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ABSTRACT:
Topological defects and defect phases of rigid and flexibly bent-shaped liquid crystals are
reviewed with emphasis on how they are affected by the departure of molecular shapes from a
simple rod. The review discusses defects in bent-core uniaxial and hypothetical biaxial nematics,
twist-bend nematic, and various frustrated layered bent-core liquid crystals, such as twist-grain
boundary phase, nanoscale helical nanofilament phase, and the so-called B7 textures with helical

ribbons.

1. INTRODUCTION
The spatial organization of liquid crystals (LCs) is governed by molecular shapes and interactions
and reveals itself at the macroscopic scale by anisotropic properties and various textures with an
abundance of topological defects. LC defects, representing singular and non-singular distortions
of the orientational order, carry signatures of the undistorted ground LC state and bear specific
information that helps to identify phases in newly synthesized materials. It was the line defect-
disclinations that prompted G. Friedel to assign the name “nematic” to the simplest LC, the
uniaxial nematic (Ny), and it was the focal conic domains (FCDs) that revealed to him the layered
molecular-scale organization of smectics [1]. Small variations of molecular shapes produce
remarkable changes in the self-assembly of liquid crystalline phases, as demonstrated by the
discovery of the twist-bend nematic formed by flexible dimers, which represent two rod-like
molecules connected by a flexible aliphatic bridge of a bent conformation; if the bridge is straight
or absent, the molecules form a conventional Ny. Uncovering properties of LCs and defects in

them is not a simple task, as it involves, citing P.G. de Gennes, “a certain sense of vision in three-



dimensional space in order to visualize complex molecular arrangements.”[2] Maurice Kleman
was one of the pioneers in the field, whose vision laid a foundation for the modern knowledge of
defects in LCs and other ordered media, summarized in his monograph [3,4] and reviews [5—11].
“So full of shapes is fancy,
That it alone is high fantastical.”

These lines by William Shakespeare from Twelfth Night [I, 1, lines 14-15], were selected
by Maurice Kleman as an epigraph to the paper [12], to express the richness of geometrical forms
associated with defects in LCs formed by bent-core molecules. The choice reflects his life-long
fascination with defects in condensed matter, which resulted in remarkable achievements,
including elucidation of the fine structure and properties of line defects in cholesterics [5,13,14],
uniaxial [15], twist-bend [16], and biaxial nematics [17], thermotropic [18-25] and lyotropic
smectics [26-28], columnar [29,30] and twist-grain-boundary [31,32] phases, predictive
descriptions of FCDs in smectics [26,33,42,34-41], and developable domains [43,44] in hexagonal
columnar liquid crystals, general classification of defects in ordered media by the homotopy group

theory [45—47].

This review explores how the topological signatures of defects in LCs are affected by the
departure of molecular shapes from a simple rod. The focus is on the bent shape, which resembles
a boomerang or a banana. Flexible dimers are the most recent addition to this family, although
they are “bent-bridge” rather than bent-core mesogens. In Chapter 2 we discuss defects in bent-
core uniaxial and hypothetical biaxial nematics, Chapter 3 is devoted to the description of defects
in the twist-bend nematic, and Chapter 4 summarizes the studies of defects in various frustrated
bent-core LCs, such as twist-grain boundary phase, nanoscale helical nanofilament phase (HNF),

and the so-called B7 textures with helical ribbons. Chapter 5 provides an outlook.

2. UNIAXIAL AND BIAXIAL NEMATIC PHASES
Focused studies of the defects in the uniaxial nematic (Ny) phase of bent-core molecules are
scarce. A notable exception is the exploration of twist disclination loops by Krishnamurthy,
Tadapatri, and Weissflog. [48] These loops, first introduced in the theoretical paper by Friedel and
de Gennes [49], are topologically trivial in the sense that they could shrink into a uniform state.
They separate a twisted state from the planar state. Depending on whether the twisted state is in

the interior or exterior, one distinguishes L(T) and L(P) loops, respectively, Figure 1(a).



Figure 1:(a) Twist disclination loops in a planar nematic cell. The L(T) disclination encloses the
twisted state, and L(T) loop encloses the planar state. (b)Disclination loops observed in the Ny
phase of BCN films while cooling in the presence of uniform external field. (c) Schematic director
structure around the loop.

Both types could be created by abruptly applying an electric field to an initially planar cell along
the direction perpendicular to the plates coated with transparent electrodes and then switching the
field off. Relaxation of the director field produces L(T) or L(P) loops; the latter are formed when
the electric voltage exceeds significantly the Frederiks threshold. L(T) loops inevitably shrink to
leave a uniform planar state since their energy decreases monotonically in the process. In contrast,
L(P) loops behave similarly to the nuclei in the first-order phase transition. They expand or shrink,
depending on whether their initial radius R is larger or smaller than some critical value. This
behavior is rooted in the elastic energy F o« K[RIn(R/r,) — mR?/d] of an L(P) loop, where K is
a representative Frank elastic constant, 7, is the core radius of the disclination, d is the cell
thickness. The term approximately linear in R represents the line tension of the disclination, while
the R? term is the gain in the elastic energy when the twisted state is replaced by a uniform planar
one. The energy balance is similar to the balance of surface tension o R? and internal energy o< R3
in the nucleation problem. As stressed by the authors of Ref. [48] , the behavior is not exclusive to
the bent-core Ny, as similar features are observed in rod-like Ny, with an understandable difference

in materials parameters such as elastic constants and viscosity coefficients.

Different splay-bend defect loops were observed in the Ny phase of thick bent-core nematic (BCN)
samples while cooling from the isotropic phase in the presence of a uniform magnetic field H. [50]

Figure 1b reveals multiple micron-scale defect loops. Inside and outside every loop, fi is parallel



to H, but it is distorted across the boundary, Figure 1c. These features are characteristic of inversion
wall loops [51]. The inversion walls form in the presence of an external field or surface anchoring
that forces the director to align along a single direction in space [4], e.g., £1||H in the experiment
[50]. Under this constrain, the inversion walls are topologically equivalent to Néel and Bloch
walls in ferromagnets, in which the two opposite directions of magnetization are set by crystal
anisotropy [52]. The inversion wall separates two domains with antiparallel orientations fi and —;
across the wall,the director realigns by 7 In the Néel type, fi rotates around an axis perpendicular
to both the wall and the director, forming splay or bend distortions, both of which generate a
flexoelectric polarization [53], rendering the local wall structure non-centrosymmetric, despite the

centrosymmetric nature of an undistorted Ny.

A strong effect of elastic constants on the structure of defects is observed in Ny formed by
acute-angle bent-core molecules of a shape resembling a letter A, Figure 2a [54]. The measured
splay elastic constant is anomalously weak, K;; = 2 pN, significantly smaller than the bend
constant K33 = 15 pN and even the twist constant K,, = 5 pN. The smallness of K;; leads to a
pronounced bias of defects towards configurations with splay, in the nuclei emerging from the

isotropic phase, Figure 2b, and in Schlieren textures, Figure 2¢ [54].

Figure 2: (a) Acute-angle bent-core molecule 1,7-naphthylene bis(4-(3-chloro-4-(4-
(hexyloxy)benzoyloxy)phenyliminomethyl) benzoate) forms Ny with a small splay elastic modulus,
which results in prevalence of splay deformations in (b) Nu nuclei forming on cooling from the
isotropic phase and (c) Schlieren textures,; +1 defects surrounded by dashed circles are of radial

type.



Although the bent-core LCs have been known for about a century, see Ref. [55] for a brief
review, the explosion of interest to them happened only after the rod-like Ny counterparts have
already demonstrated spectacular performance in LC displays. The idea was to find a biaxial
nematic Ng, which could be switched faster and by a lower electric field than Ny. Bent-core
molecules seemed to be natural candidates, as the secondary director could be associated with the
“cusp” of the shape. The Ny phase was theoretically described by Freiser [56] as being of
orthorhombic symmetry with physical properties different along three mutually perpendicular
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directors N = — n, M

To this day, however, the existence of Ny in thermotropic systems remains elusive, despite
the intense search. First, Li et al.[57] demonstrated the N phase in a material formed by cyclic
(ring-like) molecules. The search expanded to bent-core molecules after Niori et al. [58] showed
that they could form a biaxial smectic. The difficulty in identifying Ny is that most of the
experimental techniques test the properties of the material averaged over the sample bulk [55]. As
a result, the presence of inhomogeneities, such as deformations of the uniaxial director 1, caused
by anchoring transitions [59-61], or by flows triggered by thermal expansion [62,63], could be
erroneously interpreted as an apparent biaxiality. In some cases, the remedy is simple. For
example, one could apply an electric field to align fi, and then explore whether the material is
birefringent in the orthogonal plane [59,60]. However, when the material of a negative dielectric

anisotropy (measured with respect to 1), this approach would not discern between Ny and Ng.

A robust approach to test the long-range biaxial order, alternative to the volume-averaging
techniques such as optical conoscopy, X-ray, or NMR, is through topological defects, especially
those that correspond to the equilibrium ground state of the mesophase in confined geometries.
Line defects (disclinations) and point defects (hedgehogs and boojums) in Ny and Ng show

dramatic differences as discussed below.



Figure 3: Topological defects in Ny. Stable disclinations of strength (a) k = 1/2 and (b) k =
—1/2 with singular cores; (c) topologically unstable disclination k = 1, which are continuously
transformable into (d) a non-singular “escaped” configuration with the director along the initial
core. (e) Radial and (f) hyperbolic point defects-hedgehogs in the bulk; (g) radial boojum at the
surface of Ny.

In the Ny bulk, the topologically stable defects are disclination lines of strength |k| = %,

where k is defined as a number of director turns by 2z when one circumnavigates the defect core
once, Figure 3a,b. Disclinations of strength |k| = 1 are not topologically stable; a realization that
first came on the ground of elastic energy minimization by Cladis and Kleman [15] and
independently by Meyer[64] and later through the homotopy groups concept [33,47,65]. As an
example, Figure 3c,d shows that the singular core of a k = 1 disclination could be removed by
simply realigning the director along the disclination’s axis. In the process of realignment, the
elastic energy of the disclination decreases monotonously [15,65]. The effect was called “the
escape into the third dimension” by R.B. Meyer [64]. Ny also exhibits two different types of point
defects [66], (1) hedgehogs that can exist in the Ny bulk, Figure 3e.f, or at its surfaces and (ii)
boojums that exist only at the surface of Ny, Figure 3g [66]. A detailed overview of defects in Ny

is presented in this special issue by Harkai et al. [67]



e ) . 1
In N, the line disclinations with a singular core are stable whether |k| = 5 or 1. The reason

why a disclination of strength |k| =1 could not be removed by the “escape into the third
dimension” is that the reorientation of one director (i in Figure 4a) along the disclination’s axis
brings two other directors (for example, m in Figure 4a) into a singular geometry [68]. One of the

fascinating features of defects in Ng, predicted by Toulouse [68] , is that crossing of two
disclinations of strength |k| = %can result in the appearance of a | k| = 1 disclination that connects
these two, Figure 4b. Since the elastic energy of disclinations is proportional to their length, the
interaction potential of two k = % disclinations connected by a line k = 1 of a length L is U

KL, similar to the interaction of quarks. In Ny, disclinations cross each other freely [45]
Observation of the nontrivial crossing would be an ultimate test of the Ny existence, but the

crossing of disclinations has been so far studied only in Ny [69] .
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Figure 4: Topological defects in Ng. (a) Removal of a singular core through the escape of the
director M into the third dimension of a k = 1 disclination is impossible since the realignment of
Al brings another director, M , into a singular core. (b) Two k = 1/2 disclinations of connected
by a singular k = 1 line interact similarly to quarks. (c) Isolated point defects-hedgehogs could
not exist in Ny since they should be attached to disclinations.



Point defects provide another opportunity for an experimental test of bulk biaxial order.
Isolated point defects cannot exist in Ny, Figure 4c. For example, a radial configuration of one
director implies that the two other directors are defined at a spherical surface and thus should form
additional singularities emanating from the center of the defect, similarly to the famous “Dirac
monopole” with a radial point defect-hedgehog in the magnetic field and an attached string in the
vector-potential that is perpendicular to the field [70]. Surface point defect-boojums of strength
|k,| = 1 also cannot exist, as they must be connected to a singular bulk disclination of the same
strength |k| = 1 [68], and thus represent the ends of these disclinations rather than isolated points.
References [55,71] present detailed illustrations and suggest experiments that might reveal the
existence of N through the analysis of topological defects in crossings and in confined geometries,
such as cylindrical capillaries, freely suspended droplets, and LC slabs containing colloidal

particles.

Some of the topology-based tests of the potential biaxiality of bent-core nematics have
been already performed and resulted in a conclusion that the studied materials are of the Ny rather
than the Ny type. In particular, cylindrical capillaries with perpendicular director anchoring at the
walls, filled with the bent-core mesogens, such as A131[60] C7 and C12[72] show that the director
n realigns smoothly along the capillary axis, Figure 3d and does not produce a singular core

expected for the Ny phase, Figure 4a.

3. DEFECTS IN TWIST-BEND NEMATIC (Nt18) PHASE
While the bent-core mesogens did not provide clear evidence of the existence of N, flexible
dimers revealed a no less interesting new phase, the twist-bend nematic (Ntg) [73—75] , predicted
by R.B. Meyer [76], . Dozov [77], and R. Memmer [78]. Flexible dimers with a bridge comprised
of an odd number of methylene groups tend to adopt bent conformation. If these molecules fill a
3D space, this bend could be preserved unchanged throughout only if accompanied by splay or
twist deformations. The latter case produces the Ntg phase, Figure 5. The local director 1 is tiled
with respect to the heliconical axis ¥; its projection onto the plane orthogonal § to is A; one also
defines the orthogonal vector %, so that A= ¥ x &. The planes of the constant phase of the tilt
should be equidistant, otherwise the bend and twist deformations should deviate from the
equilibrium values, which would cost some elastic energy, associated with a non-vanishing

Young’s modulus. This equidistance of pseudo-layers is not associated with any density



modulation. The Ntg structure is therefore similar to the density-modulated smectic C* (SmC*),
and pseudo-layered cholesteric (Ch) and especially the oblique helicoidal state of the cholesteric
(Chon), which forms in chiral flexible dimer Ch under the action of an external electric or magnetic
field [79-82]. The pitch of Chon, defined by the chirality of constituent molecules, is usually in
the submicron and micron range, i.e., much larger than the pitch p of Ntg, which is only about 10

nm, as determined by the freeze-fracture TEM studies [74,75].
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Figure 5:Schematic structure of the Nts phase: (a) Molecular arrangements; (b) Definition of the
trihedron: ¥ is the heliconical axis, A is the projection of the local director onto the plane
orthogonal to ¥; T is normal to both A and ¥.

Kleman and Krishnamurthy[16] classified linear defects in Nt by exploring its elements of
symmetry. These are (i) quantized, or perfect, dislocations of the Burgers vector np, (ii) quantized
disclinations of the Frank vector (m 4 2mm)T; here n and m are integers; (iii) continuous
dislocations with infinitesimal Burgers vectors in the planes orthogonal to ¥ ; (iv) continuous
dispirations, i.e., combinations of disclinations of infinitesimal Frank vector and infinitesimal
Burgers vector. The classification is the same as for Ch, except that in Ch, there are also quantized
disclinations with the Frank vector parallel to the local director 1, which is in the planes orthogonal

to X [16]. Pieranski [83] and Wu and Smalyukh [84] provide extensive reviews of defects in Ch.



Alongside linear defects, which are typically hard to observe directly because of the small pitch,
which usually defines the size of the “core” of linear defects, the pseudo-layered structure of Nt
leads to macroscopic-scale textures and defects similar to those in other layered systems, such as
stripes and FCDs, both of extension orders of magnitude larger than the pitch p ~10 nm. These are

discussed below.

3.1. Textures as evidence of the pseudo-lavered structure of Nts.

The first clear hint that nematic materials could form a new phase, identified later as Ntg [73—75],
came from the observation of stripe textures by Panov et al.[85], later confirmed by others [73,86—
92]. Figure 6a,b show these stripes along the rubbing direction in the planar cell filled with a
mixture CBOCB+5CB (60:40 wt%). Panov et al. [85] noted that the stripes occur in relatively thin
cells (10 pm or less), and their period is about twice the cell thickness. In thicker samples, one
often observes FCDs, elongated along the rubbing direction, Figure 6e. The stripes are

characteristic of practically all Ntg samples, including droplets[92]; they are not topologically

stable in the sense that a strong field could eliminate them, Figure 6¢,d [88].

Figure 6. Typical polarizing optical microscopy textures of Nrg phase in planar samples: (a,b)
stripe pattern parallel to the rubbing direction R, cell thickness 7 um, (c,d) in-plane AV electric
field eliminates the stripes, (e) focal conic domains, cell thickness 20 um. Material: Mixture of
CB9CB+5CB, 60:40 wt%. The material was provided by Vitaly Panov and Georg Mehl.
Experimental data by Young-Ki Kim (unpublished).

The textures of stripes are ubiquitous in systems with one-dimensional stacking of flexible

equidistant layers. They indicate the tendency of layers to tilt in response to mechanical stress,

10



such as temperature-induced variation of the period or an external field [4]. The underlying physics
is captured by the so-called Helfrich-Hurault (HH) buckling instability [2], usually invoked when
the layers are parallel to the bounding plates of the cell. However, the general mechanism of the
HH buckling remains valid even when the layers are perpendicular to the bounding plates. In such
“bookshelf” geometry, the tilt of smectic layers typically occurs across the cell (“vertical chevron™)
[93], but it is also observed in the plane of the cell [93,94]. The latter “horizontal chevron™ texture
is similar to the Nt stripes. This similarity and disappearance of the stripes at a high magnetic
field allowed Challa et al. [88] to explain the stripe formation by the HH mechanism, i.e., as a
result of the temperature-dependent Ntg pitch. Polarizing microscopy and fluorescence confocal
polarizing microscopy (FCPM) study by You et al. [89] suggests that the heliconical axis in stripes
experiences predominantly splay, tilting left and right from the direction set by rubbing. Similar
splayed configurations are observed by Panov et al. [90] in scanning electron microscopy of
polymer-stabilized Ntg [90] . The prevalence of splay is expected, as the Ntp structure that keeps
the equidistance of pseudo-layers allows splay of the normal ¥ to the layers but hinders bend and
twist (which are present at the molecular scale of the local director, hence the name).

FCD textures are a hallmark of layered LCs. These domains, often appearing as pairings
of ellipses and hyperbolae, were the first textures of LCs Kleman viewed in the late 1960-ies under
a polarizing microscope. [95] Since early studies of smectics, thanks to the insights of G. Friedel
and F. Grandjean in 1910 [96], the appearance of the FCDs was attributed to one-dimensionally
periodic stackings of flexible layers; the conclusion formed a cornerstone of George Friedel’s
classification of LC phases [1]. The conclusion was made well before X-ray studies by Edmond
Friedel, son of George Friedel, could confirm the one-dimensional density variation of smectics
with a layer’s thickness being only a few nanometers. A son of Edmond, Jacques Friedel, became
a prominent condensed matter scientist known most for the studies of dislocations in solids [97].
He was also an adviser of Kleman’s thesis and a long-time collaborator [3,5]. For the history of
science of defects in condensed matter see the paper by T. Sluckin in this special issue [84].
Kleman expanded G. Friedel’s geometrical constructions of FCDs by developing an analytical
description of FCDs and their associations [3,33]. The theory yields the general expression for the
energy of the domains and demonstrates the relation of FCDs to grain boundaries and dislocations
[3,33,40,41]. FCDs in Nt are more complex than the well-studied FCDs in smectic A. These

complexities were analyzed by Kleman in his last papers, written in collaboration with

11



Krishnamurthy and other colleagues [16,98,99]. Below we review the general properties of FCDs

and then discuss the peculiarities of FCDs in Ntg.

3.2. General properties of FCDs.

FCDs relieve curvature energy of layers subject to boundary conditions or external fields. Curved
layers tend to preserve perfect parallelism in order to avoid large compression/dilation energy
associated with the change of their thickness. Curved parallel layers cannot fill space continuously,
as the radii of curvature tend to zero at some locations, which for 3D space are 2D surfaces, called
focal surfaces. These surfaces represent the loci of the centers of curvature. At the focal surfaces,
the normal to layers experiences singularity; in the physical context of ordered media, focal
surfaces carry significant elastic energy proportional to their area. The simplest solution is to
reduce the dimensionality to focal lines. Families of curved parallel layers with focal lines are
known in mathematics as Dupin cyclides; in LCs, the cyclides represent the curved equidistant
layers. In 1868 Maxwell found solutions in the form of Dupin cyclides while solving a problem
(similar in many respects to that of FCDs) of wave surfaces propagating along rectilinear rays in

an isotropic medium [99].

By geometrical construction, the focal lines must be pairs of conjugated conics. The most
common example is a pair of an ellipse and a branch of a hyperbola located in mutually orthogonal
planes, such that the apices of one are the foci of the other. These form FCDs of the so-called first,
Figure 7, second, and third species, classified on the basis of whether the curved layers are of a
negative Gaussian curvature (FCD-I), positive Gaussian curvature (FCD-II), or both negative and
positive Gaussian curvatures (FCD-III), respectively [4]. Figure 7 illustrates that the layers'
curvatures diverge at the ellipse and hyperbola so that these conics represent singularities in the
field of normals to the cyclides. Layers could also wrap around conics without singularities, as
the middle cyclide does in Figure 7a. Any line connecting the hyperbola to the ellipse is normal to
the layers; in the case of smectics, this line coincides with the director i ; in the case of N, it is
the axis ¥ of heliconical twist. Dupin cyclides corresponding to the ellipse-hyperbola frame are

parametrized in Cartesian coordinates as [40]

__r(c-acosu cosv)+b2 cosu ... _ bsinu(a-rcosv) ;= b sinv(c cosu~-1)

a—c cosu cosv ! a—c cosucosv ! a—c cosucosv
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where a and b are the major and minor semi-axes of the ellipse, respectively, ¢ = a? — b?, u and
v are the two orthogonal angular coordinates specified at the cyclides, and r is the third coordinate
along the normal to the cyclides. The range of values (r,u, v) determines whether the resulting
cyclides would be of a positive or negative Gaussian curvature and whether they will be complete

or not.

All the cyclides in FCD-Is, Figure 7, have negative Gaussian curvature, which is preferable
by elasticity: the opposite signs of the principal curvatures imply a smaller splay energy, which is
determined by the square of the mean curvature. The mean curvature is the algebraic sum of the

principal curvatures. A rare example of an FCD-II has been observed in lyotropic lamellar phases

[36,37].

The FCD-Is limited by conical shapes with an elliptic base are often met in polygonal
textures in which surface anchoring aligns the director tangentially to the substrates, as first
demonstrated by Bragg [100]. This anchoring effect is illustrated in Figure 7b: the normal to the
layers within an ellipse is everywhere in the plane of the ellipse. The polygonal textures of FCD-
Is form a hierarchy, with ellipses of smaller domains placed between the larger domains; the
packing of ellipses shows fractal dimension [101]. Gaps between the cones are filled with a layer
of a spherical shape and thus positive Gaussian curvature [35,102]. The largest domains in the
fractal structure are of the size dictated by the cell thickness, while the smallest are defined by the

balance of the elastic and surface anchoring energy [102].

FCD-Is sometimes reduce to a toroidal FCD (TFCD), in which the ellipse becomes a circle, a =
b,c = 0, and the hyperbola is a straight line passing through the center of the circle, Figure 7c.
The TFCD could be smoothly extended by a system of flat layers parallel to the circular base.
Within a TFCD, the principal radii, shown by red vectors in Figure 7c, are of the opposite signs,
as in any FCD-Is of negative Gaussian curvature. TFCDs could occur not only because of the
surface anchoring, but also because of the external field that aligns the director perpendicular to

itself. [38,103]
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Figure 7: Focal conic domains (FCDs) of first species: (a) FCD-I with negative Gaussian
curvature of the Dupin cyclides (layers) limited by conical surfaces and an elliptical base; (b)
FCD-I with the elliptic base at a substrate that prefers a tangential alignment of the normal to the
layers; these shapes form the so-called polygonal textures in many layered liquid crystals; (c)
TFCD with the ellipse degenerate into a circle and the hyperbola straightened up into a line
passing through the center of the circle; the arrows show the principal radii at two points; the
Gaussian curvature is negative since the radii are antiparallel; (d) parabolic focal conic domain.

Finally, a distinct class of FCDs are parabolic FCDs (PFCDs), in which the conics represent
two confocal parabolas [104], Figure 7d. PFCDs usually occur under dilative mechanical stresses
[104], or when the layer thickness decreases as a result of temperature change or cis-trans
isomerization [105]. The reason is that the same layer crosses the normal to the cell substrates

three times close to the PFCD’s axis, thus filling the space created by dilations.
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TFCDs and PFCDs occur in bent-core layered mesophases alongside FCD-Is. The prevalence of
one type over the other is controlled by elastic and surface anchoring properties. TFCDs are
observed in a biaxial SmA, formed by a mixture of rod-like and bent-core molecules [106]. TFCDs
also emerge as an intrinsic element of the dark conglomerate (DC) phase, which is a chiral isotropic
liquid [107]; they appear in the bulk [107] and at the free surfaces of the DC samples [108,109].
PFCDs are observed in the B4 phase, in which bent-core molecules build up helical nanofilaments
driven by a negative Gaussian curvature. They appear either near glass substrates [110] or at the

free surface [109].

3.3. FCDs in NtB.

Figure 8 illustrates a light-induced reversible transformation between Nt and Ny heralded
by recurrent disappearance and reappearance of FCD-Is [111]. The Ntp transformation into Ny is
triggered by UV irradiation in a material formed by flexible dimers that contain azobenzene
groups. UV creates an excess of cis-isomers of a zig-zag shape that are not compatible with the
prevalent bend of the trans-isomers. Once the UV irradiation is stopped, the molecules relax to
properly bend trans-forms, restoring Ntg, as manifested by the resurrection of FCD-Is [111,112].
Ironically, the abundance of FCDs in optical textures prevented the earlier discovery of Nts since
the textures were classified as those of smectics. An excellent illustration of the similarity of FCD-
I textures in SmA and Nt and the early history of FCD observations in Ntg has been presented
by Meyer, Dozov, et al. [113—115]. Dozov and Meyer [113] proposed a coarse-grained theory of
Nt using an analogy with the chiral smectic A (SmA*), which is an SmA formed by chiral
molecules. An interesting prediction of the theory is that the core of edge dislocations should be
extended in the direction perpendicular to the line and to the Burgers vector b||X. This behavior is
opposite to that of edge dislocations in SmA*, in which the core is extended along b. Another
interesting prediction is that the line tension of an edge dislocation in Nt is smaller than that of a
screw dislocation, which is again a behavior opposite to that of a SmA*. A natural extension of
the Nt / SmA* analogy is the prediction of the twist-grain-boundary phase TGBrtg, in which
blocks of pseudo-lamellar Nt rotate with respect to each other along the direction normal to ¥;
the twist is enabled by lattices of screw dislocations [113]. In both original TGB and TGBrg, the
structure is driven by the twist term, but in the original TGB, this twist term originates in the

chirality of molecules, while in the TGBrtg, the twist is of a structural origin, caused by the
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necessity to maintain the constant bend; upon heating, such a phase could melt into an Ny rather

than a Ch.

Figure 8:Polarizing optical microscopy textures of CB60OABOBu confined in a 12 um cell in (a)
Nrp and (b) Nu. The Nt - Ny transition is caused by UV irradiation; Nts is restored after thermal
relaxation or under visible light. The sample is kept at a constant 90°C temperature. R indicates
the rubbing direction.

Typically, the FCD-Is are caused by anchoring effects, when the helical axis ¥ is tangential
to at least one of the bounding plates in polygonal textures in flat samples, Figure 7b, and
combinations of TFCD and spherical curvatures in freely suspended SmA droplets [102,116].
FCDs form “facets” of SmA nuclei coexisting with the isotropic phase [1,117]. In flat samples
with a tangential anchoring at one surface and a homeotropic alignment at another surface (the so-
called “hybrid alignment”), FCD-Is degenerate into TFCDs. [10,118] Curved interfaces or the
presence of colloidal particles also trigger formations of FCDs [119-122].

FCDs could also be created by applying an electric field [38,103]. The scenario depends
on the dielectric anisotropy Ae of Ntg calculated with respect to ¥. When Ae < 0, TFCDs nucleate
when an electric field is applied to a homeotropically aligned N, since ¥ realigns perpendicularly
to the field, Figure 9a. The TFCDs then extend into oily streaks of zero or very small Burgers
vector (for a detailed description of the geometry of these oily streaks, see Ref.[26]). Each oily
streak can be imagined as a cross-section of a TFCD extended along the normal to itself, Figure
9b. The oily streaks reach some maximum width; further extension is impossible because of a
finite anchoring at the bounding plates, as explained in detail for a similar scenario in Ch [123].

When the oily streaks fill a substantial area, they relax into square arrays of PFCDs, Figure 9.
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Figure 9: Dynamics of the Frederiks transition from a homeotropic state (extinct regions) to
TFCDs, oily streaks, and PFCD by an electric voltage 9 V, 10 kHz, applied normally to the plane
of view and to the bounding plates; Nrp phase of the mixture DTC5C9:MTC5=60:30 wt % in a
cell of thickness 5 um,; A < 0, the textures were taken with an interval of 20 s. Nucleating TFCDs
elongate into oily streaks of zero Burgers vector; the oily streaks maintain a constant width while
elongating and making U-turns; once they fill a substantial area, they transform into PFCD
arrays. Materials provided by Vitaly Panov and Georg Mehl. Experiments by Volodymyr Borsh
(unpublished).

Krishnamurthy et al. [98] explored the Nt defects in CB7CB, which is of a positive Ae.
The electric field was first applied to align }¥ perpendicularly to the bounding plates. By decreasing
the field, one observes scenario similar to that in Figure 9. The TFCDs nucleate, then extend into
oily streaks, after which the oily steaks relax into the chains or arrays of TFCDs. The difference
between Figure 9 and the textures in Ref. [98] is dictated by different surface anchoring of ¥ which,
in the absence of the field, is normal to the plates in Figure 9 and tangential in Ref. [98]. Because
of this, the bases of TFCD and the straight 180° disclinations forming oily streaks are located in
the midplane of the sample in Figure 9, while they are at the bounding plates in Ref. [98]. Note
also that PFCDs were observed by Pardaev et al. in Ntg samples subject to dilations [124].

The instability of TFCDs in Nts and their transformation into PFCDs (and double helices,
observed in CB7CB [98] and in other Ntp-forming materials [125]) is truly remarkable since from
the studies of SmA, it is known that TFCDs could be smoothly embedded into a system of flat
parallel layers and thus should not be energetically costly, Figure 7c and Figure 9a. Kleman and

Krishnamurthy [16] explained the effect using the so-called extended Volterra process and the
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relationship between FCDs and other defects, such as dislocations and disclinations, as described

below.

3.4. General properties of FCDs and attached dislocations.

The eccentricity of the ellipse controls an interesting property of FCDs, namely, their relationship
with dislocations and disclinations. The necessity of dislocations attached to the ellipse (from
outside) is easy to understand by noticing that in Figure 7a, the layers located outside the ellipse
should cross the plane of the ellipse at some angle, thus necessitating a grain boundary that could
be relaxed by a lattice of edge dislocations if the tilt is not very strong. Figure 10a helps to calculate

the sum of Burgers vectors of these dislocations as b; + b, = 2a, where a is the major semi-axis
of the ellipse; the minor semi-axis is b = /b, b, ; the total Burgers vector by of dislocations

outside the ellipse, relaxing the tilt of the layers above and below the plane of the ellipse is then

bg = by — b, = 4Va? — b? = 4ae, where e = /1 — z—j is the eccentricity of the ellipse [11,26].

The last formula suggests that TFCDs do not emit dislocations, which is expected since the TFCD
could be smoothly continued by flat parallel layers. However, a non-zero eccentricity implies the
existence of dislocations running parallel to the minor axis of the ellipse. The dislocations
connecting FCD-Is form grain boundaries [40] and oily streaks observed in many layered
mesophases such as the lyotropic lamellar SmA [26] and Ch [123]. Figure 10b,c shows the
relationship between FCD-Is of non-zero eccentricity, the tilt of layers in two adjacent domains,
and dislocations emitted by the FCD-I. The emitted dislocations might be of various types, with
the Burgers vector of each dislocation being equal to the layers’ thickness, or they might gather
into bundles with giant Burgers vectors, the cores of which split into disclinations [26,123]. In the
latter case, often met in lamellar lyotropic, SmA, and Ch phases, the optical contrast of dislocations

is high, and they are easily observed under a polarizing optical microscope [26,123].
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Figure 10: Relationship between FCD-I and dislocations. (a) Cross-section of an FCD-I
represented as a pair of dislocations with Burgers vectors by and b,; (b) FCD-Is relax the grain
boundary between two differently tiled systems of layers; (c) the eccentricity e of the ellipses
defines the total Burgers vector by = 4ae of dislocations emitted by the FCD-I’s base.

3.5. FCDs and attached disclinations in Nts.

Nts exhibits a behavior markedly different from the phases mentioned above: the
dislocations connecting TFCD-Is produce no detectable optical contrast [ 16]. Microscopic textures
in Figure 7 of Ref. [16] reveal FCD-Is of the eccentricity about 0.7 and the semi-major axis about
10-15 um. Despite the huge fotal Burgers vector bg = 4ae, expected to be 30-40 um, these
dislocations are not discernable at the background of other textural elements. Kleman and
Krishnamurthy suggested that these “invisible” dislocations are either quantized with a small
Burgers vectors 2p (remember that the period p of Nt is only about 10 nm [74,75] ), or are
“imperfect” infinitesimal dislocations that relax the structure as scales smaller than p [16]. The
necessity to involve disclinations is a more subtle issue rooted in the general concept of the

extended Volterra process developed by Kleman and Friedel [11]. In the simplest mesophases,
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such as Ny and SmA, the Volterra process is not needed to analyze the properties of defects.
However, in more complex structures, one of which is Ntg, such a consideration provides a
qualitative description of stresses involved and helps to understand textural peculiarities.

The conventional Volterra process consider a straight linear defect L as a result of a thought
experiment [4] in which (1) one creases a cut surface X ending at the defect line L; (2) the two lips
2+ and I of this cut surface are rigidly shifted with respect to each other by some distance d(M),
where M is a point at ¥; Figure 11a illustrates the case when the lips are rotated so that d increases
with the distance from L; (3) the void is filled with a perfectly ordered piece of the material (or, in
case of an overlap, a piece of the material is removed); (4) the material is left to relax, which yields
the defect L.

The shift of lips d(M) = b +f X OM is generally comprised of a translation b, which is

the Burgers vector of the dislocation part of L and a rotation f X OM, where f = 2 @ sin S is the

disclination part, called the Frank vector, defined by the angle of rotation {1 and by the unit vector
® along the rotation axis; O belongs to the line L and represents the origin of this rotation, Figure
11a. When b and f X OM are the symmetry elements of the medium, the line L is a perfect
dislocation or disclinations; when they are not, the line L is an imperfect or infinitesimal defect.

The particular geometry in Figure 11a shows a formation of a wedge disclination with f
parallel to L and b = 0 . When the medium is positionally ordered, the wedge disclination is
accompanied by edge dislocations shown in Figure 11a for a SmA with layers parallel to X; these
dislocations, with the smallest Burgers vector equal smectic spacing, carry large elastic energy,
which typically forbids the entire structure. In Ny, however, the edge dislocations are infinitesimal;
the heads of “nails” in Figure 11a could be thought of as the “ends” of the individual molecules;
the stresses introduced by L are then viscously relaxed [4].

Consider now a curved disclination L. Assume first that the Frank vector f does not change
its orientation and consider two close points O and O’ close to each other, so that OM — O'M =
t ds, where t is the tangent unit vector to the disclination and ds is the arc length element, Figure
11b. The displacements of lips at a point M viewed from O is d(M) = f X OM, while it is
d'(M) = f X O'M when viewed from O'. The difference is non-zero and, importantly, independent

of M, yielding a density of infinitesimal dislocations of the Burgers vector db = d'(M) — d(M) =

fXxX(OM—-—0OM)=—-fXxtds=-2 sin% (™ X t)ds, attached to the curved disclination.
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Figure 11: Relationship between FCD-I, TFCD, and disclinations. (a) Volterra process for a
straight wedge disclination; (b) a curved disclination emits linear defects; (c) elliptical defect of
an FCD-I emits both dislocations and disclinations; (d) circular defect of TFCD emits
disclinations, see text.

The ellipse, hyperbola, and parabola of FCDs are all curved disclinations. Moreover, the Frank
vector f along these lines changes not only the position, as in Figure 11b, but also the orientation,
as illustrated in Figure 11c for an ellipse of an FCD-I. The ellipse is topologically equivalent to a

wedge disclination loop of a strength k = % The Frank vector in the plane of the ellipse is tangent

to the layers. When the displacements of a point M is viewed from two close points O and O’ , the
displacements are not equal: d'(M) = f' X O'M and d(M) = f X OM; here, f' = f + df . The
difference is now d'(M) —d(M) = f X (O'M — OM) + df X OM = —f X t ds + df Xx OM and
represents the sum of dislocations of the Burgers vector db = —f X t ds and disclinations of the

Frank vector df, all attached to the ellipse between the points O and O'. In a SmA, any direction
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within the smectic layer is a two-fold symmetry axis, thus f could assume any orientation within
the layer. In N, Figure 5, the only twofold symmetry axis is along a vector T, which is normal to
the local director and the helicoidal axis ¥; thus f should be parallel to T and df is along the normal

X to the layers.

Therefore, curved disclination with a variable Frank vector must emit both dislocations and

disclinations. When the ellipse is a circle, the dislocations are absent, but the attached disclinations
persist. The Frank vector around the circular wedge loop is rotating, f = 2 sin % (—sing, cosy),
where ¢ is the polar angle defined in Figure 11d. Since the circular defect is a wedge disclination

of the strength k = %, the rotation angle () of the two lips of the Volterra cut is . Then the density
C df 2 : 2
of attached disclinations IEJ = l— - (cos, smcp)J =~ [16].

In SmA, these infinitesimal disclinations are fully relaxed since the molecular structure is
rotationally symmetric around the normal to the layers. When the layers show some in-plane
ordering, which is the case of SmC, SmC*, biaxial SmA, Ch, and Nrtg, this relaxation is not
possible. For example, it is well known that the FCD-Is in SmC [71,126,127] and SmC* [34]
show two disclinations of strength k = —1 each connecting the ellipse to the hyperbola. TFCDs

in a biaxial SmA, show disclinations with a variety of strengths, including k = —% and k = —1,

depending on the geometry of the secondary director field outside the TFCD [106]. In Ntg, these
disclinations might be either perfect with a well-defined strength or infinitesimal. In either case,
they are hard to observe, mostly because of a very narrow core, the extension of which should be

comparable to the pitch, i.e., only about 10 nm.
In contrast to the circular wedge disclination of strength k = %, the two parabolas of a PFCD,

Figure 7d, as well as the hyperbola of an FCD-I, Figure 7a,b, and the straight defect line of a
TFCD, Figure 7c, are all of a strength k = 1, since the normal ¥ to the layers wraps around these
defects on a full conical surface. Therefore, these defects do not omit disclinations (nor
dislocations). Kleman and Krishnamurthy suggested that this difference between the circular
disclinations in TFCD and two parabolic disclinations in Ntg is responsible for the instability of
TFCDs and their replacement by PFCDs [16]. The detailed molecular arrangements associated

with heliconical Ntg trihedron in FCDs are hard to establish because of the smallness of the pitch
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as compared to the typical extension of FCDs; this problem might eventually be solved by
numerical simulations.

Binysh, Pollard, and Alexander [128] made a step forward in deciphering the structure of linear
defects and associated textures such as PFCDs in Nt by considering line defects along which
bend, defined as B = n X curlii, vanishes. One example are wedge disclinations and edge
dislocations of strength k, described by the director field n = (sinfcosg, sinfsing, cosf). For a
disclination, the phase is ¢ = qz + k artan(y/x ), while the conical angle 6 decreases from its
equilibrium bulk value far away from the defect to 0 at the core; at the core, the director line is

straight and parallel to the rotation axis. In the edge dislocation, ¢ = qz + k artan(z/x ).

PFCDs in Ntp textures are accompanied by a macroscopic electric polarization due to the curvature
of layers, as discovered by Pardaev et al. [124]. Analysis by second harmonic generation light
scattering demonstrates that the polarization vector is in the plane normal to the axis of twofold
symmetry of the PFCD; its existence is associated with the strong deformations at the cusps of the

Dupin cyclides.

3.6. Droplets of Nts.

Droplets of liquid crystals suspended in an immiscible fluid [92,129—133] or emerging in biphasic
coexistence [99,134,135] show fascinating inner structures thanks to their non-zero Euler
characteristic, E = 2 [131-133]. Droplets produce intriguing phenomena such as the Lehmann
effect [136], spontaneous division during phase transitions [137], and demonstrate a potential for
applications in optics, photonics [138,139], and sensing [140]. According to the Gauss-Bonet
theorem, a vector field defined at a spherical surface must feature topological defects of a total
strength equal E. Topological defects that satisfy the theorem by the lowest possible value of the
net topological charges are in the state of thermodynamic equilibrium. In layered liquid crystals,
surface anchoring often requires the layers to be tangential to the interface. If there is a vector order
parameter within the layers, this packing results in two disclinations of strength k = 1 or one
disclination of strength k = 2 [4,71]; the latter resembles the Dirac monopole [70], as already
alluded to. In Ch, the structure is known as the Frank-Pryce configuration [141,142]. As a rule,
one observes one disclination of a strength k = 2 and sometimes two disclinations of a strength
k = 1each[133,143,144]. Numerical simulations by Se¢ et al. [145] demonstrate that the structure

with k = 2 is energetically preferable for a sufficient droplet diameter-to-pitch ratio.
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Freely suspended spherical Ntg droplets have been studied only recently [92,99,135]. Eremin et
al. [92,146] observed stripes at the droplets’ surface, which were attributed to the surface anchoring
effect and formation of an analog of a “fingerprint” texture known in Ch, which is formed when
the helicoidal axis is tangential to the interface. Textures in Fig.10 of Ref. [92] do show radial lines
that might be related to the k = 2 disclinations of the Frank-Pryce structure or to the axial defect
of'a TFCD embedded into the concentric packing of Ntg pseudolayers [102]; however, the analysis
in Ref. [92] concluded that these lines represent “U-turns” of folded phesudolayers.

An evidence of the Frank-Pryce structure with a radial k = 2 disclination was presented by
Krishnamurthy et al. [99] in elegant experiments in which the Ntg droplets were formed in the
biphasic Nu-Nrtg region. The ¥-axis of an Ntg droplet arranges into a radial point defect-hedgehog,
being perpendicular to the Ntg-Ny interface. The radial defects are more prominent in small
droplets (10-20 pm) than in larger ones. As the droplets become larger and touches the bounding
plates, the Frank-Pryce structure changes completely, by splitting the central radial point defect
into an extended loop with a thick core and a complicated structure. The most recent study of Nt
droplets [135] explored the fact that the surrounding N phase forms a hyperbolic hedgehog so that
the Ntg droplet together with a satellite hedgehog is of dipolar symmetry. Because of this
symmetry, the droplets could be transported by an applied electric field, which interacts with the
Nu director through dielectric and flexoelectric mechanisms [135], similarly to the electrophoresis

of colloidal particles in Ny [147].

The structure of the Nt defects was also studied in lens-shaped sessile droplets of a
photoresponsive flexible dimer by Yoshioka et al. [ 148] In contrast to the majority of conventional
calamitic N materials, the LC—air interface of the present dimer nematic imposes a planar
anchoring. Geometry-dictated competition of this anchoring at the curved LC-air interface with
the substrate anchoring, together with the elastic anisotropy of Ntg induces unique frustrations in
the structure of the droplets. It was found that large Ntg droplets residing at a plate with a
homeotropic alignment have different structures in the inner and outer regions, Figure 12a. The
striped texture of the outer region can result from the Nt pseudo-layer structure. Nt droplets at
planar substrates show stripes decorated with zigzag undulations, Figure 12b. Such stripes and

undulations are often observed in SmA shells [149,150] and, as already stated, in Ntg planar cells
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[88,111,151]. The pseudo-layered structure of Ntg buckles in response to the constraints imposed

by the curved surface and by shrinkage of layers upon cooling, Figure 12c.

Figure 12: Polarization micrograph of spherical-cap droplets in the Ntg phase placed (a) at a
plate with a homeotropic anchoring and (b) at a plate with unidirectionally planar alignment
along the vertical direction. (c) Model (borrowed from [150)) for the stripe domains of the sessile
Nt droplets on the planar substrate. In this model, the pseudo-layered nature of Nt is the cause
of the stripes and undulations. Dotted lines show the direction of the pseudo-layers. The ellipses
show the point-by-point distributions of the N directors projected onto the plane. Dashed layers
indicate the projection of the pseudo layers toward the plane and look thinner near the poles due
to the larger tilt with respect to the plane.

4. DEFECT-MEDIATED PHASES OF BENT-CORE LIQUID CRYSTALS
In liquid crystals, defects often correspond to the ground state of the system. A simple example is
a spherical N droplet that carries either two-point defects at the poles or one point defect in the
bulk, depending on whether the surface anchoring is tangential or perpendicular. The energy
minimum is achieved by balancing the surface anchoring and bulk elastic energy (the surface
tension term in thermotropic LCs is often much larger than the other two terms, which explains
the nearly spherical shape of the drops). There are also cases when the defects occur to relieve
internal frustrations in the bulk, in which case they are an intrinsic part of the structural

organization of the mesophase.

A well-known example are the blue phases (BP) that appear between the isotropic and cholesteric
phase. They often exhibit a submicron scale twist and show selective reflection in the visible range.
The first examples observed by Reinitzer [152], Lehman [153], Friedel [1], then by Gray [154]

showed blue color (hence the name). In addition to the structural color, it was also shown that the
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BP phase has no birefringence, but is optically active, indicating chiral, deformable structure of
high symmetry. Based on this, without much experimental details, it was already suggested in
1969 by Saupe [155] that the blue phase has a periodic structure formed by cylindrically symmetric
local director configuration in which the preferred orientation rotates along all directions
perpendicular to the symmetry axis. The local configuration corresponds to a doubly twisted
cylinder, where at the edge of the cylinders the director is twisted with respect to that of the core.
The idea eventually led to the modern understanding of blue phases as packings of cylinders with
double twist. Chiral interactions of molecules favor the double twist as opposed to the one-
directional twist. However, as one moves away from the axis of the cylinder, the double twist is
gradually transforming into a one-directional twist with a reduction of the energy gain. The radius
of the cylinder is thus limited, typically by a length scale comparable to the half-pitch. The finite-
size cylinders could not tile space continuously. The frustration between the local double twists
and continuous tiling is resolved by a lattice of disclinations that form at the junctions of the
cylinders [156—-158]. These disclinations could be distributed regularly or irregularly, forming
various subclasses of the blue phases. Similar structures could also be observed in smectic

materials [159].

Chiral mixtures of rod-like and bent-core molecules often produce blue phases with an extended
range of the thermodynamic stability blue phase II (BPII) has been prepared [160] and its
electrooptical performance has been evaluated. A broad (>20°C) range BPIII phase showing
electrooptical switching in a few tens of milliseconds was obtained by Taushanoff et al by adding
a few percentages of chiral dopant to achiral bent-core nematics. [161] It was proposed that broad-
temperature range smectic nanoclusters inhibit the long-range order of the double twisted helical
structures and stabilize the amorphous BPIII phase.

Another example of frustrated mesophases with defects is the twist-grain boundary smectic A
phase (TGBA*) predicted theoretically by Renn and Lubensky [162]. The model is based on the
analogy between smectics and superconductors proposed by de Gennes. [163] The TGBA* phase
was experimentally observed by Goodby et al. [164] In TGBA*, the frustration is between the
chiral interactions and the tendency of smectic layers to preserve equidistance. The frustration is
resolved by introducing twist grain boundaries comprised of screw dislocations that separate

blocks of smectic ordering, allowing them to twist with respect to each other. The phase is stable,
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because the increase in the free energy due to the introduction of the grain boundaries is less than
the decrease of free energy due to the director twist. The pitch p of the TGB phase is determined
by the distance between grains / and the rotation angle a of the director in crossing a grain

boundary, as p = 2ml/a. For example, if /=25 nm and a=mn/9, then p=450 nm.

Bent-core liquid crystals exhibit an even richer variety of defect-mediated phases than
calamitic LCs. Some of them (possible TGB phases and broad temperature range blue phases)
result from the intrinsic molecular chirality induced by chiral dopants, or chiral stereo center built
in the bent-core molecules, while the twist-bend modulated smectic phase, dark conglomerate
(DC) phase, helical nanofilament (HNF a.k.a. B4) phase and polarization modulated (a.k.a. B7)

phase are triggered by the spontaneous chiral symmetry breaking in achiral systems.

4.1. Chiral NtB - possible TGBT1B phase

One of the interesting questions related to bent-shaped materials is how the structural chirality of
the Ntg phase responds to the presence of molecular chirality. The effect of the chiral additive on
the Nt structure is of interest to the entire liquid crystal science since it represents an interaction
between molecular chirality and spontaneous chiral symmetry breaking with ambidextrous
nanoscale chirality. It has been studied theoretically by Longa et al. [165,166] using a Landau-de
Gennes theory of Ntg, supplemented by a term representing intrinsic molecular chirality. Besides

N*and N}, the model also predicts a globally polar and chiral twist-bend nematic N7gp with a

periodicity of the director field comparable to that of the N* phase.

A natural extension of the Ntg / SmA* analogy is the already mentioned prediction by
Dozov and Meyer [113] of the twist-grain-boundary phase TGBts, in which blocks of pseudo-
lamellar Ntg rotate with respect to each other along the direction normal to ¥; the twist is enabled
by lattices of screw dislocations. In both original TGBA* and TGBrs, the structure is driven by
the twist term, but in the original TGBA*, this twist term originates in the chirality of molecules,
while in the TGBrg, the twist is of a structural origin, caused by the necessity to maintain the

constant bend; upon heating, such a phase could melt into an Ny rather than a Ch.

The first experimental observations of the effect of molecular chirality on the structure of flexibly

bent dimeric molecules showed that the helical pitch becomes distorted [167] or is even unwound
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[168], in the chiral Ntg (N+g) phase. Gorecka et al [169] found direct transition between the N”
and Ntg phases for asymmetric bi-mesogens in which rod-like units are connected with a
cholesteric unit, whereas mixing chiral moiety to a symmetric achiral bent-shape dimer
(CB60CB), Walker et al [170] found an intermediate phase with square lattice between the N* and
N1g phases. Such a structure was attributed to the low bend elastic constant in the bottom of the
N* phase.[171] Walker et al [170] also described the first examples of the Ny phase formed by
H-bonded donors and acceptors. The properties of this Ntg material strongly resemble those
previously observed in covalently bonded materials. The temperature range of Ntg is wider than
that of the conventional Ntg phase exhibited by achiral materials; upon cooling, Npg transitions
into a SmC*. [172] Using chiral additive with very high helical twisting power, the existence of a

novel Ny phase was reported also at the temperatures below the Nty phase. [173]

Using resonant soft x-ray, induced circular dichroism and several optical microscopy experimental
techniques, Murachver et al reported the first quantitative results on the effect of chiral additives
on the nanostructure of a room temperature mixture of LC dimers abbreviated KAO0.2. [174] They
found that while the chiral additive causes the micron-scale pitch of the dopant-induced helical
structure to decrease with increasing dopant concentration in the N* phase, in the N1g phase both
the micron-scale helical pitch and the nanoscale pitch of the ambidextrous spontaneous heliconical
structure are increasing. At concentrations ¢2wt% of a chiral dopant, a new phase, resembling
TGBA* and termed TGBtp phase, appears between the N* and N phases. Such a phase is
plausible since the Ntp phase formed by flexibly bent-shape molecules has a pseudo-layer
structure due to the nanoscale helix, therefore, like the TGBA™* phase of layered SmA phase, the
addition of chiral dopant may lead to twist-grain boundary phase. The illustration of the structures

of the N*, N1g and the proposed TGBrg phases are shown in Figure 13.
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Figure 13: Schematic illustration of chirality transfers due to chiral additives (purple rod with
white grooves to illustrate molecular chirality) in the N and N1s phase. (a) Chiral additives in the
Nt phase, the molecular chirality may modulate the nanoscale pitch, or (c) it can break the pseudo
layers into blocks that rotate with respect to each other (TGBrtp).

4.2. Dark Conglomerate phase

The dark conglomerate (DC) phases, as the name indicates, are optically isotropic phases that
exhibit conglomerates of macroscopic chiral domains. The internal structure consists of polar
smectic layers with relatively short interlayer correlation length. Freeze-fracture TEM images
revealed that in the DC, although the local layering is well defined, the layer topography is highly
curved, forming saddle-shaped domains. [107] The in-layer frustration, caused by orthogonal
tilting of the molecular segments in the upper and lower halves of each smectic layer, can be
relieved by saddle-splay curvature. As a result, the DC structure is a 3D mesh of saddle-splay
domains with significant negative Gaussian curvature of the smectic layers, Figure 14. Freeze-
fracture TEM textures reveal edges of saddle-shaped layers [red arrow, Figure 14a; magnified in
Figure 14b] involved in the formation of the mesh. The thermotropic DC phase resembles the
sponge L3 phase in lyotropic lamellar phases formed by wedge-shaped amphiphilic molecules
[175].
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Figure 14: Freeze-fracture TEM (a and b) and polarized optical microscopy images (e) of DC
phase formed by a (c,d) mesh of saddle-splayed domains, (f) modelled as conically-limited TFCDs

with radii of curvature R’ and R” of opposite signs. Parts a-e are reproduced from Ref. [102]
with permission.

The microscopic textures of the DC phases appear dark under crossed polarizers, because the
birefringent regions are oriented randomly at sub-micron length scale, middle image of Figure 14e.
[176] The phase exhibits chiral domains of opposite handedness, which are readily revealed by the
circular dichroism in observations with uncrossed polarizers, top and bottom images of Figure 14e.
A sufficiently high electric field transforms the sponge structure into a highly birefringent texture
[177-180] with a synclinic and ferroelectric order (SmCsPr) that has long-range interlayer

correlations.

The DC structure with local saddle-splay deformations of layers could be modelled as a 3D mesh
of interconnected TFCDs, Figure 14c¢,d,f. Each TFCD is constructed by a family of parallel saddle-
splay smectic layers with negative Gaussian curvature wrapped around a circular base and a central
axis passing through the circle’s center, Figure 14f. The normals to the layers are straight lines
connecting the circle to the axis. The domain is limited by two conical surfaces which facilitate
tiling of space with differently oriented TFCDs. Observe the difference with the TFCDs limited
by circular cylindrical surfaces, Figure 7c, which could be smoothly embedded into a stack of flat
parallel layers, a common feature of textures in conventional smectics and Ntg, Figure 9. The
saddle-splay is not compatible with a long-range positional order and could be realized only
locally. The free energy density depends on principal curvatures ¢’ = 1/R" and ¢"” = 1/R",

where R" and R" are the principal radii of curvature of opposite signs, depicted in Figure 14f[102]:

f= %K(a’ +0")2 +Ko'c" +G(c' —a"), (1)
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where K >0 and G > 0, but K < 0 to penalize pure saddle splay. The combination of the mean
curvature K term and the Gaussian K-term favors flat layers, while the saddle-splay deformations
are driven by the last G-term; this term reflects the tendency of layers to twist along the polarization
direction which is in the plane of the layers. Using the analytical expressions for 6’ and ¢’ within
a TFCD [4,41], Hough et al [107] demonstrated that the saddle-splay structure is energetically
preferable than flat layers if the typical radius and height of the domain is a~10d(1 — 3K/K ),
where d = 4 nm is the smectic layer thickness. Assuming K/K ~ — 1 , the result a~200 nm is

consistent with the observed structure, Figure 14a.

4.3. Helical Nanofilament Phase (HNF).

Another intriguing bent-shaped LC defect phase with a 3D nanostructure is the Helical
Nanofilament (HNF) phase (a.k.a. B4 phase). FFTEM studies of the HNF phase revealed an
assembly of twisted layers stacked to form chiral nano-bundles of a width w~40nm and pitch

»~200 nm. [181,182]

As in the case of DC, the hierarchical self-assembly of HNF originates from the shape of the bent-
core molecules that form well-defined smectic layers with in-plane order, macroscopic
polarization, and tilt of the molecular planes, which makes the individual layers chiral. A crucial
feature is that tilts of the upper and lower halves of the bent-core molecules are not coplanar. This
mismatch between the top and bottom halves of the smectic layers is relieved by their local saddle-
splay deformations. HNFs are immensely attractive for photovoltaic and chiral separation
applications and as templates for the chiral spatial assembly of guest molecules [183].

The individual HNF has been modeled as a bundle of twisted ribbons , Figure 15a. [181]. Within
the bundle, the central smectic layer is a minimal surface. The free energy density, given again by
Eq.(1), is reduced to a particularly simple form f = —Ka? + 2Go for this minimal surface, as

o' = —¢" = 0. Minimization suggests that the preferred curvature is 6p = G /K, which relates the

pitch to the elastic moduli, p = 2m/op = 21K /G.

Matsumoto et al. [184] demonstrated that the twisted bundles of smectic layers, Figure 15b, could
be obtained by minimizing the Landau-de Gennes free energy of a SmA comprised of chiral
molecules. The solution is a local phase field that can be expressed in cylindrical coordinates as

¢ = rcos(q,z — 6), where 8 = (q,z, q,z + 1) is the two-dimensional surface of a helicoid.
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Figure 15: Models and Transmission Electron Microscopy (TEM) images of helical nanofilaments
(HNF). (a) Model proposed by Hough et al. [181]; (b) Model proposed by Matsumoto et al. [184].
(c) Model of giant screw dislocation corresponding to the TEM image in the inset of (e). (d)
lllustration of the overlapping helical filaments corresponding the TEM image shown in (e).

Freeze Fracture Transmission Electron Microscopy (FFTEM) studies show that the HNF
organization is fragile and transforms into focal conic domains near a glass substrate [185]. Cryo-
TEM studies on the prototype HNF materials, phenylene bis(alkoxyphenyliminomethyl) benzoate
series, PnNOPIMB [186,187] with n= 7, 8, 9 and 12 carbons in their alkyloxy tails, show stripes
parallel to the filament axis separated periodically by distances corresponding to half of the pitch,
as seen in Figure 15e. Such a structure agrees with the model in Figure 15b.

Some HNF textures reveal screw dislocations of a giant Burgers vector [12,188], see inset
in Figure 15e. These giant screw dislocations were demonstrated by Kleman [3,4] to split into two
intertwined disclinations of strength k = 1/2 that wrap around a cylindrical surface containing
nested helicoidal smectic layers, Figure 15¢. The period p of the helicoidal disclinations equals the
Burgers vector b. It is usually on the scales of tens of micrometers, orders of magnitude larger than
the nanometer thickness of smectic layers. The model, proposed in 1977 [3,4], explained peculiar
“double helices” textures of thick slabs of SmA [189]. Its construction is explained in the next
subsection, in which we discuss supramicron-scale helical ribbons in the B7 phase. Remarkably,
the Kleman’s model, derived from geometrical and elastic properties of screw dislocations in SmA,
is practically identical to the HNF models of Hough et al. [181] and Matsumoto et al. [184],

compare Figure 15c to Figure 15a,b.
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Sufficiently thick films of n=8,9 homologs exhibit nanofilament layers stacking on top of each
other in a twisted fashion, with the twist angle about 40° between subsequent layers. The structure
thus features a double twist of a type different from the one in blue phases. One axis of the twist
is along the axis of each nanofilament; the orthogonal second axis of twist is associated with the
rotation of nanofilament layers. This double twisted structure explains both the observed structural
blue color of some HNF materials and their ambidextrous optical activity. [190] A sketch of this
arrangement is shown in Figure 15d where the filaments running in different directions are shown
by yellow and light blue lines. Figure 15¢ shows the corresponding TEM texture of a film with

two layers of twisted filaments.

HNFs made from achiral bent-shape molecules are macroscopically racemic consisting of left and
right-handed homochiral domains. HNFs containing chiral dopants or formed by chiral molecules
[191,192] are either homochiral or diastereomeric with unequal amounts of left and right-handed

HNF nucleation [193].

Modulated helical nanofilament phases (HNFmod and HNFod2), characterized by an additional 1D
and 2D in-layer modulations were recently found as well. [194,195] The handedness of the
resulting HNF 042 phase is controlled by the longer arm of the nonsymmetric bent-core molecules.
[196] Heliconical-layered nanocylinders composed of up to 10 coaxial heliconical layers, which
can split or merge, braid, and self-assemble into a variety of modes including feather- or
herringbone-type structures, concentric rings, or hollow nest-like superstructures were also found
for a class of tris-biphenyl bent-core molecules with a single chiral side chain in the longer para-
side of the molecule. These multi-level hierarchical self-assembled structures, rivaling muscle
fibers, display blue structural color and show immense structural and morphological complexity.

[197]

4.4. B7 textures

Bent core materials with bulky molecular moieties such as NO> in their central benzene ring
[198,199] form peculiar micrometer-scale helical patterns and freely suspended filaments [200—
205]. Although the textures observed upon moderate-rate (<1C/min) cooling from the isotropic
phase are very complicated (see Figure 16a,b), all of these structures contain some periodicity

comparable to the film thickness. [198]

33



Interestingly, under very slow cooling (~1°C/hour), the stripes become oriented uniformly over
large (mm-size) areas, Figure 16(c,d). [206] These textures can be understood as parallel arrays of
coaxial layers separated by periodic defects as illustrated in Figure 16(d). Before their

nanostructure was understood, these textures were labeled as B7 phase.

Figure 16: Typical peculiar textures seen in polarizing microscope when bent-core materials are
cooled from the isotropic (black background) to the B7 textures. (a) and (b) Cooling rate: 1°C/min.
(c) and (d) Stripe texture formed after very slow (8mK/min) cooling. (c) shows a larger area, while
(d) represents a small area with the proposed layer structure.

The amazing optical B7 textures attracted intense research interest
[58,198,212,213,199,200,204,207-211]. An extensive study by Nastishin et al. [188] revealed that
upon fast cooling from an isotropic phase, B7 phase of a material D14F3 formed by achiral
molecules nucleates as individual helicoidal ribbons (HRs) of both handednesses. The pitch p is
on the order of tens of micrometers, Figure 17a,b, much larger than the 200 nm pitch of similar
formations in the HNF phases. There are two types of the HRs, called respectively slim (S) and fat
(F) filaments because of the difference in their width w, Figure 17a,b. The HRs show a pronounced
unidirectional growth along their axis. Nucleating ribbons quickly elongate until they reach the

sample’s boundaries or other nuclei.

To explain the HRs, Kleman and co-workers considered B7 phase as being formed by smectic
layers with an in-layer periodic 1D modulation, the direction of which rotates helically from one
smectic layer to the next . [12,188] This B7 ordering is called “lamello-columnar”, the “columns”

being the elements of modulation. The question is whether the lamello-columnar structures with
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helicoidally twisted modulations could be deformed while remaining isometric, i.e., preserving the
parallelism of layers and equidistance of modulations. The answer is affirmative, if the structure

represents nested helicoidal layers [12,188].

The nucleating HR of B7, according to Refs. [12,188], is built around a parental central smectic
layer in the form of a ruled helicoid, generated by a straight line perpendicular to the helical axis
and rotating with a pitch p about it, Figure 17c. The parental helicoid is a minimal surface with a
vanishing mean curvature o’ + ¢"" = 0. The adjacent smectic layers are shifted along the normal
to the axis, forming a bundle of parallel nested helicoids, Figure 17d. The focal surfaces of these
nested helicoids form two intertwined k = 1/2 disclinations twisted around each other on a
cylindrical surface of a diameter w = p/m. Up to this point, the construction is the same as for a
screw dislocation of a giant Burgers vector b = p [3,4]. What makes it applicable to the lamello-
columnar structure of B is that the “columns” within the smectic layers, represented by helicoidal
lines in Figure 17d wrapping around the central axis, preserve their equidistance. These columnar
modulations experience a helical twist from one layer to the next. Since the twist extends radially
from the HR axis, it is a double-twist, similar to the double twist of the director in blue phases. In
a particular ribbon, the twist is either left-handed or right-handed, as expected because of achiral

nature of the molecules.

The model imposes a strict relationship between the pitch and the diameter of the HR, p = nw,
which is very close to what is the observed experimentally for slim filaments [188]. It also supports
the experimental observation of the fast unidirectional growth. The unidirectional character of the
growth of HRs is distinctively different from the multidirectional growth of smectics growing from
their melt in form of battonets [1,4,8,117]. HR nuclei, meeting on their growth, do not coalesce,
remaining mutually impenetrable. This steric interaction suggests that the HRs have well-defined
geometric boundaries, beyond which they cannot extend and within which any distortion increases

the energy. The behavior is akin to that of impenetrable FCDs [4].

On slow cooling, the HRs nucleate together with non-helical objects with the geometry of
developable domains (DDs), common in columnar phases with 2D translational order. When a
sample is allowed to anneal at a fixed temperature, the HRs show their metastable nature,

transforming into non-helical DDs. [191]
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One peculiar shape is a DD built around a point defect, Figure 18a, theoretically predicted by
Kleman [43] for columnar phases. The Kleman singular point DD is limited by a sphere and a
double cone with its apex at the sphere’s center, Figure 18b. Parallel bent columns are packed on
concentric equidistant spheres. Each column starts at the surface of one cone, runs along a 3D
curve along the surface of a given sphere and ends at the other cone. Other columns are obtained
by axial rotations. The 2D translational order is preserved at the planes perpendicular to the
columns. Although the bent columns are wound along the spheres, forming a chiral (left or right)
structure, the system of parallel columns does not suffer twist (icurlit = 0) nor splay (divii = 0).

The only orientational deformation is the bend fi X curli of the columns.

Interestingly, the bent-core materials with HR nucleation from the isotropic phase, can be pulled
into smooth cylindrical filaments suspended in air. [200] These filaments are very similar to those
found in columnar LCs [214] further enforcing the lamello-columnar structure proposed by

Kleman et al. [12,188].

Figure 17: (a) Slim and (b) fat helical ribbons (HRs) of a B7 texture nucleating from an isotropic
phase; modified from Ref. [188]; (c) Parental minimal surface of the HR in the shape of a ruled
helicoid; (d) nested smectic layers built by translations from the parental helicoid. In part (c) and
(d), the heliconical lines represent “columns” within the smectic layers, the layers and columns
preserve parallelism and equidistance.
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Figure 18: Kleman singular point developable domain: (a) apparent texture in a B7 phase [188];

(b) geometry of equidistant columns wrapped around concentric spherical surfaces.

Small angle x-ray scattering (SAXS) [198,207,210,215] studies of materials showing the HR B
textures revealed a number of peaks [207,210] that can be indexed by a slightly oblique monoclinic
2D unit cell with a~3-5 nm and »~8-20 nm periodicities. These were interpreted as undulated
layers [207,213,216] that form to avoid density modulation related to ferroelectric polarization
splay and the tilted director structure. Later it was proposed that for some of these materials, the
layers undulations are so strong that the layers break into small ribbons, which means that they
can be considered as a columnar (originally known as Bi) phase. [210,217] Recent TEM
observations of ~100 nm thick films showed that the layer undulations appearing in bulk as the

consequence of the polarization splay can be suppressed in thin films. [218]

5. CONCLUSIONS
Small departures of molecules from the conventional rod shapes produce remarkable changes in
self-assembly of LC phases, as demonstrated by the twist-bend nematic Ntg, helical nanofilament
(HNF), dark conglomerate (DC), and the polarization modulated (B7) phases. Topological defects
in them show new features. For example, torical focal conic domains (TFCDs) that are ubiquitous
in layered mesophases such as a thermotropic SmA, are of limited stability in the pseudolayered
Nrg, transforming into parabolic focal conic domains (PFCDs) [16]. Furthermore, in SmA and
lyotropic lamellar phases, generic FCDs of nonzero eccentricity emit edge dislocations that are

clearly discernable under a polarizing optical microscope, while in Ntg, these dislocations are not
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visible. Kleman and Krishnamurthy suggested that the plausible reasons might be an “infinitesimal
imperfect” character of the dislocations or a small nanoscale value of their Burgers vectors [16].
Another important feature predicted for FCDs in Nrtg is that they should emit disclinations [16],
an effect known for FCDs in SmC, but not in SmA. One of the most notable scientific
achievements of Maurice Kleman was the development of homotopy classification of defects in
ordered media [45—-47], which connects the type of ordering to the entire set of topologically
permitted defects in it. For relatively simple phases, such as Ny, homotopy classification recovers
results that have been already obtained by a more laborious analysis of the elastic energy.
Examples are the escape of k = 1 disclinations into the third dimension and mutual equivalency
of all half-integer disclinations. The true power of homotopy classification is revealed when the
organization is more complex, which is the case of superfluid phases of He-3 [65] and biaxial
nematic Ng [68]. The homotopy classification predicts that two 1/2 disclinations crossing each
other in N might leave a third disclination of a strength 1 that connects the two initial ones [68].
Observation of this event would be an unambiguous proof of the biaxial order since in a uniaxial

Nu, the disclinations cross each other freely.

In the examples above, topological defects appear as departures from the equilibrium uniformly
aligned states, stabilized by surface anchoring, external fields, or trapped in metastable states while
relaxing from an externally induced perturbation. In some cases, defects serve as a building unit
of an equilibrium bulk structure, relieving frustrations between competing tendencies, such as a
double twist and space tiling in blue phases. Bent-core materials show a rich spectrum of phases
with defects. In particular, the DC phase could be considered as a mesh of interconnected and
disoriented small TFCDs of negative Gaussian curvature of molecular layers [107]. HNF and B~
phases show similar motifs of helicoidally nested smectic layers, albeit on different length scales,
hundreds of nanometers and tens of micrometers, respectively. Their structures, deciphered only
recently, bears a strong similarity to the model of screw dislocation of a giant Burgers vector,
proposed by Maurice Kleman on the ground of geometrical and elastic properties of layered liquid
crystals. Not surprisingly, the generality of geometrical constructions discovered in liquid crystals
extends to other systems, most notably those of biological origin. In particular, the helical ribbon
structures bear similarity to Kleman’s model [30] of DNA packings in chromosomes of
Dinoflagellate, in which the DNA molecules, aligned along the straight lines in Figure 17¢c,d,

combine twist with 2D periodic translational order.
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We expect that knowledge uncovered so far in the studies of defects in bent-core liquid crystals,
to which Maurice Kleman contributed greatly, will be of inspirational help in the studies of other

complex materials.
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