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ABSTRACT:  

Topological defects and defect phases of rigid and flexibly bent-shaped liquid crystals are 

reviewed with emphasis on how they are affected by the departure of molecular shapes from a 

simple rod.  The review discusses defects in bent-core uniaxial and hypothetical biaxial nematics, 

twist-bend nematic, and various frustrated layered bent-core liquid crystals, such as twist-grain 

boundary phase, nanoscale helical nanofilament phase, and the so-called B7 textures with helical 

ribbons.  

1. INTRODUCTION 

The spatial organization of liquid crystals (LCs) is governed by molecular shapes and interactions 

and reveals itself at the macroscopic scale by anisotropic properties and various textures with an 

abundance of topological defects. LC defects, representing singular and non-singular distortions 

of the orientational order, carry signatures of the undistorted ground LC state and bear specific 

information that helps to identify phases in newly synthesized materials. It was the line defect-

disclinations that prompted G. Friedel to assign the name “nematic” to the simplest LC, the 

uniaxial nematic (NU), and it was the focal conic domains (FCDs) that revealed to him the layered 

molecular-scale organization of smectics [1]. Small variations of molecular shapes produce 

remarkable changes in the self-assembly of liquid crystalline phases, as demonstrated by the 

discovery of the twist-bend nematic formed by flexible dimers, which represent two rod-like 

molecules connected by a flexible aliphatic bridge of a bent conformation; if the bridge is straight 

or absent, the molecules form a conventional NU. Uncovering properties of LCs and defects in 

them is not a simple task, as it involves, citing P.G. de Gennes, “a certain sense of vision in three-
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dimensional space in order to visualize complex molecular arrangements.”[2] Maurice Kleman 

was one of the pioneers in the field, whose vision laid a foundation for the modern knowledge of 

defects in LCs and other ordered media, summarized in his monograph [3,4] and reviews [5–11]. 

“So full of shapes is fancy, 
That it alone is high fantastical.” 

 
 These lines by William Shakespeare from Twelfth Night [I, 1, lines 14-15], were selected 

by Maurice Kleman as an epigraph to the paper [12] , to express the richness of geometrical forms 

associated with defects in LCs formed by bent-core molecules.  The choice reflects his life-long 

fascination with defects in condensed matter, which resulted in remarkable achievements, 

including elucidation of the fine structure and properties of line defects in cholesterics [5,13,14], 

uniaxial [15], twist-bend [16], and biaxial nematics [17], thermotropic [18–25] and lyotropic 

smectics [26–28], columnar [29,30] and twist-grain-boundary [31,32] phases, predictive 

descriptions of FCDs in smectics [26,33,42,34–41], and developable domains [43,44] in hexagonal 

columnar liquid crystals, general classification of defects in ordered media by the homotopy group 

theory [45–47]. 

This review explores how the topological signatures of defects in LCs are affected by the 

departure of molecular shapes from a simple rod. The focus is on the bent shape, which resembles 

a boomerang or a banana.  Flexible dimers are the most recent addition to this family, although 

they are “bent-bridge” rather than bent-core mesogens.  In Chapter 2 we discuss defects in bent-

core uniaxial and hypothetical biaxial nematics, Chapter 3 is devoted to the description of defects 

in the twist-bend nematic, and Chapter 4 summarizes the studies of defects in various frustrated 

bent-core LCs, such as twist-grain boundary phase, nanoscale helical nanofilament phase (HNF), 

and the so-called B7 textures with helical ribbons. Chapter 5 provides an outlook. 

2. UNIAXIAL AND BIAXIAL NEMATIC PHASES  

Focused studies of the defects in the uniaxial nematic (NU) phase of bent-core molecules are 

scarce. A notable exception is the exploration of twist disclination loops by Krishnamurthy, 

Tadapatri, and Weissflog. [48] These loops, first introduced in the theoretical paper by Friedel and 

de Gennes [49], are topologically trivial in the sense that they could shrink into a uniform state. 

They separate a twisted state from the planar state. Depending on whether the twisted state is in 

the interior or exterior, one distinguishes L(T) and L(P) loops, respectively, Figure 1(a). 
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to 𝐇, but it is distorted across the boundary, Figure 1c. These features are characteristic of inversion 

wall loops [51]. The inversion walls form in the presence of an external field or surface anchoring 

that forces the director to align along a single direction in space [4], e.g.,  ±𝐧̂||𝐇 in the experiment 

[50].   Under this constrain, the inversion walls are topologically equivalent to Néel and Bloch 

walls in ferromagnets, in which the two opposite directions of magnetization are set by crystal 

anisotropy [52]. The inversion wall separates two domains with antiparallel orientations 𝐧̂ and −𝐧̂; 

across the wall,the director realigns by π In the Néel type, 𝐧̂ rotates around an axis perpendicular 

to both the wall and the director, forming splay or bend distortions, both of which  generate a 

flexoelectric polarization [53], rendering the local wall structure non-centrosymmetric, despite the 

centrosymmetric nature of an undistorted NU.  

 A strong effect of elastic constants on the structure of defects is observed in NU formed by 

acute-angle bent-core molecules of a shape resembling a letter 𝜆, Figure 2a [54]. The measured 

splay elastic constant is anomalously weak, 𝐾11 = 2 pN, significantly smaller than the bend 

constant 𝐾33 = 15 pN and even the twist constant 𝐾22 = 5 pN. The smallness of 𝐾11 leads to a 

pronounced bias of defects towards configurations with splay, in the nuclei emerging from the 

isotropic phase, Figure 2b, and in Schlieren textures, Figure 2c [54].   

 
Figure 2: (a) Acute-angle bent-core molecule 1,7-naphthylene bis(4-(3-chloro-4-(4-
(hexyloxy)benzoyloxy)phenyliminomethyl) benzoate) forms NU with a small splay elastic modulus, 
which results in prevalence of splay deformations in (b) NU nuclei forming on cooling from the 
isotropic phase and (c) Schlieren textures; +1 defects surrounded by dashed circles are of radial 
type. 
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Although the bent-core LCs have been known for about a century, see Ref. [55] for a brief 

review, the explosion of interest to them happened only after the rod-like NU counterparts have 

already demonstrated spectacular performance in LC displays. The idea was to find a biaxial 

nematic NB, which could be switched faster and by a lower electric field than NU.  Bent-core 

molecules seemed to be natural candidates, as the secondary director could be associated with the 

“cusp” of the shape. The NB phase was theoretically described by Freiser [56] as being of 

orthorhombic symmetry with physical properties different along three mutually perpendicular 

directors  𝐧̂ ≡ − 𝐧̂, 𝐦̂ ≡ − 𝐦̂, and 𝐥̂ ≡ − 𝐥̂.  

To this day, however, the existence of NB in thermotropic systems remains elusive, despite 

the intense search. First, Li et al.[57] demonstrated the NB phase in a material formed by cyclic 

(ring-like) molecules. The search expanded to bent-core molecules after Niori et al. [58] showed 

that they could form a biaxial smectic.  The difficulty in identifying NB is that most of the 

experimental techniques test the properties of the material averaged over the sample bulk [55].  As 

a result, the presence of inhomogeneities, such as deformations of the uniaxial director 𝐧̂, caused 

by anchoring transitions [59–61], or by flows triggered by thermal expansion [62,63], could be 

erroneously interpreted as an apparent biaxiality. In some cases, the remedy is simple. For 

example, one could apply an electric field to align 𝐧̂, and then explore whether the material is 

birefringent in the orthogonal plane [59,60]. However, when the material of a negative dielectric 

anisotropy (measured with respect to 𝐧̂), this approach would not discern between NU and NB.   

A robust approach to test the long-range biaxial order, alternative to the volume-averaging 

techniques such as optical conoscopy, X-ray, or NMR, is through topological defects, especially 

those that correspond to the equilibrium ground state of the mesophase in confined geometries. 

Line defects (disclinations) and point defects (hedgehogs and boojums) in NU and NB show 

dramatic differences as discussed below. 
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Point defects provide another opportunity for an experimental test of bulk biaxial order.  

Isolated point defects cannot exist in NB, Figure 4c. For example, a radial configuration of one 

director implies that the two other directors are defined at a spherical surface and thus should form 

additional singularities emanating from the center of the defect, similarly to the famous “Dirac 

monopole” with a radial point defect-hedgehog in the magnetic field and an attached string in the 

vector-potential that is perpendicular to the field [70]. Surface point defect-boojums of strength 

|𝑘𝑏| = 1 also cannot exist, as they must be connected to a singular bulk disclination of the same 

strength |𝑘| = 1 [68], and thus represent the ends of these disclinations rather than isolated points. 

References [55,71] present detailed illustrations and suggest experiments that might reveal the 

existence of NB through the analysis of topological defects in crossings and in confined geometries, 

such as cylindrical capillaries, freely suspended droplets, and LC slabs containing colloidal 

particles.    

Some of the topology-based tests of the potential biaxiality of bent-core nematics have 

been already performed and resulted in a conclusion that the studied materials are of the NU rather 

than the NB type. In particular, cylindrical capillaries with perpendicular director anchoring at the 

walls, filled with the bent-core mesogens, such as A131[60] C7 and C12[72] show that the director 

𝐧̂ realigns smoothly along the capillary axis, Figure 3d and does not produce a singular core 

expected for the NB phase, Figure 4a.    

3. DEFECTS IN TWIST-BEND NEMATIC (NTB) PHASE 

While the bent-core mesogens did not provide clear evidence of the existence of NB, flexible 

dimers revealed a no less interesting new phase, the twist-bend nematic (NTB) [73–75] , predicted 

by R.B. Meyer [76], I. Dozov [77], and R. Memmer [78]. Flexible dimers with a bridge comprised 

of an odd number of methylene groups tend to adopt bent conformation.  If these molecules fill a 

3D space, this bend could be preserved unchanged throughout only if accompanied by splay or 

twist deformations. The latter case produces the NTB phase, Figure 5. The local director  𝐧̂ is tiled 

with respect to the heliconical axis  𝛘̂; its projection onto the plane orthogonal 𝛘̂ to is 𝛌̂; one also 

defines the orthogonal vector 𝛕̂, so that 𝛌̂= 𝛘̂ × 𝛕̂.  The planes of the constant phase of the tilt 

should be equidistant, otherwise the bend and twist deformations should deviate from the 

equilibrium values, which would cost some elastic energy, associated with a non-vanishing 

Young’s modulus. This equidistance of pseudo-layers is not associated with any density 
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such as temperature-induced variation of the period or an external field [4]. The underlying physics 

is captured by the so-called Helfrich-Hurault (HH) buckling instability [2], usually invoked when 

the layers are parallel to the bounding plates of the cell. However, the general mechanism of the 

HH buckling remains valid even when the layers are perpendicular to the bounding plates. In such 

“bookshelf” geometry, the tilt of smectic layers typically occurs across the cell (“vertical chevron”) 

[93], but it is also observed in the plane of the cell [93,94]. The latter “horizontal chevron” texture 

is similar to the NTB stripes. This similarity and disappearance of the stripes at a high magnetic 

field allowed Challa et al. [88] to explain the stripe formation by the HH mechanism, i.e., as a 

result of the temperature-dependent NTB pitch. Polarizing microscopy and fluorescence confocal 

polarizing microscopy (FCPM) study by You et al. [89] suggests that the heliconical axis in stripes 

experiences predominantly splay, tilting left and right from the direction set by rubbing.  Similar 

splayed configurations are observed by Panov et al. [90] in scanning electron microscopy of 

polymer-stabilized NTB [90] . The prevalence of splay is expected, as the NTB structure that keeps 

the equidistance of pseudo-layers allows splay of the normal 𝛘̂ to the layers but hinders bend and 

twist (which are present at the molecular scale of the local director, hence the name).   

FCD textures are a hallmark of layered LCs.  These domains, often appearing as pairings 

of ellipses and hyperbolae, were the first textures of LCs Kleman viewed in the late 1960-ies under 

a polarizing microscope. [95] Since early studies of smectics, thanks to the insights of G. Friedel 

and F. Grandjean in 1910 [96], the appearance of the FCDs was attributed to one-dimensionally 

periodic stackings of flexible layers; the conclusion formed a cornerstone of George Friedel’s 

classification of LC phases [1].  The conclusion was made well before X-ray studies by Edmond 

Friedel, son of George Friedel, could confirm the one-dimensional density variation of smectics 

with a layer’s thickness being only a few nanometers. A son of Edmond, Jacques Friedel, became 

a prominent condensed matter scientist known most for the studies of dislocations in solids [97]. 

He was also an adviser of Kleman’s thesis and a long-time collaborator [3,5]. For the history of 

science of defects in condensed matter see the paper by T. Sluckin in this special issue [84]. 

Kleman expanded G. Friedel’s geometrical constructions of FCDs by developing an analytical 

description of FCDs and their associations [3,33]. The theory yields the general expression for the 

energy of the domains and demonstrates the relation of FCDs to grain boundaries and dislocations 

[3,33,40,41].  FCDs in NTB are more complex than the well-studied FCDs in smectic A. These 

complexities were analyzed by Kleman in his last papers, written in collaboration with 
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Krishnamurthy and other colleagues [16,98,99]. Below we review the general properties of FCDs 

and then discuss the peculiarities of FCDs in NTB. 

 
3.2. General properties of FCDs. 

FCDs relieve curvature energy of layers subject to boundary conditions or external fields.  Curved 

layers tend to preserve perfect parallelism in order to avoid large compression/dilation energy 

associated with the change of their thickness. Curved parallel layers cannot fill space continuously, 

as the radii of curvature tend to zero at some locations, which for 3D space are 2D surfaces, called 

focal surfaces. These surfaces represent the loci of the centers of curvature.  At the focal surfaces, 

the normal to layers experiences singularity; in the physical context of ordered media, focal 

surfaces carry significant elastic energy proportional to their area. The simplest solution is to 

reduce the dimensionality to focal lines.  Families of curved parallel layers with focal lines are 

known in mathematics as Dupin cyclides; in LCs, the cyclides represent the curved equidistant 

layers. In 1868 Maxwell found solutions in the form of Dupin cyclides while solving a problem 

(similar in many respects to that of FCDs) of wave surfaces propagating along rectilinear rays in 

an isotropic medium [99]. 

By geometrical construction, the focal lines must be pairs of conjugated conics. The most 

common example is a pair of an ellipse and a branch of a hyperbola located in mutually orthogonal 

planes, such that the apices of one are the foci of the other.  These form FCDs of the so-called first, 

Figure 7, second, and third species, classified on the basis of whether the curved layers are of a 

negative Gaussian curvature (FCD-I), positive Gaussian curvature (FCD-II), or both negative and 

positive Gaussian curvatures (FCD-III), respectively [4]. Figure 7 illustrates that the layers' 

curvatures diverge at the ellipse and hyperbola so that these conics represent singularities in the 

field of normals to the cyclides.  Layers could also wrap around conics without singularities, as 

the middle cyclide does in Figure 7a. Any line connecting the hyperbola to the ellipse is normal to 

the layers; in the case of smectics, this line coincides with the director 𝐧̂ ; in the case of NTB, it is 

the axis 𝝌̂ of heliconical twist.  Dupin cyclides corresponding to the ellipse-hyperbola frame are 

parametrized in Cartesian coordinates as [40] 

 𝑥 =
𝑟(𝑐−𝑎 cos𝑢 cos𝑣)+𝑏2 𝑐𝑜𝑠 𝑢

𝑎−𝑐 cos𝑢 cos𝑣
; 𝑦 =

𝑏 sin𝑢(𝑎−𝑟 cos𝑣)

𝑎−𝑐 cos𝑢cos𝑣
;  𝑧 =

𝑏 sin𝑣(𝑐 cos𝑢−𝑟)

𝑎−𝑐 cos𝑢cos𝑣
; 
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where 𝑎 and 𝑏 are the major and minor semi-axes of the ellipse, respectively, 𝑐2 = 𝑎2 − 𝑏2, 𝑢 and 

𝑣 are the two orthogonal angular coordinates specified at the cyclides, and 𝑟 is the third coordinate 

along the normal to the cyclides. The range of values (𝑟, 𝑢, 𝑣) determines whether the resulting 

cyclides would be of a positive or negative Gaussian curvature and whether they will be complete 

or not. 

All the cyclides in FCD-Is, Figure 7, have negative Gaussian curvature, which is preferable 

by elasticity: the opposite signs of the principal curvatures imply a smaller splay energy, which is 

determined by the square of the mean curvature. The mean curvature is the algebraic sum of the 

principal curvatures. A rare example of an FCD-II has been observed in lyotropic lamellar phases 

[36,37]. 

The FCD-Is limited by conical shapes with an elliptic base are often met in polygonal 

textures in which surface anchoring aligns the director tangentially to the substrates, as first 

demonstrated by Bragg [100]. This anchoring effect is illustrated in Figure 7b: the normal to the 

layers within an ellipse is everywhere in the plane of the ellipse.  The polygonal textures of FCD-

Is form a hierarchy, with ellipses of smaller domains placed between the larger domains; the 

packing of ellipses shows fractal dimension [101]. Gaps between the cones are filled with a layer 

of a spherical shape and thus positive Gaussian curvature [35,102]. The largest domains in the 

fractal structure are of the size dictated by the cell thickness, while the smallest are defined by the 

balance of the elastic and surface anchoring energy [102]. 

FCD-Is sometimes reduce to a toroidal FCD (TFCD), in which the ellipse becomes a circle, 𝑎 =

𝑏, 𝑐 = 0 , and the hyperbola is a straight line passing through the center of the circle, Figure 7c. 

The TFCD could be smoothly extended by a system of flat layers parallel to the circular base.  

Within a TFCD, the principal radii, shown by red vectors in Figure 7c, are of the opposite signs, 

as in any FCD-Is of negative Gaussian curvature. TFCDs could occur not only because of the 

surface anchoring, but also because of the external field that aligns the director perpendicular to 

itself. [38,103] 
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TFCDs and PFCDs occur in bent-core layered mesophases alongside FCD-Is. The prevalence of 

one type over the other is controlled by elastic and surface anchoring properties. TFCDs are 

observed in a biaxial SmA, formed by a mixture of rod-like and bent-core molecules [106]. TFCDs 

also emerge as an intrinsic element of the dark conglomerate (DC) phase, which is a chiral isotropic 

liquid [107]; they appear in the bulk [107] and at the free surfaces of the DC samples [108,109]. 

PFCDs are observed in the B4 phase, in which bent-core molecules build up helical nanofilaments 

driven by a negative Gaussian curvature. They appear either near glass substrates [110] or at the 

free surface [109]. 

3.3. FCDs in NTB.    
 

Figure 8 illustrates a light-induced reversible transformation between NTB and NU heralded 

by recurrent disappearance and reappearance of FCD-Is [111].  The NTB transformation into NU is 

triggered by UV irradiation in a material formed by flexible dimers that contain azobenzene 

groups. UV creates an excess of cis-isomers of a zig-zag shape that are not compatible with the 

prevalent bend of the trans-isomers. Once the UV irradiation is stopped, the molecules relax to 

properly bend trans-forms, restoring NTB, as manifested by the resurrection of FCD-Is [111,112]. 

Ironically, the abundance of FCDs in optical textures prevented the earlier discovery of NTB since 

the textures were classified as those of smectics.  An excellent illustration of the similarity of FCD-

I textures in SmA and NTB and the early history of FCD observations in NTB has been presented 

by Meyer, Dozov, et al. [113–115]. Dozov and Meyer [113] proposed a coarse-grained theory of 

NTB using an analogy with the chiral smectic A (SmA*), which is an SmA formed by chiral 

molecules. An interesting prediction of the theory is that the core of edge dislocations should be 

extended in the direction perpendicular to the line and to the Burgers vector 𝐛||𝛘̂. This behavior is 

opposite to that of edge dislocations in SmA*, in which the core is extended along 𝐛.  Another 

interesting prediction is that the line tension of an edge dislocation in NTB is smaller than that of a 

screw dislocation, which is again a behavior opposite to that of a SmA*. A natural extension of 

the NTB / SmA* analogy is the prediction of the twist-grain-boundary phase TGBTB, in which 

blocks of pseudo-lamellar NTB rotate with respect to each other along the direction normal to 𝝌̂; 

the twist is enabled by lattices of screw dislocations [113]. In both original TGB and TGBTB, the 

structure is driven by the twist term, but in the original TGB, this twist term originates in the 

chirality of molecules, while in the TGBTB, the twist is of a structural origin, caused by the 
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relationship between FCDs and other defects, such as dislocations and disclinations, as described 

below. 

3.4. General properties of FCDs and attached dislocations.  

The eccentricity of the ellipse controls an interesting property of FCDs, namely, their relationship 

with dislocations and disclinations. The necessity of dislocations attached to the ellipse (from 

outside) is easy to understand by noticing that in Figure 7a, the layers located outside the ellipse 

should cross the plane of the ellipse at some angle, thus necessitating a grain boundary that could 

be relaxed by a lattice of edge dislocations if the tilt is not very strong. Figure 10a helps to calculate 

the sum of Burgers vectors of these dislocations as 𝑏1 + 𝑏2 = 2𝑎, where 𝑎 is the major semi-axis 

of the ellipse; the minor semi-axis is 𝑏 = √𝑏1𝑏2 ; the total Burgers vector 𝑏𝐵 of dislocations 

outside the ellipse, relaxing the tilt of the layers above and below the plane of the ellipse is then 

𝑏𝐵 = 𝑏1 − 𝑏2 = 4√𝑎2 − 𝑏2 = 4𝑎𝑒, where  𝑒 = √1 −
𝑏2

𝑎2 is the eccentricity of the ellipse [11,26]. 

The last formula suggests that TFCDs do not emit dislocations, which is expected since the TFCD 

could be smoothly continued by flat parallel layers. However, a non-zero eccentricity implies the 

existence of dislocations running parallel to the minor axis of the ellipse. The dislocations 

connecting FCD-Is form grain boundaries [40] and oily streaks observed in many layered 

mesophases such as the lyotropic lamellar SmA [26] and Ch [123]. Figure 10b,c shows the 

relationship between FCD-Is of non-zero eccentricity, the tilt of layers in two adjacent domains, 

and dislocations emitted by the FCD-I.  The emitted dislocations might be of various types, with 

the Burgers vector of each dislocation being equal to the layers’ thickness, or they might gather 

into bundles with giant Burgers vectors, the cores of which split into disclinations [26,123]. In the 

latter case, often met in lamellar lyotropic, SmA, and Ch phases, the optical contrast of dislocations 

is high, and they are easily observed under a polarizing optical microscope [26,123]. 
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such as NU and SmA, the Volterra process is not needed to analyze the properties of defects. 

However, in more complex structures, one of which is NTB, such a consideration provides a 

qualitative description of stresses involved and helps to understand textural peculiarities. 

The conventional Volterra process consider a straight linear defect 𝐿 as a result of a thought 

experiment [4] in which (1) one creases a cut surface Σ ending at the defect line 𝐿; (2) the two lips 

Σ+ and Σ− of this cut surface are rigidly shifted with respect to each other by some distance 𝐝(M), 

where M is a point at Σ; Figure 11a illustrates the case when the lips are rotated so that 𝐝 increases 

with the distance from 𝐿; (3) the void is filled with a perfectly ordered piece of the material (or, in 

case of an overlap, a piece of the material is removed); (4) the material is left to relax, which yields 

the defect 𝐿.   

The shift of lips 𝐝(M) = 𝐛 + 𝐟 × 𝐎𝐌  is generally comprised of a translation 𝐛, which is 

the Burgers vector of the dislocation part of  𝐿 and a rotation 𝐟 × 𝐎𝐌, where 𝐟 = 2 𝛡 sin
Ω

2
  is the 

disclination part, called the Frank vector, defined by the angle of rotation Ω  and by the unit vector 

𝛡 along the rotation axis; O belongs to the line 𝐿 and represents the origin of this rotation, Figure 

11a. When 𝐛 and 𝐟 × 𝐎𝐌 are the symmetry elements of the medium, the line 𝐿 is a perfect 

dislocation or disclinations; when they are not, the line 𝐿 is an imperfect or infinitesimal defect.  

The particular geometry in Figure 11a shows a formation of a wedge disclination with 𝐟 

parallel to 𝐿 and  𝐛 = 0 . When the medium is positionally ordered, the wedge disclination is 

accompanied by edge dislocations shown in Figure 11a for a SmA with layers parallel to  Σ; these 

dislocations, with the smallest Burgers vector equal smectic spacing, carry large elastic energy, 

which typically forbids the entire structure. In NU, however, the edge dislocations are infinitesimal; 

the heads of “nails” in Figure 11a could be thought of as the “ends” of the individual molecules; 

the stresses introduced by 𝐿 are then viscously relaxed [4]. 

Consider now a curved disclination 𝐿. Assume first that the Frank vector 𝐟 does not change 

its orientation and consider two close points O and O′ close to each other, so that 𝐎𝐌 − 𝐎′𝐌 =

𝐭 𝑑𝑠, where 𝐭 is the tangent unit vector to the disclination and 𝑑𝑠 is the arc length element, Figure 

11b.   The displacements of lips at a point M viewed from O is 𝐝(M) = 𝐟 × 𝐎𝐌, while it is 

𝐝′(M) = 𝐟 × 𝐎′𝐌 when viewed from O′. The difference is non-zero and, importantly, independent 

of M, yielding a density of infinitesimal dislocations of the Burgers vector  𝑑𝐛 = 𝐝′(M) − 𝐝(M) =

𝐟 × (𝐎′𝐌 − 𝐎𝐌) = −𝐟 × 𝐭 𝑑𝑠 = −2  sin
Ω

2
(𝛡 × 𝐭 )𝑑𝑠, attached to the curved disclination. 
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within the smectic layer is a two-fold symmetry axis, thus 𝐟 could assume any orientation within 

the layer. In NTB, Figure 5, the only twofold symmetry axis is along a vector 𝛕̂, which is normal to 

the local director and the helicoidal axis 𝛘̂; thus 𝐟 should be parallel to 𝛕̂ and 𝑑𝐟 is along the normal 

𝛘̂ to the layers. 

Therefore, curved disclination with a variable Frank vector must emit both dislocations and 

disclinations. When the ellipse is a circle, the dislocations are absent, but the attached disclinations 

persist.  The Frank vector around the circular wedge loop is rotating, 𝐟 = 2  sin
Ω

2
(−sinφ, cosφ), 

where φ is the polar angle defined in Figure 11d. Since the circular defect is a wedge disclination 

of the strength 𝑘 =
1

2
, the rotation angle  Ω of the two lips of the Volterra cut is π. Then the density 

of attached disclinations ⌊𝑑𝐟

𝑑𝑠
⌋ = ⌊−

2

𝑟
(cosφ, sinφ)⌋ =

2

𝑟
 [16].  

In SmA, these infinitesimal disclinations are fully relaxed since the molecular structure is 

rotationally symmetric around the normal to the layers. When the layers show some in-plane 

ordering, which is the case of SmC, SmC*, biaxial SmA, Ch, and NTB, this relaxation is not 

possible. For example, it is well known that the FCD-Is in SmC  [71,126,127] and SmC* [34] 

show two disclinations of strength 𝑘 = −1 each connecting the ellipse to the hyperbola. TFCDs 

in a biaxial SmA, show disclinations with a variety of strengths, including 𝑘 = −
1

2
 and 𝑘 = −1, 

depending on the geometry of the secondary director field outside the TFCD [106]. In NTB, these 

disclinations might be either perfect with a well-defined strength or infinitesimal.  In either case, 

they are hard to observe, mostly because of a very narrow core, the extension of which should be 

comparable to the pitch, i.e., only about 10 nm.    

In contrast to the circular wedge disclination of strength 𝑘 =
1

2
, the two parabolas of a PFCD, 

Figure 7d, as well as the hyperbola of an FCD-I, Figure 7a,b, and the straight defect line of a 

TFCD, Figure 7c, are all of a strength 𝑘 = 1, since the normal 𝛘̂ to the layers wraps around these 

defects on a full conical surface. Therefore, these defects do not omit disclinations (nor 

dislocations).  Kleman and Krishnamurthy suggested that this difference between the circular 

disclinations in TFCD and two parabolic disclinations in NTB is responsible for the instability of 

TFCDs and their replacement by PFCDs [16]. The detailed molecular arrangements associated 

with heliconical NTB trihedron in FCDs are hard to establish because of the smallness of the pitch 
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as compared to the typical extension of FCDs; this problem might eventually be solved by 

numerical simulations.  

Binysh, Pollard, and Alexander [128] made a step forward in deciphering the structure of linear 

defects and associated textures such as PFCDs in NTB by considering line defects along which 

bend, defined as 𝐁 =  𝐧̂ × curl𝐧̂, vanishes. One example are wedge disclinations and edge 

dislocations of strength 𝑘, described by the director field 𝐧̂ = (sin𝜃cos𝜑, sin𝜃sin𝜑, cos𝜃). For a 

disclination, the phase is 𝜑 = 𝑞𝑧 + 𝑘 artan(𝑦/𝑥 ), while the conical angle 𝜃 decreases from its 

equilibrium bulk value far away from the defect to 0 at the core; at the core, the director line is 

straight and parallel to the rotation axis. In the edge dislocation, 𝜑 = 𝑞𝑧 + 𝑘 artan(𝑧/𝑥 ). 

PFCDs in NTB textures are accompanied by a macroscopic electric polarization due to the curvature 

of layers, as discovered by Pardaev et al. [124]. Analysis by second harmonic generation light 

scattering demonstrates that the polarization vector is in the plane normal to the axis of twofold 

symmetry of the PFCD; its existence is associated with the strong deformations at the cusps of the 

Dupin cyclides. 

3.6. Droplets of NTB.  

Droplets of liquid crystals suspended in an immiscible fluid [92,129–133] or emerging in biphasic 

coexistence [99,134,135] show fascinating inner structures thanks to their non-zero Euler 

characteristic, 𝐸 = 2  [131–133]. Droplets produce intriguing  phenomena such as the Lehmann 

effect [136], spontaneous division during phase transitions [137], and demonstrate a potential for 

applications in optics, photonics [138,139], and sensing [140]. According to the Gauss-Bonet 

theorem, a vector field defined at a spherical surface must feature topological defects of a total 

strength equal 𝐸.  Topological defects that satisfy the theorem by the lowest possible value of the 

net topological charges are in the state of thermodynamic equilibrium.  In layered liquid crystals, 

surface anchoring often requires the layers to be tangential to the interface. If there is a vector order 

parameter within the layers, this packing results in two disclinations of strength 𝑘 = 1 or one 

disclination of strength 𝑘 = 2 [4,71]; the latter resembles the Dirac monopole [70], as already 

alluded to. In Ch, the structure is known as the Frank-Pryce configuration [141,142]. As a rule, 

one observes one disclination of a strength 𝑘 = 2 and sometimes two disclinations of a strength 

𝑘 = 1 each [133,143,144]. Numerical simulations by Seč et al. [145] demonstrate that the structure 

with 𝑘 = 2 is energetically preferable for a sufficient droplet diameter-to-pitch ratio.   
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Freely suspended spherical NTB droplets have been studied only recently [92,99,135]. Eremin et 

al. [92,146] observed stripes at the droplets’ surface, which were attributed to the surface anchoring 

effect and formation of an analog of a “fingerprint” texture known in Ch, which is formed when 

the helicoidal axis is tangential to the interface. Textures in Fig.10 of Ref. [92] do show radial lines 

that might be related to the 𝑘 = 2  disclinations of the Frank-Pryce structure or to the axial defect 

of a TFCD embedded into the concentric packing of NTB pseudolayers [102]; however, the analysis 

in Ref. [92] concluded that these lines represent “U-turns” of folded phesudolayers.   

An evidence of the Frank-Pryce structure with a radial 𝑘 = 2 disclination was presented by 

Krishnamurthy et al. [99] in elegant experiments in which the NTB droplets were formed in the 

biphasic NU-NTB region. The 𝛘̂-axis of an NTB droplet arranges into a radial point defect-hedgehog, 

being perpendicular to the NTB-NU interface. The radial defects are more prominent in small 

droplets (10-20 μm)  than in larger ones. As the droplets become larger and touches the bounding 

plates, the Frank-Pryce structure changes completely, by splitting the central radial point defect 

into an extended loop with a thick core and a complicated structure.  The most recent study of NTB 

droplets [135] explored the fact that the surrounding N phase forms a hyperbolic hedgehog so that 

the NTB droplet together with a satellite hedgehog is of dipolar symmetry. Because of this 

symmetry, the droplets could be transported by an applied electric field, which interacts with the 

NU director through dielectric and flexoelectric mechanisms [135], similarly to the electrophoresis 

of colloidal particles in NU [147].  

The structure of the NTB defects was also studied in lens-shaped sessile droplets of a 

photoresponsive flexible dimer by Yoshioka et al. [148] In contrast to the majority of conventional 

calamitic N materials, the LC–air interface of the present dimer nematic  imposes a planar 

anchoring. Geometry-dictated competition of this anchoring at the curved LC-air interface with 

the substrate anchoring, together with the elastic anisotropy of NTB induces unique frustrations in 

the structure of the droplets. It was found that large NTB droplets residing at a plate with a 

homeotropic alignment have different structures in the inner and outer regions, Figure 12a.  The 

striped texture of the outer region can result from the NTB pseudo-layer structure.  NTB droplets at 

planar substrates show stripes decorated with zigzag undulations, Figure 12b.  Such stripes and 

undulations are often observed in SmA shells [149,150]  and, as already stated, in NTB planar cells 
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BP phase has no birefringence, but is optically active, indicating chiral, deformable structure of 

high symmetry.  Based on this, without much experimental details, it was already suggested in 

1969 by Saupe [155] that the blue phase has a periodic structure formed by cylindrically symmetric 

local director configuration in which the preferred orientation rotates along all directions 

perpendicular to the symmetry axis.  The local configuration corresponds to a doubly twisted 

cylinder, where at the edge of the cylinders the director is twisted with respect to that of the core. 

The idea eventually led to the modern understanding of blue phases as packings of cylinders with 

double twist. Chiral interactions of molecules favor the double twist as opposed to the one-

directional twist. However, as one moves away from the axis of the cylinder, the double twist is 

gradually transforming into a one-directional twist with a reduction of the energy gain. The radius 

of the cylinder is thus limited, typically by a length scale comparable to the half-pitch. The finite-

size cylinders could not tile space continuously.  The frustration between the local double twists 

and continuous tiling is resolved by a lattice of disclinations that form at the junctions of the 

cylinders [156–158]. These disclinations could be distributed regularly or irregularly, forming 

various subclasses of the blue phases. Similar structures could also be observed in smectic 

materials [159].  

Chiral mixtures of rod-like and bent-core molecules often produce blue phases with an extended 

range of the thermodynamic stability blue phase II (BPII) has been prepared [160] and its 

electrooptical performance has been evaluated. A broad (>20°C) range BPIII phase showing 

electrooptical switching in a few tens of milliseconds was obtained by Taushanoff et al by adding 

a few percentages of chiral dopant to achiral bent-core nematics. [161] It was proposed that broad-

temperature range smectic nanoclusters inhibit the long-range order of the double twisted helical 

structures and stabilize the amorphous BPIII phase. 

Another example of frustrated mesophases with defects is the twist-grain boundary smectic A 

phase (TGBA*) predicted theoretically by Renn and Lubensky [162]. The model is based on the 

analogy between smectics and superconductors proposed by de Gennes. [163] The TGBA* phase 

was experimentally observed by Goodby et al. [164] In TGBA*, the frustration is between the 

chiral interactions and the tendency of smectic layers to preserve equidistance.  The frustration is 

resolved by introducing twist grain boundaries comprised of screw dislocations that separate 

blocks of smectic ordering, allowing them to twist with respect to each other.  The phase is stable, 
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because the increase in the free energy due to the introduction of the grain boundaries is less than 

the decrease of free energy due to the director twist.  The pitch p of the TGB phase is determined 

by the distance between grains l and the rotation angle α of the director in crossing a grain 

boundary, as  𝑝 = 2𝜋𝑙/𝛼. For example, if l=25 nm and α=π/9, then p=450 nm.  

 Bent-core liquid crystals exhibit an even richer variety of defect-mediated phases than 

calamitic LCs. Some of them (possible TGB phases and broad temperature range blue phases) 

result from the intrinsic molecular chirality induced by chiral dopants, or chiral stereo center built 

in the bent-core molecules, while the twist-bend modulated smectic phase, dark conglomerate 

(DC) phase, helical nanofilament (HNF a.k.a. B4) phase and polarization modulated (a.k.a. B7) 

phase are triggered by the spontaneous chiral symmetry breaking in achiral systems. 

4.1. Chiral NTB - possible TGBTB phase 

One of the interesting questions related to bent-shaped materials is how the structural chirality of 

the NTB phase responds to the presence of molecular chirality. The effect of the chiral additive on 

the NTB structure is of interest to the entire liquid crystal science since it represents an interaction 

between molecular chirality and spontaneous chiral symmetry breaking with ambidextrous 

nanoscale chirality. It has been studied theoretically by Longa et al. [165,166] using a Landau-de 

Gennes theory of NTB, supplemented by a term representing intrinsic molecular chirality. Besides 

N*and NTB
∗ , the model also predicts a globally polar and chiral twist-bend nematic NTBp

∗  with a 

periodicity of the director field comparable to that of the N∗ phase.  

A natural extension of the NTB / SmA* analogy is the already mentioned prediction by 

Dozov and Meyer [113] of the twist-grain-boundary phase TGBTB, in which blocks of pseudo-

lamellar NTB rotate with respect to each other along the direction normal to 𝛘̂; the twist is enabled 

by lattices of screw dislocations. In both original TGBA* and TGBTB, the structure is driven by 

the twist term, but in the original TGBA*, this twist term originates in the chirality of molecules, 

while in the TGBTB, the twist is of a structural origin, caused by the necessity to maintain the 

constant bend; upon heating, such a phase could melt into an NU rather than a Ch.   

The first experimental observations of the effect of molecular chirality on the structure of flexibly 

bent dimeric molecules showed that the helical pitch becomes distorted [167] or is even unwound 
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[168], in the chiral NTB (NTB
∗ ) phase. Gorecka et al [169] found direct transition between the N* 

and NTB
∗  phases for asymmetric bi-mesogens in which rod-like units are connected with a 

cholesteric unit, whereas mixing chiral moiety to a symmetric achiral bent-shape dimer 

(CB6OCB), Walker et al [170] found an intermediate phase with square lattice between the N* and 

NTB
∗  phases. Such a structure was attributed to the low bend elastic constant in the bottom of the  

N∗ phase.[171] Walker et al [170] also described the first examples of the NTB
∗  phase formed by 

H-bonded donors and acceptors. The properties of this NTB
∗  material strongly resemble those 

previously observed in covalently bonded materials. The temperature range of NTB
∗  is wider than 

that of the conventional NTB phase exhibited by achiral materials; upon cooling,  NTB
∗  transitions 

into a SmC∗. [172] Using chiral additive with very high helical twisting power, the existence of a 

novel NX
∗  phase was reported also at the temperatures below the NTB

∗  phase. [173]  

Using resonant soft x-ray, induced circular dichroism and several optical microscopy experimental 

techniques, Murachver et al reported the first quantitative results on the effect of chiral additives 

on the nanostructure of a room temperature mixture of LC dimers abbreviated KA0.2. [174] They 

found that while the chiral additive causes the micron-scale pitch of the dopant-induced helical 

structure to decrease with increasing dopant concentration in the N∗ phase, in the NTB
∗   phase both 

the micron-scale helical pitch and the nanoscale pitch of the ambidextrous spontaneous heliconical 

structure are increasing. At concentrations c≥2wt% of a chiral dopant, a new phase, resembling 

TGBA* and termed TGBTB phase, appears between the N* and NTB
∗  phases. Such a phase is 

plausible since the NTB phase formed by flexibly bent-shape molecules has a pseudo-layer 

structure due to the nanoscale helix, therefore, like the TGBA* phase of layered SmA phase, the 

addition of chiral dopant may lead to twist-grain boundary phase.  The illustration of the structures 

of the N∗, NTB
∗  and the proposed TGBTB  phases are shown in Figure 13. 
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Figure 14: Freeze-fracture TEM (a and b) and polarized optical microscopy images (e) of DC 
phase formed by a (c,d) mesh of saddle-splayed domains, (f) modelled as conically-limited TFCDs 
with radii of curvature R’ and R” of opposite signs.   Parts a-e are reproduced from Ref. [102] 
with permission. 

The microscopic textures of the DC phases appear dark under crossed polarizers, because the 

birefringent regions are oriented randomly at sub-micron length scale, middle image of Figure 14e. 

[176] The phase exhibits chiral domains of opposite handedness, which are readily revealed by the 

circular dichroism in observations with uncrossed polarizers, top and bottom images of Figure 14e.  

A sufficiently high electric field transforms the sponge structure into a highly birefringent texture 

[177–180] with a synclinic and ferroelectric order (SmCSPF) that has long-range interlayer 

correlations.  

The DC structure with local saddle-splay deformations of layers could be modelled as a 3D mesh 

of interconnected TFCDs, Figure 14c,d,f.  Each TFCD is constructed by a family of parallel saddle-

splay smectic layers with negative Gaussian curvature wrapped around a circular base and a central 

axis passing through the circle’s center, Figure 14f.  The normals to the layers are straight lines 

connecting the circle to the axis.  The domain is limited by two conical surfaces which facilitate 

tiling of space with differently oriented TFCDs. Observe the difference with the TFCDs limited 

by circular cylindrical surfaces, Figure 7c, which could be smoothly embedded into a stack of flat 

parallel layers, a common feature of textures in conventional smectics and NTB, Figure 9. The 

saddle-splay is not compatible with a long-range positional order and could be realized only 

locally. The free energy density depends on principal curvatures 𝜎′ = 1/𝑅′ and   𝜎′′ = 1/𝑅", 

where 𝑅′ and 𝑅" are the principal radii of curvature of opposite signs, depicted in Figure 14f [102]: 

𝑓 =
1

2
𝐾(𝜎′ + 𝜎′′)2 + 𝐾̅𝜎′𝜎′′ + 𝐺(𝜎′ − 𝜎′′),   (1) 

(a)
(b)

(c)

(e)(d)

(f)
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where   𝐾 > 0  and 𝐺 > 0, but 𝐾̅ < 0 to penalize pure saddle splay. The combination of the mean 

curvature 𝐾 term and the Gaussian  𝐾̅-term favors flat layers, while the saddle-splay deformations 

are driven by the last 𝐺-term; this term reflects the tendency of layers to twist along the polarization 

direction which is in the plane of the layers. Using the analytical expressions for 𝜎′ and   𝜎′′ within 

a TFCD [4,41], Hough et al [107] demonstrated that the saddle-splay structure is energetically 

preferable than flat layers if the typical radius and height of the domain is 𝑎~10𝑑(1 − 3𝐾/𝐾̅ ), 

where 𝑑 = 4 nm is the smectic layer thickness.  Assuming 𝐾/𝐾̅ ~ − 1  , the result 𝑎~200 nm is 

consistent with the observed structure, Figure 14a.   

4.3. Helical Nanofilament Phase (HNF). 

Another intriguing bent-shaped LC defect phase with a 3D nanostructure is the Helical 

Nanofilament (HNF) phase (a.k.a. B4 phase). FFTEM studies of the HNF phase revealed an 

assembly of twisted layers stacked to form chiral nano-bundles of a width w~40nm and pitch 

p~200 nm. [181,182] 

As in the case of DC, the hierarchical self-assembly of HNF originates from the shape of the bent-

core molecules that form well-defined smectic layers with in-plane order, macroscopic 

polarization, and tilt of the molecular planes, which makes the individual layers chiral. A crucial 

feature is that tilts of the upper and lower halves of the bent-core molecules are not coplanar. This 

mismatch between the top and bottom halves of the smectic layers is relieved by their local saddle-

splay deformations. HNFs are immensely attractive for photovoltaic and chiral separation 

applications and as templates for the chiral spatial assembly of guest molecules [183].  

The individual HNF has been modeled as a bundle of twisted ribbons , Figure 15a. [181]. Within 

the bundle, the central smectic layer is a minimal surface. The free energy density, given again by 

Eq.(1), is reduced to a particularly simple form 𝑓 = −𝐾̅𝜎2 + 2𝐺𝜎 for this minimal surface, as 

𝜎′ = −𝜎′′ = 𝜎. Minimization suggests that the preferred curvature is 𝜎𝑃 = 𝐺/𝐾̅, which relates the 

pitch to the elastic moduli,  𝑝 = 2𝜋/𝜎𝑃 = 2𝜋𝐾̅/𝐺. 
 

Matsumoto et al. [184] demonstrated that the twisted bundles of smectic layers, Figure 15b, could 

be obtained by minimizing the Landau-de Gennes free energy of a SmA comprised of chiral 

molecules. The solution is  a local phase field that can be expressed in cylindrical coordinates as 

𝜙𝑙𝑜𝑐 = 𝑟𝑐𝑜𝑠(𝑞𝑜𝑧 − 𝜃), where 𝜃 = (𝑞𝑜𝑧, 𝑞𝑜𝑧 + 𝜋) is the two-dimensional surface of a helicoid. 
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Sufficiently thick films of n=8,9 homologs exhibit nanofilament layers stacking on top of each 

other in a twisted fashion, with the twist angle about 40° between subsequent layers. The structure 

thus features a double twist of a type different from the one in blue phases. One axis of the twist 

is along the axis of each nanofilament; the orthogonal second axis of twist is associated with the 

rotation of nanofilament layers. This double twisted structure explains both the observed structural 

blue color of some HNF materials and their ambidextrous optical activity. [190] A sketch of this 

arrangement is shown in Figure 15d where the filaments running in different directions are shown 

by yellow and light blue lines. Figure 15e shows the corresponding TEM texture of a film with 

two layers of twisted filaments. 

HNFs made from achiral bent-shape molecules are macroscopically racemic consisting of left and 

right-handed homochiral domains. HNFs containing chiral dopants or formed by chiral molecules 

[191,192] are either homochiral or diastereomeric with unequal amounts of left and right-handed 

HNF nucleation [193].  

Modulated helical nanofilament phases (HNFmod and HNFmod2), characterized by an additional 1D 

and 2D in-layer modulations were recently found as well. [194,195] The handedness of the 

resulting HNFmod2 phase is controlled by the longer arm of the nonsymmetric bent-core molecules. 

[196] Heliconical-layered nanocylinders composed of up to 10 coaxial heliconical layers, which 

can split or merge, braid, and self-assemble into a variety of modes including feather- or 

herringbone-type structures, concentric rings, or hollow nest-like superstructures were also found 

for a class of tris-biphenyl bent-core molecules with a single chiral side chain in the longer para- 

side of the molecule. These multi-level hierarchical self-assembled structures, rivaling muscle 

fibers, display blue structural color and show immense structural and morphological complexity. 

[197] 

4.4. B7  textures  

Bent core materials with bulky molecular moieties such as NO2 in their central benzene ring 

[198,199] form peculiar micrometer-scale helical patterns and freely suspended filaments [200–

205].  Although the textures observed upon moderate-rate (<1C/min) cooling from the isotropic 

phase are very complicated (see Figure 16a,b), all of these structures contain some periodicity 

comparable to the film thickness. [198] 
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helicoidally twisted modulations could be deformed while remaining isometric, i.e., preserving the 

parallelism of layers and equidistance of modulations. The answer is affirmative, if the structure 

represents nested helicoidal layers [12,188]. 

The nucleating HR of B7, according to Refs. [12,188], is built around a parental central smectic 

layer in the form of a ruled helicoid, generated by a straight line perpendicular to the helical axis 

and rotating with a pitch 𝑝 about it, Figure 17c. The parental helicoid is a minimal surface with a 

vanishing mean curvature 𝜎′ + 𝜎′′ = 0. The adjacent smectic layers are shifted along the normal 

to the axis, forming a bundle of parallel nested helicoids, Figure 17d.  The focal surfaces of these 

nested helicoids form two intertwined 𝑘 = 1/2 disclinations twisted around each other on a 

cylindrical surface of a diameter 𝑤 = 𝑝/𝜋. Up to this point, the construction is the same as for a 

screw dislocation of a giant Burgers vector 𝑏 = 𝑝 [3,4]. What makes it applicable to the lamello-

columnar structure of B7 is that the “columns” within the smectic layers, represented by helicoidal 

lines in Figure 17d wrapping around the central axis, preserve their equidistance. These columnar 

modulations experience a helical twist from one layer to the next. Since the twist extends radially 

from the HR axis, it is a double-twist, similar to the double twist of the director in blue phases. In 

a particular ribbon, the twist is either left-handed or right-handed, as expected because of achiral 

nature of the molecules.    

The model imposes a strict relationship between the pitch and the diameter of the HR, 𝑝 = 𝜋𝑤, 

which is very close to what is the observed experimentally for slim filaments [188]. It also supports 

the experimental observation of the fast unidirectional growth. The unidirectional character of the 

growth of HRs is distinctively different from the multidirectional growth of smectics growing from 

their melt in form of bâttonets [1,4,8,117]. HR nuclei, meeting on their growth, do not coalesce, 

remaining mutually impenetrable. This steric interaction suggests that the HRs have well-defined 

geometric boundaries, beyond which they cannot extend and within which any distortion increases 

the energy. The behavior is akin to that of impenetrable FCDs [4].   

On slow cooling, the HRs nucleate together with non-helical objects with the geometry of 

developable domains (DDs), common in columnar phases with 2D translational order.  When a 

sample is allowed to anneal at a fixed temperature, the HRs show their metastable nature, 

transforming into non-helical DDs. [191]  
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visible. Kleman and Krishnamurthy suggested that the plausible reasons might be an “infinitesimal 

imperfect” character of the dislocations or a small nanoscale value of their Burgers vectors [16].   

Another important feature predicted for FCDs in NTB is that they should emit disclinations [16], 

an effect known for FCDs in SmC, but not in SmA. One of the most notable scientific 

achievements of Maurice Kleman was the development of homotopy classification of defects in 

ordered media [45–47], which connects the type of ordering to the entire set of topologically 

permitted defects in it. For relatively simple phases, such as NU, homotopy classification recovers 

results that have been already obtained by a more laborious analysis of the elastic energy. 

Examples are the escape of 𝑘 = 1 disclinations into the third dimension and mutual equivalency 

of all half-integer disclinations. The true power of homotopy classification is revealed when the 

organization is more complex, which is the case of superfluid phases of He-3 [65] and biaxial 

nematic NB [68]. The homotopy classification predicts that two 1/2 disclinations crossing each 

other in NB might leave a third disclination of a strength 1 that connects the two initial ones [68]. 

Observation of this event would be an unambiguous proof of the biaxial order since in a uniaxial 

NU, the disclinations cross each other freely.   

In the examples above, topological defects appear as departures from the equilibrium uniformly 

aligned states, stabilized by surface anchoring, external fields, or trapped in metastable states while 

relaxing from an externally induced perturbation.  In some cases, defects serve as a building unit 

of an equilibrium bulk structure, relieving frustrations between competing tendencies, such as a 

double twist and space tiling in blue phases. Bent-core materials show a rich spectrum of phases 

with defects. In particular, the DC phase could be considered as a mesh of interconnected and 

disoriented small TFCDs of negative Gaussian curvature of molecular layers [107]. HNF and B7 

phases show similar motifs of helicoidally nested smectic layers, albeit on different length scales, 

hundreds of nanometers and tens of micrometers, respectively. Their structures, deciphered only 

recently, bears a strong similarity to the model of screw dislocation of a giant Burgers vector, 

proposed by Maurice Kleman on the ground of geometrical and elastic properties of layered liquid 

crystals. Not surprisingly, the generality of geometrical constructions discovered in liquid crystals 

extends to other systems, most notably those of biological origin.  In particular, the helical ribbon 

structures bear similarity to Kleman’s model [30] of DNA packings in chromosomes of 

Dinoflagellate, in which the DNA molecules, aligned along the straight lines in Figure 17c,d,  

combine twist with 2D periodic translational order.  
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We expect that knowledge uncovered so far in the studies of defects in bent-core liquid crystals, 

to which Maurice Kleman contributed greatly, will be of inspirational help in the studies of other 

complex materials.              
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