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Abstract—Smart home systems are both technologically and
economically advancing rapidly. As people become gradually
inalienable to smart home infrastructures, their security con-
ditions are getting more and more closely tied to everyone’s
privacy and safety. In this paper, we consider smart apps, either
malicious ones with evil intentions or benign ones with logic
errors, that can cause property loss or even physical sufferings
to the user when being executed in a smart home environment
and interacting with human activities and environmental changes.
Unfortunately, current preventive measures rely on permission-
based access control, failing to provide ideal protections against
such threats due to the nature of their rigid designs. In this
paper, we propose CommandFence, a novel digital-twin-based
security framework that adopts a fundamentally new concept of
protecting the smart home system by letting any sequence of
app commands to be executed in a virtual smart home system,
in which a deep-q network (DQN) is used to predict if the
sequence could lead to a risky consequence. CommandFence is
composed of an Interposition Layer to interpose app commands
and an Emulation Layer to figure out whether they can cause
any risky smart home state if correlating with possible human
activities and environmental changes. We fully implemented
our CommandFence implementation and tested against 553
official SmartApps on the Samsung SmartThings platform and
successfully identified 34 potentially dangerous ones, with 31
of them reported to be problematic the first time to our best
knowledge. Moreover, We tested our CommandFence on the 10
malicious SmartApps created by [1] and successfully identified
7 of them as risky, with the missed ones actually only causing
smartphone information leak (not harmful to the smart home
system). We also tested CommandFence against the 17 benign
SmartApps with logic errors developed by [2] and achieved a
100% accuracy. Our experimental studies indicate that adopting
CommandFence incurs a neglectable overhead of 0.1675 seconds.

I. INTRODUCTION

Smart home systems have been advancing rapidly in recent
years. Technologically, the advent of numerous smart home
devices and platforms such as the Samsung SmartThings
platform, gradually encourages the realization of completely
automated home environments [3]. Economically, the total
revenue of the global smart home market has reached 90,968
million USD by the year of 2020 [4]. More importantly, as
machine learning techniques have been widely adopted by
various smart home applications [5] to bring intelligence,
smart home systems are getting truely smarter and smarter.

Regardless of the swift development of current smart home
systems, their security conditions are far less than satisfac-
tory. As smart devices in a smart home environment are
typically controlled by the corresponding apps hosted in a
smartphone, securing smart apps plays a crucial rule for the
normal operations of smart home systems. Nevertheless, this
is a non-trivial task. Sophisticated malicious smart home apps
have been developed and they are gradually taking control of
multiple sensitive devices such as smart home speakers [6].
In this paper, we consider two types of popular threats: (1)
malicious apps developed with deliberate evil intentions such
as those proposed by Jia et al. [1] and Fernandes et al. [7],
and (2) benign apps with logic implementation errors such as
those discovered by Celik et al [2]. These two threat models
are detailed with examples in Section II. Our intention is to
provide a unified framework based on digital-twin to counter
the threats thus protecting the whole smart home system.

Nowadays, mainstream protective methods [1], [8], [9]
against the threats mentioned above in smart home systems
are mainly based on access control policies, which usually let
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users or service providers set up a list of static rules, e.g., who
is allowed to do what, to regulate the executions of the apps
without considering the interactions of app commands, human
activities, and environmental changes when being operated in a
dynamic smart home system. Nevertheless, such interactions
could threaten the security and safety of smart home envi-
ronments if being exploited by attackers. On the other hand,
permission-based mechanisms also suffer from issues such
as coarse-grained policies and over-privileged access rights,
which are unavoidable due to the nature of their rigid designs.
Thus permission policies in access control are not effective in
mitigating the aforementioned two security threats. There also
exist non-access-control-based defensive mechanisms [10]–
[12] but they can barely mitigate the security threats men-
tioned above as they target either memory corruptions [10]–
[13] or function level vulnerabilities [13]. Such approaches
again completely ignore the interactions of smart apps, human
activities, and environmental changes, as they focus on an app
itself without considering its interplay with the smart home
environments when being executed.

Witnessing the above urgent situations, in this paper, we
propose CommandFence, a novel digital-twin-based security
framework to thwart the two types of security threats aiming at
protecting smart home systems. CommandFence is composed
of an Interposition Layer and an Emulation Layer. In the
Interposition Layer, app commands are first interposed and
then directed to the Emulation Layer. In the Emulation Layer,
a virtual smart home environment is configured where the
directed commands are executed and a learning model is used
to predict whether these commands combining with human
activities and environmental changes would lead to a harmful
situation. If not, the commands would be passed to the real
smart home environment; otherwise, they would be dropped.
We fully implemented our CommandFence framework based
on Android hooking for the Interposition Layer and the Deep-
Q Network (DQN) for the Emulation Layer. The major reason
we leveraged DQN in our implementation is because DQN is
a typical and efficient reinforcement learning technique that
follows an action-reward feedback structure, which perfectly
fits the definition and context of our smart home security
problem [14], as the states of a smart home system change
along with a feedback every time a smart home user performs
an action therein.

Note that our approach holds a fundamentally different
philosophy which states that if the commands from smart
home apps can potentially lead to a risky consequence, they
should be treated as dangerous regardless of whether they are
malicious or not and whether they follow their access policies
or not. This novel design helps us identify threatening apps that
are overlooked in the past, as witnessed by our extensive exper-
imental studies. Also note that CommandFence is completely
orthogonal to permission-based access control, and does not
require any hardware upgrade if adopted, which means that
existing smart home systems can implement CommandFence
as plug-in software without changing their built-in access-
control-based mechanisms.

Our Contributions. The major contributions are listed as
follows:
• We proposed CommandFence, a novel digital-twin-based

preventive framework to defend against the threats caused
by malicious apps with evil intentions as well as benign
ones with design flaws or logical errors that may harm a
smart home environment when being executed and inter-
acting with human activities and environmental changes.
CommandFence is built on a fundamentally new idea,
i.e., digital-twin, and is orthogonal to the well-received
permission-based access control mechanisms, but it can
capture the app commands that may lead the smart home
environment to a risky state when being executed and
drop them before any insecure situation can appear.

• We implemented our proposed CommandFence frame-
work and trained the DQN with 232,315 pieces of sensing
data collected from two real smart home environments.
We tested our implementation on 553 official SmartApps1

on the Samsung SmartThings platform and successfully
identified 34 erroneous ones, among which 31 were
reported to be problematic the first time to our best
knowledge, which may cause a risky situation due to care-
less implementations2. We then tested our implementation
against the 10 pure evil SmartApps created by [1], and
CommandFence labeled 7 of them as risky, with the rest
3 being missed because they are not harmful to the smart
home system but only cause smartphone information
leaks. We also tested our implementation against the 17
benign SmartApps with logic errors [2] and achieved
100% success rates of flagging them as risky. Finally,
we measured the latency of CommandFence and found
that adopting our implementation incurred a neglectable
delay of 0.1675 seconds.

Paper Organization. The rest of the paper is organized
as follows. Section II presents the background knowledge
and formulates our problem. Section III details the design
of our CommandFence framework. Section IV demonstrates
our implementation of CommandFence. Section V reports our
evaluation results on CommandFence. Section VI outlines the
most related work. Section VII concludes the paper with a
future research discussion.

II. BACKGROUND

In this section, we first present the structure of a general
smart home system. Then we show how a typical permission-
based access control framework functions and demonstrate its
limitations. Finally we present our threat models.

A. A General Smart Home System

A general smart home system normally contains the follow-
ing components: smart home apps running on a smartphone,

1A SmartApp is a tiny Groovy-based smart home app running on the
SmartThings platform.

2Note that since the security of SmartApps have been extensively studied
[2], [7], [8], [15], most problematic SmartApps have been patched or deleted
from the official community.

2
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a network router, smart home devices (e.g., smart light bulbs,
smart locks, and so on), device-associated smart home servers,
and a central hub (optional) serving as a manager that may
connect to other components mentioned above.

The lifecycle of a regular smart home control command
begins with it being sent out from the corresponding smart
home app and ends after its execution is finished at the target
smart home device. There are three approaches to deliver a
command to the target device. The first approach makes use
of local communications where the smartphone app, the target
device, and the router get involved. When a command comes
out from the smartphone, it is routed either to the router which
later delivers it to the target device if Wi-Fi is used (in the
latter context, we omit the use of the router), or directly to the
device if Bluetooth is used. The second approach involves the
smartphone app, the router, the device, and the app server. In
this scenario, a command coming from the smartphone is first
sent to the app server, which then forwards it to the target
device. The third approach differs from the second one by
employing a central hub, in which a command is first sent
to the hub server, which then forwards it to the central hub;
next the hub directs the command to the device. Most of the
popular industrial smart home systems such as Wemo, August,
and TP-LINK adopt the first and the second approaches [16]–
[18]; while several larger integrated smart home systems such
as the Samsung SmartThings System tend to adopt the third
approach [3]. The overall configuration of a general smart
home system is illustrated in Fig. 1.

Fig. 1: A typical smart home system. Control flows 1©, 2©,
and 3© correspond to the first, second, and third approach,
respectively, to illustrate how a command is delivered to the
target device.

B. Typical Permission-based Access Control Frameworks

As mentioned earlier, smart home systems are mainly pro-
tected via permission-based access control policies. Typical
permission-based access control frameworks rely on permis-
sion management, i.e., who is allowed to do what according
to the permission policy. In order to realize this philosophy,
a “guard” is needed to check permission policy and filter
out unauthorized commands in real-time. Both academia and

industry have made tremendous efforts in designing and im-
plementing the “guard”. One of the designs is to implement
the “guard” as the Android/iOS permission-based mechanism,
where each app is assigned a set of permissions granted by
the user [19]. Another common design is to implement the
“guard” on the app servers or the central hub as a controller.
Upon receiving a command, the servers or the hub verify if
the pair of the identity and the control command matches with
the permission policy. If no match is found, the command is
deemed unauthorized and then blocked. Existing research such
as SmartAuth [20], ContexIoT [1] and DTAP [9] adopt such
an approach. In industry, this design was named the trigger-
action platform. In fact, several off-the-shelf platforms were
designed following this principle, e.g., the If-This-Then-That
(IFTTT) platform [21], Microsoft Flow, and Zapier [22] [23].
The last type of design is to implement the “guard” on each
smart home device as a decentralized permission-based access
control framework. Examples such as IoT smart contract-based
access control [24] and FairAccess [25] leverage this design.

Even though permission-based access control has been
widely used for smart home systems, it has some unresolvable
issues. First, it is not trivial to define permissions in a
fine-grained manner for a smart home system. Unlike in a
smartphone where permissions are limited and enumerable,
e.g., audio, camera, location, since they are hardcoded in the
OS kernels [26], the permissions in a smart home system
are not only greatly outnumbered, but also more complicated
concerning the contexts than those in a smartphone. For
instance, according to a user’s living habits, a smart light app
turns on a light into normal mode between 6 PM and 7 PM
when the user arrives in home from work and begins to cook.
It then switches the light to the reading mode between 7 PM
and 8 PM when the user is reading. Afterwards, it switches the
light to the relaxation mode between 8 PM and 10 PM when
the user watches TV. Finally, it turns the light off when the user
goes to bed. This example represents only one living habit.
Nevertheless, people may have different habits, significantly
complicating the permission specifications in smart home
scenarios. The second issue lies in that such a permission-
based design is vulnerable to the overprivilege issue, which
means that an app is granted more permissions than it needs.
The advent of the overprivilege problem is usually due to a
crude permission-granting design. Yet, it is difficult to avoid
since a strict permission-granting design which can somehow
relieve the overprivilege issue may harm the user experience
due to tedious operations. According to the newest research
published in 2019, it is estimated that 48% of the smartphone
apps are overprivileged [27]. The third issue is the inherent
limitations of current access control policies, which only
specify who is allowed to do what, without considering the
time-variant interactions of app commands, human activities,
and environmental changes in a working smart home system.
Nevertheless, their interplay can be exploited by attackers if
not properly handled. For example, a smart-window app may
be programmed to open windows when inside temperature is
high but this activity is deemed dangerous if nobody is at

3

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3184185

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:57:38 UTC from IEEE Xplore.  Restrictions apply. 



home. Last, since most of the smart home devices operate
on different low-level OSes and hardware, and hence adopt
heterogeneous protocols and functions, it is hard to come
up with a unified permission management scheme that can
take advantage of the hidden correlations among the app
commands to better protect the smart home system. In short,
due to these unresolvable challenges, applying permission-
based access control to smart home systems is facing great
challenges that may not be overcome in a foreseeable future.

C. Threat Models

We consider harmful smart home apps that run on a user’s
smartphone, send commands to the user’s smart home devices,
and cause dangerous and vulnerable consequences to the user’s
smart home environment. There exist mainly two types of
such apps identified in practice: (1) malicious apps developed
with deliberate evil intentions such as those proposed by Jia
et al. [1] and Fernandes et al. [7], and (2) benign apps with
logic errors introduced by implementation procedures such as
those discovered by Celik et al. [2].
• Malicious Apps with Pure Evil Intentions. Such apps

are created with only one purpose, i.e., to cause damage
to a user’s home property or even to harm a user’s health.
Jia et al. [1] demonstrated that by creating a malicious
smart light app that constantly strobes a light at a high
rate, attackers can easily trigger a user’s seizure, hence
causing a significantly dangerous situation, if the user has
the health problem of seizure.

• Benign Apps with Logic Errors. Benign apps can also
lead to a harmful situation if the implementation logic is
not properly handled. This usually happens when multiple
apps are running under one smart home environment
such that an implementation flaw within a benign app
may be triggered by other benign apps. Celik et al [2]
demonstrated an example in which a smart home environ-
ment is deployed with a smoke-alarm app and a water-
leak-detector app. The smoke-alarm app would open the
water valve and activate the fire sprinklers if smoke is
detected and the indoor temperature is over-heated (i.e.,
an indoor fire happens). The water-leak-detector app shuts
off the main water supply valve if it detects a water leak
through a moisture sensor. However, if these two apps are
deployed together, a dangerous situation may happen: if a
fire accident goes on, the smoke-alarm app would activate
the fire sprinklers to clear the fire and smoke; then the
water-leak-detector app shuts off the main water supply
since it detects “a water leak”; as a consequence, the
user’s home may be burned down.

III. COMMANDFENCE: A DIGITAL-TWIN BASED
PROTECTION FRAMEWORK

In this section, we describe the basic idea of Command-
Fence, our digital-twin based protection system that can pre-
vent the executions of app commands who might make the
smart home insecure. We first present our problem formu-
lation, which is abstracted from the threat models presented

in Section II-C. Then we propose the overall structure of
CommandFence, which aims to solve the formulated problem.
Note that in this section, we present CommandFence as a
high-level framework without implementation details since
there might exist different implementations due to various
considerations (e.g., different OSes). Our own implementation
of CommandFence is detailed in Section IV.

A. Problem Formulation

In this subsection, we formally define our problem, which
can be regarded as a unified abstraction of our threat models.
To proceed, we need the following definitions.

Definition 1. A state of a smart home environment is a vector
of the states of the smart home devices S = (s1, s2, · · · , sn),
where n is the total number of devices, sk is the state of the
k-th device, e.g., “on” for a smart light bulb, or a temperature
figure for a thermostat.

A smart home state S has a score r indicating its “risk”
level. Note that r is scored manually based on common beliefs,
where the higher the r, the riskier the smart home state. For
example, if S1 indicates that a user is sleeping while the
window is unlocked and S2 indicates that the user is not at
home while the door is unlocked, then obviously, S2 is riskier
than S1 and should have a higher risk score, i.e., r1 < r2.
Also note that the value of r does not have to be fine-grained
since it is mainly used to characterize whether or not a smart
home state is risky.

Generally speaking, in a typical smart home environment,
human activities, environmental variations, or user instructions
from the smartphone apps, can all cause smart home state
changes, which then trigger the issues of control commands
from one or more smart home apps. One can draw two
implications from this observation. First, depending on the
granularity of the state values, not all state changes can result
in the issues of app commands. For example, environmental
variations can cause the transitions from one normal state to
another without triggering the issue of any app command.
Second, at the smartphone a sequence of commands from one
or more smart apps may be issued in order at a fairly short
period of time for real-time services to jointly complete one
smart home task. Here are a few examples:
• A fire-alarm app is described to raise a fire alarm and

open windows once a fire is detected. Thus this app
issues two commands in a sequence: opening windows
then raising an alarm.

• An auto-unlock app unlocks the door if it detects the
fingerprints of a user who is trying to get into the
house matches one of the records in the database; then
an auto-turn-on-light app turns on the light at the door
way if it detects the door is unlocked. In this case, the
door-unlocking command sent from the auto-unlock app
triggers the light-opening command from the auto-turn-
on-light app.

• When the window is open but the outside temperature is
high, the smart home state triggers the smart-window app

4
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to close the window and the smart-HVAC app to turn on
the air conditioning system.

The first example describes a command sequence with two
commands coming from the same app while the last two
present sequences of commands issued by different apps that
are triggered at a short period of time by either human activ-
ities or environmental changes. One can see that commands
from different apps may be correlated, and they can interact
with human activities or environmental variations to trigger
the smart home state transitions. As smart home apps are
usually written by different third-party developers, such an
interplay can give chances to evil apps or make benign apps
vulnerable (see the examples in Section II-C). In this paper,
we intend to investigate the correlations among the smart apps,
human activities, and environmental variations, and employ the
concept of digital twin to figure out whether the execution of
a command sequence can lead to a risky smart home state.
Our problem is formally defined as follows:

Problem. Given a normal smart home state SN , i.e., its risk
score rN is less than a threshold δ, does the execution of a
command sequence lead to a risky state if executed in order?

To tackle this problem, we present CommandFence, a
digital-twin based framework that can execute an app com-
mand sequence in an emulated smart home environment before
it is sent to the real smart home system and predict whether
the operations of these commands can result in a risky state,
no matter what human activities may occur and what environ-
mental changes may appear. Based on the prediction result, the
app commands are either dropped if they are deemed harmful,
or otherwise are allowed to be operated in the real smart home
system. This implies that CommandFence can prevent a smart
home from reaching a harmful state caused by the interactions
of smart apps, human activities, and environmental changes.

Note that in sequel we employ the word “action” to rep-
resent a smart app, a human activity, or an environmental
change. Also note that a command sequence refers to the
commands coming in order from one or more smart apps
that are interrelated in some way (e.g., triggered by the same
event). As smart home systems are designed to provide real
time services, a command sequence should arrive at a short
period of time. Yet, one may not rule out the possibility that
some undiscovered malicious apps are particularly cunning
to deliberately send commands in a sequence with a long-
time gap. In this case, CommandFence treats the commands as
individual ones and handle them independently – the command
that may trigger a risky state from the current normal state
will be blocked when it is discerned. Having said so, we
haven’t seen any malicious or problematic app with this type
of intention, and in a smart home environment, if commands
are sent separately with a long-time gap, it is likely that they
may end up not threatening at all. For example, a malicious
app strobing a light by turning it on and off at a long time
gap has no risk to lead to a victim’s seizure.

B. Overall Structure of CommandFence

As analyzed in Section II, one can see that the current
permission-based access control frameworks are not capable
of properly protecting smart home systems. Driven by this
observation, we propose a novel unified framework termed
CommandFence based on the concept of digital-twin. Note
that CommandFence is orthogonal to the existing permission-
based access control systems and is applicable to all smart
home settings presented in Section II-A. The main process
of CommandFence contains three steps. First, smart home
app commands are interposed and isolated regardless of their
sources. Second, the interposed commands are directed to an
emulated smart home environment where they are executed
and an evaluation predicting whether or not the outcome is
dangerous would be given. Third, based on the prediction
result, the commands are permitted at the real smart home
environment if they are predicted to be Not Risky, or dropped
otherwise. To accomplish these steps, we design a two-
layer architecture containing an Interposition Layer and an
Emulation Layer. After the commands are generated from
the deployed smart apps, they are interposed and isolated
in the Interposition Layer, then directed to the Emulation
Layer. In the Emulation Layer where a virtual smart home
environment is configured, these commands are executed. We
leverage a method based on DQN to predict if the combi-
nation of human activities/environmental changes with the
forwarded commands, altogether called actions, could result
in a dangerous situation. If not, the commands would be
eventually forwarded to the real smart home environment; oth-
erwise, they would be blocked. Compared with the traditional
permission-based access control frameworks, CommandFence
does not maintain static permission policies; instead, we let
all commands to be (virtually) executed regardless of their
sources and natures in an emulated environment, and use
a learning model to dynamically predict possible hazardous
situations evolutionarily. The overall structure of our approach
is demonstrated in Fig. 2.

C. Interposition Layer

The main purpose of the Interposition Layer is to direct the
commands that are supposed to route to the real smart home
system to the Emulation Layer for further risk analysis. To
realize this goal, we separate the main function of this layer
into two processes: command identification and command
direction.

• Command Identification. Command identification is a
process of recognizing, locating and reassembling smart
home commands by analyzing raw traffics or codes.
Recognizing a command is to figure out what a command
is; locating a command is to know where a command
is; and reassembling a command is to put together the
pieces (i.e., network packets) of a command. There is
more than one solution to implement this process. From
the perspective of analyzing raw traffics, one can extract
the commands directly from the traffic contents if they

5
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Fig. 2: The high-level structure of our digital-twin based approach. A command sequence, generated by a target smart home
app, is intercepted by the Interposition Layer (marked with 1©) instead of being directed to the real smart home environment as
is usually done (marked with 2©). The Interposition Layer then forwards the intercepted command sequence to the Emulation
Layer for further analysis (marked with 3©). At the same time, the Emulation Layer requests the real smart home to provide
the current smart home state (marked with 4©). Upon retrieving the smart home state, the Emulation Layer determines whether
the command sequence would lead to a harmful situation if being executed based on the smart home state, and subsequently,
determines whether to forward it to the real smart home system (marked with 5©), or to block it (marked with 6©).

are not encrypted [28]. On the other hand, if the traffics
are encrypted, one can adopt the middlebox technique
to decrypt the traffics if either of the communication
parties does not conduct certificate checking [29]. If
certificate checking is enforced, however, there may not
exist an ideal solution so far. To overcome this issue,
we propose to employ the code analysis technique for
command identification. Code analysis intends to inter-
pret the commands from the code level by employing
hooking techniques (existing in all OSes) so that one can
intercept and interpret the commands before they are sent,
and thus, is a method of analyzing commands from the
source other than collecting the traffics from the middle
as aforementioned. We detail our implementation for the
Android architecture in Section IV.

• Command Direction. Directing a command is a process
of routing the command to the designated place, which,
in our context, is the Emulation Layer. This process can
be done by manipulating traffics such as altering the
IP header of the packets or by manipulating codes. In
Section IV, we detail our implementation of command
direction to the Emulation Layer using Android hooking
mechanisms.

We use a real-world example of interposing a “Turn On”
command to a Wemo smart light for illustrating the above
two processes. First, for command identification, we reverse-
engineer the firmware of the device and find out the key term

of the command, which is SetBinaryState in this case.
We then set up a middlebox between the Wemo smart light and
its corresponding app to monitor the traffics, and pay attention
to any traffic that contains the term SetBinaryState to
locate the command. Yet, the overall “Turn On” command
is not just a SetBinaryState word, but a fairly long
XML data block sent in three separated packets. Hence, we
need to identify and reassemble all the packets related to this
command. In the end, during the command direction process,
we leverage the middlebox to redirect the command to the
designated destination, i.e., the Emulation Layer, for further
analysis.

D. Emulation Layer

After the commands are directed from the Interposition
Layer, our next step is to evaluate whether the set of actions
executed in a sequence could pose a threat to the current
smart home system. We leverage a method based on DQN to
complete this step. The reasons to employ DQN are threefold.
First, it is non-trivial to match a smart home state with a
risk score since such a process may be highly complicated
and non-linear. In this case, the deep fully-connected network
in DQN can help resolve the issue. Second, Q-learning, as
one of the main reinforcement algorithms, fits our problem
properly since it requires reward feedback (r in our case) from
the environment of each state which helps reduce redundant
calculations, while other machine learning and deep learning
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algorithms such as SVM, Decision Tree, Bayesian Inference,
CNN, LSTM, and so on, do not have such a structure,
and hence, can hardly be applicable to our approach. Third,
DQN can realize an end-to-end prediction by not having to
enumerate all possible states, reducing tons of workloads from
human efforts.

Based on the work done by Mnih et al. [14], we formulate
the goal of DQN for our problem to maximize an action-value
function (also known as the Q function) shown as follows.
Here an action refers to an app command, or a human activity,
or an environmental change that can cause a smart home state
transition.

Q(φ(S), A; θ) = maxEθ[rt + γrt+1 + γ2rt+2 + · · · |St = S,At = A] (1)

where t is the iteration step (each step corresponds to a
chosen action), St is the state at step t, At is the chosen
action by DQN at t, rt is the risk level at t, γ is the risk
discount used to determine the importance of future risks, φ
is the function representing the output of the fully-connected
feedforward network in the DQN, and θ is the model parameter
for Q(φ(S), A; θ) obtained from our trained neural network.
Generally speaking, the Q function represents the cumulative
future risks.

With a large number of training data, our goal is to minimize
the loss function for the Q-learning network at each iteration
i as follows:

Li(θi) = E[(r + γmaxA′ Q̂(φ(S′), A′; θ−i )−Q(φ(S), A; θi))
2] (2)

where i is the iteration index for the episodes (each episode
begins with a new normal state), Q̂(φ(S′), A′; θ−i ) is the Q
function for the target network with S′ being the current
state and Q(φ(S), A; θi) is the Q function for the approxi-
mating network (the target network is used to compute the
loss for each iteration and the approximating network is an
estimation of the optimized situation at each iteration). The
purpose of this loss function is to approximate our goal Q
function Q(φ(S), A; θi) to the maximum possible value of
γQ̂(φ(S′), A′; θ−i ) given all choices of A′.

Motivated by the algorithm proposed in [14], we design
a training algorithm for the DQN for CommandFence in
Algorithm 1. The inputs to this algorithm include all possible
normal smart home states {SN} and all possible actions A ,
the risk threshold δ, and a greedy factor ε. We first initialize
the approximating network Q and the target network Q̂ to
be identical with random weights (Lines 1-2). Then we set
the total training episodes to M (Line 3), a sufficiently large
number that is related to the total number of normal states but
is much much larger than that to guarantee that no normal
state can be missed for all the possible combinations of
actions. At each time we begin a new training episode, we
initialize the state to a randomly chosen normal smart home
state (Lines 4). Next we set the total transition steps to T , a
sufficiently large number that is related to the total number
of actions but is much much larger than that to guarantee
that all possible action combinations can be selected for each

episode. At each step, we apply an ε-greedy policy algorithm
to choose a proper action, and execute the action in our
emulated smart home environment to retrieve a risk score
(Lines 6-11) [30]. Afterwards, we set St+1 to St and store the
four-tuple (St, At, rt, St+1) in memory so that one can sample
from it later (Lines 12-14). At Line 15, we set a temporal value
yj to represent the Q value, which equals rj if the risk score
is greater than the risk threshold δ, and equals the discounted
risk score otherwise. We then perform gradient descent on
(yj − Q(φ(Sj), Aj ; θ))

2 with respect to θ (i.e., updating θ),
and set Q̂ to be equivalent to Q (Lines 16-17). In the end, we
return the trained model parameter θ (Line 18).

Algorithm 1 Training Algorithm for our DQN
Input: The set of all normal smart home states {SN}, the

set of all choosable actions (commands and activities) A , risk
threshold δ, and greedy factor ε ∈ (0, 1).

Output: Model parameter θ
1: Initialize a Q function Q for the approximating network

with random parameter θ
2: Initialize a Q function Q̂ for the target network with

parameter θ− = θ
3: for episode= 1 · · ·M do
4: Initialize a smart home state to a normal one, i.e.,

randomly choose S1 from {SN}
5: for t = 1 to T do
6: Generate a random number σ ∈ (0, 1)
7: if σ ≤ ε then
8: Let At = argmaxA∈AQ(φ(St), A; θ)
9: else

10: Choose At randomly from A

11: Execute command At and retrieve a risk score rt
12: Set St+1 = St
13: Store the four-tuple (St, At, rt, St+1) in memory
14: Sample (Sj , Aj , rj , Sj+1) from memory

15: Set yj =

{
rj rj ≥ δ
rj + γmaxA′ Q̂(φ(Sj+1), A

′; θ−) o/w
16: Perform gradient descent to minimize the loss L(θ)

and update θ in the mean time, where the gradient is

∇θ(yj −Q(φ(Sj), Aj ; θ))
2

17: Set Q̂ = Q

18: return θ

Once a DQN is trained, given an initial smart home state
(a normal state) and a command sequence, the DQN is able
to predict whether the execution of the commands can lead
to a risky state. The risk prediction algorithm is shown in
Algorithm 2, which takes as inputs the model parameter θ
trained by Algorithm 1, a command sequence C interposed
from the smart home apps (from the Interposition Layer),
an initial smart home state SN obtained from the real smart
home environment, a risk threshold δ, and the set of choosable
actions H that include all possible human activities and
environmental variations (i.e., excluding app commands), and
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Algorithm 2 Risk Prediction
Input: A command sequence C passed from the Interpo-

sition Layer, an initial smart home state SN , trained model
parameter θ, a risk threshold δ, and the set of all choosable
human activities and environmental variations H .

Output: A binary outcome indicating if C can lead to a
risky smart home state.

1: Execute the first command C[0] in SN , then set S to be
the new smart home state and retrieve r for S

2: if r ≥ δ then
3: return “Risky”
4: Initialize a Q function Q with the trained model parameter
θ and set i = 1

5: Set A = argmaxH∈H Q(φ(S), H; θ)
6: while True do
7: Execute A in S, then update S to be the new smart home

state and retrieve r for S
8: if r ≥ δ then
9: return “Risky”

10: if i = len(C) then
11: Exit loop
12: Set A = C[i]
13: Execute A in S, then set S to be the new smart home

state and retrieve r for S
14: if r ≥ δ then
15: return “Risky”
16: Set A = argmaxH∈H Q(φ(S), H; θ)
17: Set i = i+ 1

18: return “Not Risky”

outputs a binary result indicating whether the execution of the
command sequence starting from the smart home state SN can
lead to a risky state. Specifically, the algorithm first checks
whether the first command in the sequence can lead to a risky
state by executing it in the virtual environment (Emulation
Layer); and if yes, the command sequence should be blocked
(Lines 1-3). If the first command is not malicious, we next
check whether any human activity or environmental change in
the new smart home environment can incur a risky state (Lines
5 and 7-9). If not, we check next command (Line 12). This
process is continued until all commands and the corresponding
new states generated when they are executed are checked
(Lines 6-17), and the algorithm returns “Not Risky” when the
loop exits (Line 18). The rationale behinds our risk prediction
lies in that a benign command can produce a risky smart home
state when combined with human activities or environmental
changes (e.g., opening window if no one is at home). Note that
we only need to check the human activity or environmental
variation that can maximize the expected future risk value for
each command (Lines 5 and 16) as other activities are less
risky.

The complexity of our overall approach can be determined
based on that of Algorithm 1 and that of Algorithm 2. One can
see that the complexity of Algorithm 1 is O(M ·T ) as its body

involves two nested for loops of lengths M and T , respectively,
where M is the total number of training episodes and T is the
number of total iterations, while the complexity of Algorithm 1
is O(len(C)) as the while loop exits when i = len(C) (Lines
10-11) and i is updated at each round (Line 17), where len(C)
is the number of commands in the given command sequence.
Hence, the complexity of our overall approach is O(M ·T )+
O(len(C)).

IV. IMPLEMENTATION OF COMMANDFENCE

In this section, we detail our implementation of Command-
Fence, the digital-twin based smart home protection frame-
work proposed in Section III. The overall implementation
architecture is shown in Fig. 3.

A. Implementation of the Interposition Layer

As mentioned in Section III, the Interposition Layer involves
two consecutive processes: command identification and com-
mand direction. Our implementation is carried out under the
Android ecosystem.

1) Implementation of Command Identification: To identify
and interpret a command via code-level analysis, we need
to conduct reverse engineering on the related Android smart
home apps. As we stated in Section III, the reason we leverage
code-level analysis to interpret traffics lies in that man-in-the-
middle methods cannot deal with encrypted traffics that are
protected by verified certificates. Note that when performing
code-level analysis, we do not need to reverse-engineer all
the apps we tested since the traffic transmission methods are
extended from several fundamental functions, which are to be
unfolded below.

When an Android app is compiled into an executable, it is
represented as a binary named Android package (apk) that
can be directly executed by the Android system. Reversing an
apk binary into a human-readable source requires three steps:
transforming the apk to a Smali source, transforming the
Smali source to a DEX, and transforming the DEX to a JAR. In
our implementation, we utilized Apktool, Smali, and Dex2Jar
to respectively handle these three steps [31]. Upon retrieving
the human-readable source, i.e., Java in this case, the next
step is to recognize the function calls that are related to the
invocation of the smart home commands. In our consideration,
whenever a command is generated from a smart home app, it
needs to be sent out upon a smartphone. Current smartphones
support only two ways for wireless data transmissions, namely
Wi-Fi and Bluetooth. Therefore, a command is sent out either
through Wi-Fi or Bluetooth. Thus we mainly investigated the
Wi-Fi and Bluetooth related functions.

Normally, a developer of smart home apps tends to
use the standard APIs recommended in the Android doc-
umentation for implementing Wi-Fi and Bluetooth trans-
missions [32]. To implement the Wi-Fi transmissions,
the developer can use either high level APIs, i.e.,
HttpURLConnection and HttpsURLConnection (en-
crypted), or a low level API, i.e., java.net.Socket.
To implement Bluetooth transmissions, the developer can
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Fig. 3: The overall structure of our implementation.

only use BluetoothSocket for connection and commu-
nications. After a careful scrutiny, we found that all the
APIs mentioned above, regardless of Wi-Fi or Bluetooth,
construct commands by calling a member method called
getOutputStream, which returns a referenced body of
a command in a java.io.OutputStream object. Af-
terwards, the reference is passed to a java.io.Writer
object, which calls the write function to write the
main body of the command. Hence, we hooked the
write function in the Writer class, as well as
the write functions in the related subclasses extended
from Writer, e.g., BufferedWriter, PrintWriter,
StringWriter, OutputStreamWriter, etc. Finally, we
examined if the string resource passed into these functions
contains the keyword of a targeted command. If it does, the
string itself is the command. To figure out the keyword, we
simply sent the targeted commands multiple times, manually
analyzed the string contents, and extracted the most semanti-
cally related text as the keyword for the command.

It is also not uncommon for a smart home app developer not
to use the standard APIs for security purposes – the developer
can implement some key codes at the native C/C++ level
(Android NDK) or adopt other third-party frameworks [33].
If this is the case, one needs to reverse-engineer the binary of
the target smart home app, i.e., the apk file, to specifically
look for the functions used for communications. In this paper,
we mainly used the Samsung SmartThings platform for our
performance evaluation; therefore, we reverse-engineered its
corresponding Android app, the SmartThings app (the full
package is com.smartthings.android), and found out
that SmartThings app actually leverages a third-party frame-
work, Retrofit, which was developed and maintained by
Square, Inc [34]. A command from a SmartApp running on
the SmartThings app is sent using the construction function of
retrofit2.RequestBuilder with the format shown as
follows:

api/devices/{deviceId}/commands/action/{tileAction}

where deviceId is the id of the smart home device this
command targets, and tileAction is the command body.

Note that we do not need to reassemble packets of a
command since code analysis does not interpret commands
at the traffic level.

2) Implementation of Command Direction: As mentioned
in Section III, manipulating traffics for command direction is
tedious and error-prone. Therefore, after a careful scrutiny, we
decided to leverage the Android API hooking to handle this
implementation because the hooking framework is the only
known technique that is capable of rewriting a function call
without modifying the original codes of a target app.

In this implementation, we chose VirtualApp and Yet An-
other Hook Framework for ART (YAHFA) to accomplish
the hooking process [35] [36]. We intended not to use the
traditional Android hooking frameworks Xposed and Frida
that were frequently adopted by other researchers because the
Xposed framework requires rooting the target devices and has
severe drawbacks when being migrated to Android versions
above 5.0 [37], and Frida requires a master host sending
commands via cable, making it less mobile and flexible [38].
The main hooking process is shown as follows.

• First, VirtualApp substitutes the original BinderProxy
with BinderProvider, which contains all core An-
droid system components.

• Second, every time a hooked Android app launches
a function call, the request would be replaced by
StubActivity proxied at VirtualApp, which then for-
wards the request to BinderProvider and registers a
corresponding callback function.

• Third, YAHFA is attached to the VirtualApp process,
and checks if the function is a target function to be
hooked (called originMethod in YAHFA) based on
the hook plugin. Then it copies the target function codes
for execution.

• Fourth, if YAHFA finds that an originMethod
should be hooked, it makes a backup for this
function (called backupMethod in YAHFA), then
changes the entry point entry_point_from_jni_ of
originMethod to the one of the hook function, i.e., the
injected function (called hookMethod in YAHFA).

• Last, YAHFA changes the entry of the assembly codes
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entry_point_from_quick_compiled_code_
of the originMethod to the one of the hookMethod.

Fig. 4: The process of the hooking procedure.

The above process is illustrated in Fig. 4. The overall
hooking procedure was implemented with a total of 51,338
lines of codes in Java and native C/C++. Upon completing
the procedure, one can basically hook any function calls in
any Android app. We leverage this procedure to hook the
function calls mentioned above to re-direct the commands to
our Emulation Layer.

B. Implementation of the Emulation Layer

To construct a virtual smart home environment, we wrote
1,230 lines of python codes to define the states, parse the
real smart home sensing data, describe actions, and simulate
state transitions. We also wrote 395 lines of python codes
to build the DQN model. In the following we employ the
parameters defining a real smart home environment presented
in Section V, to concretely demonstrate our implementation
of the Emulation Layer.

After multiple testings with the data collected from the real
smart home system (see Section V), we decided to implement
a three-layer fully-connected network trained by DQN, with
the first layer having 38 neurons, where 38 is the total number
of devices in our smart home testbed, since we wish the
network to capture just as much information as a smart home
state has to ensure the lowest possibility of suffering from an
overfitting problem. The number of neurons in the second layer
is a constant 8 representing a bottleneck layer. The number of
neurons in the last layer is 26, which is the total number of
actions we considered since we hope that our network can
capture just as much information as all actions have for the
purpose of ensuring the lowest possibility to suffer from an
overfitting problem. The first and second layers adopt the rec-
tified linear unit (ReLU) as the activation function [39] while
the last layer adopts a simple matrix multiplication without
activation function. Finally, we trained this three-layer network
based on Algorithm 1, and implemented the prediction phase
based on Algorithm 2, to complete the functions of DQN.
All the codes are written with Python and the Google deep-
learning framework Tensorflow [40].

V. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of our
CommandFence implementation. We first present the evalua-
tion results of the Interposition Layer and the Emulation Layer;
then we evaluate the overall performance of CommandFence;
finally we report the latency of CommandFence.

Note that for convenience in our performance evaluation
studies we considered the interactions of app commands and
human activities only, deliberately ignoring the impact of
environmental changes, as human activities and environmental
changes basically play the same rule in CommandFence:
they cause the smart home state changes, which then trigger
the issues of app commands. On the other hand, it is not
practical for us to establish a smart home testbed that can
control a physical home to capture the impact of environmental
variations on smart home states, making it impossible for us
to collect the corresponding training data.

A. Performance of the Interposition Layer

To evaluate the performance of the Interposition Layer, we
mainly considered the success rate of hooking the commands
generated by the target smart home apps. For this purpose, we
downloaded the top 15 standalone smart home apps with the
highest ratings in the Google Play Store. We also downloaded
the SmartThings App which serves as the integrated runtime
environment for all Samsung smart home apps (SmartApps)
we evaluated. Therefore, the SmartThings App can be treated
as a collection of a large number of SmartApps. Then we
started these 15 smart home apps and the SmartThings App in
our hooking framework running on two real Android devices,
Google Nexus 7 and Amazon BLU R2, and manually launched
the commands and see if our framework manages to hook
the related API calls. As a result, the Interposition Layer
successfully hooked all the API calls related to the command
generations without interfering with the irrelevant functions.
We detailed the specifications of our hooking method against
the top 8 smart home apps in Table I.

B. Performance of the Emulation Layer

To evaluate the performance of the Emulation Layer, we
first validated our DQN using the training and testing data
obtained from a real smart home testbed we established.
Then we evaluated the Emulation Layer as a whole using
real SmartApps on the SmartThings platform with our trained
DQN model.

1) Data Collection from a Real Smart Home System: In or-
der to build an emulated smart home environment, we need to
have data from a real smart home system for training purpose.
Therefore, we assembled four sets of 7 passive devices with
Arduino (sensors that can passively record ambient sensing
data). The specifications of the selected sensors are listed in
Table II. Additionally, we had an Apple Watch Series 3 as
our sleep sensor which can record a user’s heartbeat and tell
if the user is sleeping or awake: if the user’s heartbeat is
lower than 50 beats per minute (BPM), it means this user is
sleeping. Hence, we had a total of 29 passive devices. Finally,

10

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3184185

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:57:38 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Specifications of hooking the top 8 smart home apps of the Google Play Store.

Package Name Hooking Method Command Keyword
com.att.shm HttpWriter->writeString content
com.remotefairy4 WriterBasedGenerator->write net_cmds
com.tuya.smartlife PrintWriter->write switch
com.belkin.wemoandroid PrintWriter->write SetBinaryState
mobile.alfred.com.alfredmobile JsonWriter->write action
com.google.android.apps.chromecast.app BufferedWriter->write scan_wifi
com.helloinspire.glasshouse PrintWriter->write CameraLauncher
com.tplink.kasa_android Writer->write transition_light_state

TABLE II: Specifications of the 7 sensors.

Sensor Type
Chip/Module

ID
Physical Meaning
and Data Structure

Value Range
and Precision Output Protocol

Smoke Sensor MQ-2
Gas Concentration

(Integer) 1-1000 PPM Analog Voltage

Temperature Sensor MLX9061
Centigrade

(Float)
0-100 ◦C

(2-digit decimals) I2C

Humidity Sensor DHT11
Humidity Level

(Integer) 5-95 RH Serial

Light Sensor BH1750
Luminance

(Integer) 1-65535 LX I2C

Sound Sensor LM386
Sound Strength

(Integer) 20-200 DB Analog Voltage

Flame Sensor LM393
Flame Occurence

(Binary Digit) 0 or 1 Digital Voltage

Motion Sensor HC-SR501
Motion Occurence

(Binary Digit) 0 or 1 Digital Voltage

we adopted 9 active smart devices, i.e., 4 smart lightbulbs (1
in the living room, 1 in the bedroom, 1 in the kitchen and 1 in
the bathroom), 2 switches for opening/closing the windows (1
in the living room and 1 in the bedroom), 1 smart door lock, 1
smart alarm, and 1 smart surveillance camera. Therefore, we
had in total 38 devices, i.e., the size of an input smart home
state to the DQN is 38. We deployed these 38 devices at two
different apartments (the same 38 devices were moved from
one apartment to another), and asked three volunteers to live
in each apartment for 7 days to collect data. The volunteers
randomly performed 21 smart home commands and 5 daily
activities to simulate a real routine home environment, and
hence, we had 26 actions in total as shown in Table IV. This
means that our DQN can choose one in 26 actions at each
iteration. As a result, we recorded 232,315 smart home states,
among which 2,887 were collected while the volunteers were
showering, 33,954 were collected while they were sleeping,
3,909 were collected while they were cooking, 32,468 were
collected while they were entering the home, and 128,030 were
collecting while nobody is at home. Additionally, we defined
four risk levels with r = 0 signals “not risky”. The risk level
r = 1 reflects a least vulnerable state where a user may suffer
from privacy leaks but no actual property loss could happen,
e.g., lights are turned on when nobody is at home. The risk
level r = 2 reflects a moderately risky situation where a user
may suffer from property loss, e.g., the camera is disabled
when the user is sleeping. The risk level r = 3 reflects
a dangerous situation where a user can experience physical
damage with little additional attack efforts, e.g., strobing lights
causing possible seizures.

To better assess the performance of CommandFence, we

program a Python script with 116 lines of codes to auto-
matically label all the ground-truth data, i.e., to label the
collected 232,315 smart home states, even though DQN does
not need these labels. This labeling is based on common senses
according to the aforementioned definitions of risk levels.
More specifically, we considered 19 risky scenarios in our
experiment and the criteria for labeling the risk level of a
state by the script is reported in Table III. These labels are
treated as ground-truth results, which will be compared with
the predicted results of DQN to assess the accuracy of DQN
prediction.

TABLE III: The 19 cases based on which our automated
program labels the risk levels of the states.

Case ID State Description Risk Level
User Status Home Status

1 Out of Home Lights On 1
2 Sleeping Lights On 1
3 Out of Home Windows Opened & Camera Off 2
4 Sleeping Windows Opened & Camera Off 2
5 In Bathroom Windows Opened & Camera Off 2
6 Out of Home Door Unlock 3
7 Sleeping Door Unlock 3
8 In Bathroom Door Unlock 3
9 Out of Home Fire Detected & Fire Alarm Off 3
10 Sleeping Fire Detected & Fire Alarm Off 3
11 In Bathroom Fire Detected & Fire Alarm Off 3
12 Out of Home Fire Detected & Windows Closed 3
13 Sleeping Fire Detected & Windows Closed 3
14 In Bathroom Fire Detected & Windows Closed 3
15 Any Status Fire Detected (Except Kitchen) 3
16 Any Status Smoke Detected & Smoke Alarm Off 3
17 Any Status Toxic Gas Detected & Windows Closed 3
18 Any Status Lights Strobing 3
19 Any Status All Other Status 0

2) Evaluation of the DQN Model: We set M to be
10,000,000 since such a large value helps DQN to better
recognize all states; we set T to be 300 since 300 is big
enough to cover 26 actions (described in Section V-B1); we
set the risk discount γ to be 0.8 which is a commonly used
value for DQN; and we set ε to be 0.8 since we wish to
have a high chance of choosing an action with the highest Q
value while leaving a small chance to choose an action with
other Q values. Then for each risk level r = 0, 1, 2, 3, where
r = 0 corresponds to the scenarios without any risk and other
r values are defined in Section V-B1, we randomly sampled
500 pieces from the 232,315 collected smart home states as
the test data and used the leftover as the training data. Then we
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TABLE IV: Details of the 26 actions, including 21 smart home commands and 5 human activities.

Type of Actions Descriptions Notation Type of Actions Descriptions Notation
Command Turn on Lights c1 Command Shutdown Camera c14
Command Turn off Lights c2 Command Turn on Camera c15
Command Unlock Door c3 Command Take Photos with Camera c16
Command Lock Door c4 Command Dim Lights c17
Command Raise Fire Alarm c5 Command Brighten Lights c18
Command Disable Fire Alarm c6 Command Shutdown Water Supply c19
Command Send Message Smart Speaker c7 Command Turn Heater Up c20
Command Open Windows c8 Command Turn Heater Down c21
Command Close Windows c9 Human Activity Cook h1
Command Raise Smoke Alarm c10 Human Activity Shower h2
Command Disable Smoke Alarm c11 Human Activity Sleep h3
Command Get Door Lock Battery Status c12 Human Activity Not At Home h4
Command Change Door Lock Pin c13 Human Activity Entering Home h5

Fig. 5: A set of 7 passive devices configured in a real home
environment to collect data for training and test purposes.

employed Algorithm 1 to train the DQN based on the training
data and manually checked if the outputs of Algorithm 2 on the
test data were reasonable based on common sense. For each
risk level we repeated the above process twice. The results
indicate that the overall prediction accuracy of our DQN model
is 86.3%, which means that among the 4000 test states, 3452
were correctly interpreted by the DQN while the other 548
states (13.7%) were misinterpreted. More specifically, for the
1000 risk-free states, 763 were correctly predicted (prediction
accuracy is 76.3%), while for r = 1, 2, 3, the numbers of
states that were correctly predicted were respectively 840, 866,
and 983 (the corresponding accuracies were respectively 84%,
86.6%, and 98.3%). One can see that the accuracy is lower
for smaller r values. Such a phenomenon may be justified
as follows. When r is smaller, the loss function drops more
quickly and the gradient descent function ends sooner. On the
other hand, from the definition of the Q function, a smaller
r value implies a smaller feedback value. In both cases, the

training process may stop too early, making the model under-
trained and less accurate.

To better demonstrate the advantage brought by DQN, we
conducted experiments by training the aforementioned three-
layer network in a traditional stochastic gradient descent way,
instead of applying Algorithm 1, resulting in an instance of
multi-layer perceptron. Then we repeated the above process
(i.e., randomly sampling 4000 states for testing and using the
leftover for training) for training and predicting, and obtained
an overall accuracy of 72.8%, which is much less than that of
the case with DQN (86.3%).

C. Performance of the Overall CommandFence System

To evaluate our implementation of the CommandFence
system, we need to consider the two threat models introduced
in Section II, i.e, malicious apps with pure evil intentions and
benign ones with logic errors. In order to do so, we leverage
the Samsung SmartThings platform as the testbed since it
is the largest and most influential platform for smart home
systems [7]. We carried out two sets of experiments for the
two threat models. For each set, we underwent a similar two-
step procedure: (1) we wrote a generic python program to
automatically extract the sequence of smart home commands
and their corresponding human activities (i.e. actions) in a
SmartApp; (2) we then employed the DQN model trained with
the collected 232,315 smart home states, ran Algorithm 2 for
the command sequences extracted from these SmartApps, and
checked if they can lead to a risky smart home state.

1) Effectiveness Against Evil SmartApps: To evaluate the
effectiveness of CommandFence against the SmartApps with
pure evil intentions, we used the 10 SmartApps created by
Jia et al. that were designed with only evil intentions [1].
CommandFence successfully identified 7 of them as dangerous
to the smart home environment such as the one that turns on
a fake alarm when CO density is normal. The other three
SmartApps were deemed as riskless since they do not lead
to any risky smart home state as they only cause information
leakage (such as leaking contacts and smartphone side-channel
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data) on the smartphone side. While ContexIoT, proposed
by Jia et al., managed to identify 8 of these malicious
SmartApps [1]. However, ContexIoT requires a fairly long
time for profiling the behavioral contexts of a user before it
can identify the apps as malicious.

2) Effectiveness Against Benign SmartApps with Logic Er-
rors: To evaluate the effectiveness of CommandFence against
benign SmartApps with logic errors, we manually downloaded
553 SmartApps from the official SmartApp distribution com-
munity [41] for testing. CommandFence was able to identify
44 SmartApps that may be risky. After a careful manual analy-
sis, we identified that 34 (77.27%) of them could indeed result
in a risky state due to careless implementations such as turning
on a light when nobody is at home, resulting in possible
privacy leakage. Note that since the security of SmartApps
has been extensively studied in multiple works [2], [7], [8],
[15], most problematic SmartApps have already been patched
or deleted from the community. To the best of our knowledge,
among the 34 SmartApps tagged risky by CommandFence,
31 of them were newly identified and were never reported
before. In addition, we utilized the 17 SmartApps in MALIOT
written by Celik et al. [2] for testing. These SmartApps have
logic errors such as “the speaker is turned on while the
user is sleeping” and “the fire alarm sounds when there is
no fire detected”. As a result, CommandFence successfully
tagged all of these problematic SmartApps, yielding a 100%
success rate. Table V summaries the performance results of
CommandFence.

TABLE V: Performance results of CommandFence.

Threat Model Type Source of Test Samples Success Rates

Benign SmartApps
with Logic Errors

MALIOT Written
by [2]

17 out of 17
(100%)

Official
SmartApps Community

34 out of 44
(77.27%)

Evil Malicious
SmartApps Created by [1]

7 out of 10
(70%)

D. Latency Analysis

To evaluate the latency of CommandFence, we downloaded
the official SmartThings Android app and installed 20 Smar-
tApps on the SmartThings app (10 of them were normal apps
and the other 10 were dangerous ones created by Jia et al. [1]).
Then we set up our own device handler which serves as
a mandatory part to define how the devices should react to
the functions in a SmartApp [42]. The detailed method for
hooking the SmartThings app is illustrated in Section IV. For
these 20 SmartApps, we measured the elapsed times for their
operations with and without CommandFence. Then we took
the difference between these two elapsed times as the latency
of CommandFence. Our results showed that CommandFence
imposes an averaged latency of 0.1675 seconds. The distri-
bution of the latencies of these 20 SmartApps is shown in
Fig. 6.

Fig. 6: The distribution of the latency of CommandFence
tested over 20 SmartApps, with the App IDs from 1 to 10
being normal SmartApps while the APP IDs from 11 to 20
being dangerous ones created by [1].

VI. RELATED WORKS

With the increasing number and type of IoT devices de-
ployed in our daily life, more and more studies were carried
out to investigate the security issues of IoT. Based on the
survey conducted by Xiao et al., one can classify the ma-
jor related works into two categories, i.e., attack-based and
defense-based [43].

A. Attack-Based Studies

Existing attack-based studies investigated either app-based
attacks or non-app-based attacks. App-based attacks use ma-
licious apps to launch attacks on a system. Zhang et al.
discovered that the platforms for home-use virtual personal
assistants (VPA), i.e., home speakers, have employed coarse-
grained access control and managed to create malicious apps
that can launch two new attacks: voice squatting and voice
masquerading [44]. Ronen et al. developed a worm that
exploits the vulnerabilities in the Zigbee light link protocol in
Philips Hue [45]. Xiao et al. identified multiple vulnerabilities
in the current home-use electroencephalography (EEG) system
allowing an attacker to carry out remote attacks with malicious
apps and proximate attacks with a radio receiver to steal
a user’s cerebral information [46]. Jia et al. designed an
algorithm to automatically identify vulnerabilities in smart
home traffics and implemented six attacks based on mali-
cious apps [15]. Zhou et al. invented a composite method to
analyze IoT firmware, mobile apps, and clouds all together
to locate vulnerabilities among their communications. Then
they proposed two types of attacks using “phantom devices”,
i.e., malicious apps to breach a user’s privacy [47]. App-
based attacks are under our consideration in this paper but
our intention is to provide a preventive measure such that the
app commands, whether from malicious apps or benign ones,
that may lead to risky states are dropped before they can be
executed in the smart home environment.
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Non-app-based attacks are those using all means other
than apps to launch attacks. Zhang et al. managed to create
inaudible sounds through ultrasonic carriers against speech
recognition systems and successfully took full control over
a few most well-known speech recognition systems, such as
Google Now, Samsung S Voice, Huawei HiVoice, Cortana, and
Alexa [48]. Sugawara et al. took a step forward by successfully
encoding commands into laser lights. If the speakers or voice
devices are hit by the lights, they execute whatever commands
encoded in the lights, making this attack a highly alerting
threat in real world [49]. Eberz et al. formulated a signal
injection attack against electrocardiography (ECG) biometrics
through a wristband named Nymi Band and achieved a success
rate of 81% [50]. Li et al. utilized the encrypted traffic infor-
mation generated through video surveillance systems to launch
side-channel attacks for analyzing the users’ activities [51].

B. Defense-Based Studies

Defense-based studies focus on either access control or non
access control. Access-control-based approaches are mainly
centered on the developments of new access control mech-
anisms to mitigate current threats brought by malicious or
logically flawed apps. Jia et al. proposed a context-based
permission system named ContextIoT, to perform access con-
trol based on a user’s behavioral history [1]. Tian et al.
presented SmartAuth in inhibiting the potential overprivileged
SmartApps by matching the code-level implementations and
the descriptions of the SmartApps [8]. Fernandes et al. put
forward FlowFence, a permission control system that achieves
security goals in IoT by asking the intended data flow patterns
for sensitive data use [52]. Birnbach et al. proposed a sensor-
fusion-based mechanism to automatically identify a user’s
activities based on the sensor statuses for verification [53]. Fer-
nandes et al. made use of the concept of decentralization and
proposed a shared rule-specific token called XToken to prevent
permissions from being misused [9]. Liu et al. leveraged the
Trusted Execution Environment (TEE) and blockchain tech-
nologies to realize fine-grained and accountable access control
and overcome the over-privilege issues in IoT systems [54].
Yet, all these methods are permission-based, which may be
insufficient to provide ideal protections as we mentioned in
Section II.

Non-access-control-based studies refer to those that intend
to improve the IoT security without using access control mech-
anisms. Chen et al. proposed an automatic fuzzing framework
called IoTFuzzer, to discover the memory corruptions in IoT
devices without accessing the firmware images [10]. Xu et
al. presented a system named CIDER, to quickly recover an
already compromised IoT device even if an attacker took root
control of it [11]. Zheng et al. introduced a lightweight fuzzing
framework termed Firm-AFL, for IoT firmware vulnerability
identification using user-mode QEMU [12]. Feng et al. de-
veloped a black-box fuzzing technique, namely Snipuzz, for
identifying vulnerabilities within IoT firmware [55]. Aafer
et al. described a log-based dynamic fuzzing approach to
discover vulnerabilities hidden in Android SmartTVs [56]. The

five works mentioned above mainly enhance security from the
device side, which may not be effective in defending an IoT
system as a whole. Qi et al. proposed a novel protective frame-
work termed iRuler using information flow graph and natural
language processing, to identify function-level vulnerabilities
such as looping, conflict, duplication, etc [13]. We also carry
out non-access-control-based studies in this paper, but our
goals are different from those mentioned above. We intend to
find out the app commands whose executions may be harmful
to a smart home environment when interacting with human
behaviors and environmental variations, while existing works
aim to find out vulnerabilities in apps without considering the
dynamism of their operating environment.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed CommandFence, a novel preven-
tive framework to secure smart home systems from reaching
risky states when app commands combined human activities
and environmental variations are executed. CommandFence is
based on digital-twin, a new concept that is fundamentally
different than those employed by the existing well-received
access control frameworks. It is composed of an Interposition
Layer and an Emulation Layer to first interpose the app
commands and then execute them in a virtual smart home en-
vironment that can predict whether the operations of the com-
mands combining with human activities and environmental
variations may transition a normal smart home environment to
a dangerous one, and if yes, the commands are dropped before
they are sent to the real smart home system. CommandFence
does not require any hardware update, it can be adopted as a
software plugin, and it is orthogonal to the existing protection
frameworks, providing another layer of security for smart
home systems. Our extensive experimental studies indicated
that CommandFence is effective and efficient. It successfully
identified 31 brand-new problematic SmartApps out of the
553 commercial SmartApps, tagged 7 out of 10 malicious
SmartApps as risky, and recognized all the 17 logically-
erroneous SmartApps. CommandFence incurs a neglectable
overhead of 0.1675 seconds, thus having little negative impact
on the normal operations of smart home systems.

This is an exploratory work of employing the novel concept
of digital-twin for preventive security in smart home systems.
Even though CommandFence can effectively mitigate the secu-
rity problems brought by the two threat models we considered
in this paper, its current design can only deal with threats from
the smart home apps installed in a user’s smartphone, while in
practice threats may come from other sources including remote
attackers from the external environments. Therefore, we will
consider the design of defensive mechanisms embedded into
smart devices, endowing them with the capabilities to hinder
attacks from all sources. On the other hand, the detection
accuracy and false-alarm rate of CommandFence could be
further improved if we can collect more training data from a
broader range of scenarios and employ the recently developed
advanced reinforcement learning techniques [57]–[59] to cope
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with the more complicated variations including those that are
not human-related.

A more complicated smart home scenario, which can be
extended to a smart office setting, is one with a large number of
sensing devices deployed. Since our design of CommandFence
heavily relies on the environment (a property of DQN), it is
nontrivial to directly extend its implementation presented in
this paper to handle such cases. At the minimum we need to
change the current structure of the Emulation Layer and re-
train the entire neural network since the number of neurons in
the first layer is equal to the number of devices and the number
of neurons in the third layer is equal to the number of actions.
To avoid a prohibitively large neural network, we intend to
proceed from three directions in our future research to avoid
completely retrain the whole network (i.e., via fine-tuning the
existing one). First, if the sensors are densely deployed, it is
likely that the sensing data of nearby devices are correlated,
meaning that the dimension of the input data to the first layer
can be greatly reduced [60] [61] [62]. Second, if the devices
are sparsely located in a large area, the sensing data may
not be correlated, but one can ameliorate the hardness by
first employing anomaly detection algorithms to distinguish
the anomaly data from the normal one [63] then feeding the
anomaly data to the neural network. Third, considering the
scenario with a large number of devices densely deployed in a
large area, the methods mentioned above can be combined, and
other reinforcement learning techniques can also be explored
to handle the challenges.

Another line of future research we intend to consider is to
extend the concept of digital-twin based preventive security to
more general IoT settings such as industrial IoT (IIoT), smart
health, smart grid, and even smart transportation systems, as it
has a high potential of revealing vulnerabilities that could not
be identified via traditional protection mechanisms. However,
migrating the basic idea of CommandFence to these systems
is hard as they are mechanically and technologically different
than the smart home environments under our consideration.
Intuitively, application-specific and complex modifications to
our design and implementation are unavoidable. For example,
if we intend to migrate our approach to an IIoT scenario, we
have to implement the IIoT-version of Interposition Layer and
Emulation Layer. To implement the Interposition Layer, we
need to intercept the voltage signals emitted by programmable
logic controllers (PLCs), which are routed through industrial
routers and then directed to the designated actuators such as
relays, transistors, servos and motors [64]. Yet, in most IIoT
systems, the PLCs and routers are not open for re-program,
meaning that we cannot inject the codes for intercepting the
voltage signals. Obviously, designing new PLCs and routers
with interception codes embedded inside to replace the old
ones is unlikely to be adopted since developing a PLC or
a router is exceedingly difficult and is usually accomplished
by highly experienced corporations such as Siemens, Beck-
hoff and Schneider. A feasible approach is to implement
(hardware and software) a standalone voltage interceptor and
place it between the PLCs and the routers. Then whenever

a PLC emits a voltage signal, the interceptor can intercept
the signal and direct it to the Emulation Layer for further
analysis. To implement the Emulation Layer, we need to
first develop a program reversing the voltage back to some
human-readable languages such as ladder diagram, instruction
language, function block diagram, or sequential function chart,
which would be interpreted as commands. We then need to
implement a digital-twin version of the IIoT system which
should include as many digital actuators as possible, e.g.,
sensors, relays, motors, servos, CNC machines. Lastly, we
can execute the commands in the digital-twin environment and
employ learning algorithms to complete different tasks such as
active defense, fault diagnosis [64], vulnerability identification
and accident avoidance. One can see that the overall migration
process to IIoT requires tremendous efforts to accomplish.
Nevertheless, the potential of exploiting digital twin to develop
defense mechanisms for more complicated systems such as
IIoT is definitely worthy of exploration.
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