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Abstract. In a two-period financial market where a stock is traded dynamically
and European options at maturity are traded statically, we study the so-called
martingale Schrödinger bridge Q⇤; that is, the minimal-entropy martingale mea-
sure among all models calibrated to option prices. This minimization is shown
to be in duality with an exponential utility maximization over semistatic port-
folios. Under a technical condition on the physical measure P , we show that an
optimal portfolio exists and provides an explicit solution for Q⇤. This result over-
comes the remarkable issue of non-closedness of semistatic strategies discovered
by Acciaio, Larsson and Schachermayer. Specifically, we exhibit a dense subset
of calibrated martingale measures with particular properties to show that the
portfolio in question has a well-defined and integrable option position.

1. Introduction and Main Results

The martingale Schrödinger bridge was introduced by Henry-Labordère Henry-
Labordère [24] as a pricing model achieving perfect calibration to all Vanilla op-
tions while retaining stylized facts of a reference model. Starting from a reference
stochastic volatility model (SVM) which typically cannot be calibrated perfectly,
the martingale Schrödinger bridge is constructed as the calibrated measure which
is closest to the SVM in the sense of relative entropy. In contrast to the classi-
cal Schrödinger bridge in Léonard Léonard [27] and Avellaneda et al. Avellaneda
[3], Avellaneda et al. [4], this problem features an additional martingale constraint
to generate an arbitrage-free model. A similar approach is used by Guyon Guyon
[22, 23] in a two-period setting to solve the longstanding joint S&P500/VIX smile
calibration puzzle; here entropy minimization is utilized to construct a model that
is jointly calibrated to the S&P500, VIX futures and VIX options.

The aforementioned works rest on (sometimes implicit) mathematical assump-
tions of strong duality and attainment. These are plausible as natural extensions of
standard results in markets without option trading (see Delbaen et al. Delbaen et al.
[13], Frittelli Frittelli [18], Schachermayer Schachermayer [37], Zariphopoulou Za-
riphopoulou [40], among others). However, Acciaio et al. Acciaio et al. [1] exhibited
a surprising obstacle to obtaining such extensions: the space of semistatic portfolios
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of stocks and options is not closed (both in a two-period model and in continuous
time). In classical mathematical finance, closedness results are at the very heart
of the separation arguments underlying the Fundamental Theorem of Asset Pricing
and the existence of optimal portfolios for utility maximization. As a consequence,
it is not obvious how to formulate and prove the desired results.

The purpose of the present paper is to provide such results, at least in one setting.
On the one hand, we prove strong duality between the martingale Schrödinger bridge
problem and an exponential utility maximization problem over semistatic portfo-
lios. This duality, as well as the existence of the martingale Schrödinger bridge itself
(primal attainment), is obtained along the lines of classical entropy minimization
and Schrödinger bridge theory. On the other hand, we prove (under a technical
condition) that the dual problem is attained in a natural space of admissible portfo-
lios, and that this dual solution yields the log-density of the martingale Schrödinger
bridge. We thus derive from first principles the type of implicit condition assumed
on the optimal log-density, e.g., in Guyon Guyon [23, Theorem 16], and overcome
the non-closedness issue discovered in Acciaio et al. Acciaio et al. [1]. To wit, while
in general a convergent sequence of semistatic portfolios may have an undesirable
limit with unclear financial interpretation, the specific limit of a utility-maximizing
sequence in our problem is shown to be an admissible portfolio.

We consider a two-period model where the price of a stock is modeled by the
canonical process (X,Y ) on R2 under a (physical) reference probability P . Here X
is the stock price at date t = 1 and Y is the price at the terminal date t = 2. In
addition, European options g(Y ) are liquidly traded at time zero. By the Breeden–
Litzenberger formula Breeden and Litzenberger [9], the risk-neutral distribution ⌫
of Y can be derived from the prices of call options with arbitrary strikes, where ⌫
is assumed to have a finite first moment. Then the arbitrage-free price of a general
option g(Y ) is given by the integral E⌫ [g]. The martingale Schrödinger bridge
problem can now be formalized as

(1.1) inf
Q2M(⌫)

H(Q|P ),

where H is the relative entropy (or Kullback–Leibler divergence)

H(Q|P ) :=

(
EQ

h
log dQ

dP

i
, Q ⌧ P

1, Q 6⌧ P

and M(⌫) is the set of calibrated equivalent martingale measures,

M(⌫) :=
�
Q 2 P(R2) : Q ⇠ P, Q2 = ⌫, EQ[Y |X] = X

 
.(1.2)

Here P(R2) is the set of probability measures on R2 and Q2 denotes the second
marginal of Q 2 P(R2), or equivalently, the distribution of the price Y under Q.

We remark in passing that (1.1) relates to the classical (static) Schrödinger bridge
problem infQ2⇧(µ,⌫)H(Q|P ) over the set ⇧(µ, ⌫) of couplings of two measures µ, ⌫;
see Föllmer Föllmer [15], Léonard Léonard [27] and Nutz Nutz [29] for surveys. In
this problem, there is no martingale constraint. On the other hand, (1.1) relates
to the martingale optimal transport problem infQ2M(µ,⌫)E

Q[c] which minimizes an
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integrated cost over the set M(µ, ⌫) of martingale couplings; see Beiglböck et al. Bei-
glböck et al. [6], Galichon et al. Galichon et al. [19], Hobson Hobson [25] and the
literature thereafter. In that problem, there is no reference measure. The resulting
value yields model-independent bounds for the price of the exotic option c and as a
consequence of the linear structure, solutions tend to be degenerate. By contrast,
solutions of (1.1) tend to preserve features of the reference model P , as empha-
sized in Henry-Labordère Henry-Labordère [24]. The classical Schrödinger bridge
problem arises from the classical optimal transport problem by entropic regulariza-
tion as used in the context of Sinkhorn’s algorithm by Cuturi and Peyré Cuturi
[11], Peyré and Cuturi [33]. Similarly, entropic regularization of martingale op-
timal transport leads to the martingale Schrödinger bridge, and this was used in
De March and Henry-Labordère March and Henry-Labordère [28] to develop a ver-
sion of Sinkhorn’s algorithm for martingale optimal transport. See also Guo and
Ob lój Guo and Ob lój [21] for a related algorithm using a di↵erent relaxation.

Returning to our problem (1.1)—for it to be meaningful, we must assume that

Mfin(⌫) := {Q 2 M(⌫) : H(Q|P ) < 1} 6= ;;(1.3)

that is, there exists a calibrated martingale measure with finite relative entropy.
This condition implies the absence of arbitrage in semistatic trading strategies. It
implies the usual no-arbitrage condition on the stock alone, but also depends on the
interplay of P and ⌫. A precise characterization of (1.3), or even just M(⌫) 6= ;,
in terms of trading strategies along the lines of a fundamental theorem of asset
pricing in Dalang et al. Dalang et al. [12], is an interesting open problem. (Like
the question studied in the present paper, the answer is not obvious due to the
failure of closedness in Acciaio et al. Acciaio et al. [1].) We can now state the basic
wellposedness result.

Proposition 1.1. The problem (1.1) admits a unique minimizer Q⇤ 2 M(⌫), called
the martingale Schrödinger bridge.

This will essentially follow from standard entropy minimization theory in Csiszár
Csiszár [10] and properties of M(⌫) which are variations of results found, e.g., in
Beiglböck et al. Beiglböck et al. [6]. Proposition 1.1 lacks a more specific descrip-
tion: we expect by (formal) duality that the log-density of Q⇤ corresponds to a
semistatic portfolio with certain admissibility criteria, and those criteria are crucial
for any further analysis of the martingale Schrödinger bridge and its computation
(as seen, e.g., in Guyon Guyon [23]). Specifically, trading in our market gives rise
to a semistatic outcome of the form

V = h(X)(Y �X) + g(Y ),

where h(X) is the number of stocks held over the second period. Stock trading in
the first period, starting from a deterministic initial stock price X0, corresponds to
a term h0(X0)(X � X0) which can be absorbed into the functions h, g above and
hence will not be represented explicitly. We write

(1.4) V = {V measurable: V = h(X)(Y �X) + g(Y ) for some h, g : R ! R}.
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In order to have a well-defined option price, the function g needs to be (measurable
and) integrable under the pricing measure ⌫. We thus set

(1.5) V1 := {V 2 V : h, g are measurable, g 2 L1(⌫), E⌫ [g] = 0}
for those outcomes whose option is available from zero initial capital. Finally, we
want h(X)(Y �X) to have suitable martingale properties. There is some flexibility
here regarding the definition; one natural choice is to require the martingale property
under all Q 2 Mfin(⌫) (see also Remark 2.7 for another possible choice). For V 2 V1,
this is equivalent to V 2 L1(Q) for all Q 2 Mfin(⌫). In summary, our set of
admissible portfolios (for zero initial capital) is

Vadm =

⇢
V 2 V :

h, g : R ! R are measurable, E⌫ [g] = 0,
EQ[h(X)(Y �X)] = 0 for all Q 2 Mfin(⌫)

�
.

We then have the following strong duality between the martingale Schrödinger bridge
(primal) problem and the dual problem of exponential utility maximization over
semistatic portfolios.

Proposition 1.2. Let u(x) = �e��x/� for some � > 0. Then

(1.6)
1

�
inf

Q2M(⌫)
H(Q|P ) = sup

V 2Vadm

u�1
�
EP [u(V )]

�
.

The duality will be obtained by showing that the log-density of Q⇤ can be ap-
proximated by semistatic portfolios with good integrability properties; cf. Propo-
sition 2.4. That proposition, in turn, is inspired by seminal results in the theory
of (classical) Schrödinger bridges, especially Föllmer’s construction of Schrödinger
potentials Föllmer [15]. Our argument does not require dual attainment and thus
avoids discussing delicate properties of the portfolios: the supremum in (1.6) would
be the same if taken, say, over portfolios h(X)(Y �X) + g(Y ) with bounded con-
tinuous functions h, g. But of course, this space would not allow for attainment in
general.

Turning to the delicate part, we want to show that the dual problem is attained
at an admissible portfolio V⇤ and that this maximizer yields the log-density of Q⇤.
We denote by P = P 1 ⌦ P • the disintegration of P ; that is, P 1 is the law of X
under P and P •(x, dy) is the conditional law of Y given X = x.

Theorem 1.3. Suppose that dP •/d⌫ is P 1
-a.s. uniformly bounded from above and

away from zero. Then the minimizer Q⇤ of (1.1) is given by the density

Z⇤ :=
dQ⇤
dP

= eH(Q⇤|P )+V⇤ ,(1.7)

where V⇤ 2 Vadm is the unique solution of the dual problem,

V⇤ = argmax
V 2Vadm

EP [u(V )].

In particular, V⇤ = h(X)(Y �X) + g(Y ), where h, g are measurable functions with

g 2 L1(⌫) and E⌫ [g] = 0 as well as h(X)(Y �X) 2 L1(Q) and EQ[h(X)(Y �X)] = 0
for all Q 2 Mfin(⌫).
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The boundedness condition in Theorem 1.3 can be weakened to an integrability
condition; see Remark 3.4. In contrast to the other results, this theorem does not
seem to follow from classical arguments. If the space of admissible portfolios were
closed, the theorem would follow from the approximation result in Proposition 2.4,
broadly as in the classical framework of mathematical finance without options. To
overcome the failure of closedness (specifically, of V1 and Vadm, as shown in Acciaio et
al. Acciaio et al. [1]), we first leverage a result from our companion paper Nutz et al.
[32], where it is shown that the functional form of semistatic portfolios is stable under
pointwise limits. As a consequence, the approximation result still implies that V⇤ is
of the general form V⇤ = h(X)(Y �X) + g(Y ) for some measurable functions h, g.

On the flip side, another insight from Nutz et al. [32] is that the key failure in
the counterexample of Acciaio et al. [1] is the integrability of the option g which
is in turn crucial to associate a price. Hence, it is not surprising that establishing
this integrability occupies the lion’s share of the proof of Theorem 1.3; it uses novel
arguments and seems to be the first result in this direction. Our line of attack is
to construct a measure eQ in (a relaxation of) Mfin(⌫) such that h(X)(Y � X) is
eQ-integrable; once that is achieved, soft arguments imply that g 2 L1(⌫). In fact,
we establish that such measures are dense: in Proposition 3.2 we show that any Q 2
Mfin(⌫) is the limit of calibrated (absolutely continuous) martingale measures eQn

under which the dynamic trading strategy h is uniformly bounded a.s. The proof
is intricate and develops, among other things, explicit stability properties of the
convex order, building on ideas from martingale optimal transport in Beiglböck and
Juillet Beiglböck and Juillet [5]. See also Section 3.3 for further comments.

We do not know how far the technical condition on P in Theorem 1.3 can be
relaxed. However, analogy with the classical Schrödinger bridge problem suggests
that some condition may be necessary. Indeed, the corresponding question in that
setting—without martingale constraint but with two marginal constraints—is to
show that the log-density of the Schrödinger bridge is of the form f(x) + g(y) and
establish the measurability and integrability properties of those “Schrödinger poten-
tials” (f, g). This problem has a long history (e.g., Beurling Beurling [7]). A series
of results revealed that the additive form f(x) + g(y) always holds, but also that
the measurability of (f, g) fails without additional conditions; moreover, even when
measurability holds, integrability fails without further conditions (see Borwein and
Lewis Borwein and Lewis [8], Csiszár Csiszár [10], Föllmer and Gantert Föllmer and
Gantert [16], Rüschendorf and Thomsen Rüschendorf and Thomsen [35, 36]). The
study of Schrödinger potentials remains an area of active study (see for instance
Altschuler et al. Altschuler et al. [2], Deligiannidis et al. Deligiannidis et al. [14],
Gigli and Tamanini Gigli and Tamanini [20], Nutz and Wiesel Nutz and Wiesel
[30, 31]) that we have benefited from, especially for our companion paper Nutz
et al. [32]. For the present work, we have not been able to transfer as many of those
techniques.

Regarding potential future work, it seems likely that our line of argument can
be extended to show the existence of optimal portfolios for more general utility
functions. Generalizations in the structure of the market, for instance also adding
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options with maturity t = 1, are relatively straightforward in the general parts
whereas replacing our argument for the integrability of the option is nontrivial.
Similarly, an extension to multiple periods through backward induction is not ob-
vious, as our proof crucially relies on the technical condition (3.2). In a di↵erent
direction, one may remember how Rogers Rogers [34] used existence for exponential
utility to show the Fundamental Theorem of Asset Pricing. Of course, that is not
immediately applicable here, as we have used (1.3) in our proof of existence.

The remainder of the paper has a simple structure: Section 2 derives the well-
posedness and duality results (Propositions 1.1 and 1.2), and Section 3 provides the
proof of dual attainment (Theorem 1.3).

2. Wellposedness and Duality

In this section, we first prove the wellposedness of the martingale Schrödinger
bridge Q⇤ (Proposition 1.1). Then, we prove the duality with exponential utility
maximization (Proposition 1.2) through an approximation of Q⇤ (Proposition 2.4).

We start by recalling a general result on entropy minimization.

Lemma 2.1. Consider a measurable space (⌦,F) and denote by P(⌦) its collection
of probability measures. Fix R 2 P(⌦), let Q ✓ P(⌦) be convex and closed in

variation, and suppose that Qfin := {Q 2 Q : H(Q|R) < 1} 6= ;. Then there exists

a unique Q⇤ 2 Q such that

H(Q⇤|R) = inf
Q2Q

H(Q|R) 2 [0,1).

Moreover, Q⇤ � Q for any Q 2 Qfin. In particular, if there exists Q 2 Qfin with

Q ⇠ R, then Q⇤ ⇠ R. Furthermore,

(2.1) log
dQ⇤
dR

2 L1(Q) for all Q 2 Qfin.

Proof. In the stated form, the result can be found in Nutz Nutz [29, Theorem 1.10
and Corollary 1.13]. Its main part is very classical; cf. Csiszár Csiszár [10]. The
integrability (2.1) is less known but can also be deduced from Csiszár [10]. ⇤

Lemma 2.1 is not directly applicable to the set Q = M(⌫) of martingale measures
defined in (1.2) as this set is not closed due to the equivalence constraint. Writing

⇧(⌫) = {Q 2 P(R2) : Q2 = ⌫},

we consider instead the following relaxations defined with absolute continuity,

fM(⌫) :=
�
Q 2 ⇧(⌫) : Q ⌧ P, EQ[Y |X] = X

 
◆ M(⌫),

fMfin(⌫) := {Q 2 fM(⌫) : H(Q|P ) < 1} ◆ Mfin(⌫)(2.2)

and argue that fM(⌫) satisfies the hypotheses of Lemma 2.1. To this end, we first give
an extension of Beiglböck et al. Beiglböck et al. [6, Lemma 2.2 and Theorem 2.4].
Recall that two measures µ, ⌫ 2 P(R) are in convex order (e.g. in Shaked and
Shanthikumar Shaked and Shanthikumar [38]), denoted µ �c ⌫, if they have finite
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first moments and Eµ[f ]  E⌫ [f ] holds for all convex functions f : R ! R. As an
example, EQ[Y |X] = X implies Q1 �c Q2 by Jensen’s inequality.

Lemma 2.2. The set {Q 2 ⇧(⌫) : EQ[Y |X] = X} is weakly closed.

Proof. Let (Qn)n�1 be a sequence of measures converging weakly to some limit Q,
then Q 2 ⇧(⌫) by the continuity of the projection Y . To see that EQn [Y |X] = X
implies EQ[Y |X] = X, we show that |X|+ |Y | is (Qn)-uniformly integrable. Indeed,
as {⌫} is uniformly integrable, the de la Vallée–Poussin theorem yields a convex
function f : R ! R+ of superlinear growth with

R
f d⌫ < 1. Thus

sup
µ:µ�c⌫

Z
f dµ 

Z
f d⌫ < 1

by the definition of the convex order, showing that {µ : µ �c ⌫} is uniformly
integrable. As a result, |X|+ |Y | is {Q 2 ⇧(⌫) : Q1 �c ⌫}-uniformly integrable and
in particular (Qn)-uniformly integrable. ⇤

We can now show the wellposedness of the martingale Schrödinger bridge Q⇤.

Proof of Proposition 1.1. Using Lemma 2.2, we readily verify that fM(⌫) is convex

and closed in variation. Since fMfin(⌫) ◆ Mfin(⌫) 6= ; by our assumption (1.3),

applying Lemma 2.1 with Q = fM(⌫) yields existence and uniqueness of

Q⇤ = argmin
Q2fM(⌫)

H(Q|P )(2.3)

as well as Q⇤ ⇠ P ; that is, Q⇤ 2 Mfin(⌫). It now follows that Q⇤ is also the unique
minimizer of infQ2M(⌫)H(Q|P ). ⇤

We record the following observation for use in Section 3.

Remark 2.3. For any Q 2 Mfin(⌫), a straightforward calculation shows that the
density Z := dQ/dP can be written as Z = eH(Q|P )+V for some V 2 L1(Q) with
EQ[V ] = 0. For the density

Z⇤ :=
dQ⇤
dP

= eH(Q⇤|P )+V⇤ ,(2.4)

of the minimizer, we have not only that EQ⇤ [V⇤] = 0 but also that V⇤ 2 L1( eQ) for

all eQ 2 fMfin(⌫). This follows from (2.1) by way of (2.3).

The next result characterizes the minimizer Q⇤ through certain approximating
sequences of semistatic portfolios and will serve as the basis to prove the duality
(Proposition 1.2). We write Vb for the set of portfolios V = h(X)(Y �X) + g(Y )
where h, g : R ! R are bounded measurable and E⌫ [g] = 0; clearly Vb ✓ Vadm.

Proposition 2.4. Given Q⇤ 2 Mfin(⌫) with density (2.4), the following statements

are equivalent:

(i) Q⇤ is the minimizer of (1.1).
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(ii) There exist probability measures (Qn)n�1 with densities

Zn := dQn/dP = eH(Qn|P )+Vn with Vn 2 Vb

such that

H(Qn|P ) ! H(Q⇤|P ) and Vn ! V⇤ in L1(Q⇤) as n ! 1.

(iii) There exist (Vn)n�1 ✓ Vb such that

EP
⇥
eVn

⇤
! EP

⇥
eV⇤

⇤
as n ! 1.

(iv) There exist (Vn)n�1 ✓ Vb such that

EQ⇤
��eVn�V⇤ � 1

�� ! 0 as n ! 1.

This result is inspired by a characterization of (classical) Schrödinger bridges in
Föllmer and Gantert Föllmer and Gantert [16, Proposition 3.6], see also Csiszár Csiszár
[10], and Föllmer’s construction of Schrödinger potentials Föllmer [15]. The key fea-
ture is that the approximating random variables Vn are portfolios and have good
integrability properties (whereas the properties of V⇤ are unclear at this stage).

Remark 2.5. The assertion of Proposition 2.4 remains valid if Vb is replaced
by Vadm or by V1. This will be clear from the proof.

Proof of Proposition 2.4. (i) ) (ii): By separability of L1(R) we can write

M(⌫) = {Q ⇠ P : EQ[hi(X)(Y �X)] = 0, EQ[gi(Y )] = 0, i = 1, 2, . . . }
for a countable collection of bounded measurable functions hi, gi : R ! R. Denote
the set of measures for which only the first n constraints are enforced by

Mn(⌫) = {Q ⇠ P : EQ[hi(X)(Y �X)] = 0, EQ[gi(Y )] = 0, i = 1, 2, . . . , n}.
Clearly M(⌫) ✓ Mn(⌫) and Mn(⌫) is convex and closed in variation. Consider
the problem infQ2Mn(⌫)H(Q|P ). This minimization problem over measures with
finitely many linear constraints is well known to be in duality with exponential utility
maximization over (static) trading in the finitely many assets hi(X)(Y �X), gi(Y )
defining the constraints. Specifically, by Föllmer and Schied Föllmer and Schied [17,
Section 3, esp. Corollary 3.25], the minimizer Qn of infQ2Mn(⌫)H(Q|P ) is of the
form

Zn :=
dQn

dP
= exp

⇣
cn + h̃n(X)(Y �X) + g̃n(Y )

⌘

for some cn 2 R, where h̃n(X) =
P

n

i=1 ai,nhi(X) and g̃n(Y ) =
P

n

i=1 bi,ngi(Y ) for
some ai,n, bi,n 2 R. As Qn 2 Mn(⌫) we have cn = H(Qn|P ). That is, logZn is of
the form H(Qn|P ) + Vn for some Vn 2 Vb. Applying Nutz Nutz [29, Theorem 1.17]
to the sets Qn := Mn(⌫) and Q := M(⌫) satisfying \nQn = Q, and recalling that
Mfin(⌫) 6= ; by our assumption (1.3), we conclude that

H(Q⇤|Qn) ! 0, H(Qn|P ) ! H(Q⇤|P ) and logZn ! logZ⇤ in L1(Q⇤).

In particular, Vn ! V⇤ in L1(Q⇤) follows.
(ii) ) (iii): Since Zn, Z are probability densities, we have e�H(Qn|P ) = EP [eVn ]
and e�H(Q⇤|P ) = EP [eV⇤ ]. Thus H(Qn|P ) ! H(Q⇤|P ) is equivalent to EP [eVn ] !
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EP [eV⇤ ].
(iii) , (iv) : By a change of measure, (iii) is equivalent to

EQ⇤ [eVn�V⇤ ] = eH(Q⇤|P )EP [eVn ] ! eH(Q⇤|P )EP [eV⇤ ] = 1,

and now Sche↵é’s lemma yields the equivalence with (iv).
(iii) ) (i): Without loss of generality, we assume EP [eVn ] < 1 for all n. Define
probability measures Qn by

Zn :=
dQn

dP
= eH(Qn|P )+Vn

and recall that (iii) is equivalent to H(Qn|P ) ! H(Q⇤|P ). Take any Q 2 Mfin(⌫).
Using the definition of H(·|P ) and Lemma 2.6 below,

H(Q|P )�H(Q|Qn) = EQ[logZn] = H(Qn|P ) + EQ[Vn] = H(Qn|P ).

As H(Q|Qn) � 0, it follows that

H(Q|P ) � lim
n!1

H(Qn|P ) = H(Q⇤|P ).

Since Q 2 Mfin(⌫) was arbitrary, we conclude that Q⇤ is the minimizer of (1.1). ⇤

The following technical result was used in the preceding proof.

Lemma 2.6. Let V 2 V1 satisfy EP [eV ] < 1. Then V 2 L1(Q) and EQ[V ] = 0
for all Q 2 Mfin(⌫).

Proof. Define an auxiliary probability measure Q0 via

Z 0 :=
dQ0

dP
= ec+V ,

where c 2 R is the normalization constant. Moreover, let Q 2 Mfin(⌫) and denote
by Z its density. Applying the inequality log x  x � 1 to x = z0/z > 0 yields
log z0  log z + z0/z � 1 and hence

logZ 0  logZ + Z 0/Z � 1 on {Z > 0},

where log 0 := �1. In view of H(Q|P ) < 1, we have logZ + Z 0/Z � 1 2 L1(Q)
and conclude that (logZ 0)+ 2 L1(Q). By the definition of V1,

logZ 0 = c+ V = h(X)(Y �X) + g(Y )

for some g 2 L1(⌫) with E⌫ [g] = 0, and hence (logZ 0)+ 2 L1(Q) translates to the
positive part of the martingale transform h(X)(Y � X) being Q-integrable. As Q
is a martingale measure, this already implies (see Jacod and Shiryaev Jacod and
Shiryaev [26, Theorem 2b]) that h(X)(Y �X) 2 L1(Q) and EQ[h(X)(Y �X)] = 0.
The claim follows. ⇤

We are now in a position to prove the duality result.
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Proof of Proposition 1.2. Let Q⇤ be the minimizer from Proposition 1.1 and recall
from (2.4) the notation Z⇤ = dQ⇤/dP = eH(Q⇤|P )+V⇤ where EQ⇤ [V⇤] = 0. Let
u(x) = �e��x/� for some � > 0. A change of measure and Jensen’s inequality yield
that for any V 2 Vadm,

EP [u(V )] = EQ⇤
⇥
Z�1
⇤ u(V )

⇤
= �1

�
EQ⇤

h
e�H(Q⇤|P )�V⇤��V

i

 �1

�
e�H(Q⇤|P )�E

Q⇤ [V⇤]��E
Q⇤ [V ] = �1

�
e�H(Q⇤|P ),

where the last equality used that EQ⇤ [V ] = 0 due to Q⇤ 2 Mfin(⌫) and V 2 Vadm.
On the other hand, Proposition 2.4 (iv) shows that there exist (Vn) ✓ Vb such that

EQ⇤
⇥
e�V⇤��Vn

⇤
! 1 and consequently �EQ⇤

⇥
e�H(Q⇤|P )�V⇤��Vn

⇤
! �e�H(Q⇤|P ). In

view of Vb ✓ Vadm, this yields supV 2Vadm
EP [u(V )] � � 1

�
eH(Q⇤|P ). Lastly,

inf
Q2M(⌫)

u

✓
1

�
H(Q|P )

◆
= u

✓
1

�
H(Q⇤|P )

◆
= �1

�
e�H(Q⇤|P ),

so that combining the two inequalities yields

sup
V 2Vadm

EP [u(V )] = inf
Q2M(⌫)

u

✓
1

�
H(Q|P )

◆

as claimed. ⇤
Remark 2.7. By the proof, the duality (1.6) still holds if the supremum is taken over
the larger set V1\L1(Q⇤) ◆ Vadm, providing an alternative definition of admissibility.

3. Admissibility and Dual Attainment

3.1. Preliminary Considerations. Let Q⇤ be the minimizer from Proposition 1.1
and recall from (2.4) the notation Z⇤ = dQ⇤/dP = eH(Q⇤|P )+V⇤ . With a view
towards the duality relation, note that

EP


u

✓
�1

�
V⇤

◆�
= �EP


1

�
eV⇤

�
= �EP


1

�
e�H(Q⇤|P )Z⇤

�
= �1

�
e�H(Q⇤|P ).

It is thus tempting to conclude that �V⇤/� “attains” the supremum in (1.6). How-
ever, it far from obvious whether V⇤ belongs to the dual domain Vadm (or is a
portfolio in any sense). At this stage, we know that EQ⇤ [V⇤] = 0 and that V⇤ is the
limit of certain portfolios (Vn) ✓ Vb ✓ Vadm ✓ V1; cf. Proposition 2.4. The missing
conclusion would be obvious if any of these spaces had a good closure property.
However, as mentioned in the Introduction, Acciaio et al. Acciaio et al. [1] have
shown that this is not the case: specifically, the authors exhibit a two-period model
and an Lp-convergent sequence (Vn) ✓ Vb whose limit is outside V1. The proof uses
a clever contradiction argument avoiding a detailed study of the limiting random
variable, so it may not be clear what exactly goes wrong in the limit.

The first possible issue is whether the limit still has the functional form h(X)(Y �
X) + g(Y ) for some functions h, g. A second issue is whether (these functions
are measurable and) g is integrable as required by the definition of V1. The first
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issue is analyzed in our companion paper Nutz et al. [32] which shows that the
functional form is stable even under pointwise limits. Under the mild condition
that P ⇠ P 1 ⌦ P 2 (which is implied by the condition in Theorem 1.3), we can also
guarantee that h, g remain measurable.

Lemma 3.1. We have V⇤ 2 V; that is, V⇤ = h(X)(Y �X)+g(Y ) for some functions

h, g : R ! R. If P ⇠ P 1 ⌦ P 2
, the functions h, g are a.s. uniquely determined and

measurable.

Proof. By Proposition 2.4 we can find (Vn) ✓ Vb with Vn ! V⇤ P -a.s. The two claims
then follow from Nutz et al. Nutz et al. [32, Theorem 2.2 and 3.1], respectively. ⇤

This stability of the functional form indicates that the key failure in the coun-
terexample of Acciaio et al. Acciaio et al. [1] is the integrability of the option. It is
then clear that some original arguments will be required to obtain that the option
position in our specific limit V⇤ is nevertheless integrable—which motivates the rest
of this section.

3.2. Proof of Theorem 1.3. Recall that the disintegration of a probability mea-
sure R 2 P(R2) is denoted R = R1 ⌦ R•, where R1 is the first marginal (distri-
bution of X) and R• : R ! P(R) is a stochastic kernel (conditional distribution
of Y given X). We interchangeably use R•(x), R•(x, ·) or R•(x, dy) to denote the
conditional distribution given X = x.

Our basic line of attack is simple (yet seems to be novel): recalling Remark 2.3,

(3.1) V⇤ = h(X)(Y �X) + g(Y ) 2 L1(Q) for all Q 2 fMfin(⌫),

where fMfin(⌫) was defined in (2.2). We shall construct eQ 2 fMfin(⌫) such that h
is uniformly bounded eQ1-a.s. Then clearly h(X)(Y � X) 2 L1( eQ) and now (3.1)
yields g(Y ) 2 L1( eQ), or equivalently g 2 L1(⌫), as desired.

On the other hand, the construction of eQ is somewhat intricate. It is based
on an approximation of Q⇤ by a sequence of probability measures ( eQn), which
simultaneously retain the martingale property and satisfy h is eQ1

n-a.s. uniformly
bounded for all n 2 N. Next, we state a general version of this approximation
result, applicable to any measurable function h : R ! R and any Q 2 Mfin(⌫)
satisfying the technical condition (3.2) below. In the proof of Theorem 1.3, the
result will be applied to the specific function h in V⇤ = h(X)(Y � X) + g(Y ) and
Q = Q⇤.

Proposition 3.2. Let h : R ! R be measurable and Q = Q1 ⌦ Q• 2 Mfin(⌫).
Suppose that there exists a Q1

-integrable function I : R ! [0,1) such that

H
�
Q•(x0)|P •(x)

�
 I(x0) for (Q1 ⌦Q1)-a.a. (x, x0).(3.2)

Then there exist measures eQn = eQ1
n ⌦ eQ•

n 2 fMfin(⌫) such that

(i) h is eQ1
n-a.s. uniformly bounded for each n 2 N,

(ii) eQn ! Q in variation,

(iii) H( eQn|P ) ! H(Q|P ).
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In particular there exists eQ 2 fMfin(⌫) such that h is uniformly bounded eQ1
-a.s.

The proof is lengthy and deferred to Section 3.3. For ease of reference, we record
some standard facts in the next lemma.

Lemma 3.3. Given probability measures Q = Q1 ⌦Q•
and R = R1 ⌦R•

on R2
,

(i) Q ⌧ R if and only if Q1 ⌧ R1
and Q• ⌧ R• Q1

-a.s.,

(ii) if Q ⌧ R, then

dQ

dR
=

dQ1

dR1

dQ•

dR• R-a.s.,

(iii) H(Q|R) = H(Q1|R1) + EQ
1
[H(Q•|R•)].

We are now ready to detail the proof of Theorem 1.3.

Proof of Theorem 1.3. Set µ := Q1
⇤. We first construct a function I satisfying (3.2)

with Q = Q⇤. By our assumption, there are constants 0 < l < L < 1 such that

l  dP •(x)

d⌫
(y)  L (µ⌦ ⌫)-a.a. (x, y).(3.3)

Using Lemma 3.3(i), Q⇤ ⇠ P implies that Q•
⇤ ⇠ P • ⇠ ⌫ µ-a.s. Note also

dQ•
⇤(x

0)

dP •(x)
(y) =

dQ•
⇤(x

0)

dP •(x0)
(y)

dP •(x0)

dP •(x)
(y)

=
dQ•

⇤(x
0)

dP •(x0)
(y)

dP •(x0)

d⌫
(y)

d⌫

dP •(x)
(y), (µ⌦ µ⌦ ⌫)-a.a. (x, x0, y).(3.4)

Combining (3.3) and (3.4) we obtain

log
dQ•

⇤(x
0)

dP •(x)
(y)  log

dQ•
⇤(x

0)

dP •(x0)
(y) + log(L/l)

and now integrating against Q•
⇤(x

0) yields

H
�
Q•

⇤(x
0)|P •(x)

�
 H

�
Q•

⇤(x
0)|P •(x0)

�
+ log(L/l) =: I(x0), (µ⌦ µ)-a.a. (x, x0).

Lemma 3.3 (iii) together with H(Q⇤|P ) < 1 then implies I 2 L1(µ).
Noting that Q⇤ ⇠ µ⌦ ⌫, Lemma 3.1 yields that

V⇤ = h(X)(Y �X) + g(Y )

for some measurable functions h, g. Next, we verify that g is ⌫-integrable with
E⌫ [g] = 0. Indeed, the function I satisfies (3.2) with Q = Q⇤, hence Proposition 3.2

provides eQ 2 fMfin(⌫) such that h is eQ1-a.s. uniformly bounded. This clearly implies
h(X)(Y �X) 2 L1( eQ). Recalling from Remark 2.3 that V⇤ is eQ-integrable, we can
deduce that g(Y ) 2 L1( eQ); that is, g 2 L1( eQ2) = L1(⌫). We can now conclude from
EQ⇤ [V⇤] = 0 that E⌫ [g] = EQ⇤ [g(Y )] = 0, completing the proof that V⇤ 2 V1.

Recall from Remark 2.3 that V⇤ 2 L1(Q) for all Q 2 fMfin(⌫). Having established
g 2 L1(⌫), this implies h(X)(Y �X) 2 L1(Q) and then EQ[h(X)(Y �X)] = 0 by

the martingale property. As fMfin(⌫) ◆ Mfin(⌫), this shows that V⇤ 2 Vadm. ⇤
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Remark 3.4. As seen in the proof, the boundedness condition in Theorem 1.3 can
be weakened to the following integrability condition:

(i) P ⇠ P 1 ⌦ ⌫,
(ii) there exists a Q1

⇤-integrable function I : R ! [0,1) such that

EQ
•
⇤(x

0)

����log
dP •(x0)

dP •(x)

����

�
 I(x0) for (P 1 ⌦ P 1)-a.a. (x, x0).

3.3. Proof of Proposition 3.2. The program for this proof can be sketched as fol-
lows. First, we shall identify a sequence (µn) of sub-probability measures µn ⌧ Q1

such that h is uniformly bounded µn-a.e. and, when renormalized, µ � µn dom-
inates µn in convex order. Strassen’s theorem then guarantees the existence of
martingale measures Mn with first marginal µn and second marginal µ � µn. The
desired measures eQn have marginals µn/µn(R) and ⌫: they will be built by embed-
ding mass µn(R) according to Q• and mass 1�µn(R) according to the composition
of M•

n with Q•.
Let us first recall that the convex order of two probability measures µ, ⌫ can be

characterized via their quantile functions F�1
µ , F�1

⌫ . Indeed µ �c ⌫ if and only if

(3.5)

Z 1

u

F�1
µ (p) dp 

Z 1

u

F�1
⌫ (p) dp

for all u 2 [0, 1], with equality for u = 0, see Shaked and Shanthikumar Shaked and
Shanthikumar [38, Theorem 3.A.5]. If µ, ⌫ are finite measures with the same total
mass, then µ �c ⌫ if and only if µ/µ(R) �c ⌫/⌫(R). In particular, we can apply the
characterization (3.5) to these normalized measures. To simplify notation, we omit
the normalizing constant and write F�1

µ instead of F�1
µ/µ(R) in this case.

As a preparation for the proof of Proposition 3.2, we first establish two lemmas.
Lemma 3.5 (i) has the same assertion as Beiglböck and Juillet Beiglböck and Juillet
[5, Example 2.4] but is obtained with a di↵erent, more quantitative argument which
is then used in Lemma 3.5 (ii) to elaborate on finer properties. Those properties are
instrumental for the proof of Lemma 3.6 which describes a stability property of the
convex order that will be applied in the proof of Proposition 3.2.

Lemma 3.5. Let A = [a, b] ✓ R. Suppose that µA and µB are finite measures with

the same mass and zero barycenter such that µA is concentrated on A and µB is

concentrated on B := R \ (a, b).
(i) We have µA �c µB.
(ii) Define

E :=

⇢
u 2 (0, 1) :

Z 1

u

F�1
µA

(p) dp =

Z 1

u

F�1
µB

(p) dp

�
.

Then E is of the form (0,↵][ [�, 1) for some 0  ↵  �  1.1 Furthermore,

(a) E = (0, 1) if and only if µA = µB, in which case both measures are

concentrated on {a, b},

1The conventions (0, 0] := ; and [1, 1) := ; are used.
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(b) µB((�1, a)) = 0 and µB(a) > µA(a) = ↵, whenever ↵ > 0 and

E 6= (0, 1),
(c) µB((b,1)) = 0 and µB(b) > µA(b) = 1 � �, whenever � < 1 and

E 6= (0, 1).

Proof. We may assume that µA and µB are probability measures. We first show (i)
by verifying (3.5) for u 2 (0, 1). Indeed, define

u⇤ := sup
�
p 2 (0, 1) : F�1

µB
(p)  a

 
.

Note that F�1
µB

(p) � b for all p 2 (u⇤, 1) and F�1
µA

(p) 2 [a, b] for all p 2 (0, 1). Hence
Z 1

u

F�1
µA

(p) dp 
Z 1

u

F�1
µB

(p) dp(3.6)

for all u 2 [u⇤, 1). Suppose, towards a contradiction, that there exists û 2 (0, u⇤)
such that (3.6) holds with the reverse, strict inequality at u = û. As F�1

µA
(p) � a for

all p 2 (0, 1) and F�1
µB

(p)  a for all p 2 (0, u⇤), we deduce that
Z 1

0
F�1
µA

(p) dp >

Z 1

0
F�1
µB

(p) dp,(3.7)

contradicting that µA and µB have the same barycenter. This shows (i).
Turning to (ii), the proof of (a) is immediate. We can thus assume that there

exists ũ 2 (0, 1) such that (3.6) holds with strict inequality at u = ũ. If there exists
no û 2 (0, ũ) such that

Z 1

û

F�1
µA

(p) dp =

Z 1

û

F�1
µB

(p) dp,(3.8)

then ↵ = 0. Whereas if such û exists, then necessarily F�1
µB

(p)  a for all p 2 (0, û],
for otherwise F�1

µB
(û) � b and the equality in (3.8) cannot hold. It follows that

Z 1

u

F�1
µA

(p) dp �
Z 1

u

F�1
µB

(p) dp(3.9)

for all u 2 (0, û]. Since we have shown the reverse inequality in (i), we conclude
that (3.9) holds with equality for all u 2 (0, û]. That is, E contains an interval of
the form (0,↵] for some ↵ � 0. Changing the integral bounds from (u, 1) to (0, u)
by subtracting the barycenter on both sides of the above equations, an analogous
argument shows that E contains an interval of the form [�, 1) for some � 2 [0, 1].
In conclusion, E is of the form (0,↵] [ [�, 1) for 0  ↵  �  1.

To show (b), suppose that E 6= (0, 1) and ↵ > 0. The assumption implies that
Z

↵

0
F�1
µA

(p) dp =

Z
↵

0
F�1
µB

(p) dp.

Consequently, F�1
µA

(p) = a = F�1
µB

(p) for all p 2 (0,↵]. That is, µB((�1, a)) = 0,
along with µA(a) � ↵ and µB(a) � ↵. Since

Z
u

0
F�1
µA

(p) dp >

Z
u

0
F�1
µB

(p) dp for u 2 (↵,�),
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it is necessary that F�1
µA

(p) 2 (a, b] for p 2 (↵, 1) and that F�1
µB

(p) = a for all p > ↵
that are su�ciently close to ↵. We conclude that µB(a) > µA(a) = ↵, showing (b).
Part (c) is proved analogously. ⇤
Lemma 3.6. In the setting of Lemma 3.5, suppose that µA 6= µB are probability

measures. Let (µn

A
), (µn

B
) be sequences of probability measures with barycenter zero

such that µn

A
⌧ µA for all n as well as dTV(µn

A
, µA) ! 0, dTV(µn

B
, µB) ! 0 and

W1(µn

B
, µB) ! 0 for n ! 1. Then µn

A
�c µn

B
for all n su�ciently large.

Here W1 denotes 1-Wasserstein distance, and we emphasize that the lemma does
not require µn

B
⌧ µB.

Proof. Consider the set E in Lemma 3.5 (ii). As µA 6= µB, we have E 6= (0, 1)
and ↵ < �. Let us consider the cases ↵ > 0 and ↵ = 0 separately. If ↵ > 0,
Lemma 3.5 (ii) (b) states that ↵̄ := µB(a) > µA(a) = ↵. Let ↵̄n := µn

B
(a) and

↵n := µn

A
(a). Since dTV(µn

A
, µA) ! 0 and dTV(µn

B
, µB) ! 0 as n ! 1, it follows

that ↵̄n ! ↵̄ and ↵n ! ↵. In view of µn

A
⌧ µA, we conclude that F�1

µ
n
A
(p) 2 [a, b]

for p 2 (0, 1). Fix " < ↵̄� ↵. Then ↵̄n > ↵+ " when n is su�ciently large, and

(3.10)

Z
u

0
F�1
µ
n
A
(p) dp �

Z
u

0
F�1
µ
n
B
(p) dp for u 2 (0,↵+ "].

Whereas in the case ↵ = 0, we define ↵̄ := µB((�1, a]) > 0 and ↵̄n := µn

B
((�1, a]).

Again, for a fixed " < ↵̄ � ↵ = ↵̄, we have ↵̄n > ↵ + " when n is su�ciently large,
and (3.10) holds.

Similarly, we consider the cases � < 1 and � = 1 and define �̄ accordingly. In
either case we can fix " < � � �̄ and find n su�ciently large so that �̄n < � � " and

(3.11)

Z 1

u

F�1
µ
n
A
(p) dp 

Z 1

u

F�1
µ
n
B
(p) dp for u 2 [� � ", 1).

To complete the proof, it remains to show that the inequality in (3.11) holds
for u 2 O := (↵ + ",� � "), where " < min{↵̄ � ↵,� � �̄} is fixed. Note that
(0, 1) \ E = (↵,�) and O ( (↵,�). As the integrals below are continuous functions
of u, there exists � > 0 such that

Z 1

u

F�1
µA

(p) dp+ � 
Z 1

u

F�1
µB

(p) dp for all u 2 O,(3.12)

thanks to the definition of E. In view of dTV(µn

A
, µA) ! 0 and dTV(µn

B
, µB) ! 0, the

quantile functions converge pointwise. Moreover, we recall that the 1-Wasserstein
distance satisfies

W1(µ
n

B, µB) =

Z 1

0

���F�1
µ
n
B
(p)� F�1

µB
(p)

��� dp.

Dominated convergence and W1(µn

B
, µB) ! 0 thus imply that

lim
n!1

Z 1

u

F�1
µ
n
A
(p) dp =

Z 1

u

F�1
µA

(p) dp, lim
n!1

Z 1

u

F�1
µ
n
B
(p) dp =

Z 1

u

F�1
µB

(p) dp
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uniformly in u 2 O. It now follows from (3.12) that
Z 1

u

F�1
µ
n
A
(p) dp 

Z 1

u

F�1
µA

(p) dp+
�

2

Z 1

u

F�1
µB

(p) dp� �

2

Z 1

u

F�1
µ
n
B
(p) dp

for all u 2 O and n 2 N large enough. This completes the proof. ⇤

Given measures �, µ on R, we write �  µ if �(A)  µ(A) for all A 2 B(R). The
total variation distance between � and µ is defined as

dTV(�, µ) = sup{|�(A)� µ(A)| : A 2 B(R)}.

If �  µ, it is clear that dTV(�, µ) = (µ � �)(R). For ease of reference, we record
the following consequence.

Lemma 3.7. Let 0 6= �  µ be finite measures on R. Then the probability measures

�̄ := �/�(R) and µ̄ := µ/µ(R) satisfy �̄ ⌧ µ̄ and

(3.13) dTV(�̄, µ̄) 
(µ� �)(R)

µ(R) .

Proof. We have �̄ ⌧ µ̄ and �(R)  µ(R), so that

dTV(�̄, µ̄) = Eµ̄

"✓
1� d�̄

dµ̄

◆+
#
=

1

µ(R)E
µ

"✓
1� µ(R)

�(R)
d�

dµ

◆+
#

 1

µ(R)E
µ

"✓
1� d�

dµ

◆+
#
=

1

µ(R)(µ� �)(R). ⇤

We are now ready to give the proof of Proposition 3.2.

Proof of Proposition 3.2. To simplify notation we write µ := Q1 and assume with-
out loss of generality that µ, ⌫ have zero barycenter. We may also assume that
µ 6= �0; otherwise the claim is trivial. The proof proceeds in six steps.

Step 1. Given � > 0 su�ciently small we shall construct sub-probability mea-
sures µA, µB (depending on �) that satisfy the hypotheses of Lemma 3.5, and hence
µA �c µB.

As µ has zero barycenter and is not a Dirac measure, there exists c > 0 such that
�̃ := µ((�1,�c]) ^ µ([c,1)) > 0. Then, for all 0 < � < �̃, there exist an interval
A := [a, b] and a measure �A such that

µ((�1, a] [ [b,1))  �, µ((a,�c]) � �, µ([c, b)) � �

and

• �A  µ|A,
• �A has zero barycenter,
• µ� �A is concentrated on R \ (a, b) and nonzero.
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In particular µ|(a,b)  �A  µ|A. In fact, if µ has no atoms, we can set �A = µ|A. In
the presence of atoms at a or b, we may have to remove part of that mass so that
�A has zero barycenter and �A 6= µ. Define

µA :=

✓
1

�A(R)
� 1

◆
�A and µB := µ� �A.

Evidently, the hypotheses of Lemma 3.5 are satisfied, and hence µA �c µB.

Step 2. Fix " > 0. As h takes values in R there exists a set A" ✓ A such that h is
uniformly bounded on A" and

µ(A \A")  � ^ "

2

✓
1 ^ c

|a| _ |b|

◆
.(3.14)

The choice of the upper bound in (3.14) ensures that

µ((a,�c] \A") � �

2
, µ([c, b) \A") � �

2
and, writing X for the identity function on R in an abuse of notation,

���E�A [1A"X]
��� 

���E�A [1AX]
���+

���E�A
⇥
1A\A"X

⇤���

 0 + (|a| _ |b|) (� ^ ")c

2(|a| _ |b|) =
(� ^ ")c

2
.

By restricting �A to A" and possibly removing some mass on (a,�c] or [c, b), we can
construct a measure �"

A
that is concentrated on A", satisfies �"

A
 �A  µ, has zero

barycenter and

dTV(�
"

A,�A) = (�A � �"

A)(R)  µ(A \A") +
1

c

���E�A [1A"X]
���  � ^ ".

In consequence,

(3.15) �"

A(R) = �A(R)� (�A � �"

A)(R) � 1� � � � ^ ".

Step 3. Let �  �̃ be fixed and consider a sequence ("n)n2N # 0. For each n 2 N we
apply Step 2 to obtain

(3.16) µn

A :=

✓
1

�n

A
(R) � 1

◆
�n

A and µn

B := µ� �n

A,

where �n

A
:= �"n

A
. Both measures have the same total mass and zero barycenter for

all n 2 N. Moreover we have �n

A
 �A and dTV(�A,�n

A
) = (�A � �n

A
)(R)  "n # 0.

In order to apply Lemma 3.6, we first need to scale the measures µA, µB, µn

A
and

µn

B
so that they are probability measures. Set

(3.17) µ̄A =
�A

�A(R)
and µ̄B =

µ� �A

1� �A(R)
and define µ̄n

A
and µ̄n

B
analogously. Observe that µ̄n

A
⌧ µ̄A and

dTV(µ̄
n

A, µ̄A) 
(�A � �n

A
)(R)

�A(R)
 "n

�A(R)
# 0
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by (3.13). Similarly we have dTV(µ̄n

B
, µ̄B) ! 0. In particular it su�ces to show that

Eµ̄
n
B [|X|] ! Eµ̄B [|X|] in order to verify W1(µ̄n

B
, µ̄B) ! 0. In light of the definition

of µ̄B in (3.17) and dTV(�n

A
,�A) ! 0 this readily follows from E�

n
A [|X|] ! E�A [|X|].

Now we are in a position to apply Lemma 3.6 to µ̄A, µ̄B, µ̄n

A
and µ̄n

B
, which yields

n0 2 N such that µ̄n0
A

�c µ̄
n0
B
. Since the convex order is invariant under scaling, it

follows that

(3.18) µ⇤
A := µn0

A
�c µ

n0
B

=: µ⇤
B.

We recall that h is uniformly bounded on A⇤ := A"n0 by construction and define

(3.19) �⇤
A := �n0

A

in preparation for Step 5 below.

Step 4. By Strassen Strassen [39, Theorem 8] the relation µ⇤
A

�c µ⇤
B

implies the
existence of a mean-preserving probability kernel M•

�
: R ! P(R) sending µ⇤

A
to µ⇤

B
;

that is, M� := µ⇤
A
⌦M•

�
2 ⇧(µ⇤

A
, µ⇤

B
) and M•

�
(x) has barycenter x for all x 2 R.

Recall that Q = µ ⌦ Q• 2 Mfin(⌫) and denote by Q•
�
the composition of M•

�

with Q•,

Q•
�
(x,C) := EM

•
� (x)[Q•(·, C)] for C 2 B(R).(3.20)

Note that Q•
�
is again mean-preserving.

Step 5. For �  �̃, we set

eQ� := �⇤
A ⌦Q• + µ⇤

A ⌦Q•
�
,(3.21)

where µ⇤
A
,�⇤

A
and Q•

�
were defined in (3.18), (3.19) and (3.20), respectively (the

set A and the measures �⇤
A
, µ⇤

A
depend on �). In view of (3.16), the first marginal

of eQ� is the probability measure µ̄⇤
A
:= �⇤

A
/�⇤

A
(R).

We claim that eQ� 2 fM(⌫). Indeed, recall µ ⌦ Q• = Q ⇠ P and observe that
µ⇤
A

⇠ �⇤
A

⌧ µ, Q• ⇠ ⌫ µ-a.s. and Q•
�
⌧ ⌫ µ⇤

A
-a.s. Lemma 3.3 (i) then yields

eQ� ⌧ P . Moreover, the martingale property E
eQ� [Y |X] = X follows from the fact

that Q• and Q•
�
are mean-preserving. Finally, recall that Q•

�
is the composition of

M•
�
with Q•, and µ⇤

A
⌦M•

�
2 ⇧(µ⇤

A
, µ⇤

B
). Thus µ = �⇤

A
+ µ⇤

B
and µ⌦Q• 2 ⇧(µ, ⌫)

imply eQ� 2 ⇧(µ̄⇤
A
, ⌫) and in particular eQ2

�
= ⌫. In summary, eQ� 2 fM(⌫) as desired.

From Step 2 and (3.15) we see that �⇤
A
 µ and �⇤

A
(R) � 1 � 2�, hence �⇤

A
! µ

and µ⇤
A
! 0 in variation as � ! 0. It is now clear from the definition (3.21) that

eQ� ! µ⌦Q• = Q in variation. Moreover, as �⇤
A
is concentrated on A⇤ (cf. Step 3)

and h is uniformly bounded on A⇤, we see that h is µ̄⇤
A
-a.s. uniformly bounded

for every �  �̃. This proves Proposition 3.2 (i),(ii) after choosing � = �(n) small
enough, modulo showing that H( eQ�|P ) < 1 for small � (which will follow from the
next step).

Step 6. As lim inf�!0H( eQ�|P ) � H(Q|P ) due to the lower semicontinuity of H(·|P )
and the convergence eQ� ! Q, it remains to show

(3.22) lim sup
�!0

H( eQ�|P )  H(Q|P ).
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Note that eQ� is a convex combination of two probability measures:

eQ� = �⇤
A(R)µ̄⇤

A ⌦Q• + [1� �⇤
A(R)]µ̄⇤

A ⌦Q•
�
.

As H(·|P ) is convex, it follows that

H( eQ�|P )  �⇤
A(R)H(µ̄⇤

A ⌦Q•|P ) + [1� �⇤
A(R)]H(µ̄⇤

A ⌦Q•
�
|P ).(3.23)

We show that the first term converges to H(Q|P ) and the second converges to zero.
Indeed, Lemma 3.3 (iii) yields H(µ̄⇤

A
⌦Q•|P ) = H

�
µ̄⇤
A
|P 1

�
+Eµ̄

⇤
A [H(Q•|P •)], where

H
�
µ̄⇤
A|P 1

�
=

1

�⇤
A
(R)E

�
⇤
A


log

✓
d�⇤

A

dP 1

◆�
� log �⇤

A(R)

! Eµ


log

✓
dµ

dP 1

◆�
= H(µ|P 1)(3.24)

by dominated convergence and �⇤
A
(R) � 1 � 2�. Similarly, Eµ̄

⇤
A [H(Q•|P •)] !

Eµ[H(Q•|P •)], so that the first term in (3.23) satisfies

�⇤
A(R)H(µ̄⇤

A ⌦Q•|P ) ! H(µ|P 1) + Eµ[H(Q•|P •)] = H(Q|R).

It remains to show that the second term in (3.23) converges to zero,

[1� �⇤
A(R)]H(µ̄⇤

A ⌦Q•
�
|P ) ! 0.

Using again Lemma 3.3 (iii),

H(µ̄⇤
A ⌦Q•

�
|P ) = H

�
µ̄⇤
A|P 1

�
+ Eµ̄

⇤
A [H(Q•

�
|P •)].(3.25)

In view of (3.24) and �⇤
A
(R) ! 1, it follows that [1� �⇤

A
(R)]H

�
µ̄⇤
A
|P 1

�
! 0. For

the second term in (3.25), we use the definitions of µ̄⇤
A
and µ⇤

A
to see that

[1� �⇤
A(R)]Eµ̄

⇤
A [H(Q•

�
|P •)] =

1� �⇤
A
(R)

�⇤
A
(R) E�

⇤
A [H(Q•

�
|P •)] = Eµ

⇤
A [H(Q•

�
|P •)].

In view of (3.20), Jensen’s inequality and convexity of H imply

Eµ
⇤
A [H(Q•

�
|P •)] = Eµ

⇤
A

h
H
⇣
EM

•
� (X)[Q•]|P •(X)

⌘i
 Eµ

⇤
A

h
EM

•
� (X)[H(Q•|P •(X))]

i
.

Lastly, the assumptions that H(Q•(x0)|P •(x))  I(x0) for (µ ⌦ µ)-a.a (x, x0) and
I 2 L1(µ) together with the facts that µ⇤

A
⌦M•

�
2 ⇧(µ⇤

A
, µ⇤

B
) and µ⇤

B
! 0 yield

Eµ
⇤
A

h
EM

•
� (X)[H(Q•|P •(X))]

i
 Eµ

⇤
A

h
EM

•
� (X)[I]

i
= Eµ

⇤
B [I] ! 0

by the dominated convergence theorem. This shows (3.22) and hence Proposi-
tion 3.2 (iii), completing the proof. ⇤
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