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Trends and variability in the Southern
Annular Mode over the Common Era

Jonathan King 1,2 , Kevin J. Anchukaitis 1,2,3, Kathryn Allen 4,5,6,
Tessa Vance7 & Amy Hessl 8

The Southern Annular Mode (SAM) is the leading mode of atmospheric
variability in the extratropical Southern Hemisphere and has wide ranging
effects on ecosystems and societies. Despite the SAM’s importance, paleocli-
mate reconstructions disagree on its variability and trends over the Common
Era, which may be linked to variability in SAM teleconnections and the influ-
ence of specific proxies. Here, we use data assimilation with a multi-model
prior to reconstruct the SAM over the last 2000 years using temperature and
drought-sensitive climate proxies. Our method does not assume a stationary
relationship between the SAM and the proxy records and allows us to identify
critical paleoclimate records and quantify reconstruction uncertainty through
time. We find no evidence for a forced response in SAM variability prior to the
20th century. We do find the modern positive trend falls outside the 2σ range
of the prior 2000 years at multidecadal time scales, supporting the inference
that the SAM’s positive trend over the last several decades is a response to
anthropogenic climate change.

TheSouthernAnnularMode (SAM) is the leadingmodeof atmospheric
variability in the extratropical Southern Hemisphere and is character-
ized by a mostly zonally-symmetric mass oscillation with anti-
correlated pressure anomalies over the mid-latitudes and Antarctica
[Refs. 1–4, and see Fig. 1]. The SAM’s phases capture the strength and
position of the mid-latitude westerly winds and the subtropical jet,
such that positive phases promote a poleward shift of storm tracks and
intensification of the circumpolar westerly belt, while negative phases
promote an equator-ward shift of storm tracks and weakening of the
westerly winds. Variability in the SAM therefore has wide ranging
effects across the Southern Hemisphere. Positive phases of the SAM
are linked to cooling over Australia and central Antarctica, as well as
warming over the Antarctic Peninsula and southern South America5–11.
Hydroclimate effects of the positive phase include drying over
southern South America, western South Africa, southernAustralia, and

New Zealand, as well as increased precipitation over central and
eastern Australia and southeastern South America7,10,12–16. SAM varia-
tions have also been linked to wildfire activity in South America and
south-east Australia17–21, changes in sea ice distribution8,22–28, tempera-
ture anomalies over East Antarctica9,29,30, ice shelf collapse31,32, and
ocean-atmosphere carbon exchange33–35. Understanding SAM varia-
bility is therefore important for both societies and ecosystems
throughout the Southern Hemisphere, particularly in sub-tropical-
temperate regions projected to experience a future drying climate.

Since the 1950s, the SAM has exhibited a trend toward a more
positive state4,36,37, which has been attributed to stratospheric ozone
depletion and rising concentrations of atmospheric CO2

38–42. This
positive trend has potentially contributed to severe droughts, includ-
ing the Day Zero Cape Town drought43 and Millennium Drought in
Australia44,45, as well as increased fire activity17–19. Given these impacts,
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it is important to place the SAM’s recent behavior in a long-term per-
spective and assess the relative influence of anthropogenic forcing and
natural climate variability. In the context of multi-decadal trends,
reconstructions spanning multiple centuries are necessary to resolve
forced responses from the SAM’s internal variability. Instrumental
records of the SAM only extend through the mid-1900s and longer
reanalysis-derived indices show low correlations with one another and
differences in variability prior to the 1950s37,46, so characterizing the
SAM’s long-term behavior requires paleoclimate reconstructions
derived from natural climate archives.

There are several existing multi-century SAM reconstructions47–49

(henceforth, V12, A14, andD18), but they show limited agreement prior
to the 1850s49,50. Most indicate a negative phase in the SAM during the
late 1400s, but there is a marked lack of decadal to centennial coher-
ence between the reconstructions prior to the 1800s50. There are
several potential reasons for these differences. Firstly, all three
reconstructions rely on the calibration of proxy records directly with
an instrumental SAM index. This implicitly makes two important
assumptions for each reconstruction: first, that the relationship of
proxy records to local climate variables is stationary over time; and
second, that the SAM’s teleconnections with local climate variables are
stationary and well-represented by the instrumental record. While the
first is reasonable and a necessary assumption of most paleoclimate
analyses, multiple studies cast doubt on this second point, and regional
complexity in the climate response to specific SAM phases further
decreases the likelihood of this assumption holding. For instance, even
over the instrumental period, SAM exhibits non-stationary connections
with precipitation and temperature anomalies in southern South
America, Australasia, and the Antarctic Peninsula13,51, and many of the
proxy records in existing SAM reconstructions come from these areas50.

Rising concentrations of greenhouse gases, changes in stratospheric
ozone, connections with ENSO, spatial changes to the SAM’s structure,
and stochastic climate variability can also affect the SAM’s influence on
regional climates over multi-decadal time scales36,39,52–54. Pseudo-proxy
experiments have also shown that non-stationary teleconnections
cause reconstruction skill to vary widely with the selection of different
calibration windows55. This effect is particularly pronounced for
proxy networks with fewer than 20 sites, which is common in the early
portions of SAM reconstructions. To mitigate such effects, D18 expli-
citly screened for stationarity in their reconstruction, although this
required calibration with a longer and therefore less reliable observa-
tional record56.

Differences between SAM reconstructions may also result from
the selection of different reconstruction targets and proxy networks.
For example, A14 targets an annual SAM index, whereas V12 and D18
target an austral summer (DJF) SAM index. D18 found that annual
reconstructions were much more sensitive to the selection of proxy
sites and calibration windows and they conclude that annual products
may exhibit increased sensitivity to non-stationary teleconnections,
whichmay partly explain the differences between the reconstructions.
Additionally, each index has been reconstructed using a different
proxy network with a different geographic extent. A14 targets the
Drake Passage sector, using a mix of terrestrial proxy types from
southern South America as well as Antarctic ice cores. In comparison,
V12 targets the Pacific sector, using anetwork of tree-ring chronologies
from South America and New Zealand. D18 uses the most spatially
extensive network, including tree-ring records47, Antarctic ice cores,
PAGES2k South American proxies57, and coral records from the tropi-
cal Pacific58. Furthermore, A14 utilizes a temperature-sensitive proxy
network, while V12 and D18 leverage both temperature and
hydroclimate-sensitive proxies. Given the variability of the SAM’s tel-
econnections on regional scales13,51, and the climate sensitivities of
different proxy types56, the variations in proxy-network design may
further help explain reconstruction differences. It is often difficult to
assess the influence and contribution of individual proxy records in
multiproxy reconstructions, so the cause of any reconstructed index’s
behavior are often unclear. This is particularly relevant in the period
prior to 1400 CE, when the sparsity of proxy networks leaves the
reconstructions vulnerable to the dominant influence of just a few
records. Ultimately, as a consequence of these uncertainties and the
differences in existing reconstructions, the evolution of the SAM over
the Common Era and its response to external forcing remains poorly
constrained50,59.

To address these uncertainties, here we reconstruct the austral
summer (DJF) SAM index over the Common Era at annual resolution
using offline paleoclimate data assimilation (DA). As a reconstruction
technique, paleoclimate DA integrates climate proxy records with the
dynamical behavior captured by climate models60,61. In brief, most
paleoclimate DA approaches use forward or proxy-system models62,63

to translate climatemodel states into the same dimensions or space as
a collection of climate proxy records. This allows direct comparison of
themodel output with the proxy records. The climatemodel states are
then updated to more closely match the proxy records, and a model-
derived estimate of climate systemcovariance is used topropagate the
update to reconstruction targets, such as the SAM. DA has been used
to reconstruct surface air temperature anomalies64–67, geopotential
height fields65, the response to volcanic eruptions68,69, sea ice
extent70,71, sea surface temperatures72,73, sea level pressure and
winds70,74, and hydroclimate variables75. Leveraging reconstructions of
atmospheric circulation, two of these studies have already used DA to
reconstruct the SAM70,74 (hereafter D21 and O21). However, these
reconstructions are thus far limited to the last one to two hundred
years, and so do not provide detail on the SAM’s response to external
forcings prior to the 1800s. Here, we reconstruct the SAMover the full
Common Era. To do so, we use an offline ensemble Kalman filter to
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assimilate 40 records from the PAGES2k temperature-sensitive proxy
network57, the South American Drought Atlas (SADA)76, and the
Australia-New Zealand Drought Atlas (ANZDA)77 (Fig. 1). Our method
uses a stationary multi-model ensemble constructed from over 4,500
years of output from four general circulation climate models. We rely
on linear seasonal-temperature forward models for the PAGES2k net-
work, and we use non-linear Palmer Drought Severity Index (PDSI)
estimators for SADA andANZDA. Here, we followGong andWang2 and
define the SAM index using the difference of zonal-mean pressure
anomalies (see Methods, Eq. (1)).

In the context of SAM paleoclimate reconstructions, DA offers
several additional advantages relative to traditional methods. Firstly,
ourmethod does not calibrate proxy records against a SAM index, and
so does not assume stationary SAM teleconnections. Instead, the DA
relies on the calibration of proxy forwardmodels to local temperature
and precipitation near the proxy sites, which only assumes the stability
of proxy relationships to their local climate. Additionally, we estimate
covariance between proxies and the SAM using thousands of years of
climate model output. As a result of this, our proxy-SAM relationships
are not sensitive to potentially anomalous decadal- or centennial-scale
variations in the SAM’s behavior. Furthermore, DA is amenable to the
use of a range of proxy types as well as gridded climate records with
spatial autocorrelation, and we leverage this to incorporate the two
existing tree-ring based drought atlases into our reconstruction. Pre-
vious work indicates that SAM reconstructions using hydroclimate-
sensitive sites are more skillful than those using strictly temperature-
sensitive proxy networks55. Each drought atlas provides extensive
coverage for at least the last five centuries and each incorporates over
150 tree-ring records. They therefore represent a significant source of
hydroclimate information available for our reconstruction.

Finally, our DAmethod allows us to incorporate an optimal sensor
analysis78 as part of the final reconstruction. Traditionally, optimal
sensor analyses have been used to identify ideal regions for future
proxy development78–81; however, they can also be applied within a DA
framework to quantitatively assess the power or value of different
proxy sites as the overall network evolves through time.We use this to
identify the proxy sites that are most likely to influence the recon-
struction in each time step, which helps characterize the reconstruc-
tion’s overall behavior. This information is particularly useful in the
early part of this Common Era reconstruction, when the sparse net-
work size can give high weights to a limited number of records.

Results
Reconstruction
Because we use a stationary prior, the temporal variability of the raw
reconstruction depends on the size and composition of the proxy
network. As the proxy network becomes sparse, less information is
incorporated in the Kalman Filter, and the updated state is less able to
move away from the priormean. This causes reconstruction variability
to increase with the size of the proxy network and independently of
the climatological record. We apply a variance correction scheme to
account for this effect (Supplementary Fig. 4). Variance adjustments
are common in paleoclimate reconstructions82–85 and are inherent to
simpler methods like Composite Plus Scale86 in order to avoid mis-
interpreting variance changes due to sample size or methodology as
reflecting true climatic causes. We refer to the variance-corrected
reconstruction in all following discussion.

We next assess the skill of our SAM reconstruction relative to the
Marshall4 and Fogt indices87,88, two commonly used instrumental SAM
indices (see Methods for further details). Before comparing time ser-
ies, we first normalize the Fogt index and our reconstruction to the
Marshall index, such that the mean and variance of the detrended
normalized time series match those of the detrended Marshall index
over the period 1958-2000 CE. This places all series in the same
unit space while preserving differences in the instrumental trend.

Examining skill values (Table 1; Fig. 2a), we find that the reconstruc-
tion’s correlation with the Marshall index (1958-2000 CE) is
r =0.72 (p≪0.001), which is comparable to that reported for A14
(r =0.75,p≪0.001)), and somewhat higher than those of D21
(r =0.30, p <0.05) and O21 (r =0.35 −0.37, p <0.05). With respect to
the 20th century Fogt index, our reconstruction correlates at r =0.65
(p≪0.001), somewhat higher than A14 (r =0.51, p≪0.001)). All
p-values reported for our reconstruction account for temporal
autocorrelation89. Our RMSE values with the Marshall index (1.45) are
similar to, albeit slightly higher than, those reported by D18 (1.32). As
discussed in the introduction, our reconstruction is not calibrated to a
SAM index, and sowe emphasize that the agreement with theMarshall
and Fogt indices is not built-in to our reconstruction method and thus
represents an independent skill metric. We also note that the defini-
tions of the Marshall and Fogt indices differ from the Gong and Wang
index used by our reconstruction; thus, we would not expect perfect
agreement even for the most skillful reconstruction.

We next characterize the reconstruction’s behavior over the last
two millennia (Fig. 2b). However, we first note that the sign of a given

Table 1 | Reconstruction Skill metrics for the Southern Annu-
lar Mode calculated against instrumental indices over the
given time periods

Metric Marshall index Fogt index Fogt index
(1958-2000) (1958-2000) (1866-2000)

Correlation (p≪0.001) 0.72 0.67 0.56

RMSE 1.45 1.56 1.80

σ Ratio 0.97 1.03 1.15

Mean Bias −0.26 0.45 −0.29
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anomaly is in part a function of the normalization period. Thus, a
change in sign indicates a relative shift in the strength and position of
the mid-latitude westerly winds and subtropical jet, but is not asso-
ciated with a specific physical meaning. The reconstruction exhibits
minimal evidence for trends over most of the first millennium of the
Common Era, although the third and seventh centuries are both
marked by increased multidecadal variability as the SAM alternates
between negative and positive phases. A strongly negative anomaly in
the early 1000s is followed by a notable 100-year positive trend that
concludes with the most positive anomalies outside of the instru-
mental era. The SAM persists in a positive state until the late 1400s,
when it abruptly decreases to stronglynegative values. After this event,
the index returns to near-zeromeananomalies. It has a peak in themid-
1700s and begins exhibiting a positive trend in the early 1800s. This
trend intensifies in the later half of the 20th century, and the recon-
struction ends with the most positive SAM anomalies observed during
the Common Era.

Reconstruction uncertainty ranges from ±4.5 anomaly units in the
early reconstruction to less than 2.3 after 1500 CE (Fig. 2b). We note
that, because we use a stationary prior, the reconstruction years are
treated as fully independent of one another. While this is common in
many reconstruction techniques, it does not represent the reality of
the SAM, which exhibits persistence on interannual time scales due to
potential connections with the stratosphere90,91, tropical variability92,93,
and external forcing42,94. Because our paleoclimate DA design does not
incorporate inter-annual persistence, the uncertainty estimates shown
here likely overestimate the true reconstruction uncertainty. Overall,
uncertainty decreases as the reconstruction approaches the present
day, a result of the increasing size of the proxy network (Fig. 2c).

Optimal sensor
We use our optimal sensor framework to identify which proxies are
most responsible for reducing reconstruction uncertainty over time
(Fig. 3). The potential for a proxy to reduceuncertainty corresponds to
the proxy’s influence on the reconstruction, so this analysis also allows
us to identifywhichproxiesmost strongly influence the reconstruction
at a given point in time. The first 900 years of the reconstruction are
most strongly affected by the temperature-sensitive Mt. Read (Tas-
mania) tree-ring record with additional support from the Plateau
Remote, WDC06A, and WDC05A ice cores. At 900 CE, the
temperature-sensitive Oroko (NewZealand) tree ring chronology joins
the network and supplants Mt. Read as the most influential record.
Two large decreases in reconstruction uncertainty occur in 1400 and
1500 CE, which correspond to the addition of the SADA and ANZDA,
respectively.

External forcing
Wenext examine the reconstruction’s response to external forcing and
find little evidence for response to external forcings in the pre-
industrial period. Figure 4a displays a wavelet coherence sample plot
between the reconstruction and the solar forcing time series. Coher-
ence between the two would be observed as a statistically significant
horizontal band, and given the lack of such a band, we detect no evi-
dence for a link between our reconstruction and solar forcing.We next
use superposed epoch analysis to examine the response to volcanic
forcing. Values outside of the gray bands in Fig. 4b would indicate a
statistically significant and consistent response to volcanic forcing.
Since the composite-mean response remains within these bands, we
again detect no evidence for a consistent response to volcanic forcing
in our reconstruction, potentially because the magnitude of unforced
variability overwhelms any volcanic signal.

By contrast, the reconstruction exhibits significant positive trends
in the latter half of the twentieth century. Figure 4c, d shows calculated
trends in the Marshall Index and the reconstruction over the instru-
mental period. Each plot illustrates values for trends of different

lengths, centered on different sets of years. Here we have normalized
trends in the Marshall Index and reconstruction to a similar unit space
(see Methods). To test the significance of these trends, we use the
reconstruction to establish the distribution of trends over the intervals
1-1900 CE and 1500–1900 CE. For each interval, we determine the
distribution of trends of each length. For each trend length, we use the
95% confidence interval (CI) of the corresponding distribution to
establish a significance threshold. In other words, modern trends
outside of these thresholds are significantly different at the 2σ level
from the trends in the intervals used to establish the natural
distributions.

Wefind that the reconstruction exhibits significant positive trends
in the latter half of the twentieth century. However, these modern
trends are only significant on time-scales greater than approximately
40 years, and trends over shorter time scales fall within the recon-
structed 95% CI of possible trends from natural variability. Examining
the Marshall index, we similarly find that trends shorter than about 35
years arewithin the reconstructed 95%CI of natural variability, but that
trends longer than about 35 years fall outside this range. The Marshall
index exhibits its most positive, significant trends for intervals cen-
tered on the early 1980s. Although this period is near the end of our
reconstruction and less well resolved thanpreceding decades, we note
that the reconstruction similarly exhibits strongly-positive, significant
trends centered on the early 1980s. Here we have quantified natural
variability using the distribution of reconstructed trends over the
period 1500–1900 CE, the years including both drought atlases. If we
instead use the period of the full reconstruction (1–1900 CE), the tests
become more stringent. Statistically significant trends in the recon-
struction are limited to the last 60-80 year interval, andMarshall index
trends areonly significantwhen containing the interval 1964–2000CE.
We also experimented with using the early portion of the reconstruc-
tion (1–899 CE) to quantify natural variability (Supplementary Fig. 1).
We find these results are qualitatively similar to those using the full
reconstruction period, in that the most recent long-term trends are
outside the range of natural variability. A notable period where similar
persistent multidecadal trends as those observed over the recent
period are identified in the reconstruction is in the middle of the 11th
century (Fig. 5). However, uncertainties during this period are sub-
stantial due to the lack of proxy data, particularly the drought atlases.
D18 also shows a similar feature at this time, and therefore this period
would benefit from additional proxy data and analytical scrutiny.
Radiative forcing is not remarkable during this period95 and there is no
significance coherence with solar forcing (Fig. 4a). Existing large-scale
temperature reconstructions also disagree during this period96.

Discussion
Our reconstruction suggests that the SAM is dominated by internal
variability throughout thepre-industrial CommonEra. Thisfinding is in
agreementwithD18,who likewise foundminimal influenceof solar and
volcanic forcing on their reconstruction. Volcanic signals have likewise
been a challenge to detect in Southern Hemisphere temperature
reconstructions97. Some studies have proposed that an observed
relationship between SAM and ENSO48,93,98–100 could provide a pathway
for solar forcing101 to influence the SAM50,102; however, our results do
not support this mechanism during the the Common Era. In a set of
model simulations, Wright et al.102 found that increasing the amplitude
of the prescribed solar variability lead to a significant relationship
between solar forcing and the simulated SAM. These authors suggest
that using high amplitude solar forcing could help reconcile SAM
reconstructions with climate simulations; however, the lack of solar
signals in our reconstruction differs notably from their findings and
instead further supports the realism of low-amplitude solar forcing
scenarios103–105.

By contrast with solar and volcanic forcings, our analysis indicates
that the most recent multi-decadal trend is outside the 95% CI of
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natural variability and is consistent with the SAM’s response to
anthropogenic forcing. We emphasize that this modern trend is only
significant for intervals longer than about 40 years when assessed
against the 1500–1900 CE period, or intervals of about 55 years when
considering the full Common Era. Shorter trend periods remainwithin
the 95%CI of natural variability, even for themost recent intervals. The

significance of the modern positive trend therefore reflects its anom-
alous persistence, rather than the amplitude of its decadal-scale var-
iation alone. The significance of these longer trends emphasizes the
importance of the paleoclimate record, particularly given the uncer-
tainties in instrumental SAM records prior to the late twentieth
century46,106. We also note that the modern positive trend is only
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outside of the 95% CI of natural variability for trends spanning the
years from about 1940–2000 CE. Trends are generally not significant
during the early 1900s, and are even negative for the 50 year period
centered on the 1930s. These results help establish the onset of the

modern positive trend at around 1940 CE. This timing coincides with
increasing emissions of ozone-depleting substances, such as chloro-
fluorocarbons, and greenhouse gases, and is consistent with literature
attributing the modern trend to stratospheric ozone depletion and
rising levels of atmospheric CO2

38–42.
We next compare our reconstruction with the V12, A14, and D18

products (Fig. 5). We normalize the mean and variance of each index
over the period 1400–1850 CE to allow comparison of the series in the
same unit space. We select the year 1400 CE because it is the first year
with values for all four reconstructions and we end the normalization
in 1850 CE to limit the sensitivity of our comparison to differing
representations of the post-industrial trend. All four indices agree on
the existence of a strong positive trend during the late twentieth
century; however, all show limited coherencewithone another prior to
about 1850 CE, as noted in previous studies49,50. Ultimately, the limited
agreement of these reconstructions reduces confidence in the sig-
nificance of modern trends59. As discussed in the introduction, the
potential causes of these discrepancies include differing seasonal tar-
gets, different proxy networks, and the relative weights of proxies

-5 0 5 10
Year after Eruption

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
A
M

 A
no

m
al
y

Wavelet Sample Coherency

1000 1200 1400 1600 1800 2000
Year (CE)

4  

16 

64 

256
P
er
io
d 
(y
ea

rs
)

0 

0.5

1 

1.5

2 

Marshall Index

1975 1980 1985 1990 1995 2000 2005

Year (CE)

30

35

40

45

50

55

60

T
re
nd

 L
en

gt
h 
(y
ea

rs
)

 0001-1900 CE
 1500-1900 CE

-0.1

-0.05

0

0.05

0.1

T
rend

Reconstruction

1920 1930 1940 1950 1960 1970 1980

Year (CE)

30

40

50

60

70

80

90

100

T
re
nd

 L
en

gt
h 
(y
ea

rs
)

 0001-1900 CE
 1500-1900 CE

-0.1

-0.05

0

0.05

0.1

N
orm

alized T
rend

a b

c d

Fig. 4 | Climate forcing analysis. a Wavelet coherence of the reconstructed
Southern Annular Mode (SAM) index with the solar forcing reconstruction95. Black
contours surround statistically significant coherencies. Strong coherence with the
solar forcing series would appear as a horizontal band of contours. b Composite
mean response of the SAM in years preceding and following major volcanic events
(blue line). Shading indicates the range of natural variability at the 95% confidence
level assessed from the reconstruction. Composite mean values outside of the
shading would suggest a consistent, statistically significant response to volcanic
forcing. c Instrumental trends for the Marshall index. Colored squares indicate
trend values calculatedover different periods. Values are calculated from awindow

centered on the year denoted on the X-axis. The length of trend is given by the
duration on the Y-axis. Solid contours surround trends that are significantly dif-
ferent (at the 95% confidence level) from the natural distribution of trends in the
reconstruction over the period 1500–1900 CE. Dotted contours show results using
the period 1–1900 CE to assess significance. d As in (c), but for trends calculated
from the reconstruction. The units of the reconstruction (and thereby its trends)
have been normalized to the Marshall index, such that mean and variance of the
detrended reconstruction match those of the detrended Marshall index over the
interval 1958–2000 CE.

1000 1200 1400 1600 1800 2000

Year

-2

0

2

S
A
M

 In
de

x 
A
no

m
al
y This Study A14 V12 D18

Fig. 5 | Reconstruction comparison. Comparison of Southern Annular Mode
reconstructions over the last millennium. Previous reconstructions include A1448,
V1247, and D1849. All reconstructions are smoothed via a 30-year Gaussian filter and
normalized to the period 1400–1850 CE.

Article https://doi.org/10.1038/s41467-023-37643-1

Nature Communications | (2023)14:2324 6



within those networks50. For instance, temperature sensitive tree-rings
in the Andes do not show much influence in our optimal sensor ana-
lysis (Fig. 3), even though these are an important part of the V12
reconstruction. Similarly, the sedimentary pigment record from Lake
Aculeo that is a significant predictor in A14 does not have a large
influence in our DA reconstruction. Additionally, V12, A14, andD18 rely
on calibration with the instrumental SAM index, which can cause
uncertainty when there is non-stationarity in the teleconnection of
local climate with the SAM. Ultimately, one new reconstruction does
not solve the problem of differing reconstructions and ours similarly
shows limited agreement with all of V12, A14, and D18. However, our
assimilation is not calibrated to the SAM, and instead relies on cali-
brating proxy forward models to local climate variables. As such, the
assimilation offers a potential improvement by reducing uncertainty
arising from non-stationary SAM teleconnections.

We also compare our reconstruction with D21 and O21. To better
compare the three DA products, we compute correlation coefficients
and p-values for D21 and O21 following the methods outlined for our
own reconstruction. The D21 reconstruction correlates with the Mar-
shall index at a value of r = 0.30, p <0.05. O21 provides four recon-
structions, eachusing a different climatemodel as the prior. FromO21,
we find the PACE and HadCM3 reconstructions have p >0.05, but the
remaining CESM and LENS reconstructions correlate at r = 0.37, p <
0.05 and r = 0.35, p <0.05, respectively. Both D21 and O21 correlate
with theMarshall index at lower levels thanour reconstruction, despite
also using DA. D21 uses an offline particle filter, whereas our assim-
ilation and O21 rely on an offline Kalman filter. Thus, methodological
differences may in part contribute to differences between the recon-
structions. Additionally, both D21 and the individual O21 reconstruc-
tions rely on priors derived from a single climate model. By contrast,
our prior uses a multi-model ensemble, which can help reduce the
effects of individual climate model biases on an assimilation and
thereby improve skill107. Finally, differences in our proxy networksmay
also influence the different reconstructions. In particular, our use of
drought atlases represents a significant source of hydroclimate infor-
mation not available in the D21 and O21 reconstructions and likely
contributes to reconstruction skill over the last several centuries
(Fig. 3c, f).

An additional advantage of our reconstruction is the transparency
provided by the optimal sensor’s assessment of the relative weights
and influence of proxy records in our network. In general, we find that
our reconstruction is most strongly influenced by the two drought
atlases, followed by the Mt. Read (Tasmania), Oroko (New Zealand),
and Pink Pine (New Zealand) tree ring chronologies, and also the Pla-
teau Remote, Siple Station,WDC06A, andWDC06B ice cores.We note
here that aminor change in reconstruction uncertainty does not imply
that a proxy has a weak effect on the reconstruction, because highly
influential proxies from the same location may present redundant
climate signals. For example, the Pink Pine chronology is the third
most potentially influential PAGES2k record (Fig. 3f), but has a rela-
tively small effect on reconstruction uncertainty when added to the
network in 1457 CE (Fig. 3c). This is because much of the Pink Pine
climate signal is already represented by the nearby Oroko site. How-
ever, such redundant sites are valuable because they make the
reconstruction less sensitive to non-climatic noise froma single highly-
influential proxy record. In the case of Pink Pine and Oroko, spreading
the southern New Zealand climate signal over two influential records
allows either site to partially account for non-climatic noise in the
other. A proxy’s potential influence reflects both its covariance with
the SAM and the ability of our proxy estimates to accurately estimate
the record. Ultimately, assuming our estimates of climate covariance
are accurate, the influential sites are those most likely to contribute
skill to the reconstruction.

Overall, we find that tree-ring chronologies from Tasmania and
New Zealand, the West Antarctic ice cores, and the drought atlas

locations in Tasmania, southern New Zealand, the eastern edge of
Australia, and southeast South America all have the greatest potential
for reconstructing SAM (Fig. 3a, b). This suggests that additional proxy
development in these regions, or extensions of shorter existing
records such as the Oroko and Pink Pine tree-ring chronologies or the
Siple Station ice core, would be valuable for improving the skill of
future SAM reconstructions. However, we caution that location alone
is not sufficient for proxy utility and recommend that future proxy
development should demonstrate a robust sensitivity to local climate
that reliably connects proxy records to the SAM. In our optimal sensor
framework, a proxy’s potential influence is a function of (1) the accu-
racy of our proxy forward models, and (2) the covariance of the
resulting proxy estimates with the SAM in the climate models. As a
result, our analysis may currently undervalue proxies from regions
with limited climate model agreement, and future improvements in
both climate and proxy system models may allow paleoclimate data
fromother regions to contribute to skillful reconstructions of the SAM.

Our DA method does not require a calibration with the instru-
mental SAM, which helps limit sensitivity to non-stationarity in the
SAM during the instrumental era. However, the trade-off is the influ-
ence of proxy forward model and climate model biases on the
reconstruction. In the case of proxy models, any biases typically
reduce the weight of the proxy in the assimilation, thereby limiting its
effect on the reconstruction. Improving the accuracy or sophistication
of the proxy forward models could increase the influence of many
records; for example, transitioning the statistical forwardmodels used
here for the PAGES2k sites to more mechanistically accurate proxy
system models62 could potentially improve the reconstruction108.
However, efforts to developmore complex proxy systemmodelsmust
also exercise caution, as excessive complexity and poorly constrained
parameters may lead to overfitting and artificially high skill in the
instrumental era at the expense of accuracy during the earlier recon-
struction. In this study,we retain the simpler statistical forwardmodels
because (1) the PAGES2k proxies are reported to be temperature
sensitive57, (2) statistical proxy models remain the most common and
tractable approach for paleoclimate data assimilation to date61,65,67,
and (3) the simple statistical model eliminates errors caused by the
interaction of climate model biases with forward models that rely on
absolute units.

With respect to climatemodels, biases in themean state can affect
proxy estimates that include parametrizations or thresholds based on
absolute units. However, covariance biases are a greater concern, as
they introduce errors in the propagation of information from the
proxy records to the reconstruction target. For example, some of the
climatemodels considered in this study simulate a SAM pattern that is
too zonally symmetric and that overestimates the SAM’s influence on
overall Southern Hemisphere circulation109. Such teleconnection bia-
ses can cause the assimilation to overestimate the covariance between
various proxies and the SAM, thereby increasing reconstruction error.
In this study, we use a multi-model ensemble (MME) to reduce the
effects of covariance bias from any one model67,107. We note that we
weight each model equally, which effectively treats each model as
independent. In reality, manymodels share common features or code,
so this equal weightingmaybias an ensemble towards themost similar
models110,111. For example, the CCSM4 and CESM-LME output used in
our MME are both from models developed by the US National
Center for Atmospheric Research (NCAR) and may more closely
resemble one another than the MPI or MRImodels. Future efforts may
wish to test different model composition or weights when construct-
ing a MME prior.

Finally, our use of a stationary offline prior implies a stationary
estimate of climate system covariance when considered over the full
reconstruction period. Although we use a long-term estimate of the
SAM’s climate covariance, the true covariance may vary on multi-
decadal scales13,51, and these variations will not be captured in our
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approach. While the assumption of a reasonably stationary covariance
is implicitly common to most spatial reconstruction methods112,113, the
application of transient offline priors73,114,115 or online assimilation
techniques116 may enhance future data assimilation reconstruction,
although these approaches must balance the utility of evolving cov-
ariance estimates with reduced ensemble sizes.

Our study provides the first reconstruction of the Southern
Annular Mode at annual resolution over the entire Common Era. We
use a data assimilation method that does not calibrate the proxies
directly against the instrumental SAM index, so the reconstruction is
not sensitive to known SAM non-stationarity in the modern era. Our
reconstruction leverages both the SADA and ANZDA in addition to the
PAGES2k proxy network and represents a significant increase in
paleoclimate information available to reconstruct the SAM. Optimal
sensor analysis indicates that the first 1400 years of the reconstruction
are strongly influenced by the Oroko and Mt. Read tree-ring chron-
ologies, with additional support from the Plateau Remote, WDC06A,
and WDC05A ice cores. As the SADA and ANZDA are added to the
proxy network (1400 CE and 1500 CE, respectively), the drought
atlases become strong drivers of the reconstruction’s behavior.

Our reconstruction provides a foundation with which to assess
the drivers of the SAM’s behavior over the Common Era. Such
assessments are critical given the SAM’s importance to societies and
effects on climate variability throughout the Southern Hemisphere.
Prior to the most recent decades, we find no relationship between the
SAM’s variability and natural external climate forcing, suggesting that
the SAM’s behavior is dominated by internal unforced variability over
the pre-industrial Common Era. We then examine the recent positive
trend in the SAM, which is linked to increased drought severity, wild-
fire intensification, reduced sea ice distribution, and Antarctic ice shelf
collapse. We find that this trend is outside the 95% confidence interval
of natural variability for the last millennium, further indicating the
modern positive trend is likely a response to anthropogenic forcing.

Methods
Southern Annular Mode Index
In this study, we use the Gong and Wang2 definition of the SAM index:

SAM=P*
40�S � P*

65�S ð1Þ

where P*
X indicates the normalized zonal-mean sea level pressure (SLP)

at a particular latitude. The latitudes 40° S and 65°S were selected as
the zonal-means with the most strongly anti-correlated SLP anomalies
across the mid- and high-latitude Southern Hemisphere. We use this
definition, as opposed to an index derived fromaprincipal component
analysis, because the latitudes of themost strongly anti-correlated SLP
anomalies are robust across the climate models considered in our
assimilation (Supplementary Tables 1, 2).We target the austral summer
(DJF; December-February) SAM because this corresponds to the
seasonality of the climate response of the majority of our proxy
network. D18 also suggests that summer SAM reconstructions are
more robust to proxy network design than annual reconstructions,
which further supports this choice. When calculating the SAM index,
we normalize seasonal mean values, rather than individual months.
Austral summers span months from two calendar years, and this can
introduce date ambiguities for annual records, particularly tree-ring
chronologies. Throughout this paper, we use the convention that the
year of an austral summer value matches the calendar year of the
associated January.

Reanalysis and Instrumental Indices
We use monthly precipitation and air-temperature fields from the
Twentieth Century Reanalysis V3 (20CR)117,118 to calibrate our DA
method. The 20CR is based on an 80-member ensemble Kalman Filter,
and extends from1850CE topresent at 2 degree resolution. Becauseof

its role inour assimilationmethod, this effectively sets an upper bound
on the resolution of any gridded spatial product used in this recon-
struction. We also use the austral summer Marshall index4 and Fogt
index87,88 to assess the skill of our reconstruction in the modern era.
The Marshall index estimates the Gong and Wang2 definition of the
SAM (Eq. 1), and is based ondata from 12weather stations (6near 40°S,
and 6 near 65°S). Because it uses station data, theMarshall index is not
subject to the spurious trends observed in high-latitude Southern
Hemisphere reanalysis pressure fields4. The Fogt index is constructed
using a principal component regression of station pressure data and
calibrated to theMarshall index. These indices are commonly used as a
comparison point for SAM reconstructions47–49.

Climate proxies
In this reconstruction, we assimilate the PAGES2k temperature-
sensitive proxy network57, the South American Drought Atlas
(SADA)76, and the Australia-New Zealand Drought Atlas (ANZDA)77. We
limit all three datasets to those sites or locations south of 25°S. Pseudo-
proxy tests of other latitude bounds suggests that reconstruction skill
is minimally affected by the use of more northward proxy sites and
agreement with the instrumental record exhibits a slightmaximum for
a bound at 25°S (Supplementary Fig. 2). Overall, this domain max-
imizes the number of SAM-sensitive proxy sites in our network, while
minimizing the effects of distal proxies that primarily reflect other
climate signals.

From the PAGES2k dataset, we include all sites from the PAGES2k
global temperature reconstruction that have annual or sub-annual
temporal resolution. To maintain a common timescale, we bin all sub-
annual sites to annual resolution. Our PAGES2k network therefore
consists of 40 proxy records: 12 tree-ring chronologies, 3 lake sedi-
ment cores, 5 corals, 19 ice-cores, and 1 borehole-derived temperature
reconstruction (Supplementary Table 3). The tree-ring records are
from Tasmania, New Zealand, and the central Andes. The longest two
chronologies are from Mt. Read, Tasmania and Oroko, New Zealand,
which begin in 494 BCE and 900 CE, respectively; the remaining tree
chronologies mostly begin between 1450 CE and 1550 CE. The three
lake sediment proxies are derived from the central and southern
Andes. The longest record (Laguna Chepical) spans the complete
Common Era, while Lagunas Escondida and Aculeo begin in 400 CE
and 816 CE, respectively. The five coral records are from the Houtman
Abrolhos Islands off the west coast of Australia and begin between
1795 CE and 1900 CE. The Antarctica ice core records have varying
temporal coverage. Four sites cover the full Common Era (Plateau
Remote,WDC06A, JamesRoss Island,WAIS-Divide), sixmoreextend at
least one millennium, and the remaining nine begin between 1140 CE
and 1703 CE. The borehole reconstruction is from WAIS-Divide and
begins in 8 CE. For the 40 proxy set, full coverage extends from 1903
CE to 1983 CE with 20 sites remaining by 2000 CE.

The SADA and ANZDA are gridded tree-ring reconstructions of
the self-calibrated Palmer Drought Severity Index (PDSI) during austral
summer at annual resolution76,77. The SADA is derived from 286 tem-
perature and precipitation-sensitive tree-ring chronologies and begins
in 1400 CE. The atlas covers all of South America south of 12.25°S at
0.5° resolution. Similarly, ANZDA is derived from 176 tree-ring chron-
ologies, as well as one coral record, and begins in 1500CE. The ANZDA
covers Australia east of 136.25°E, and New Zealand, also at 0.5° reso-
lution. The SAM is strongly associatedwithdroughts andpluvials in the
domains of both atlases76, supporting their inclusion in our network.
Both atlases have significantly higher spatial resolution than the rea-
nalysis data and climate model output used for our reconstruction
method. To permit calculations that require the same spatial resolu-
tion, we bin both atlases to the lowest resolution spatial grid relevant
to a given experiment. For the main reconstruction, after applying
latitude screening, our SADA and ANZDA networks consist of 104 and
71 binned records, each on a 2° x 2.5° grid. It is worth noting that
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several of the PAGES2k tree ring records used in our reconstruction
were also used to construct the drought atlases, and these repeat
records might initially appear to duplicate information in the recon-
struction. However, our Kalman filter method explicitly accounts for
covariance between proxy records, and down-weights proxies with
repeated information accordingly. Additional details for this process
can be found in the following section.

Kalman Filter
Our reconstruction uses an ensembleKalmanFilter approach (EnKF)119,
which follows the update equation:

Xa =Xp �KðY� ŶÞ ð2Þ

in each reconstructed time step. Here, the Xp and Xa matrices are the
initial (prior) and updated (analysis) ensembles of climate model
states. Each row holds a target climate variable, and each column a
different selection of climatemodel output (ensemblemember). Y is a
matrixof proxy values for the time step; the columns ofY are constant,
and each row holds the value from a particular proxy record repeated
once for each ensemble member. Ŷ holds the model estimates of the
proxy values; each rowhas the estimates for a particular proxy site, and
each column has the estimates from a particular ensemble member. K
is the Kalman gain:

K= covðXp,ŶÞ½covðŶÞ+R�
�1 ð3Þ

where R is the matrix of proxy error-covariances. The Kalman filter
accounts for duplication of information across repeated proxy
records. This occurs via the covðŶÞ term in Eq. (3), which reduces
proxy weights in the Kalman gain as a function of shared proxy
covariance. Note that any shared covariance derived from proxies’
relationshipswith the SAM is balanced by the covðXp,ŶÞ term in Eq. (3).
We use a square-root variant of EnKF120,121. Thismodifies Eqs. (2) and (3)
toupdate the ensemblemeananddeviations separately, andprecludes
the need for perturbed observations122. The Kalman filter can be
expressed as a recursive Bayesianfilter123,124, sowewill often refer toXp

and Xa as the prior and posterior in this paper.

Prior
We construct the prior using output from climate models with
paleoclimate simulations of the last millennium (Supplementary
Table 1).We use amulti-model ensemble (MME),which has been found
to reduce error relative to single model assimilations67,107. Our MME
consists of CCSM4, CESM-LME, MPI, and MRI, which represent the set
of last millennium simulations with spatial resolutions greater than or
at the resolution of the 20CR reanalysis. As such, this selection does
not require us to bin the drought atlases to lower resolutions than
20CR, which allows us to extract maximum information from SADA
and ANZDA. We also tested a larger MME consisting of 10models with
last millennium simulations regardless of resolution. Our tests show
that the high-resolution MME maximizes reconstruction skill (Sup-
plementary Fig. 3). For CCSM4, MPI, and MRI, we use output from the
PMIP3 last1000 (850–1850 CE) and historical (1851–2005 CE) experi-
ments, specifically ensemble member r1i1p1. For CESM-LME, we use
output from full-forcing run 2 (850–2005 CE). While the PAGES2k
proxy network does include stable oxygen isotope proxies, there are
too few high-resolution last millennium isotope-enabled paleoclimate
model simulations available to construct a multi-model prior107.

We use an offline, stationary prior for our assimilation. Offline
approaches125,126 differ from classical Kalman Filters in that updates are
not used to inform model simulations. Instead, offline methods use
pre-existing model output to build the prior in each time step. The
offline approach has been shown to compare favorably with classical
(online) methods in paleoclimate contexts but at a fraction of the

computational cost127,128. The stationary prior indicates that we use the
same ensemble as the prior for each reconstructed time step. This is
common in paleoclimate DA applications60,65,108 and is justified by the
limited forecast skill of climate models beyond the annual recon-
struction time scale114. However, stationary priors have been observed
to artificially reduce the variability of reconstructions as proxy net-
works become more sparse67. Consequently, our use of stationary
priors necessitates a correction for the reconstruction’s variability,
which is detailed in the methods below.

To build each prior, we first calculate the DJF SAM time-series for
eachmodel, normalizing zonal SLP means to the pre-industrial period
(850-1849 CE). We then concatenate the SAM index time-series from
eachmodel in every year of model output. The final prior has a total of
4624 ensemble members from 4 high-resolution models.

Proxy forward models and error covariances
The proxy modeling process begins by designing a forward model for
each assimilated proxy record. Here, we use different forward models
for the PAGES2k and drought atlas products. For the PAGES2k records,
we follow previous studies61,67 and use simple univariate linearmodels:

Ŷ=aT+b ð4Þ

where Ŷ is a vector of proxy estimates, and T is a vector of seasonal
temperature means. Here, the seasonal mean used for each site is
taken from the seasonal sensitivity reported in the PAGES2k
metadata57. We determine the coefficients a and b by calibrating each
proxy PAGES2k record to the corresponding climate data from 20CR.
For eachproxy site,wefirstdetermine the seasonal sensitivity and then
linearly regress the proxy record against the seasonal-mean tempera-
ture vector from the closest 20CR grid point in all overlapping years
from 1950–2000 CE. The regression slope and intercept are then used
asa andb, respectively. For thedrought atlases,weestimateproxies by
calculating PDSI129 using the Thornthwaite estimation of potential
evapotranspiration130. This uses monthly mean temperature and
precipitation from a drought atlas grid cell to compute monthly PDSI
values for each year. We then use the austral summer means of these
monthly values as the proxy estimates. Effectively:

Ŷ=mean½PDSIThornthwaiteðT,PÞ�DJF ð5Þ

whereT and P aremonthly temperature and precipitation, and Ŷ is the
drought atlas estimate. We estimate proxy values for the model priors
by applying Eqs. (4) and (5) to climate model output and matching
each year’s estimates to the associated ensemble member in the prior.

Although the PDSI calculation in Eq. (5) uses the Thornthwaite
approximation, both drought atlases target an observational dataset
based on the Penman–Monteith method76,77,131. However, both the
Thornthwaite and Penman–Monteith equations have been shown to
perform similarly when applied to pre-industrial simulations, and this
agreement occurs because the simplifying assumptions of the
Thornthwaite method remain valid over the relatively confined range
of last millennium temperatures132. For the purposes of this study, the
Thornthwaite method provides two further advantages: First, the
Thornthwaite equation is more computationally tractable, which
allows us to apply it to the large spatial regions and the multiple
millennium-length climate model simulations used for priors in our
assimilation method. Second, because the Thornthwaite calculation
requires fewer climate model data fields to estimate the PDSI130,131,
opportunities for climate model biases to degrade the reconstruction
are reduced.

We next estimate the proxy error covariances. These error cov-
ariances describe the uncertainty in the comparison of observed
records to the proxy estimates (Y − Ŷ). In a classical Kalman Filter, the
estimates (Ŷ) are known perfectly and this uncertainty is derived from
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the observations (Y), so R is often referred to as observation uncer-
tainty. In paleoclimate contexts, this situation is inverted: proxy mea-
surements are typically precise and uncertainty derives from the
simplifications and parameterizations inherent in the estimation
equations. Hence, we quantify R by running Eqs. (4) and (5) on the
20CR dataset (from 1950-2000 CE) and comparing the estimated
proxy values to the real records. The differences between the two sets
of values are used to estimate the errors inherent in using simple
models and relatively coarse climate data to estimate the temporal
behavior of the proxy records.Most EnKF paleoclimate efforts assume
that proxy errors are independent, such that R is a diagonal
matrix60,61,65,75. This is justified for datasets like PAGES2k, for which
proxy uncertainties are dominated by local biological, physical, and
mechanistic effects56. However, the drought atlas grid points are
strongly spatially correlated, so this assumption is not appropriate in
this study. Instead, we calculate independent error-variances for the
proxies in the PAGES2k network, and full error-covariances for both
SADA and ANZDA. Hence, R is block-diagonal, rather than strictly
diagonal. We estimate uncertainty in the final reconstruction from the
spread of the assimilation posterior.

Variance correction
We use a series of frozen-network assimilations to adjust the temporal
variance of the reconstructed SAM index. There are five sites in our
proxy network with observations in every year of the reconstruction.
We first assimilate this five-site network over the full interval 1–2000
CE to derive a baseline time-series that is not affected by changes to
the proxy network. We next determine each unique set of proxy sites
used to update one or more time steps in the reconstruction. We then
assimilate each set of proxies over the time steps for which all the
proxies in the set have recorded values, and we determine the ratio of
this assimilation’s standard deviation to that of the baseline time series
over all overlapping years:

PðsetÞ= σset=σBaseline ð6Þ

We then calculate a scaling factor for each time step using the nor-
malized ratio for the associated proxy set:

wðtÞ=PðsetðtÞÞ=maxðPÞ ð7Þ

A comparison of the raw and variance-adjusted reconstructions is
provided in Supplementary Fig. 4.

Optimal sensor analysis
Our optimal sensor analysis uses a Kalman filter framework to estimate
the ability of proxy sites to reduce the variance of a metric across a
posterior ensemble78. The reduction of variance for the kth proxy site
is given by:

Δσk = covðŶk ,JÞ
2½varðŶkÞ+Rk �

�1 ð8Þ

where J is the metric, Ŷk are the proxy estimates for the site, and Rk is
the site’s error-variance. Here we use the SAM index as our metric, so
the optimal sensor analysis assesses the ability of sites to reduce
uncertainty in the SAM index across the reconstruction posterior. We
first compute the total reduction in SAM posterior variance using the
complete set of proxies with observations in each time step. We also
quantify each site’s ability to reduce reconstruction uncertainty when
no other sites are in the proxy network. We refer to this quantity as
potential percent constrained variance.

External forcing analyses
We begin our external forcing analysis by investigating the
SAM’s response to natural climate forcings. We first use a wavelet

coherence analysis to examine the relationship between our SAM
reconstruction and a time series of reconstructed solar forcing85,95.
We next use a superposed epoch analysis (SEA)133 to determine
the reconstruction’s composite mean response to major volcanic
eruptions. We used the eVolv2k V3 volcanic forcing dataset134,135

to select events with a total forcing magnitude greater than or
equal to that of Krakatoa. This yielded 28 eruption years: 87, 169, 266,
433, 536, 540, 574, 626, 682, 817, 939, 1108, 1171, 1182, 1230, 1257,
1276, 1286, 1345, 1458, 1600, 1640, 1695, 1783, 1809, 1815, 1831, and
1883. For the SEA, we normalized each event to the mean of the
preceding 5 years and examined the composite mean response over
the 10 years following volcanic events. We tested the significance of
the observed response by bootstrapping 5000 SEA time series via
random draws of 28 event years from the remaining years in the
reconstruction.

We next consider the SAM’s response to anthropogenic forcings
using both our reconstruction and the Marshall index. Before quanti-
fying trends, we first normalize our reconstruction to the Marshall
index, such that the mean and variance of the detrended normalized
reconstruction match those of the detrended Marshall index over the
years of common overlap (1958–2000CE). This places the series in the
sameunit spacewhile preserving differences in the instrumental trend.
We then calculate moving trends for the reconstruction over the years
1900–2000 CE using trend window lengths from 31 to 101 years.
Similarly, we calculate moving trends for the Marshall index over the
years 1958-2020 CE using trend window lengths from 31 to 63 years.
We then use the reconstruction to assess the significance of these
trends. For each trend window length, we calculate the distribution of
trends with the given window length from the reconstruction over the
years 1500–1900 CE, and we define this distribution as the natural
variability for that trend length. We then use the 95% confidence
intervals of each distribution to determine a significance threshold
for trends of the associated length. We also repeat this process using
trend distributions from the intervals 1–1900 CE and 1–899 CE to
examine the sensitivity of this analysis to different portions of the
reconstruction.

Data availability
The final reconstructed SAM index time series, its uncertainty esti-
mates, and the analyses generated in this study have been deposited in
a Zenodo repository at https://doi.org/10.5281/zenodo.7643732. The
input climate model datasets required to implement the analysis are
available via the Earth System Grid Federation https://esgf-node.llnl.
gov/projects/esgf-llnl/ and the NCAR Climate Data Gateway https://
www.earthsystemgrid.org/.

Code availability
The code required to reproduce our analyses, figures, and tables are
available in Zenodo repository https://doi.org/10.5281/zenodo.
7643732. The repository includes all third-party packages used by
our code, but these are also available externally. Specifically, the DASH
toolbox is available at https://github.com/JonKing93/DASH, the PDSI
model is also available at https://github.com/JonKing93/pdsi, and the
so was wavelet analysis package is available at https://tocsy.pik-
potsdam.de/wavelets/.
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