait = 5 min
Twait = 7.5 min
Twait = 10 min
Twait = 15 min

(b) Average energy consumption of each device

Fig. 5. The comparison results of device quantity and energy consumption
with varying time limits.

11

For detailed analysis, in Table I, the accuracy and loss
values of different time limits are listed separately for various
numbers of communication rounds. For the accuracy results,
we can see that the FEL system could reach the highest
accuracy and the lowest loss value when Twait = 7.5 min
through the whole task. In addition, in Fig. 5(a), it is clear
that when Twait = 7.5 min, there are more devices selected to
take part in local training than the number of selected devices
when Twait = 5 min, which means the data amount used to
train the model is greater as well. Combining Table I and Fig.
5(a) to analyze together, the limit of training data is the reason
of the FEL system not reaching the best performance when
Twait = 5 min.

Then, for the experiments with longer Twait (i.e., 10 min
and 15 min), as the results shown in Table I, the FEL system
does not perform as well as that of Twait = 7.5 min. Until
the 50-th round, the accuracy and convergence speed are still
very slow, which means it needs more communication rounds
to train the model and it is more difficult to have a good
training result. This is because in an edge environment, the
more required communication rounds, the more difficult to
maintain the stability and durability of the edge devices. More-
over, in Fig. 5(b), the FEL system is more energy-efficient
when Twait = 5 min and 7.5 min, as the average energy
consumption of selected devices is lower, compared with that
of Twait = 10 min and 15 min. Above all, Twait = 7.5 min
is the most suitable time limit for this FEL task.

VI. CONCLUSION

In this paper, to enable device selection in FEL for higher
training efficiency, we propose an optimization problem to
minimize the energy consumption of selected devices and
maximize the convergence speed of the global model, under
the constraints of time consumption and the total amount of
data for training. Then, we take advantage of the CMAB
learning algorithm to better estimate the CPU-cycle frequency
of each device given its uncertainty nature due to multi-task
processing at devices, which makes the calculation of the
energy consumption more accurate. To the end, we design
the FCE2DS algorithm to solve the problem and verify its
efficiency and performance through a series of experiments.

REFERENCES

[1] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security
and privacy-preserving in edge computing paradigm: Survey and open
issues,” IEEE access, vol. 6, pp. 18 209–18 237, 2018.

[2] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work:
Flexible communication compression for energy efficient federated
learning over heterogeneous mobile edge devices,” in IEEE INFOCOM
2021-IEEE Conference on Computer Communications. IEEE, 2021,
pp. 1–10.

[3] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[4] A. Taik, Z. Mlika, and S. Cherkaoui, “Data-aware device scheduling for
federated edge learning,” arXiv preprint arXiv:2102.09491, 2021.

[5] D. Ye, S. Chen, and C. Wang, “Fast convergence for federated learning in
ofdma systems,” in 2021 IEEE 32nd Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE,
2021, pp. 1–6.

[6] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio
resource allocation for federated edge learning,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[7] Y. G. Kim and C.-J. Wu, “Autofl: Enabling heterogeneity-aware energy
efficient federated learning,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 183–198.

[8] A. Chopra, S. K. Sahu, A. Singh, A. Java, P. Vepakomma, V. Sharma,
and R. Raskar, “Adasplit: Adaptive trade-offs for resource-constrained
distributed deep learning,” arXiv preprint arXiv:2112.01637, 2021.

[9] C. Peng, Q. Hu, J. Chen, K. Kang, F. Li, and X. Zou, “Energy-efficient
device selection in federated edge learning,” in 2021 International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2021, pp. 1–9.

[10] W. Wu, L. He, W. Lin, R. Mao, C. Huang, and W. Song, “Fedprof:
Optimizing federated learning with dynamic data profiling,” arXiv
preprint arXiv:2102.01733, 2021.

[11] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for
federated learning with non-iid data in mobile edge computing,” IEEE
Access, vol. 9, pp. 24 462–24 474, 2021.

[12] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 2022–2035, 2020.

[13] O. Marnissi, H. E. Hammouti, and E. H. Bergou, “Client selection
in federated learning based on gradients importance,” arXiv preprint
arXiv:2111.11204, 2021.

[14] M. Tang, X. Ning, Y. Wang, Y. Wang, and Y. Chen, “Fedgp: Correlation-
based active client selection strategy for heterogeneous federated learn-
ing,” arXiv preprint arXiv:2103.13822, 2021.

[15] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv
preprint arXiv:2010.01243, 2020.

[16] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based
communication-efficient client selection strategies for federated learn-
ing,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2020, pp. 1066–1069.

[17] H. Ko, J. Lee, S. Seo, S. Pack, and V. C. Leung, “Joint client
selection and bandwidth allocation algorithm for federated learning,”
IEEE Transactions on Mobile Computing, 2021.

[18] R. Arora, O. Dekel, and A. Tewari, “Online bandit learning against
an adaptive adversary: from regret to policy regret,” arXiv preprint
arXiv:1206.6400, 2012.

[19] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[20] T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2, pp. 203–221, 1996.

[21] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1387–1395.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[23] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in 2014
11th International Symposium on Wireless Communications Systems
(ISWCS). IEEE, 2014, pp. 917–921.

[24] P. Toth, “Dynamic programming algorithms for the zero-one knapsack
problem,” Computing, vol. 25, no. 1, pp. 29–45, 1980.

VII. BIOGRAPHY SECTION

12

Cheng Peng received the BS degree in Computer
Science and Technology from Beijing University of
Technology, Beijing, China, in 2019, and the MS
degree in Computer and Information Sciences from
Indiana University-Purdue University Indianapolis
(IUPUI), Indiana, USA, in 2021. His current re-
search focuses on edge computing, federated learn-
ing, and Internet of Things (IoT).

Qin Hu received her Ph.D. degree in Computer
Science from the George Washington University
in 2019. She is currently an Assistant Professor
with the Department of Computer and Information
Science, Indiana University-Purdue University In-
dianapolis (IUPUI). She has served on the Edi-
torial Board of two journals, the Guest Editor of
four journals, the TPC/Publicity Co-chair for sev-
eral workshops/conferences, and the TPC Member
for several international conferences. Her research
interests include wireless and mobile security, edge

computing, and blockchain.

Zhilin Wang received his B.S. from Nanchang Uni-
versity in 2020. He is currently pursuing his Ph.D.
degree of Computer and Information Science In
Indiana University-Purdue University Indianapolis
(IUPUI). He is a Research Assistant with IUPUI,
and he is also a reviewer of 2022 IEEE International
Conference on Communications (ICC). His research
interests include blockchain, federated learning, edge
computing, and Internet of Things (IoT).

Ryan Wen Liu (M’15) received the B.Sc. degree
(Hons.) in Information and Computing Science from
the Department of Mathematics, Wuhan University
of Technology, Wuhan, China, in 2009, and the
Ph.D. degree from The Chinese University of Hong
Kong, Hong Kong, in 2015. He is currently an
Associate Professor with the School of Navigation,
Wuhan University of Technology. He was a Visiting
Scholar with the Agency for Science, Technology
and Research, Singapore. His research interests in-
clude computer vision, data mining, and intelligent

transportation system.

Zehui Xiong is currently an Assistant Professor
in the Pillar of Information Systems Technology
and Design, Singapore University of Technology
and Design. Prior to that, he was a researcher with
Alibaba-NTU Joint Research Institute, Singapore.
He received the PhD degree in Nanyang Techno-
logical University, Singapore. He was the visiting
scholar at Princeton University and University of
Waterloo. His research interests include wireless
communications, network games and economics,
blockchain, and edge intelligence. He has published

more than 140 research papers in leading journals and flagship conferences
and many of them are ESI Highly Cited Papers. He has won over 10
Best Paper Awards in international conferences and is listed in the World’s
Top 2% Scientists identified by Stanford University. He is now serving as
the editor or guest editor for many leading journals including IEEE JSAC,
TVT, IoTJ, TCCN, TNSE, ISJ, JAS. He is the recipient of IEEE TCSC
Early Career Researcher Award for Excellence in Scalable Computing, IEEE
CSIM Technical Committee Best Journal Paper Award, IEEE SPCC Technical
Committee Best Paper Award, IEEE VTS Singapore Best Paper Award,
Chinese Government Award for Outstanding Students Abroad, and NTU
SCSE Best PhD Thesis Runner-Up Award. He is the Founding Vice Chair of
Special Interest Group on Wireless Blockchain Networks in IEEE Cognitive
Networks Technical Committee.

