MARTINGALE SCHRODINGER BRIDGES AND OPTIMAL
SEMISTATIC PORTFOLIOS

MARCEL NUTZ, JOHANNES WIESEL, AND LONG ZHAO

ABSTRACT. In a two-period financial market where a stock is traded dynamically
and European options at maturity are traded statically, we study the so-called
martingale Schrodinger bridge @).; that is, the minimal-entropy martingale mea-
sure among all models calibrated to option prices. This minimization is shown
to be in duality with an exponential utility maximization over semistatic port-
folios. Under a technical condition on the physical measure P, we show that an
optimal portfolio exists and provides an explicit solution for Q.. This result over-
comes the remarkable issue of non-closedness of semistatic strategies discovered
by Acciaio, Larsson and Schachermayer. Specifically, we exhibit a dense subset
of calibrated martingale measures with particular properties to show that the
portfolio in question has a well-defined and integrable option position.

1. INTRODUCTION AND MAIN RESULTS

The martingale Schrédinger bridge was introduced by Henry-Labordere Henry-
Labordere [24] as a pricing model achieving perfect calibration to all Vanilla op-
tions while retaining stylized facts of a reference model. Starting from a reference
stochastic volatility model (SVM) which typically cannot be calibrated perfectly,
the martingale Schrédinger bridge is constructed as the calibrated measure which
is closest to the SVM in the sense of relative entropy. In contrast to the classi-
cal Schrodinger bridge in Léonard Léonard [27] and Avellaneda et al. Avellaneda
[3], Avellaneda et al. [4], this problem features an additional martingale constraint
to generate an arbitrage-free model. A similar approach is used by Guyon Guyon
[22, 23] in a two-period setting to solve the longstanding joint S&P 500/VIX smile
calibration puzzle; here entropy minimization is utilized to construct a model that
is jointly calibrated to the S&P 500, VIX futures and VIX options.

The aforementioned works rest on (sometimes implicit) mathematical assump-
tions of strong duality and attainment. These are plausible as natural extensions of
standard results in markets without option trading (see Delbaen et al. Delbaen et al.
[13], Frittelli Frittelli [18], Schachermayer Schachermayer [37], Zariphopoulou Za-
riphopoulou [40], among others). However, Acciaio et al. Acciaio et al. [1] exhibited
a surprising obstacle to obtaining such extensions: the space of semistatic portfolios
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of stocks and options is not closed (both in a two-period model and in continuous
time). In classical mathematical finance, closedness results are at the very heart
of the separation arguments underlying the Fundamental Theorem of Asset Pricing
and the existence of optimal portfolios for utility maximization. As a consequence,
it is not obvious how to formulate and prove the desired results.

The purpose of the present paper is to provide such results, at least in one setting.
On the one hand, we prove strong duality between the martingale Schrodinger bridge
problem and an exponential utility maximization problem over semistatic portfo-
lios. This duality, as well as the existence of the martingale Schrodinger bridge itself
(primal attainment), is obtained along the lines of classical entropy minimization
and Schrodinger bridge theory. On the other hand, we prove (under a technical
condition) that the dual problem is attained in a natural space of admissible portfo-
lios, and that this dual solution yields the log-density of the martingale Schrédinger
bridge. We thus derive from first principles the type of implicit condition assumed
on the optimal log-density, e.g., in Guyon Guyon [23, Theorem 16|, and overcome
the non-closedness issue discovered in Acciaio et al. Acciaio et al. [1]. To wit, while
in general a convergent sequence of semistatic portfolios may have an undesirable
limit with unclear financial interpretation, the specific limit of a utility-maximizing
sequence in our problem is shown to be an admissible portfolio.

We consider a two-period model where the price of a stock is modeled by the
canonical process (X,Y) on R? under a (physical) reference probability P. Here X
is the stock price at date t = 1 and Y is the price at the terminal date ¢ = 2. In
addition, European options g(Y’) are liquidly traded at time zero. By the Breeden—
Litzenberger formula Breeden and Litzenberger [9], the risk-neutral distribution v
of Y can be derived from the prices of call options with arbitrary strikes, where v
is assumed to have a finite first moment. Then the arbitrage-free price of a general
option ¢(Y) is given by the integral E¥[g]. The martingale Schrédinger bridge
problem can now be formalized as

(1.1) Lt H(@QIP).

where H is the relative entropy (or Kullback—Leibler divergence)

Q |1og 9Q
H(Q|P) = {E [log dP}? RQ<KP

00, Q&P
and M (v) is the set of calibrated equivalent martingale measures,
(1.2) M) ={QePR?): Q~P, Q*=v, EV[Y|X] =X}

Here P(R?) is the set of probability measures on R? and Q? denotes the second
marginal of Q € P(R?), or equivalently, the distribution of the price Y under Q.
We remark in passing that (1.1) relates to the classical (static) Schrodinger bridge
problem infgery(,,,) H(Q|P) over the set II(u,v) of couplings of two measures y, v;
see Follmer Follmer [15], Léonard Léonard [27] and Nutz Nutz [29] for surveys. In
this problem, there is no martingale constraint. On the other hand, (1.1) relates
to the martingale optimal transport problem infgem(u,) E®[c] which minimizes an
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integrated cost over the set M(u, ) of martingale couplings; see Beiglbock et al. Bei-
glbock et al. [6], Galichon et al. Galichon et al. [19], Hobson Hobson [25] and the
literature thereafter. In that problem, there is no reference measure. The resulting
value yields model-independent bounds for the price of the exotic option ¢ and as a
consequence of the linear structure, solutions tend to be degenerate. By contrast,
solutions of (1.1) tend to preserve features of the reference model P, as empha-
sized in Henry-Labordere Henry-Labordere [24]. The classical Schrodinger bridge
problem arises from the classical optimal transport problem by entropic regulariza-
tion as used in the context of Sinkhorn’s algorithm by Cuturi and Peyré Cuturi
[11], Peyré and Cuturi [33]. Similarly, entropic regularization of martingale op-
timal transport leads to the martingale Schrédinger bridge, and this was used in
De March and Henry-Labordere March and Henry-Labordere [28] to develop a ver-
sion of Sinkhorn’s algorithm for martingale optimal transport. See also Guo and
Obt6j Guo and Obléj [21] for a related algorithm using a different relaxation.
Returning to our problem (1.1)—for it to be meaningful, we must assume that

(1.3) Men(v) :={Q € M(v) : H(Q|P) < oo} # 0;

that is, there exists a calibrated martingale measure with finite relative entropy.
This condition implies the absence of arbitrage in semistatic trading strategies. It
implies the usual no-arbitrage condition on the stock alone, but also depends on the
interplay of P and v. A precise characterization of (1.3), or even just M(v) # 0,
in terms of trading strategies along the lines of a fundamental theorem of asset
pricing in Dalang et al. Dalang et al. [12], is an interesting open problem. (Like
the question studied in the present paper, the answer is not obvious due to the
failure of closedness in Acciaio et al. Acciaio et al. [1].) We can now state the basic
wellposedness result.

Proposition 1.1. The problem (1.1) admits a unique minimizer Q. € M(v), called
the martingale Schrodinger bridge.

This will essentially follow from standard entropy minimization theory in Csiszar
Csiszar [10] and properties of M(v) which are variations of results found, e.g., in
Beiglbock et al. Beiglbock et al. [6]. Proposition 1.1 lacks a more specific descrip-
tion: we expect by (formal) duality that the log-density of Q. corresponds to a
semistatic portfolio with certain admissibility criteria, and those criteria are crucial
for any further analysis of the martingale Schrodinger bridge and its computation
(as seen, e.g., in Guyon Guyon [23]). Specifically, trading in our market gives rise
to a semistatic outcome of the form

V =hX)(Y = X)+g(Y),

where h(X) is the number of stocks held over the second period. Stock trading in
the first period, starting from a deterministic initial stock price Xy, corresponds to
a term ho(Xop)(X — Xo) which can be absorbed into the functions h,g above and
hence will not be represented explicitly. We write

(1.4)  V ={V measurable: V= h(X)(Y — X) + g(Y) for some h,g: R — R}.
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In order to have a well-defined option price, the function g needs to be (measurable
and) integrable under the pricing measure v. We thus set

(1.5) V) :={V €V: h,g are measurable, g € L*(v), E"[g] = 0}

for those outcomes whose option is available from zero initial capital. Finally, we
want h(X)(Y — X) to have suitable martingale properties. There is some flexibility
here regarding the definition; one natural choice is to require the martingale property
under all @ € Mg, (v) (see also Remark 2.7 for another possible choice). For V' € Vy,
this is equivalent to V € LY(Q) for all Q € Mg, (v). In summary, our set of
admissible portfolios (for zero initial capital) is

h,g : R — R are measurable, E"[g] =0,
EC[WMX)(Y — X)] =0 for all Q € Mgy, (v)

We then have the following strong duality between the martingale Schrodinger bridge
(primal) problem and the dual problem of exponential utility maximization over
semistatic portfolios.

Vadm—{VEV:

Proposition 1.2. Let u(z) = —e * /7 for some v > 0. Then

1
1. — inf H(Q|P)= (BT :
(1.6) S e (Q|P) up (B [u(V)])

The duality will be obtained by showing that the log-density of Q. can be ap-
proximated by semistatic portfolios with good integrability properties; cf. Propo-
sition 2.4. That proposition, in turn, is inspired by seminal results in the theory
of (classical) Schrédinger bridges, especially Follmer’s construction of Schrodinger
potentials Follmer [15]. Our argument does not require dual attainment and thus
avoids discussing delicate properties of the portfolios: the supremum in (1.6) would
be the same if taken, say, over portfolios h(X)(Y — X) + ¢g(Y) with bounded con-
tinuous functions h, g. But of course, this space would not allow for attainment in
general.

Turning to the delicate part, we want to show that the dual problem is attained
at an admissible portfolio V, and that this maximizer yields the log-density of Q.
We denote by P = P! ® P*® the disintegration of P; that is, P! is the law of X
under P and P*(z,dy) is the conditional law of ¥ given X = z.

Theorem 1.3. Suppose that dP®/dv is P'-a.s. uniformly bounded from above and
away from zero. Then the minimizer Q. of (1.1) is given by the density

dQ« _ g
1. Zy = = H(QP)+V2
(1.7) Ip —°© ;

where Vi € Vaam 1S the unique solution of the dual problem,

V., = argmax EX [u(V)].
Vevadm

In particular, Vi, = M(X)(Y — X) + g(Y), where h, g are measurable functions with
g€ LY (v) and E¥[g] = 0 as well as h(X)(Y —X) € LY(Q) and EQ[W(X)(Y -X)] =0
for all Q € Mgy (v).
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The boundedness condition in Theorem 1.3 can be weakened to an integrability
condition; see Remark 3.4. In contrast to the other results, this theorem does not
seem to follow from classical arguments. If the space of admissible portfolios were
closed, the theorem would follow from the approximation result in Proposition 2.4,
broadly as in the classical framework of mathematical finance without options. To
overcome the failure of closedness (specifically, of Vi and V,qm, as shown in Acciaio et
al. Acciaio et al. [1]), we first leverage a result from our companion paper Nutz et al.
[32], where it is shown that the functional form of semistatic portfolios is stable under
pointwise limits. As a consequence, the approximation result still implies that Vj is
of the general form V, = h(X)(Y — X) + ¢g(Y) for some measurable functions h, g.

On the flip side, another insight from Nutz et al. [32] is that the key failure in
the counterexample of Acciaio et al. [1] is the integrability of the option g which
is in turn crucial to associate a price. Hence, it is not surprising that establishing
this integrability occupies the lion’s share of the proof of Theorem 1.3; it uses novel
arguments and seems to be the first result in this direction. Our line of attack is
to construct a measure Q) in (a relaxation of) Mg, (v) such that A(X)(Y — X) is
@-integrable; once that is achieved, soft arguments imply that g € L'(v). In fact,
we establish that such measures are dense: in Proposition 3.2 we show that any @) €
Min(v) is the limit of calibrated (absolutely continuous) martingale measures Qy,
under which the dynamic trading strategy h is uniformly bounded a.s. The proof
is intricate and develops, among other things, explicit stability properties of the
convex order, building on ideas from martingale optimal transport in Beiglbéck and
Juillet Beiglbock and Juillet [5]. See also Section 3.3 for further comments.

We do not know how far the technical condition on P in Theorem 1.3 can be
relaxed. However, analogy with the classical Schrodinger bridge problem suggests
that some condition may be necessary. Indeed, the corresponding question in that
setting—without martingale constraint but with two marginal constraints—is to
show that the log-density of the Schrodinger bridge is of the form f(x) + g(y) and
establish the measurability and integrability properties of those “Schrodinger poten-
tials” (f,g). This problem has a long history (e.g., Beurling Beurling [7]). A series
of results revealed that the additive form f(z) + g(y) always holds, but also that
the measurability of (f,g) fails without additional conditions; moreover, even when
measurability holds, integrability fails without further conditions (see Borwein and
Lewis Borwein and Lewis [8], Csiszar Csiszar [10], Follmer and Gantert Follmer and
Gantert [16], Riischendorf and Thomsen Riischendorf and Thomsen [35, 36]). The
study of Schrédinger potentials remains an area of active study (see for instance
Altschuler et al. Altschuler et al. [2], Deligiannidis et al. Deligiannidis et al. [14],
Gigli and Tamanini Gigli and Tamanini [20], Nutz and Wiesel Nutz and Wiesel
[30, 31]) that we have benefited from, especially for our companion paper Nutz
et al. [32]. For the present work, we have not been able to transfer as many of those
techniques.

Regarding potential future work, it seems likely that our line of argument can
be extended to show the existence of optimal portfolios for more general utility
functions. Generalizations in the structure of the market, for instance also adding
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options with maturity ¢t = 1, are relatively straightforward in the general parts
whereas replacing our argument for the integrability of the option is nontrivial.
Similarly, an extension to multiple periods through backward induction is not ob-
vious, as our proof crucially relies on the technical condition (3.2). In a different
direction, one may remember how Rogers Rogers [34] used existence for exponential
utility to show the Fundamental Theorem of Asset Pricing. Of course, that is not
immediately applicable here, as we have used (1.3) in our proof of existence.

The remainder of the paper has a simple structure: Section 2 derives the well-
posedness and duality results (Propositions 1.1 and 1.2), and Section 3 provides the
proof of dual attainment (Theorem 1.3).

2. WELLPOSEDNESS AND DUALITY

In this section, we first prove the wellposedness of the martingale Schrodinger
bridge Q. (Proposition 1.1). Then, we prove the duality with exponential utility
maximization (Proposition 1.2) through an approximation of Q. (Proposition 2.4).

We start by recalling a general result on entropy minimization.

Lemma 2.1. Consider a measurable space (£, F) and denote by P(Q2) its collection
of probability measures. Fix R € P(Q), let Q C P(Q) be convex and closed in
variation, and suppose that Qg = {Q € Q : H(Q|R) < oo} # (). Then there exists
a unique QQyx € Q such that

H(Q|R) = jnf H(QIR) € [0.00).

Moreover, Q. > Q for any Q € Qgn. In particular, if there exists Q € Qg, with
Q ~ R, then Q. ~ R. Furthermore,

Q.
dR

Proof. In the stated form, the result can be found in Nutz Nutz [29, Theorem 1.10
and Corollary 1.13]. Its main part is very classical; cf. Csiszar Csiszér [10]. The
integrability (2.1) is less known but can also be deduced from Csiszar [10]. O

(2.1) log c LY(Q) for all Q € Qgn.

Lemma 2.1 is not directly applicable to the set @ = M(v) of martingale measures
defined in (1.2) as this set is not closed due to the equivalence constraint. Writing

(v) ={Q e P(R?): Q° = v},
we consider instead the following relaxations defined with absolute continuity,
M) :={QeT(v): Q< P, E?Y|X] =X} 2 M(v),
(2.2) Min(v) = {Q € M() : H(Q|P) < 00} 2 Miin(v)
and argue that M (v) satisfies the hypotheses of Lemma 2.1. To this end, we first give
an extension of Beiglbock et al. Beiglbock et al. [6, Lemma 2.2 and Theorem 2.4].

Recall that two measures pu,v € P(R) are in convex order (e.g. in Shaked and
Shanthikumar Shaked and Shanthikumar [38]), denoted pu <. v, if they have finite
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first moments and E*[f] < E”[f] holds for all convex functions f : R — R. As an
example, E?[Y|X] = X implies Q' <. Q2 by Jensen’s inequality.

Lemma 2.2. The set {Q € II(v): EC[Y|X] = X} is weakly closed.

Proof. Let (Qn)n>1 be a sequence of measures converging weakly to some limit @,
then Q € TI(v) by the continuity of the projection Y. To see that E?»[Y|X] = X
implies EQ[Y|X] = X, we show that |X|+|Y] is (Qn)-uniformly integrable. Indeed,
as {v} is uniformly integrable, the de la Vallée—Poussin theorem yields a convex
function f: R — Ry of superlinear growth with [ fdv < co. Thus

sup /fd,ug/fdy<oo

M p=ev

by the definition of the convex order, showing that {u : u <. v} is uniformly
integrable. As a result, | X| + Y] is {Q € II(v) : Q' <. v}-uniformly integrable and
in particular (@Q,)-uniformly integrable. O

We can now show the wellposedness of the martingale Schrodinger bridge Q..

Proof of Proposition 1.1. Using Lemma 2.2, we readily verify that M (v) is convex
and closed in variation. Since Mg, (v) 2O Mgn(v) # 0 by our assumption (1.3),
applying Lemma 2.1 with @ = M(v) yields existence and uniqueness of

(2.3) Q. = argmin H(Q|P)

QEM(v)
as well as Q. ~ P; that is, Q. € Mg, (v). It now follows that @, is also the unique
minimizer of infge ) H(Q|P). O

We record the following observation for use in Section 3.

Remark 2.3. For any Q € Mg, (v), a straightforward calculation shows that the
density Z := dQ/dP can be written as Z = e@P)I+V for some V € L'(Q) with
ER[V] = 0. For the density

Q. 4
2.4 Zy = —2 = M@ P)HV:

of the minimizer, we have not only that E9+[V,] = 0 but also that V, € L'(Q) for
all @ € Mgy (v). This follows from (2.1) by way of (2.3).

The next result characterizes the minimizer @), through certain approximating
sequences of semistatic portfolios and will serve as the basis to prove the duality
(Proposition 1.2). We write W, for the set of portfolios V = h(X)(Y — X) + g(Y)
where h, g : R — R are bounded measurable and E”[g] = 0; clearly Vi, C Vaqm-

Proposition 2.4. Given Q. € Mg, (v) with density (2.4), the following statements
are equivalent:

(i) Qx is the minimizer of (1.1).
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(ii) There exist probability measures (Qn)n>1 with densities
Zn = dQy/dP = M@ IP)IHVaith v, € W,
such that
H(Qn|P) = H(Q.|P) and V, =V, in LY(Q.) asn — cc.
(11i) There exist (Vi)n>1 C Wy such that
EF [eVn] — EF [ev*} as n — 0o.
(iv) There exist (Vy)n>1 € Vo such that
EQ+

eV"_V*—l‘ —0 asn — oco.

This result is inspired by a characterization of (classical) Schrodinger bridges in
Follmer and Gantert Follmer and Gantert [16, Proposition 3.6], see also Csiszar Csiszar
[10], and Follmer’s construction of Schrodinger potentials Féllmer [15]. The key fea-
ture is that the approximating random variables V,, are portfolios and have good
integrability properties (whereas the properties of V, are unclear at this stage).

Remark 2.5. The assertion of Proposition 2.4 remains valid if M}, is replaced
by Vadm or by Vi. This will be clear from the proof.

Proof of Proposition 2.4. (i) = (ii): By separability of L}(R) we can write
M) ={Q ~ P: E°[hi(X)(Y — X)| =0, E®g;(Y)] =0, i=1,2,...}

for a countable collection of bounded measurable functions h;, g; : R — R. Denote
the set of measures for which only the first n constraints are enforced by

M) ={Q ~ P : E°h(X)(Y — X)] =0, E9[g;(Y)] =0, i =1,2,...,n}.

Clearly M(v) € M, (v) and M, (v) is convex and closed in variation. Consider
the problem infye g, ) H(Q|P). This minimization problem over measures with
finitely many linear constraints is well known to be in duality with exponential utility
maximization over (static) trading in the finitely many assets h;(X)(Y — X), g;(Y)
defining the constraints. Specifically, by Follmer and Schied Follmer and Schied [17,
Section 3, esp. Corollary 3.25], the minimizer @, of infgeaq, ) H(Q|P) is of the

form p

Dy = d?; = exp(cn +h(X)(Y — X) + §n(Y))
for some ¢, € R, where h,(X) = 320" a;nhi(X) and §,(Y) = 327, bingi(Y) for
some a;n,bin € R. As Q, € My(v) we have ¢, = H(Q,|P). That is, log Z,, is of
the form H(Q,|P)+ V, for some V,, € Vy,. Applying Nutz Nutz [29, Theorem 1.17]
to the sets Q,, := M,,(v) and Q := M(v) satistying N, Q,, = Q, and recalling that
M (V) # 0 by our assumption (1.3), we conclude that

H(Q«|Qn) — 0, H(Qu|P)— H(Q«|P) and logZ, — logZ, in L*(Q.).
In particular, V,, — V, in L}(Q,) follows.
(ii) = (ii4): Since Z,,Z are probability densities, we have e H(@nlP) = EP[¢Vn]
and e H(@IP) = EPeY*]. Thus H(Q,|P) — H(Q.|P) is equivalent to EX[e""] —
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EP [ev*]_
(7i1) < (iv) : By a change of measure, (iii) is equivalent to
EQ[VnVe] = (HQIP) EP[Va] _y (H(QuIP) PVe] — 1,
and now Scheffé’s lemma yields the equivalence with (iv).

(iii) = (i): Without loss of generality, we assume E¥[e""] < oo for all n. Define
probability measures @, by

_dQn _ H@QuP)+V
Ly = 1P =e

and recall that (iii) is equivalent to H(Qy|P) — H(Q«|P). Take any Q € Mg, (v).
Using the definition of H(-|P) and Lemma 2.6 below,

H(Q|P) — H(Q|Qn) = E®[log Zy] = H(Qu|P) + E°[V,] = H(Qnl|P).
As H(Q|Qr) > 0, it follows that
H(QIP) > lim H(Qu|P) = H(Q.IP).

Since @ € Mgy (v) was arbitrary, we conclude that @ is the minimizer of (1.1). O

The following technical result was used in the preceding proof.

Lemma 2.6. Let V € V; satisfy ET[eV] < co. Then V € LY(Q) and E[V] =0
for all Q € Mgn(v).

Proof. Define an auxiliary probability measure @’ via

_ dQl _ ct+V

!
Z e ,

4P
where ¢ € R is the normalization constant. Moreover, let Q € Mg, (v) and denote
by Z its density. Applying the inequality logz < x — 1 to z = 2//z > 0 yields
log 2’ <logz+ z'/z—1 and hence

logZ' <logZ+2'/Z—-1 on {Z >0},

where log 0 := —oo. In view of H(Q|P) < oo, we have logZ + Z'/Z — 1 € LY(Q)
and conclude that (log Z')* € L'(Q). By the definition of Vi,

logZ' =c+V =h(X)(Y - X)+g(Y)

for some g € L*(v) with E[g] = 0, and hence (log Z')* € L'(Q) translates to the
positive part of the martingale transform h(X)(Y — X) being @Q-integrable. As @
is a martingale measure, this already implies (see Jacod and Shiryaev Jacod and
Shiryaev [26, Theorem 2b]) that A(X)(Y — X) € L(Q) and E?[h(X)(Y — X)] = 0.
The claim follows. U]

We are now in a position to prove the duality result.
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Proof of Proposition 1.2. Let Q. be the minimizer from Proposition 1.1 and recall
from (2.4) the notation Z, = dQ./dP = e"(@«P)+Ve where EQ+[V,] = 0. Let
u(x) = —e~ 7/~ for some v > 0. A change of measure and Jensen’s inequality yield
that for any V' € Vaqm,
1
EP[U(V)] _ EQ* [Z*_I’LL(V)] — _7EQ* [e—H(Q*|P)—V*—WV
Y
< _Lle-n@uP-E W —pev) _ L —nQup)
Y Y
where the last equality used that E@* [V] =0 due to Qx € Mgn(v) and V' € Vygm.
On the other hand, Proposition 2.4 (iv) shows that there exist (V;,) C V, such that
EQ~ [e_v*_VV"] — 1 and consequently —E@- [e‘H(Q”P)_V*_VV"] — —e H@QIP) p

view of Vi, € Vadm, this yields supy.cy EP[u(V)] > —%eH(Q”P). Lastly,

1 1 1
inf u<H(Q|P)> :u(H(Q*‘P)> = e H@P)
QeM(v) 7 vy ¥
so that combining the two inequalities yields
1
P .
sup E'[u(V)] = inf u(H QP>
VEVadm V) QeM(v) \7 (@IP)

as claimed. i

Remark 2.7. By the proof, the duality (1.6) still holds if the supremum is taken over
the larger set VINL'(Q+) 2 Vaqm, providing an alternative definition of admissibility.

3. ADMISSIBILITY AND DUAL ATTAINMENT

3.1. Preliminary Considerations. Let (). be the minimizer from Proposition 1.1
and recall from (2.4) the notation Z, = dQ./dP = cH(@Q:P)+Va  With a view
towards the duality relation, note that

EP [u (Jmﬂ _ _gP [1&} _ P {16_H(Q*IP)Z*} _ L neup),
Y Y v Y

It is thus tempting to conclude that —V, /v “attains” the supremum in (1.6). How-
ever, it far from obvious whether V. belongs to the dual domain Vuqy, (or is a
portfolio in any sense). At this stage, we know that E?*[V,] = 0 and that Vj is the
limit of certain portfolios (V;,) € Vi, € Vaam C V1; cf. Proposition 2.4. The missing
conclusion would be obvious if any of these spaces had a good closure property.
However, as mentioned in the Introduction, Acciaio et al. Acciaio et al. [1] have
shown that this is not the case: specifically, the authors exhibit a two-period model
and an LP-convergent sequence (V;,) C V,, whose limit is outside V. The proof uses
a clever contradiction argument avoiding a detailed study of the limiting random
variable, so it may not be clear what exactly goes wrong in the limit.

The first possible issue is whether the limit still has the functional form h(X)(Y —
X) + g(Y) for some functions h,g. A second issue is whether (these functions
are measurable and) ¢ is integrable as required by the definition of V. The first
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issue is analyzed in our companion paper Nutz et al. [32] which shows that the
functional form is stable even under pointwise limits. Under the mild condition
that P ~ P! ® P? (which is implied by the condition in Theorem 1.3), we can also
guarantee that h, g remain measurable.

Lemma 3.1. We have V, € V; that is, Vi, = h(X)(Y —X)+g(Y) for some functions
h,g:R = R. If P ~ P'® P2, the functions h,g are a.s. uniquely determined and
measurable.

Proof. By Proposition 2.4 we can find (V},) C V}, with V,, — Vi, P-a.s. The two claims
then follow from Nutz et al. Nutz et al. [32, Theorem 2.2 and 3.1], respectively. [

This stability of the functional form indicates that the key failure in the coun-
terexample of Acciaio et al. Acciaio et al. [1] is the integrability of the option. It is
then clear that some original arguments will be required to obtain that the option
position in our specific limit Vj is nevertheless integrable—which motivates the rest
of this section.

3.2. Proof of Theorem 1.3. Recall that the disintegration of a probability mea-
sure R € P(R?) is denoted R = R' ® R®, where R! is the first marginal (distri-
bution of X) and R® : R — P(R) is a stochastic kernel (conditional distribution
of Y given X). We interchangeably use R*(z), R*(z,-) or R*(x,dy) to denote the
conditional distribution given X = x.

Our basic line of attack is simple (yet seems to be novel): recalling Remark 2.3,

(3.1) V. = h(X)(Y — X)+g(Y) € LNQ) forall Q€ Mgn(v),
where Mgy, (1) was defined in (2.2). We shall construct Q € Mg (v) such that h

is uniformly bounded Q'-a.s. Then clearly h(X)(Y — X) € L'(Q) and now (3.1)
yields g(Y) € Ll(@), or equivalently g € L'(v), as desired.

On the other hand, the construction of C~2 is somewhat intricate. It is based
on an approximation of @, by a sequence of probability measures (@n), which
simultaneously retain the martingale property and satisfy h is @%—a.s. uniformly
bounded for all n € N. Next, we state a general version of this approximation
result, applicable to any measurable function h : R — R and any Q € Mg, (v)
satisfying the technical condition (3.2) below. In the proof of Theorem 1.3, the

result will be applied to the specific function h in V, = A(X)(Y — X) + g(Y) and
Q = Qx.
Proposition 3.2. Let h : R — R be measurable and Q = Q' ® Q* € Mg, (v).
Suppose that there exists a Q'-integrable function I : R — [0, 00) such that
(3.2) H(Q ()|P*@) < 1) for (@' @ QY)-aa. (z,2).
Then there exist measures Qp = @711 ® @; € .//\\/l/ﬁn(l/) such that
(i) h is @}L—a.s. uniformly bounded for each n € N,
(ii) Qn — Q in variation,
(iii) H(Qn|P) — H(Q|P).
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In particular there exists C~2 € Mvﬁn(l/) such that h is uniformly bounded él—a.s.

The proof is lengthy and deferred to Section 3.3. For ease of reference, we record
some standard facts in the next lemma.

Lemma 3.3. Given probability measures Q = Q' ® Q°® and R = R' @ R® on R?,
(i) Q < R if and only if Q' < R! and Q* < R® Q'-a.s.,
(ii) if Q@ < R, then
dQ  dQ'dQ*
dR ~ dR!dR®
(iii) H(QIR) = H(Q'|R") + E?'[H(Q*|R")].

We are now ready to detail the proof of Theorem 1.3.

R-a.s.,

Proof of Theorem 1.3. Set p := QL. We first construct a function I satisfying (3.2)
with @) = Q.. By our assumption, there are constants 0 < [ < L < oo such that

(3.3) I < dl';j(as)(y) <L (k@ v)-aa. (z,y).
Using Lemma 3.3(i), @« ~ P implies that Q3 ~ P®* ~ v p-a.s. Note also
dQ3(2)  « _ dQi(a)  dP*(z')
dP+(z) V) = ape(e) Y dpe(a) ¥
(3.4) ) T ) ), e (@),
Combining (3.3) and (3.4) we obtain
log Oclg;(g)) (y) < log Zgg:; (y) + log(L/1)

and now integrating against Q2 (z’) yields
H(Q3()|P(2)) < H(Q2()P*() +log(L/l) = I(z),  (u® p)-aa. (5,2).

Lemma 3.3 (iii) together with H(Q.|P) < oo then implies I € L (u).
Noting that Q. ~ ¢ ® v, Lemma 3.1 yields that

Vi =hX)(Y = X) +g(Y)

for some measurable functions h,g. Next, we verify that ¢ is v-integrable with
E"[g] = 0. Indeed, the function I satisfies (3 2) with @ = Q., hence Proposition 3.2
provides Q € Mﬁn( ) such that h is Q'-a.s. uniformly bounded. This clearly implies
h(X)(Y — X) € L*(Q). Recalling from Remark 2.3 that V; is Q-integrable, we can
deduce that g(Y) € L(Q); that is, g € L*(Q?) = L*(v). We can now conclude from
EQ+[V,] = 0 that E¥[g] = E9[g (Y)] = 0, completing the proof that V, € V.

Recall from Remark 2.3 that V, € L'(Q) for all Q € Mﬁn(y). Having established
g € L'(v), this implies A(X)(Y — X) € L(Q) and then EQ[h(X)(Y — X)] =0 by
the martingale property. As .//\/lvﬁn(V) D Mgy (v), this shows that Vi € Vagm. d
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Remark 3.4. As seen in the proof, the boundedness condition in Theorem 1.3 can
be weakened to the following integrability condition:

(i) P~ Plev,

(ii) there exists a Ql-integrable function I : R — [0, 00) such that

° /
s

3.3. Proof of Proposition 3.2. The program for this proof can be sketched as fol-
lows. First, we shall identify a sequence (p,) of sub-probability measures u, < Q'
such that h is uniformly bounded p,-a.e. and, when renormalized, p — p, dom-
inates p, in convex order. Strassen’s theorem then guarantees the existence of
martingale measures M, with first marginal u, and second marginal y — i, The
desired measures @),, have marginals p, /u,(R) and v: they will be built by embed-
ding mass p,(R) according to Q® and mass 1 — u,(R) according to the composition
of My with Q°.

Let us first recall that the convex order of two probability measures u, v can be
characterized via their quantile functions F,~ L F; 1 Indeed pu <. v if and only if

} < I(x)) for (P' ® P')-a.a. (z,2').

1 1
(3.5) / Fo(p)dp < / F (p) dp

for all u € [0, 1], with equality for u = 0, see Shaked and Shanthikumar Shaked and
Shanthikumar [38, Theorem 3.A.5]. If y, v are finite measures with the same total
mass, then p <. v if and only if u/u(R) <. v/v(R). In particular, we can apply the
characterization (3.5) to these normalized measures. To simplify notation, we omit
the normalizing constant and write F I instead of F};l gy 1D this case.

As a preparation for the proof of Proposition 3.2, we first establish two lemmas.
Lemma 3.5 (i) has the same assertion as Beiglbock and Juillet Beiglbock and Juillet
[5, Example 2.4] but is obtained with a different, more quantitative argument which
is then used in Lemma 3.5 (ii) to elaborate on finer properties. Those properties are
instrumental for the proof of Lemma 3.6 which describes a stability property of the
convex order that will be applied in the proof of Proposition 3.2.

Lemma 3.5. Let A = [a,b] C R. Suppose that ps and pup are finite measures with
the same mass and zero barycenter such that pa is concentrated on A and up is
concentrated on B :=R\ (a,b).

(i) We have g <. pp.
(ii) Define

E = {u €(0,1): /ul F, p)dp = /1 Fl(p) dp}.

u

Then E is of the form (0,a]U[B,1) for some 0 < o < 8 < 1.1 Furthermore,
(a) E = (0,1) if and only if pa = pp, in which case both measures are
concentrated on {a,b},

IThe conventions (0,0] := @) and [1,1) := () are used.
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(b) pp((—o0,a)) = 0 and pp(a) > pala) = «, whenever a > 0 and

E#(0,1),
(c) pp((b,00)) = 0 and up(b) > pa(b) = 1 — B, whenever § < 1 and

E # (0,1).

Proof. We may assume that 4 and pp are probability measures. We first show (i)
by verifying (3.5) for u € (0,1). Indeed, define

u* :=sup{p € (0,1) : ( ) < a}.
Note that F,!(p) > b for all p € (u*,1) and F,_ ( ) € [a,b] for all p € (0,1). Hence

(3.6) / p)dp < /ul F,(p)dp

for all u € [u*,1). Suppose, towards a contradiction, that there exists @ € (0,u*)
such that (3.6) holds with the reverse, strict inequality at u=1. As F’ H(p) > afor

all p € (0,1) and F, (p) < a for all p € (0,u*), we deduce that

(3.7) / p)dp > / p) dp,

contradicting that ps and pp have the same barycenter. This shows (i).

Turning to (ii), the proof of (a) is immediate. We can thus assume that there
exists @ € (0,1) such that (3.6) holds with strict inequality at u = u. If there exists
no 4 € (0,a) such that

(3.8) / F ) dp = / F ) dp,

then o = 0. Whereas if such 4 exists, then necessarily F},, Bl (p) < aforall p € (0,4,
for otherwise F, ! (4) > b and the equality in (3.8) cannot hold. It follows that

1 1
(3.9) / Frl(p)dp > / Fl(p)dp

for all u € (0,4]. Since we have shown the reverse inequality in (i), we conclude
that (3.9) holds with equality for all w € (0,u]. That is, E' contains an interval of
the form (0, o] for some o > 0. Changing the integral bounds from (u, 1) to (0, u)
by subtracting the barycenter on both sides of the above equations, an analogous
argument shows that E contains an interval of the form [§, 1) for some g € [0, 1].
In conclusion, E is of the form (0,a] U [3,1) for 0 < a < < 1.

To show (b), suppose that E # (0,1) and « > 0. The assumption implies that

/ F(p)dp = / Pl
0 0
1

Consequently, F,, "(p) = a = ( ) for all p € (0,a]. That is, up((—o0,a)) = 0,
along with pa(a) > « and ,LLB( ) > «. Since

1 “ —1
/OF dp>/0 Fol(p)dp for u€ (a,),
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it is necessary that F,, !(p) € (a,0] for p € (o, 1) and that F,,}(p) = a for all p > «
that are sufficiently close to a. We conclude that pp(a) > pa(a) = a, showing (b).
Part (c) is proved analogously. O

Lemma 3.6. In the setting of Lemma 3.5, suppose that ua # pp are probability
measures. Let (u'y), (1'y) be sequences of probability measures with barycenter zero
such that py < pa for all n as well as drv(py, pa) — 0, drv(ph, ps) — 0 and
Wi(pwg, pB) = 0 for n — oo. Then p'y <. 'y for all n sufficiently large.

Here W; denotes 1-Wasserstein distance, and we emphasize that the lemma does
not require pu% < pp.

Proof. Consider the set F in Lemma 3.5 (ii). As pa # pp, we have E # (0,1)
and a < . Let us consider the cases a > 0 and o = 0 separately. If a > 0,
Lemma 3.5 (ii) (b) states that @ := up(a) > pa(a) = a. Let &, = pi(a) and
ap = p'(a). Since dpv(u'y, pa) — 0 and dyy(p'y, pp) — 0 as n — oo, it follows
that @, — @ and o, — a. In view of p’f < pa, we conclude that F/;}ll (p) € [a,b]

for p € (0,1). Fix e < @ — a. Then &, > o + ¢ when n is sufficiently large, and

(3.10) /OF“zl(p)de/o F@(p)dp for we (0,a+e¢].

Whereas in the case a = 0, we define & := pup((—00,al) > 0 and &, = pk((—o0, al).
Again, for a fixed ¢ < & — a = &, we have &, > «a 4+ ¢ when n is sufficiently large,
and (3.10) holds.

Similarly, we consider the cases 8 < 1 and = 1 and define 3 accordingly. In
either case we can fix ¢ < f — § and find n sufficiently large so that 3, < 3 — ¢ and

1
(3.11) /F dp</ P;él(p)dp for we[f—e1).

To complete the proof, it remains to show that the inequality in (3.11) holds
for u € O := (a +¢,8 — ¢), where ¢ < min{a — a, 3 — B} is fixed. Note that
(0,1)\ E = (e, f) and O C (a, B). As the integrals below are continuous functions
of u, there exists v > 0 such that

(3.12) / F, (p)dp+~ </ p)dp forall weO,

thanks to the definition of E. In view of dpv (uy, pa) — 0 and dry (i, up) — 0, the
quantile functions converge pointwise. Moreover, we recall that the 1-Wasserstein
distance satisfies

Wi (g, nB) = /Ol‘F@(p) - F,Lgl(p)( dp.

Dominated convergence and Wi(u'y, pp) — 0 thus imply that

1 1 1 1
in [ Flora= [ e, [ ey = [ Ele)a

n—o0 n—oo u
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uniformly in w € O. It now follows from (3.12) that

1 1 1 1
-1 -1 v -1 v -1
[ o< [ mRow-]< [ Riwa-< [ mlow
for all w € O and n € N large enough. This completes the proof. O

Given measures A, u on R, we write A < p if A(A) < pu(A) for all A € B(R). The
total variation distance between A and p is defined as

drv(A 1) = sup{|A(4) — u(4)] : 4 € B(R)}.

If A < p, it is clear that dpy (A pu) = (u — A)(R). For ease of reference, we record
the following consequence.

Lemma 3.7. Let 0 # A < p be finite measures on R. Then the probability measures
A=A/ AR) and fp:= p/pu(R) satisfy N\ < i and

(1= N(R)
n(R)

Proof. We have A < i and A(R) < u(R), so that
A\ 1 w(R) dA\ T
(-3 ] | (5w )

.
<L pu <1—Z2) ]: L - nm). O

(R)

We are now ready to give the proof of Proposition 3.2.

(3.13) drv (A i) <

dTV(j\v /1) = Eﬂ

Proof of Proposition 8.2. To simplify notation we write p := Q' and assume with-
out loss of generality that p,v have zero barycenter. We may also assume that
1 # 0p; otherwise the claim is trivial. The proof proceeds in six steps.

Step 1. Given § > 0 sufficiently small we shall construct sub-probability mea-
sures 4, up (depending on ¢) that satisfy the hypotheses of Lemma 3.5, and hence
HnA =e uB-

_ As p has zero barycenter and is not a Dirac measure, there exists ¢ > 0 such that
d = pu((—o0, —c]) A u([c,00)) > 0. Then, for all 0 < § < §, there exist an interval
A :=[a,b] and a measure A4 such that

M((_Ooaa] U [b,OO)) < 57 M((aa _C]) > 67 M([C? b)) >0
and

® A4 < pla,
e )\, has zero barycenter,
e 11— A4 is concentrated on R\ (a,b) and nonzero.
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In particular 1], < Aa < p|a. In fact, if © has no atoms, we can set Ay = u|4. In
the presence of atoms at a or b, we may have to remove part of that mass so that
A4 has zero barycenter and A4 # p. Define

1
= ———-1|A d = — 4.
1A (AA(R) > 4 and ppi=p—Aag

Evidently, the hypotheses of Lemma 3.5 are satisfied, and hence pa <. up.

Step 2. Fix € > 0. As h takes values in R there exists a set A° C A such that A is
uniformly bounded on A® and

o OANe c
(3.14) p(A\ A%) < 2<1AM).

The choice of the upper bound in (3.14) ensures that

,U/((a7 _C] N AE) 2 5 :U’([c? b) N AE) =

IR

0
2
and, writing X for the identity function on R in an abuse of notation,
B[40 X] EM 1440 X]|
(0 ANe)e (0 ANe)e
<0+ (Ja] v [b) — .
2(Jal v [b]) 2

By restricting A4 to A% and possibly removing some mass on (a, —c| or [¢, b), we can
construct a measure A% that is concentrated on A%, satisfies A% < A4 < p, has zero
barycenter and

< ‘EAA[lAX]’ +

1
drv(05, M) = (A — X5 (R) < p(A N\ A%) + E’E’\A [1AEX]‘ <SAe.
In consequence,
(3.15) A4R) =A4R) = (Aa =23 (R) >1—-0—0 Ae.

Step 3. Let § < & be fixed and consider a sequence (€n)nen 4 0. For each n € N we
apply Step 2 to obtain

1

(3.16) W= ()\Z(R) - 1) W and ppi=p— NG,

where X7 := \%". Both measures have the same total mass and zero barycenter for
all n € N. Moreover we have A"y < Aq and dpy(Aa, A)) = (Aa — N})(R) <&, | 0.

In order to apply Lemma 3.6, we first need to scale the measures p4, g, p’y and
i so that they are probability measures. Set

_ A4 _ B —Aa
3.17 == d - A
(3.17) Aa=ym M RS T
and define '} and 'y analogously. Observe that i’y < fia and
(- XDR) _ e
/\A(R) - )\A(R)

drv (i, fia) < 10
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by (3.13). Similarly we have dpv (@i, ig) — 0. In particular it suffices to show that
EF3[|X|] — EF8[|X|] in order to verify Wi (i, ig) — 0. In light of the definition
of fip in (3.17) and drv(\%, Aa) — O this readily follows from EMa[|X|] — E*[|X]].

Now we are in a position to apply Lemma 3.6 to fi4, fip, 1"y and ', which yields
no € N such that fi'y’ <. 5. Since the convex order is invariant under scaling, it
follows that

(3.18) fa = py e pg =t pp.
We recall that A is uniformly bounded on A* := A% by construction and define
(3.19) Ny =AY

in preparation for Step 5 below.

Step 4. By Strassen Strassen [39, Theorem 8] the relation p% <. pj; implies the

existence of a mean-preserving probability kernel My : R — P(R) sending %y to puj;;

that is, Ms := p% @ Mg € II(pY, pj;) and Mg (x) has barycenter x for all x € R.
Recall that Q = p ® Q°* € Mgn(v) and denote by Q§ the composition of Mg

with Q°,

(3.20) Q3(z,C) := EM;@[Q*(-,C)] for C e B(R).

Note that @QF is again mean-preserving.

Step 5. For § < &, we set

(3.21) Qs =Ny ®Q°+ 1y ® Q3

where p%, A% and Q§ were defined in (3.18), (3.19) and (3.20), respectively (the
set A and the measures X%, u% depend on §). In view of (3.16), the first marginal
of Qs is the probability measure % := X% /A% (R).

We claim that ég € Mv(y) Indeed, recall y ® Q° = @ ~ P and observe that
Py o~ Ay < p, QF ~ v opras. and QF < v ph-a.s. Lemma 3.3 (i) then yields
Qs < P. Moreover, the martingale property E95[Y|X] = X follows from the fact
that Q°® and Qf§ are mean-preserving. Finally, recall that Q)§ is the composition of
My with Q°, and p¥ ® Mg € II(p, pp). Thus = N5 + pp and p® Q° € I(u,v)
imply Qs € (g%, v) and in particular QV?; = v. In summary, Q5 € M (v) as desired.

From Step 2 and (3.15) we see that A% < p and A4 (R) > 1 — 26, hence Ay — p
and g% — 0 in variation as 0 — 0. It is now clear from the definition (3.21) that
@5 — 1 ® Q°® = Q in variation. Moreover, as A% is concentrated on A* (cf. Step 3)
and h is uniformly bounded on A*, we see that h is p%-a.s. uniformly bounded
for every § < d. This proves Proposition 3.2 (i),(ii) after choosing § = §(n) small
enough, modulo showing that H(Q;|P) < oo for small § (which will follow from the
next step).

Step 6. As liminfs_,o {J(@g\P) > H(Q|P) due to the lower semicontinuity of H(-|P)
and the convergence Q5 — @, it remains to show

(3.22) limsup H(Qs|P) < H(Q|P).
6—0
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Note that @5 is a convex combination of two probability measures:
Qs = Na(R)ia © Q° + [1 - Na(R)]h ® Q5.
As H(:|P) is convex, it follows that
(3.23) H(Qs|P) < Na(R)H (i ® Q°|P) + [1 — Na(R)|H(mh @ Q5|P).

We show that the first term converges to H(Q|P) and the second converges to zero.
Indeed, Lemma 3.3 (iii) yields H (% ® Q°|P) = H (i |P') + EFa[H(Q*|P*®)], where

H (5| P) = x;iR) Joey {bg(jj};)] —log \%(R)
(3.24) — E* [1og($lﬂ = H(u|PY)

by dominated convergence and \%(R) > 1 — 20. Similarly, EFa[H(Q*|P®)] —
EF[H(Q®|P*)], so that the first term in (3.23) satisfies

Ny(R)H (i @ Q°|P) — H(ulPY) + EV[H(Q*|P*)] = H(QIR).
It remains to show that the second term in (3.23) converges to zero,
(1= Ny (R)H (i @ Q3IP) — 0.
Using again Lemma 3.3 (iii),
(3:25) H (i ® Q3|P) = H (5| P') + B [H(QS| P*).

In view of (3.24) and X4 (R) — 1, it follows that [1 — A% (R)]H (i%|P*) — 0. For
the second term in (3.25), we use the definitions of % and % to see that

1 - Ni(R)

(1= X R H Q3P = 5

EYA[H(Q5|P®)) = E*4[H(Q5|P*)].
In view of (3.20), Jensen’s inequality and convexity of H imply
B H(Q3IPY)] = B4 [H(EMIO[Q) P(x)) | < B [EM O (Q°|P*(X))]|.

Lastly, the assumptions that H(Q®(z")|P*(z)) < I(2') for (u ® p)-a.a (z,2’) and
I € L'(p) together with the facts that u*% ® Mg € II(u%, pf) and plh — 0 yield

EMa [EME(X)[H(QWP‘(X))]} < EFa [EME(X)[[]} = EF'B[I] =0

by the dominated convergence theorem. This shows (3.22) and hence Proposi-
tion 3.2 (iii), completing the proof. O
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