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Finite Sample Analysis of Two-Time-Scale
Natural Actor-Critic Algorithm

Sajad Khodadadian, Thinh T. Doan, Justin Romberg, Siva Theja Maguluri

Abstract— Actor-critic style two-time-scale algorithms
are one of the most popular methods in reinforcement
learning, and have seen great empirical success. However,
their performance is not completely understood theoreti-
cally. In this paper, we characterize the global convergence
of an online natural actor-critic algorithm in the tabular
setting using a single trajectory of samples. Our analy-
sis applies to very general settings, as we only assume
ergodicity of the underlying Markov decision process. In
order to ensure enough exploration, we employ an ε-greedy
sampling of the trajectory.

For a fixed and small enough exploration parameter ε, we
show that the two-time-scale natural actor-critic algorithm
has a rate of convergence of Õ(1/T1/4), where T is the
number of samples, and this leads to a sample complexity
of Õ(1/δ8) samples to find a policy that is within an error of
δ from the global optimum. Moreover, by carefully decreas-
ing the exploration parameter ε as the iterations proceed,
we present an improved sample complexity of Õ(1/δ6) for
convergence to the global optimum.

Index Terms— Actor-Critic, Machine Learning, Reinforce-
ment Learning, Two-Time-Scale

I. INTRODUCTION

In reinforcement learning (RL), an agent operating in an
environment, modeled as a Markov decision process (MDP),
tries to learn a policy that maximizes its long-term reward.
Methods for solving this optimization problem include value
function methods, such as Q-learning [1], and policy space
methods, such as TRPO [2], PPO [3], and actor-critic [4].

Policy space methods explicitly search for the maximum
of the value function V π , which codifies the expected long-
term reward, through iterative optimization over the policy π.
Although in general V π is a nonconvex function of π [5],
global optimality can be obtained by employing either gradient
descent [5], [6], mirror descent [7], [8], or natural gradient
descent [5]. These methods, however, assume access to an
oracle that returns the gradient of the value function for any
given policy. In many practical scenarios, and in particular
when the parameters of the MDP are only partially known,

Sajad Khodadadian and Siva Theja Maguluri are with H. Milton
Stewart School of Industrial & Systems Engineering, Georgia Insti-
tute of Technology, Atlanta, Georgia, 30332, (email: {skhodadadian,
siva.theja}@gatech.edu)

Thinh T. Doan is with Bradley Department of Electrical and Computer
Department, Virginia Tech, Perry St, Blacksburg, Virginia, 24060 (email:
thinhdoan@vt.edu)

Justin Romberg is with the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, Georgia, 30332,
(email: jrom@ece.gatech.edu)

these gradients have to be estimated from observations or
simulations.

Actor-critic (AC) techniques integrate estimation of the
gradient into the policy search. In this framework, a critic
estimates the value (Q-function) of a policy, usually through a
temporal difference iteration. The actor then uses this estimate
to form a gradient to improve the policy. AC algorithms have
been observed to converge quickly relative to other methods
[9], [10], and have enjoyed success in several applications
including robotics [11], computer games [12], and power
networks [13].

AC algorithms can be classified into batch vs. online. In
the batch setting, in each iteration of the AC, the critic
evaluates the policy using a set of collected data. This type of
batch update, however, cannot be implemented in an online
manner, and requires simulations that need to be restarted
in specific states, making its implementation appropriate in
artificial environments such as Atari games [3], but not in
scenarios that require the agent to “learn as they go”.

A truly online and two-time-scale AC variant was first
proposed in [4], where at every iteration the actor and critic
updates depend only on one sample observed from the envi-
ronment using the current policy. Later [14], [15] presented
a version of this algorithm using a natural policy gradient.
These methods can be viewed as two-time-scale stochastic
approximation (SA) algorithms, where the actor and the critic
operate at the “slow” and “fast” time scales, respectively.

AC algorithms often use low-order approximations for the
value and policy functions. While this type of function ap-
proximation can dramatically simplify the learning process,
thus allowing us to apply the algorithm to complex, real-world
problems, these approximations introduce non-vanishing, sys-
tematic errors, as the truly optimal policy typically does not lie
in the set of functions considered. In this paper, however, we
are completely focussed on recovering the globally optimal
policy, and so we will operate in the “tabular setting” that
considers every possible distribution over the (finite number
of) actions for every possible state.

Main contributions:
• We analyze the two-time-scale natural AC algorithm in

the tabular setting. Our setting can be seen as a two-
time-scale linear stochastic approximation with a time-
varying Markovian noise. Unlike several recent papers,
we do not make an extensive set of assumptions. The only
assumption we make is the ergodicity of the underlying
Markov chain under all policies.
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• Our analysis show the importance of the exploration in
AC type algorithms. We argue that a naive execution of
natural AC fails to properly explore all of the state-action
pairs, a fact that we illustrate with a simple example.
Therefore, we employ ε-greedy exploration to guarantee
global convergence.

• For a fixed and small enough exploration parameter ε, we
show that using T number of samples, two-time-scale nat-
ural AC Algorithm 1 converges to within Õ

(
1

εT 1/4 + ε
)

of the global optimum. We show that for carefully chosen
ε, Algorithm 1 finds a policy within a δ-ball around the
global optimum using Õ(1/δ8) samples.

• We show that using a time-varying ε improves the sample
complexity of Algorithm 1 to Õ(1/δ6).

A. Related works

Stochastic approximation: This method was first intro-
duced in [16]. Asymptotic convergence of stochastic approxi-
mation (SA) was studied in [17], [18]. Recently, there has been
a flurry of work on the finite time analysis of SA for both linear
[19] and nonlinear [20], [21] operators, under both i.i.d [22]
and Markovian [23] noise, with batch [24] or two-time-scale
[17] updates. Our setting in this paper can be categorized as
a linear two-time-scale SA with the noise generated from a
time-varying Markov chain.

Actor-critic: AC algorithm was first proposed in [4] as a
two-time-scale stochastic approximation [25]–[28] variant of
the policy gradient algorithm [29]. In this algorithm a faster
time scale is used to collect samples for gradient estimation,
and a slower time scale is used to perform an update to
the policy. In this paper we are interested in such a two-
time-scale version of the natural policy gradient [30]. While
natural gradient descent is closely related to mirror descent
[31], [32], in the context of Markov decision processes they
are known to be identical [5], [7]. Even though the objective
V π is a nonconvex function of the policy π, convergence
rate of natural policy gradient to the global optimum under
the planning setting (when the exact gradients are known) is
recently established in [5], [7], [33], [34]. Natural AC, which
is a variant of AC with natural policy gradient in the actor,
was studied in [14], [15], [35], [36].

While the asymptotic convergence of AC methods including
natural AC is well-understood [4], [15], [17], [37], [38], their
finite-time convergence was largely unknown until recently
[24], [39]–[52]. The authors in [42]–[44], [52] provide the
convergence rate of AC where the parameter of the critic
is updated using a number of collected samples instead of
only one single sample. Such a setting, referred to as batch
AC, cannot be implemented in an online fashion since at any
iteration the critic has to implement the current policy for a
number of time steps to collect enough data. A similar batch
approach was used in [24], [40], [46]–[49], [51] to study
natural AC and in [39], [45] to study the TRPO algorithm,
which is a variant of mirror descent. The authors in [24],
[51] study the finite time convergence bound of off-policy
natural AC algorithm under constant step size. However, due
to the constant step size they do not have convergence to the

global optimum. [40], [53] study the finite time convergence
of a regularized variant of natural AC with batch data update.
In [50] the convergence of two-time-scale AC is analyzed.
However, in [50] the convergence only to the local optimal
is established. In a concurrent work with us, [54] studies the
converging point of single trajectory AC for linear MDPs.

In this paper, we study the original AC method [4] without
considering a batch update. In other words, data is collected
through a single trajectory of a time-varying Markov chain
and the update is performed in a two-time-scale manner. To
the best of our knowledge, the only paper in the literature
that considers such a setting is [50] which studies the AC
algorithm under function approximation. Although their results
are remarkable, they make several assumptions on the space
of approximation functions. In Section II-A we will explain
why these assumptions cannot be satisfied in the tabular setting
with zero approximation error. Another related work is [48]
where the authors claim to have a single trajectory algorithm.
However, as explained in [24, Appendix C], the proposed
algorithm in [48] is not single trajectory.
ε-greedy: One of the differences between our algorithm and

the previous work is the inclusion of ε-greedy to the natural
AC. This greedy step ensures sufficient exploration of our
algorithm, while keeping the algorithm online. ε-greedy [55]
is commonly employed in various settings such as Q-learning
[56], multi-armed bandit [57], [58] and contextual bandit [59].
In these algorithms, ε-greedy is usually employed in order to
ensure sufficient exploration [55]. In this paper, we show that
this greedy step can ensure the global convergence of the AC
as well, and we characterize the rate of this convergence.

To summarize, the work in the literature over the last two
decades has looked at various challenges thrown by AC al-
gorithms under various assumptions and different simplifying
models. This paper studies the greedy version of this algorithm
and consequently in one place addresses several analytical
challenges which include: (i) two-time-scale analysis, (ii)
an online or single trajectory update, (iii) Markovian data
samples, (iv) time-varying Markov chain, (v) asynchronous
update in tabular setting, (vi) diminishing step sizes, and (vii)
global convergence with minimal assumptions.

II. NATURAL ACTOR-CRITIC METHODS FOR
REINFORCEMENT LEARNING

The environment of our RL problem is modeled by
a Markov Decision Process (MDP) specified by M =
(S,A,P,R, γ), where S and A are finite sets of states and ac-
tions, P is the set of transition probability matrices, γ ∈ (0, 1)
is the discount factor, and R : S × A → [0, 1] is the reward
function, where without loss of generality we assume that
the rewards are in [0, 1]. We focus on randomized stationary
policies, where each policy π assigns to each state s ∈ S
a probability distribution π(· | s) over A. Each policy π on
the MDP, induces a Markov chain with transition probability
Pπ(s′|s) =

∑
a P(s′|s, a)π(a|s) on the states. Assuming

that this Markov chain is irreducible, it induces a stationary
distribution over states, which we denote by µπ . By definition,
this distribution satisfies (µπ)TPπ = (µπ)T [60].
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For a fixed policy π, a sample trajectory of the states and ac-
tions is generated according to Sk+1 ∼ P(·|Sk, Ak), Ak+1 ∼
π(·|Sk+1). The value function associated with π and the state
s is defined as the expected discounted cumulative reward,
i.e.V π(s) = E

[∑∞
k=0 γ

kR(Sk, Ak) |S0 = s,Ak ∼ π(·|Sk)
]
.

Furthermore, given an initial state distribution P over S ,
we denote the expected cumulative reward for a policy π
as V π(P). The goal is to find a policy that maximizes this
expected cumulative reward:

π∗ ∈ arg max
π

V π(P). (1)

It can be shown [61] that the optimal policy π∗ is inde-
pendent of the initial distribution P, and hence throughout
this paper we assume P as fixed and we denote V π ≡
V π(P). Furthermore, we denote V π

∗
as V ∗. It can be shown

that value function can be written as V π ≡ V π(P) =∑
s,a d

π
P(s)π(a|s)R(s, a), where dπP, denoted as the dis-

counted state visitation [29], is defined as dπP(s) = (1 −
γ)
∑∞
k=0 γ

kPπ(Sk = s | s0 ∼ P), with Pπ(Sk = s |S0 ∼ P)
being the probability that Sk = s after executing policy π
starting from the initial distribution P at k = 0. Throughout,
we denote dπ

∗

P as d∗.
Given policy πt, the Natural Policy Gradient (NPG) algo-

rithm [5], [30] under the softmax parametrization updates the
policy in every time step according to

πt+1(a|s)=
πt(a|s) exp(βtQ

πt(s, a))∑
a′ πt(a

′|s) exp(βtQπt(s, a′))
, ∀s, a, (2)

where Qπ(s, a) = E[
∑∞
k=0 γ

kR(Sk, Ak) |S0 = s,A0 =
a,Ak ∼ π(·|Sk)] is the Q-function corresponding to the policy
π. Here βt is the step size which might be time dependent.

The update rule in (2) has multiple interpretations [62].
Firstly, as explained in [7], it can be seen as the update of
the mirror descent for problem in (1) using negative entropy
as the divergence generating function. Secondly, the NPG
update in (2) can be seen as a pre-conditioned gradient ascent
with softmax parameterization, where the pseudoinverse of the
Fisher information matrix [63] multiplies the gradient as a
preconditioner [30]. While mirror descent and natural gradient
descent are distinct but related algorithms in general [7], [31],
[32], they are both identical to (2) in our setting of solving
the problem in (1) using softmax policy parametrization.

In the setting above, the NPG method finds a globally
optimal policy with a provable rate; [5] shows that after T
iterations of the update (2) with constant step size βt = β,
it finds a policy whose expected cumulative reward is within
O(1/T ) of the optimal policy. The convergence bound in [5]
is for the “MDP setting”, where the Q-function is computed
exactly for every candidate policy πt. In the vast majority of
reinforcement learning applications, however, Qπt has to be
estimated from simulations or observations.

A. Two-Time-Scale Natural Actor-Critic Algorithm
In order to perform the NPG update (2) for an unknown

environment, one can first estimate Qπt using a batch of
samples of state-action-rewards. However, using batch of data
for the update of the Q-function has practical drawbacks. In

particular, sampling of the batch data requires the state of
the system to be reset frequently, which is not possible in
environments such as robotics. A truly online, completely
data-driven technique that keeps a running estimate of the
Q-functions while performing NPG updates based on these
estimates is presented in Algorithm 1 with εt = 0. In this
algorithm, the “critic” implements an asynchronous update
to the Q-function, where the only entry in the table that is
changed at every iteration is the one corresponding to the
observed state-action pair (St, At). After this, the “actor” uses
the estimated Q-table to update the policy using a natural
policy gradient update of the form in (2). The critic and the
actor use different step sizes (αt and βt, respectively), a fact
that helps maintain the algorithm’s stability.

Due to the existence of two different step sizes, Algorithm 1
can be viewed as a variant of two-time-scale stochastic approx-
imation [25]. Intuitively, the critic has to collect information
about the gradient at a faster time scale than the time scale
at which the actor executes the gradient update — in other
types of policy gradient algorithms, this takes the form of
multiple samples being generated in an inner loop. Since the
AC method performs both updates from a single sample, we
can achieve a similar effect by having the actor take a more
conservative step.

One of the main differentiators of our work with the existing
literature on the convergence of AC algorithms is the update
of the policy that mixes in a small multiple of the uniform
distribution. This mixing is necessary to ensure sufficient
exploration of the state-action space. In this algorithm, at
each iteration t, the action At+1 is sampled from the policy
π̂t, which is a convex combination of the policy πt and the
uniform distribution. This strategy ensures that the sampling
policy π̂t attains at least εt weight in all it’s elements,
even though some elements of πt might be arbitrary small.
Furthermore, with introducing this step, we can ignore the
technical assumptions which is made by the previous works.
In Section IV, we give an example of an MDP with 4 states
and 2 actions where a naive implementation of AC without
this ε-greedy exploration step results in a suboptimal policy.

In the existing literature, this exploration is ensured through
more stringent conditions on the problem structure, which
if satisfied, can guarantee enough exploration by the AC
algorithm (Assumption 1 in [48] and [47], Assumption 4.2
in [49], Assumption 4.3 in [64], and Assumption 4.1 in [50]).
These assumptions, however, need not necessarily be satisfied
in the tabular MDP setting. In particular, all these assumptions
require πt(a|s) to be bounded away from zero for all states
and actions s, a uniformly over time. However, we know that
in an MDP, there always exist a deterministic policy which is
a global optimal. This means that πt(a|s) can very likely go
to zero for some sate-action pair s, a, and the assumption can
be violated.

III. MAIN RESULT: FINITE TIME CONVERGENCE
BOUNDS OF GREEDY NATURAL ACTOR-CRITIC

In this section, we provide a finite-time performance guar-
antee for Algorithm 1. In this algorithm, we can either choose
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Algorithm 1: Two-time-scale natural AC algorithm
with ε-greedy exploration

Input: Iteration number T > 0, step sizes αt, βt,
exploration parameter εt, Q0(s, a) ∈ R|S||A|,
π0(a|s) = π̂0(a|s) = 1

|A| , ∀s, a.
Draw S0 from some initial distribution and A0 ∼ π0(·|s0)
for t=0,1,2,. . . ,T do

Sample St+1 ∼ P(·|St, At), At+1 ∼ π̂t(·|St+1)
αt(s, a) = αt1{St = s,At = a}, ∀s, a
Qt+1(s, a) = Qt(s, a) + αt(s, a)

[
R(St, At) +

γQt(St+1, At+1)−Qt(St, At)
]
, ∀s, a

πt+1(a|s) = πt(a|s) exp(βtQt+1(s,a))∑
a′ πt(a

′|s) exp(βtQt+1(s,a′)) , ∀s, a
π̂t+1 = εt

|A| + (1− εt)πt+1

end for
Sample T̂ from {0, 1, . . . , T} by distribution
P (T̂ = i) = βi∑T

j=0 βj

Output: π̂T̂

a constant ε-greedy parameter, or a time-varying one. The
advantage of the constant ε is faster rate of convergence to
a neighborhood of the optimal, and the advantage of the time-
varying greedy parameter is global convergence without any
necessary pre-specified error.

In order to characterize our convergence results, first we
make the following assumption.

Assumption 1: For every deterministic policy π, the
Markov chain induced by the transition probability Pπ is
ergodic.
For more explanation regarding this assumption, look at Sec-
tion IV.

We now present the main result of the paper. We bound the
deviation of the value of the policy returned by 1 from the
value of the optimal policy.

Theorem 1: Suppose Assumption 1 holds. Consider Algo-
rithm 1 under the following step size parameters

αt =
α

(t+ 1)ν
, βt =

β

(t+ 1)σ
, εt =

ε

(t+ 1)ξ
, (3)

with 0 ≤ ξ < ν < σ < 1, α, ε ≤ 1. Then,

E[V ∗ − V π̂T̂ ] ≤ O(T σ−1) +

{
Õ(T−σ) if 1 > 2σ

Õ(T σ−1) o.w

+

{
Õ(εT σ−1) if ξ + σ > 1

Õ(εT−ξ) o.w

+

{
Õ(T 0.5(ν+ξ−1)/ε0.5) if ν + ξ + 1 > 2σ,

Õ(T σ−1/ε0.5) o.w.

+

{
Õ(t0.5(ξ−ν)/ε0.5) if 2 + ξ > ν + 2σ,

Õ(T σ−1/ε0.5) o.w.

+

{
Õ(t−0.5) if 1 > 2σ,

Õ(T σ−1) o.w.

+

{
Õ(t0.5(ξ+ν−2σ)/ε0.5) if 2 + ξ + ν > 4σ,

Õ(T σ−1/ε0.5) o.w,

+

{
Õ(tξ+ν−σ/ε) if 2 + 2ν + 2ξ > 4σ,

Õ(T σ−1/ε) o.w.

where Õ(·) ignores the log(T ) terms.
The proof of Theorem 1 is provided in Section V.

Note that while V ∗ is not random, but V π̂T is, since the
policy π̂T is a function of all the random variables drawn in
Algorithm 1.

Furthermore, we state two corollaries of Theorem 1 for
different choices of ξ.

Corollary 1.1: Suppose Assumption 1 holds. Consider Al-
gorithm 1 under the parameters in (3). Suppose ξ = 0, ν = 0.5,
and σ = 0.75. We have:

E[V ∗ − V π̂T̂ ] ≤ Õ
(

1

εT 1/4
+ ε

)
. (4)

Hence, the algorithm requires Õ(1/δ4) number of samples to
get ε+δ/ε close to the global optimum. Furthermore, by taking
ε = O(δ), we get E[V ∗ − V π̂T̂ ] ≤ Õ(δ) after T = Õ(1/δ8)
iteration of Algorithm 1.
The sample complexity in Corollary 1.1 is relatively poor due
to the 1

ε term on the upper bound in (4), which is due to a
constant exploration factor in AC. In the next corollary we
show how to achieve a better sample complexity by gradually
reducing the exploration factor εt.

Corollary 1.2: Suppose Assumption 1 holds. Consider Al-
gorithm 1 under the parameters in (3). Suppose ξ = 1/6,
ν = 0.5, and σ = 5/6. We have:

E[V ∗ − V π̂T̂ ] ≤ Õ(1/T 1/6).

In particular, we have E[V ∗ − V π̂T̂ ] ≤ δ after T = Õ(1/δ6)
iterations of Algorithm 1.
Corollaries 1.1 and 1.2 are direct application of Theorem 1. In
particular, in the case of ξ = 0, the term εT−ξ in the bound
of Theorem 1 will be a constant proportional to ε, and the
best rate of convergence is obtained by picking ν = 0.5 and
σ = 0.75 which gives Corollary 1.1. Also assuming ξ > 0,
the best rate of convergence can be obtained by ξ = 1/6, ν =
0.5, σ = 5/6.

We should emphasize that Corollaries 1.1 and 1.2 character-
ize the sample complexity for global convergence of Algorithm
1 with the only assumption of ergodicity of the underlying
MDP. This is indeed a much weaker assumption compared to
the related work.

IV. NEED FOR EXPLORATION AND ERGODICITY

In this section we explain the necessity of the ε-greedy step
in Algorithm 1 and the ergodicity Assumption 1. In iteration
t of the natural AC algorithm, the objective of the critic is
to estimate the Q-function corresponding to the policy πt. In
two-time-scale natural AC, in each iteration t the algorithm
estimates the Q-function by updating only a single random
element (s = St, a = At) of the Qt table. In our analysis, the
ε-greedy step ensures that in each iteration of the algorithm,
each of the actions are being sampled with probability at least
εt. Furthermore, Assumption 1 ensures that all the states of the
MDP are visited infinitely often. In the following we show
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Fig. 1: A 4 states, and 2 actions MDP. Orange and blue
correspond to the non zero transition probabilities of actions
a1 and a2 respectively.
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Fig. 2: πt(a2|s1) for 10 trajectories generated by the natural
AC algorithm over the MDP in Fig. 1. Straight and dashed
lines show the result with and without ε-greedy, respectively.
Since here π∗(a2|s1) = 1, it shows that the algorithm without
ε-greedy converges to a suboptimal policy.

why both ε-greedy and Assumption 1 are essential for the
convergence of the natural AC algorithm.

(I) ε-greedy: Following the update of the policy in Algo-
rithm 1, we have

πt(a|s) =
exp(

∑t−1
l=0 βlQl+1(s, a))∑

a′ exp(
∑t−1
l=0 βlQl+1(s, a′))

. (5)

If for some state s, action ã satisfies Qk(s, ã) �
Qk(s, a), ∀a 6= ã, by (5), πt(ã|s) converges to zero geometri-
cally. Thus, with high probability (s, ã) will not be explored,
and we might converge to a suboptimal policy. Note that the
scenario explained here can very likely happen when R(s, ã)
is negligible with respect to R(s, a) for other actions a.

The following experiment illustrates the necessity of the ε-
greedy policy update. Consider the MDP depicted in Fig. 1.
This MDP has 4 states and 2 actions. All the transition proba-
bilities depicted in the figure are positive, and the rest are zero.
Furthermore, R(s1, a1) = 0.1 and R(s4, a1) = 1, and the rest
of the rewards are zero. Suppose P(s1|si, a1) = 0.999, i =
1, 2, 3, P(si+1|si, a1) = 0.001, i = 1, 2, 3, P(s4|s4, a1) =
0.999, P(s1|s4, a1) = 0.001, P(s1|si, a2) = 0.001, i =
2, 3, P(si+1|si, a2) = 0.999, i = 2, 3, P(s2|s1, a2) = 1,
P(s4|s4, a2) = 0.001, P(s1|s4, a2) = 0.999. In this MDP, the
optimal policy in state s1 is to play action a2. Fig. 2 shows
πt(a2|s1) for 10 trajectories achieved by the natural AC. The
straight lines show the output of the algorithm when ε-greedy
is employed, and the dashed lines are the output without ε-
greedy. It is clear that almost always the trajectories of the
algorithm without ε-greedy converge to a suboptimal policy.

(II) Ergodicity Assumption: This assumption implies that
under all policies, the induced Markov chain over the states of
the MDP is irreducible and aperiodic. We discuss these two
assumptions separately in the next two paragraphs.

First, for an example of an MDP which does not satisfy
irreducibility assumption, consider any episodic MDP, where
there is a terminal state in which the episode ends [55]. This
system can be modeled as an infinite horizon MDP with
an absorbing state corresponding to the terminal state. It is
clear that this MDP does not satisfy irreducibility assumption.
Furthermore, since after a finite time, with high probability
we reach to the absorbing state, it is impossible to find the
optimal policy using a single trajectory.

Second, since here we assume finite state and action spaces,
the aperiodicity assumption along with irreducibility is equiv-
alent to the existence of a mixing time, which is common in
the literature [40], [47], [48], [50], [64], [65]. We make this
more precise in Lemma 7.

V. PROOF OF THEOREM 1: TWO-TIME-SCALE ANALYSIS

Next we provide the proof of Theorem 1. Before expressing
the proof, we state the following Proposition on the conver-
gence of the natural AC along with its proof.

Proposition 1: Consider the two-time-scale natural AC Al-
gorithm 1 with T iterations, and the output π̂T̂ . Suppose
the step size βt and the exploration parameter εt are non-
increasing with respect to t. We have the following:

E[V ∗ − V π̂T̂ ] ≤ 1∑T
t=0 βt

{
2β

(1− γ)2
+

log |A|
(1− γ)

+
2

1− γ
T∑
t=0

[
βtE‖Qπ̂t −Qt+1‖+

L1

√
|A|

(1− γ)
β2
t + εtβt

]}
,

where ‖ · ‖ is the euclidean norm and L1 is a constant whose
precise value is given in Lemma 9 in Section V-D.

A. Proof of Proposition 1
In this section we provide the proof of Proposition 1. A

similar result was proved for NPG in [5], when the actor has
access to the exact Q-function. However, since the actor in
Algorithm 1 has only access to Qt(s, a), rather than the exact
Q-function Qπt(s, a), establishing the bound in Proposition
1 is more challenging. Note that Qt(s, a) is obtained by the
critic carrying out only one step of the TD-learning using a
single sample update at each time step. Consequently, the error
bound in Proposition 1 involves the term 1

T

∑T
t=0 βtE‖Qπ̂t −

Qt+1‖, which accounts for the time-average error in the critic’s
estimate of the Q-function. Proposition 1 is also different from
the results in [5] is terms of the step size. In particular, while
[5] only considers the case of constant step size, the result in
Proposition 1 is stated for general choice of non-increasing
step sizes. Furthermore, a similar type of upper bound has
been established in [24], [51] for the analysis of off-policy
natural AC. However, in those works the εT term is absent.

When the actor has access to the exact Q-functions, it
was observed in [5] that using a constant step size results
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in O(1/T ) rate of convergence. This result can be reproduced
from Proposition 1 by eliminating the 1

T

∑T
t=0 βtE‖Qπ̂t −

Qt+1‖ term in the upper bound, and taking a constant βt, and
choosing εT = 0. However, due to the existence of εT , and
the 1

T

∑T
t=0 βtE‖Qπ̂t −Qt+1‖ term, the optimal convergence

rate can only be obtained by a carefully diminishing step size,
which has been shown in Theorem 1.

Next we provide the proof of Proposition 1.
proof: We will use a Lyapunov drift based argument to prove

the proposition using the KL-divergence [66] as a Lyapunov
or potential function. This is a natural choice because it is
known to be the right potential function for mirror descent
[67] in optimization and it is known [5], [7] that the natural
gradient ascent is equivalent to mirror descent.

Let M(π) = Es∼d∗ [DKL(π∗(·|s)||π(·|s))]. Then,

M(πt+1)−M(πt)

=Es∼d∗
[∑

a

π∗(a|s) log
πt(a|s)
πt+1(a|s)

]
(a)
=
∑
s,a

d∗(s)π∗(a|s)(logZt(s)− βtQt+1(s, a))

(b)
=βt

∑
s,a

d∗(s)π∗(a|s)(Qπ̂t(s, a)− V π̂t(s))

+ βt
∑
s,a

d∗(s)π∗(a|s)
(
Qt+1(s, a)−Qπ̂t(s, a)

−Qt+1(s, a) + V π̂t(s)
)

+
∑
s,a

d∗(s)π∗(a|s)(logZt(s)− βtQt+1(s, a))

(c)
=(1− γ)βt

[
V π̂t − V ∗

]
+ βt

∑
s,a

d∗(s)π∗(a|s)
[
Qπ̂t(s, a)−Qt+1

]
+
∑
s,a

d∗(s)
[
logZt(s)− βtV π̂t

]
,

where, (a) is by the update rule of the policy πt in Algorithm 1
with Zt(s) =

∑
a πt(a|s) exp(βtQt+1(s, a)), (b) is by adding

and subtracting terms, and (c) is by Performance Difference
Lemma [68]. Rearranging the terms, we get:

V ∗ − V π̂t

=
1

(1− γ)βt
[M(πt)−M(πt+1)]

+
1

1− γ
∑
s,a

d∗(s)π∗(a|s)
[
Qπ̂t(s, a)−Qt+1(s, a)

]
(6)

+
1

1− γ
∑
s,a

d∗(s)

[
1

βt
logZt(s)− V π̂t(s)

]
. (7)

We bound the terms in (6) and (7) separately.
Using the Cauchy-Schwarz inequality in (6), we have:

1

1− γ
∑
s,a

d∗(s)π∗(a|s)
[
Qπ̂t(s, a)−Qt+1(s, a)

]
≤ 1

1− γ ‖Q
π̂t −Qt+1‖.

In order to bound the term (7), we use the following lemma.

Lemma 1: Consider Algorithm 1 with Zt(s) =∑
a πt(a|s) exp(βtQt+1(s, a)). For any t ≥ 0 we have

the following inequality:∑
s

d∗(s)

[
1

βt
logZt(s)− V π̂t(s)

]
≤ V πt+1(d∗)− V πt(d∗)

+ ‖Qπ̂t −Qt+1‖+
2L1

√
|A|

(1− γ)2
βt +

εt−1

1− γ ,

where ε−1 := 0.
Employing Lemma 1 in (7), multiplying by βt and summing
from 0 to T , we get:

T∑
t=0

βt(V
∗ − V π̂t)

≤
T∑
t=0

1

(1− γ)
[M(πt)−M(πt+1)]

+
2βt

1− γ ‖Q
π̂t −Qt+1‖+

βt
1− γ [V πt+1(d∗)− V πt(d∗)]

+
2L1

√
|A|

(1− γ)2
β2
t +

εt−1βt
1− γ

=
1

(1− γ)

T∑
t=0

{
M(πt)−M(πt+1) (8)

+ βt [V πt+1(d∗)− V πt(d∗)]
}

(9)

+
T∑
t=0

{
2βt

1− γ ‖Q
π̂t −Qt+1‖+

2L1

√
|A|

(1− γ)2
β2
t (10)

+
εt−1βt
1− γ

}
. (11)

We evaluate (8)+(9) and (10)+(11) separately. First, we have:

(8) + (9) =
1

(1− γ)

T∑
t=0

[
βt [V πt+1(d∗)− V πt(d∗)]

]
+

1

(1− γ)
[M(π0)−M(πT+1)]

(a)

≤ 1

(1− γ)

T∑
t=0

[
βt [V πt+1(d∗)− V πt(d∗)]

]
+

log |A|
(1− γ)

=
1

(1− γ)

T∑
t=0

(βt − βt+1)V πt+1(d∗)

− β0

(1− γ)
V π0(d∗) +

βT+1

(1− γ)
V πT+1(d∗) +

log |A|
(1− γ)

≤ 1

(1− γ)

T∑
t=0

(βt − βt+1)V πt+1(d∗)

+
βT+1

(1− γ)
V πT+1(d∗) +

log |A|
(1− γ)

(b)

≤ 1

(1− γ)2

T∑
t=0

(βt − βt+1)
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+
βT+1

(1− γ)2
+

log |A|
(1− γ)

=
1

(1− γ)2
(β0 − βT+1) +

βT+1

(1− γ)2
+

log |A|
(1− γ)

≤ 2β

(1− γ)2
+

log |A|
(1− γ)

, (12)

where (a) is due to 0 ≤ DKL(P (X)||Unif(X)) ≤ log |X |,
where P (X) is any distributieseseon over X and Unif(X)
is uniform distribution over X , and |X | is the cardinality of
the random variable X [66], and (b) is due to V π ∈ [0, 1

1−γ ],
shown in Lemma 5, and βt being non-increasing with respect
to t.

Furthermore, we have

(10) + (11)

=
2

1− γ
T∑
t=0

[
βt‖Qπ̂t −Qt+1‖+

L1

√
|A|

(1− γ)
β2
t + 0.5εt−1βt

]

≤ 2

1− γ
T∑
t=0

[
βt‖Qπ̂t −Qt+1‖+

L1

√
|A|

(1− γ)
β2
t + εtβt

]
. (13)

Dividing both sides of (12) and (13) with
∑T
t=0 βt, taking

expectation, and noting that
∑T
t=0 βtE(V ∗−V π̂t )∑T

t=0 βt
= E[V ∗ −

V π̂T̂ ], we get the proposition.
According to Proposition 1, to establish a bound for the

performance metric E[V ∗ − V π̂T̂ ], we need to characterize a
bound for E‖Qπ̂t−Qt+1‖ for all 0 ≤ t ≤ T . Next we provide
the proof of Theorem 1 which essentially corresponds to the
characterization of this bound.

B. Proof of Theorem 1
First, we introduce some notations and lemmas which will

be used within the proof.

Ot = (St, At, St+1, At+1)

r(Ot) = [0; 0; . . . ; 0;R(St, At); 0; . . . ; 0] ∈ R|S||A|

A(O) ∈ R|S||A|×|S||A|

A(O)i,j ≡ A(s, a, s′, a′)i,j

=


γ − 1 i = j = (s, a) = (s′, a′)

−1 (s, a) 6= (s′, a′), i = j = (s, a)

γ (s, a) 6= (s′, a′), i = (s, a), j = (s′, a′)

0 otherwise

θt = Qt −Qπ̂t−1 (14)
Āπ =Es∼µπ(·),a∼π(·|s),s′∼P(·|s,a),a′∼π(·|s′)[A(s, a, s′, a′)]

(15)

Γ(π, θ,O) = θ>(r(O) +A(O)Qπ) + θ>(A(O)− Āπ)θ

Note that with the above notation, the update of the Q-function
in Algorithm 1 in the vector form can be written as:

Qt+1 = Qt + αt(r(Ot) +A(Ot)Qt),

which by adding and subtracting terms, can be equivalently
written as:

θt+1+(Qπ̂t−Qπ̂t−1)=θt+αt(r(Ot)+A(Ot)Q
π̂t−1+A(Ot)θt).

Lemmas 2 and 3 characterize an upper bound on the one step
drift of Qπ̂t and θt.

Lemma 2: One step drift of the Q-function with respect to
the sampling policy π̂t satisfies the following:

‖Qπ̂t+1 −Qπ̂t‖ ≤ L2(L3
εt−1

t
+ L1βt),

where the constants L1, L2, and L3 are defined in Lemmas 8
and 9.

Lemma 3: The one step drift of the vector θt can be
bounded as

‖θt+1 − θt‖2 ≤ 2α2
t∆

2
Q + 4L2

2L3
2 ε2t−2

(t− 1)2
+ 4L2

2L1
2β2
t−1,

where ∆Q is defined in Lemma 16 in the Appendix.
The following lemma is directly used to create a negative drift,
which is essential for the convergence proof of Theorem 1.

Lemma 4: Consider the policy π̂t−1 in the t−1’th iteration
of Algorithm 1, and the vector θt and the matrix Āπ̂t−1 defined
in (14) and (15), respectively. We have:

θ>t Ā
π̂t−1θt ≤ −(1− γ)

εt−2

|A| µ‖θt‖
2,

where µ > 0 is some absolute constant. Later in Lemma 10
we explain the intuition behind the constant µ.
The following Lemma provides some absolute bounds on the
value and Q-function.

Lemma 5: Let Qmax = 1
1−γ . Then we have

1) 0 ≤ V π ≤ Qmax

2) 0 ≤ Qπ(s, a) ≤ Qmax

3) ‖Qπ‖ ≤
√
|S||A|Qmax

4) ‖Qt‖ ≤
√
|S||A|Qmax.

A major part of the proof of Theorem 1 is to establish a bound
on E[Γ(π̂k−1, θk, Ok)]. In the following, we provide such a
bound in Lemma 6. The proof of this lemma is provided in
Section V-C.

Lemma 6: For any τ < t, we have:

E
[
Γ(π̂t−1, θt, Ot)

]
≤ Cbmρτ +K2∆Qταt−τ

+ (CuL3 +K1L3 +K2L2L3)
(τ + 1)2εt−τ−2

t− τ − 1
+ (CuL1 +K1L1 +K2L1L2)(τ + 1)2βt−τ−1.

We further define

τt := min {r > 0|Mρρ
r ≤ βt, r integral} , (16)

where Mρ = (−σ/ ln(ρ))σ/(ρ1+σ/ ln(ρ)). It is easy to see that
1 ≤ τt ≤ t for all t, and τt = O(log(t)) = Õ(1).

In order to establish the convergence result in Theorem
1, we use the bound in Proposition 1. By the definition of
the step sizes, it is clear that

∑T
t=0 βt = Θ(T 1−σ). Hence,

by Proposition 1 and assumptions on the step sizes, it is
straightforward to show that

E[V ∗ − V π̂T̂ ]

≤ O
(

1

T 1−σ

)
+

{
Õ
(

1
Tσ

)
if 1 > 2σ

Õ( 1
T 1−σ ) o.w

+

{
Õ
(

ε
T 1−σ

)
if ξ + σ > 1

Õ( ε
T ξ

) o.w
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+
1

T 1−σO
{

T∑
t=0

βtE‖Qπ̂t −Qt+1‖
}
. (17)

Next, we aim at bounding the term
∑T
t=0 βtE‖Qπ̂t −Qt+1‖.

We have:
T∑
t=0

βtE‖Qπ̂t −Qt+1‖ =
T∑
t=0

β
1/2σ
t β

1−1/2σ
t E‖Qπ̂t −Qt+1‖

≤

√√√√ T∑
t=0

β
1/σ
t ×

√√√√ T∑
t=0

β
2σ−1
σ

t E‖Qπ̂t −Qt+1‖2, (18)

where the inequality is due to Cauchy–Schwarz inequality.
Furthermore, we have

∑T
t=0 β

1/σ
t = O(log(T )) = Õ(1).

Hence, we only left to bound the last term in (18) which we
will do in the rest of the proof.

Using ‖θt‖2 as the Lyapunov function, we have:

‖θt+1‖2 − ‖θt‖2 = 2θ>t (θt+1 − θt − αtĀπ̂t−1θt)

+ ‖θt+1 − θt‖2 + 2αtθ
>
t Ā

π̂t−1θt
(a)
= 2αtΓ(π̂t−1, θt, Ot) + 2θ>t (Qπ̂t−1 −Qπ̂t) + ‖θt+1 − θt‖2

+ 2αtθ
>
t Ā

π̂t−1θt

(b)

≤2αtΓ(π̂t−1, θt, Ot)+2‖θt‖.
T1︷ ︸︸ ︷

‖Qπ̂t−1 −Qπ̂t‖+

T2︷ ︸︸ ︷
‖θt+1 − θt‖2

+ 2αt

T3︷ ︸︸ ︷
θ>t Ā

π̂t−1θt, (19)

where (a) is by definition of Γ, and (b) is due to the
Cauchy–Schwarz inequality. We bound each of the terms T1,
T2, T3 using Lemmas 2, 3, and 4, respectively. We have

‖θt+1‖2 − ‖θt‖2

≤2αtΓ(π̂t−1, θt, Ot) + 2L2

(
L3

εt−2

t− 1
+ L1βt−1

)
‖θt‖

+ 2α2
t∆

2
Q + 4L2

2L3
2 ε2t−2

(t− 1)2

+ 4L2
2L1

2β2
t−1 −

2(1− γ)µ

|A| αtεt−2‖θt‖2. (20)

Define λt = β
2σ−1
σ

t . Multiplying both sides of
(20) with λt and denoting yt = λt‖θt‖2, we have
yt ≤ et(‖θt‖2 − ‖θt+1‖2) + ut + ht

√
yt, where et =

λt|A|
2(1−γ)µαtεt−2

and ut = |A|λt
2(1−γ)µαtεt−2

(2αtΓ(π̂t−1, θt, Ot) +

2α2
t∆

2
Q + 4L2

2L3
2 ε2t−2

(t−1)2 + 4L2
2L1

2β2
t−1), and ht =

|A|
√
λt

2(1−γ)µαtεt−2
2L2

(
L3

εt−2

t−1 + L1βt−1

)
. Summing from τt+ 2

to t, we have
t∑

k=τt+2

yk ≤
t∑

k=τt+2

ek(‖θk‖2 − ‖θk+1‖2)︸ ︷︷ ︸
T1

+
t∑

k=τt+2

uk︸ ︷︷ ︸
T2

+
t∑

k=τt+2

hk
√
yk︸ ︷︷ ︸

T3

. (21)

We bound the summation of each of the terms T1, T2, and
T3 separately. First we have

T1 =eτt+1‖θτt+2‖2 − et‖θt+1‖2 +
t∑

k=τt+2

(ek − ek−1)‖θk‖2.

We have ek ∼ λk/(αkεk) ∼ β
2σ−1
σ

k /αkεk ∼ kν+ξ+1−2σ/ε.
For the case ν + ξ + 1− 2σ > 0, ek is increasing. Hence, we
have

T1

(a)

≤ 4|S||A|Q2
max

[
eτt+1 +

t∑
k=τt+2

(ek − ek−1)

]
(b)

≤ 4|S||A|Q2
max [eτt+1 + et] ≤ Õ(tν+ξ+1−2σ/ε),

where (a) is due to Lemma 5, and (b) is due to et ≥ 0.
Furthermore, if ν + ξ + 1 − 2σ < 0, we have ek decreasing,
and hence T1 ≤ Õ(eτt+1) = Õ(1/ε). It is also easy to show
that for ν+ ξ+ 1− 2σ = 0, we have T1 ≤ Õ(1/ε). Hence, in
total we have

T1 ≤
{
Õ(tν+ξ+1−2σ/ε) if ν + ξ + 1 > 2σ,

Õ(1/ε) o.w.
(22)

Furthermore, for the term T2 we have

ET2 =O(
t∑

k=τt+2

λk
εk

EΓ(π̂k−1, θk, Ok)+
λkαk
εk

+
λkεk
k2αk

+
λkβ

2
k

αkεk
)

(a)

≤Õ(

t∑
k=τt+2

λk
εk

(βk + αk +
εk
k

)+
λkαk
εk

+
λkεk
k2αk

+
λkβ

2
k

αkεk
)

(b)

≤Õ(
t∑

k=τt+2

k1−2σ(kξ−ν/ε+ k−1 + kξ+ν−2σ/ε))

≤
{
Õ(t2+ξ−2σ−ν/ε) if 2 + ξ > ν + 2σ,

Õ(1/ε) o.w.

+

{
Õ(t1−2σ) if 1 > 2σ,

Õ(1) o.w.

+

{
Õ(t2+ξ+ν−4σ/ε) if 2 + ξ + ν > 4σ,

Õ(1/ε) o.w,
(23)

where in (a) we use Lemma 6 with τ = τk, and in (b) we
use the assumptions on the step sizes.

Finally, for the term T3 we have

ET3

(a)

≤

√√√√ t∑
k=τt+2

h2
k × E

√√√√ t∑
k=τt+2

yk


(b)

≤

√√√√ t∑
k=τt+2

h2
k ×

√√√√ t∑
k=τt+2

Eyk

where (a) is by Cauchy–Schwarz inequality and (b) is by
concavity of square root and Jensen’s inequality. Denoting
G(t) =

∑t
k=τt+2 h

2
k, we have

G(t) ≤ Õ
(

t∑
k=τt+2

λk
α2
kk

2
+
λkβ

2
k

α2
kε

2
k

)
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≤ Õ
(

t∑
k=τt+2

k−1 + k1−4σ+2ν+2ξ/ε2

)

= Õ(1) +

{
Õ(t2−4σ+2ν+2ξ/ε2) if 2 + 2ν + 2ξ > 4σ,

Õ(1/ε2) o.w.
(24)

Denote H(t) =
∑t
k=τt+2 Eyk. Taking expectation on both

sides of (21), we have

H(t) ≤ ET1 + ET2 +
√
G(t).

√
H(t)

=⇒ (
√
H(t)− 1

2

√
G(t))2 ≤ ET1 + ET2 + 1/4G(t)

=⇒
√
H(t)− 1

2

√
G(t) ≤

√
ET1 + ET2 + 1/4G(t)

=⇒ H(t) ≤ 2ET1 + 2ET2 +G(t) (25)

Combining (22), (23), (24), and (25), we have

H(t) ≤
{
Õ(tν+ξ+1−2σ/ε) if ν + ξ + 1 > 2σ,

Õ(1/ε) o.w.

+

{
Õ(t2+ξ−2σ−ν/ε) if 2 + ξ > ν + 2σ,

Õ(1/ε) o.w.

+

{
Õ(t1−2σ) if 1 > 2σ,

Õ(1) o.w.

+

{
Õ(t2+ξ+ν−4σ/ε) if 2 + ξ + ν > 4σ,

Õ(1/ε) o.w,

+

{
Õ(t2−4σ+2ν+2ξ/ε2) if 2 + 2ν + 2ξ > 4σ,

Õ(1/ε2) o.w.

+ Õ(1). (26)

Combining (26), (17) and (18), we get the result.
1) Proof of Corollary 1.1: In the case of constant exploration

parameter, we have ξ = 0, and the optimal step size can be
achieved by σ = 3/4 and ν = 1/2. In this case, we get
E[V ∗ − V π̂T̂ ] ≤ Õ

(
T−1/4

ε + ε
)

. Hence, to get to a solution

policy within δ/ε+ε of the global optimum, we need Õ(1/δ4)
number of samples. Furthermore, to get δ-close to the global
optimum, we should have Õ(T

−1/4

ε ) ≤ δ/2 and Õ(ε) ≤ δ/2,
which means we have Õ(T−1/8) ≤ δ. Hence, to get δ-close
to the global optimum, we need Õ(1/δ8) number of samples.

2) Proof of Corollary 1.2: For ξ > 0 we get E[V ∗−V π̂T̂ ] ≤
Õ(T−1/6) convergence to the global optimum which can be
achieved by ξ = 1/6, ν = 1/2, and σ = 5/6. Hence, in this
case to get δ-close to the global optimum, we need Õ(1/δ6)
number of samples. This proves Corollaries 1.1 and 1.2.

C. Proof sketch of Lemma 6
In Algorithm 1, the actions {At}t≥1 are sampled from a

time-varying policy π̂t−1. Hence the tuple (St, At) follows a
time-varying Markov chain as follows

St−τ
π̂t−τ−1−−−−−→ At−τ

P−→ St−τ+1
π̂t−τ−−−→ At−τ+1

. . .
P−→ St

π̂t−1−−−→ At
P−→ St+1

π̂t−→ At+1.

Since the sampling policy is changing over time, the conver-
gence analysis of this Markov chain is difficult.

In order to analyze this time-varying Markov chain, at each
time step t, we construct the following auxiliary Markov chain
(This idea was first employed in [69]):

St−τ
π̂t−τ−1−−−−−→ At−τ

P−→ S̃t−τ+1
π̂t−τ−1−−−−−→ Ãt−τ+1

. . .
P−→ S̃t

π̂t−τ−1−−−−−→ Ãt
P−→ S̃t+1

π̂t−τ−1−−−−−→ Ãt+1.

Due to the geometric mixing of the Markov chain, which is
stated formally in Lemma 7, by choosing τ large enough,
the distribution of (S̃t+1, Ãt+1) is “sufficiently close” to the
stationary distribution µπ̂t−τ−1 ⊗ π̂t−τ−1.

Lemma 7: Suppose Assumption 1 holds for an MDP. Then
there exist m > 0 and ρ ∈ (0, 1), such that

dTV (µπ(·), P π(Sτ = ·|S1 = s)) ≤ mρτ , ∀s ∈ S, ∀π, (27)

where dTV (·, ·) denotes the total variation distance between
two distributions. Furthermore, aperiodicity and the existence
of m and ρ in inequality (27) are equivalent, i.e., if there exist
a policy such that the underlying Markov chain is periodic,
then (27) does not hold.

Define Õt = (S̃t, Ãt, S̃t+1, Ãt+1). We have:

Γ(π̂t−1, θt, Ot) = Γ(π̂t−1, θt, Ot)− Γ(π̂t−τ−1, θt, Ot) (28)
+ Γ(π̂t−τ−1, θt, Ot)− Γ(π̂t−τ−1, θt−τ , Ot) (29)

+ Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt) (30)

+ Γ(π̂t−τ−1, θt−τ , Õt). (31)

We bound each of the terms above separately. Due to the Lip-
schitzness of Γ with respect to it’s first and second arguments,
the terms (28) and (29) can be bounded as follows:

Γ(π̂t−1, θt, Ot)− Γ(π̂t−τ−1, θt, Ot)≤O (‖π̂t−1 − π̂t−τ−1‖)

≤ O
(

t−1∑
i=t−τ

‖π̂i − π̂i−1‖
)
≤ O

(
τ
εt
t

+ τβt

)
.

Γ(π̂t−τ−1, θt, Ot)−Γ(π̂t−τ−1, θt−τ , Ot)≤O (‖θt − θt−τ‖)

≤ O
(

t∑
i=t−τ+1

‖θi − θi−1‖
)
≤ O

(
ταt + τ

εt
t

+ τβt

)
.

In order to bound the remaining two terms (30) and (31), we
first apply conditional expectation on both sides. Bounding
(30) is slightly technical and is presented in Lemma 13.
The main idea is as follows. Since the policy π̂t does not
change very fast over time, the conditional expectation of
Γ(π̂t−τ−1, θt−τ , Ot) and Γ(π̂t−τ−1, θt−τ , Õt) are close. De-
noting F̄t−τ = {St−τ , π̂t−τ−1, θt−τ}, we have

E[Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt)|F̄t−τ ]

≤ Õ
(

t∑
i=t−τ

‖π̂i − π̂t−τ−1‖
)
≤ O

(
τ
εt
t

+ τβt

)
.

Finally, denoting O′t = (S′t, A
′
t, S
′
t+1, A

′
t+1), where

S′t ∼ µπ̂t−τ−1 , A′t ∼ π̂t−τ−1(·|S′t), S′t+1 ∼
P(·|S′t, A′t), and A′t+1 ∼ π̂t−τ−1(·|S′t+1), we have
E
[
Γ(π̂t−τ−1, θt−τ , O

′
t)
∣∣St−τ , π̂t−τ−1

]
= 0 due to the
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Bellman equation. According to Lemma 7, the distribution
of the auxiliary chain Õt = (S̃t, Ãt, S̃t+1, Ãt+1)
converges geometrically fast to the distribution of
O′t = (S′t, A

′
t, S
′
t+1, A

′
t+1). Hence, we have

E
[
Γ(π̂t−τ−1, θt−τ , Õt)

∣∣St−τ , π̂t−τ−1

]
≤ O(ρτ ).

Putting all the above bounds together, we get the result.

D. Explanation of the main lemmas
Lemma 2 which provides a bound on one step drift of the Q-

function with respect to the sampling policy π̂t can be derived
from Lemmas 8 and 9 below.

Lemma 8: For every pair of policies π1 and π2, we have:

‖Qπ1 −Qπ2‖ ≤ L2‖π1 − π2‖,
where L2 = γ|S||A|

(1−γ)2 .
Lemma 9: The policy π̂t, satisfies the following:

‖π̂t+1 − π̂t‖ ≤ L1βt + L3
εt−1

t
, ∀t ≥ 1,

where L1 = Qmax

√
|A||S| and L3 = ξ

√
|S|( 1√

|A|
+ 1).

Lemma 8 characterizes the Lipschitzness of the Qπ function
with respect to the policy π, and Lemma 9 provides an upper
bound on the drift of the sampling policy π̂t.

Finally, Lemma 10 below provides an intuition regarding
the constant µ in Lemma 4.

Lemma 10: Suppose Assumption 1 holds. There exist a
constant µ > 0 such that for all the policies π, the stationary
distribution µπ satisfies

µπ(s) ≥ µ, ∀s ∈ S.
Lemma 10 is a direct consequence of the ergodicity of the
underlying MDP. In particular, the ergodicity Assumption
1 ensures that for all the policies π, under the stationary
distribution µπ , all the states are being visited with rate at
least µ. As explained in Section IV this is indeed essential for
the convergence of AC algorithm.
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APPENDIX

The supplementary material is organized as follows: in
Section I the details of the Proof of Theorem 1 is presented,
and in Section II details of the proof of Proposition 1 is
provided.

APPENDIX I
DETAILS OF THE PROOF OF THEOREM 1

A. Proof of Useful Lemmas

Proof of Lemma 3:

‖θt+1 − θt‖2 = ‖Qt+1 −Qt +Qπ̂t−1 −Qπ̂t‖2

≤ 2‖Qt+1 −Qt‖2 + 2‖Qπ̂t−1 −Qπ̂t‖2
(a)

≤ 2α2
t∆

2
Q + 2L2

2‖π̂t−1 − π̂t‖2
(b)

≤ 2α2
t∆

2
Q + 2L2

2

(
L3

εt−2

t− 1
+ L1βt−1

)2

≤ 2α2
t∆

2
Q + 4L2

2L3
2 ε2t−2

(t− 1)2
+ 4L2

2L1
2β2
t−1,

where (a) is due to Lemmas 8 and 16, and (b) is due to Lemma
9.

Proof of Lemma 4: We prove this lemma for a slightly more
general case. Assume a finite state Markov chain {Xk}k=0,1,...

with state space X = {x1, x2, . . . , x|X |} and stationary
distribution ν. Define M := diag(ν) a diagonal matrix with
diagonal entries equal to the elements of ν. Clearly, M = M>.
Further denote P as the transition matrix of the Markov chain.
Define V = γP − I , where I is the identity matrix. Assuming
Xk ∼ ν, for any function F (·) : X → R, we have:

E
[
F (Xk)

2
]

= E
[
F (Xk+1)

2
]
.

By Cauchy–Schwarz inequality, we have:

E [F (Xk)F (Xk+1)] ≤
√
E [F 2(Xk)].

√
E [F 2(Xk+1)]

= E
[
F 2(Xk)

]
. (32)

Denoting F = [F (x1);F (x2); . . . ;F (x|X |)] as a |X | dimen-
tional vector, we have:

E[F 2(Xk)] =
∑
x∈X

ν(x)F 2(x) = F>MF, (33)

E[F (Xk)F (Xk+1)] =
∑
x,y∈X

ν(x)P (y|x)F (x)F (y)

= F>MPF = F>P>MF, (34)

where the last equality is due to E[F (Xk)F (Xk+1)] being a
scalar. Combining (32), (33), and (34), we have:

F>MPF ≤ F>MF, ∀F
=⇒ MP ≤M

=⇒ M(γP − I) ≤ −(1− γ)M. (35)

Next, in the case of MDP, for a fixed policy π, we define
Mπ ∈ R|S||A|×|S||A| and Pπ ∈ R|S||A|×|S||A| matrices as
follows:

Mπ
(s,a),(s′,a′) =

{
µπ(s)π(a|s) (s, a) = (s′, a′),

0 o.w

Pπ(s,a),(s′,a′) = P(s′|s, a)π(a′|s′).

It is easy to see that:

Āπ(s,a),(s′,a′)

=

{
µπ(s)π(a|s) (γP (s′|s, a)π (a′|s′)− 1) s = s′, a = a′,

γµπ(s)π(a|s)P (s′|s, a)π (a′|s′) s 6= s′ or a 6= a′

=⇒ Āπ = Mπ(γPπ − I) ≤ −(1− γ)Mπ,

where the last inequality follows from (35). As a result, we
have:

θ>t Ā
π̂t−1θt ≤ −(1− γ)

∑
s,a

µπ(a)π̂t−1(a|s)θ2
t,s,a

≤ −(1− γ)
εt−2

|A| µ||θt||
2,

where the last inequality follows from π̂t−1(a|s) ≥ εt−2

|A| and
Lemma 10.

Proof of Lemma 5:
1) By the assumption on the reward function R(s, a) ≥ 0,

we have V π(s) = E
[∑∞

k=0 γ
kR(Sk, Ak) |S0 = s

]
≥

0. Furthermore, due to R(s, a) ≤ 1, we have
V π(s) = E

[∑∞
k=0 γ

kR(Sk, Ak) |S0 = s
]

≤
E
[∑∞

k=0 γ
k |S0 = s

]
= 1

1−γ for all s ∈ S .
2) Similarly, we have Qπ(s, a) ∈ [0, 1

1−γ ] for all s, a.

3) ‖Qπ‖ =
√∑

s,aQ
π2(s, a) ≤

√
|S||A|
1−γ

4) In order to prove this, first we show ‖Qt‖∞ ≤ 1
1−γ

for all t ≥ 0. We construct this bound by induction.
Due to the initialization, the inequality holds for t = 0.
Assuming the inequality holds for t, we prove it holds
for t+ 1. For all s, a, we have:

|Qt+1(s, a)| =
∣∣∣∣(1− αt(s, a))Qt(s, a)

+ αt(s, a)(R(s, a) + γQt(st+1, at+1))

∣∣∣∣
≤(1− αt(s, a))|Qt(s, a)|

+ αt(s, a)|R(s, a) + γQt(St+1, At+1)|
≤(1− αt(s, a))Qmax + αt(s, a)(1 + γQmax)

=(1− αt(s, a))
1

1− γ+αt(s, a)(1 + γ
1

1− γ ) =
1

1− γ .

The bound for ‖Qt‖ follows directly.
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Proof of Lemma 6: Given time indices t and τ < t, we
consider the following auxiliary chain of state-actions:

St−τ
π̂t−τ−1−−−−−→ At−τ

P−→ S̃t−τ+1
π̂t−τ−1−−−−−→ Ãt−τ+1 . . .

P−→ S̃t
π̂t−τ−1−−−−−→ Ãt

P−→ S̃t+1
π̂t−τ−1−−−−−→ Ãt+1.

Note that the original chain is as follows:

St−τ
π̂t−τ−1−−−−−→ At−τ

P−→ St−τ+1
π̂t−τ−−−→ At−τ+1 . . .

P−→ St
π̂t−1−−−→ At

P−→ St+1
π̂t−→ At+1.

Further, we define Õt = (S̃t, Ãt, S̃t+1, Ãt+1). We have:

Γ(π̂t−1,θt, Ot) = Γ(π̂t−1, θt, Ot)− Γ(π̂t−τ−1, θt, Ot) (36)
+ Γ(π̂t−τ−1, θt, Ot)− Γ(π̂t−τ−1, θt−τ , Ot) (37)

+ Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt) (38)

+ Γ(π̂t−τ−1, θt−τ , Õt). (39)

We bound each of the terms above separately. Firstly:

Γ(π̂t−1, θt, Ot)− Γ(π̂t−τ−1, θt, Ot)
(a)

≤ K1‖π̂t−1 − π̂t−τ−1‖

≤ K1

t−1∑
i=t−τ

‖π̂i − π̂i−1‖
(b)

≤ K1

t−1∑
i=t−τ

[
L3

εi−2

i− 1
+ L1βi−1

]
≤ K1τ

[
L3

εt−τ−2

t− τ − 1
+ L1βt−τ−1

]
,

where (a) is due to Lemma 11, and (b) is due to Lemma 9.
Second, we have:

Γ(π̂t−τ−1, θt, Ot)− Γ(π̂t−τ−1, θt−τ , Ot)

(a)

≤ K2‖θt − θt−τ‖

≤ K2

t∑
i=t−τ+1

‖θi − θi−1‖

(b)

≤ K2

t∑
i=t−τ+1

∆Qαi−1 + L2L3
εi−3

i− 2
+ L1L2βi−2

≤ K2τ

[
∆Qαt−τ + L2L3

εt−τ−2

t− τ − 1
+ L1L2βt−τ−1

]
,

where (a) due to Lemma 12, and (b) is due to Lemma 16.
Third, denoting Ft−τ := {St−τ , π̂t−τ−1, θt−τ}, we have:

E
[
Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt)

∣∣∣∣Ft−τ]
(a)

≤CuE
[

t∑
i=t−τ

‖π̂i − π̂t−τ−1‖
∣∣∣∣∣Ft−τ

]
(b)

≤ Cu(τ + 1)2

[
L3

εt−τ−2

t− τ − 1
+ L1βt−τ−1

]
,

where (a) is due to Lemma 13 and (b) is due to Lemma 15.
Finally, by Lemma 14 we have:

E
[
Γ(π̂t−τ−1, θt−τ , Õt)

∣∣Ft−τ] ≤ Cbmρτ .
Combining the bounds above, and noticing τ ≥ 1, we get the
result.

Proof of Lemma 7: Suppose π be an arbitrary stochastic
policy. π can be written as a |S| by |A| stochastic matrix,
which has non-negative elements, and each row sums up
to one. Hence, by [70, Theorem 1], π can be written as
a convex combination of at most N = |S|(|A| − 1) + 1

deterministic policies {πi}|S|(|A|−1)+1
i=1 . In other words, there

exist coefficients {αi}Ni=1, such that αi ≥ 0 and
∑
i αi = 1,

and π =
∑
i αiπi. By definition of Pπ , we have Pπ =∑

i αiP
πi .

Due to ergodicity Assumption 1, for every policy πi, there
exist a finite integer ri, such that (Pπi)r̄i is a positive matrix
with minimum element ei > 0 for all r̄i ≥ ri. Since we have
a finite number of ri and ei’s, we have r = maxi ri is a finite
integer, and e = mini ei > 0. Furthermore, we have

[(P π)r]m,n =

[(∑
i

αiP
πi

)r]
m,n

(a)

≥
∑
i

αri [(P πi)r]m,n

≥ Ne 1

N

∑
i

αri
(b)

≥ Ne

(
1

N

∑
i

αi

)r
= Ne

(
1

N

)r
> 0,

where (a) is due to non-negativity of matrices αiPπi and (b)
is by Jensen’s inequality. Hence, by [65, Theorem 4.9], we
can show the existence of ρ ∈ (0, 1) and m > 0.

Furthermore, if the underlying Markov chain under a policy
π is periodic with period d, then we have limt→∞ P (Sdt =
i|S0 = i) > 0 while limt→∞ P (Sdt+1 = i|S0 = i) = 0, and
hence (27) does not hold.

Proof of Lemma 8: By the policy gradient theorem [5],
we know that for any distribution µ, we have ∂V π(µ)

∂π(a|s) =
1

1−γ d
π
µ(s)Qπ(s, a). As a result:∥∥∥∥∂V π(µ)

∂π

∥∥∥∥ ≤ 1

1− γ

√∑
s,a

Qπ2(s, a) ≤
√
|S||A|

(1− γ)2
.

Furthermore, we have:

∂Qπ(s, a)

∂π
= γ

∑
s′

P(s′|s, a)
∂V π(s′)

∂π
,

which implies∥∥∥∥∂Qπ(s, a)

∂π

∥∥∥∥ ≤ γ∑
s′

P(s′|s, a)

∥∥∥∥∂V π(s′)

∂π

∥∥∥∥ ≤ γ
√
|S||A|

(1− γ)2

=⇒ |Qπ1(s, a)−Qπ2(s, a)| ≤ γ
√
|S||A|

(1− γ)2
‖π1 − π2‖.

Using this, we have:

‖Qπ1 −Qπ2‖ ≤
√√√√∑

s,a

γ2|S||A|
(1− γ)4

‖π1 − π2‖2

=
γ|S||A|
(1− γ)2

‖π1 − π2‖ = L2‖π1 − π2‖,

where L2 := γ|S||A|
(1−γ)2 .

Proof of Lemma 9: Policy πt can be parameterized by
the vector θt ∈ R|S||A| as πt(a|s) =

exp(θts,a)∑
a′ exp(θt

s,a′ )
. It is
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straightforward to see that the multiplicative weight update
of the policy in Algorithm 1 is equivalent to [51, Lemma 3.1]

θt+1 = θt + βtQt+1.

We have

‖πt+1 − πt‖2 =
∑
s

‖πt+1(·|s)− πt(·|s)‖2

(a)

≤
∑
s

‖βtQt+1(s, ·)‖2 ≤ β2
t |A||S|Q2

max,

(40)

where in (a) we use 1-Lipschitzness of the softmax function
[71].

As a result, we have:

‖π̂t+1 − π̂t‖

= ‖(εt − εt−1)(
1

A − πt+1) + (1− εt−1)(πt+1 − πt)‖
(a)

≤ |εt − εt−1|
√
|S|( 1√

|A|
+ 1) + ‖πt+1 − πt‖

(b)

≤ ξεt−1

t

√
|S|( 1√

|A|
+ 1) + βtQmax

√
|A||S|

= L3
εt−1

t
+ L1βt,

where (a) is due to triangle inequality and (b) is due to the
assumption on εt and (40). Here L3 = ξ

√
|S|( 1√

|A|
+ 1) and

L1 = Qmax

√
|A||S|.

Proof of Lemma 10: Ergodicity assumption 1 implies that
the underlying Markov chain induced by all the policies is
irreducible. The proof follows from [65, Proposition 1.14].

B. Auxiliary Lemmas
Lemma 11: For any π1, π2, θ, and O = (S,A, S′, A′),

|Γ(π1, θ, O)− Γ(π2, θ, O)| ≤ K1‖π1 − π2‖,
where K1 = 2Qmax

√
2|S||A|L2 +

8Q2
max|S|2|A|3

(⌈
logρm

−1
⌉

+ 1
1−ρ + 2

)
.

Lemma 12: For any π,Q1, Q2, and O = (S,A, S′, A′),

|Γ(π, θ1, O)− Γ(π, θ2, O)| ≤ K2‖θ1 − θ2‖,
where K2 = 1 + 9

√
2|S||A|Qmax.

Lemma 13: Consider original tuples Ot =
(St, At, St+1, At+1) and the auxiliary tuples Õt =
(S̃t, Ãt, S̃t+1, Ãt+1). Denote Ft−τ := {St−τ , π̂t−τ−1, θt−τ}.
For any time indices t > τ > 1, we have

E
[
Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt) | Ft−τ

]
≤CuE

[
t∑

i=t−τ
‖π̂i − π̂t−τ−1‖ | Ft−τ

]
,

where Cu = 4Qmax|S|1.5|A|1.5(1 + 3Qmax|S||A|).
Lemma 14: Consider the auxiliary tuple Õt =

(S̃t, Ãt, S̃t+1, Ãt+1). Denote Ft−τ = {St−τ , π̂t−τ−1, θt−τ}.
For any time indices t > τ > 1, we have:

E
[
Γ(π̂t−τ−1, θt−τ , Õt)

∣∣Ft−τ] ≤ Cbmρτ ,

where Cb = 4Qmax|S||A|(1 + 3|S||A|Qmax).
Lemma 15: For any time indices t > τ > 1, the policies

generated by Algorithm 1 satisfy the following:

t∑
i=t−τ

‖π̂i − π̂t−τ−1‖ ≤ (τ+1)2

[
L3

εt−τ−2

t− τ − 1
+ L1βt−τ−1

]
.

Lemma 16: We have the following bounds:
1) ‖A(O)‖ ≤

√
1 + γ2 ≤

√
2,

2) ‖r(O)‖ ≤ 1,
3) ‖Āπ‖ ≤

√
2,

4) ‖E[r (O1)− r(O2)]‖1 ≤ 2|S||A|dTV (O1, O2)
5) ‖E[A (O1)−A(O2)]‖1 ≤ 2|S||A|dTV (O1, O2),
6) ‖Qt+1 −Qt‖ ≤ αt∆Q := αt(2Qmax + 1),
7) ‖θt − θt−1‖ ≤ ∆Qαt−1 + L2L3

εt−3

t−2 + L1L2βt−2,

where Qmax = 1
1−γ , and the constants L1, L2, L3 are defined

in Lemmas 8 and 9.
Lemma 17: Consider Ot = (St, At, St+1, At+1) and Õt =

(S̃t, Ãt, S̃t+1, Ãt+1). Denote Ft−τ := {St−τ , π̂t−τ−1, θt−τ}.
We have:

dTV
(
P (Ot ∈ ·|Ft−τ )||P (Õt ∈ ·|Ft−τ )

)
≤
√
|A||S|E

[
t∑

i=t−τ
‖π̂i − π̂t−τ−1‖ | Ft−τ

]
Lemma 18 (Lemma A.1 in [50]): Denote M =⌈

logρm
−1
⌉

+ 1
1−ρ . For any π1 and π2 policies, we

have the following inequality:

dTV (µπ1 ⊗ π1 ⊗ P ⊗ π1, µ
π2 ⊗ π2 ⊗ P ⊗ π2)

≤ |A| (M + 2) ‖π1 − π2‖

C. Proofs of the auxiliary Lemmas

Proof of Lemma 11:

Γ(π1, θ, O)− Γ(π2, θ, O)

= θ>A(O)(Qπ1 −Qπ2)− θ>(Āπ1 − Āπ2)θ

(a)

≤‖θ‖.‖A(O)‖.‖Qπ1 −Qπ2‖+ ‖θ‖2.‖Āπ1 − Āπ2‖
(b)

≤2Qmax

√
2|S||A|‖Qπ1−Qπ2‖+4Q2

max|S||A|.‖Āπ1 − Āπ2‖
(c)

≤2Qmax

√
2|S||A|L2‖π1 − π2‖+ 8Q2

max|S|2|A|2
× dTV (µπ1 ⊗ π1 ⊗ P ⊗ π1, µ

π2 ⊗ π2 ⊗ P ⊗ π2)

(d)

≤2Qmax

√
2|S||A|L2‖π1 − π2‖

+ 8Q2
max|S|2|A|3

(⌈
logρm

−1
⌉
+

1

1− ρ + 2

)
‖π1 − π2‖

=K1‖π1 − π2‖

where (a) is due to Cauchy–Schwarz inequality, (b) is due to
Lemmas 5 and 16, (c) is due to Lemmas 8 and 16, (d) is due
to Lemma 18.

Proof of Lemma 12:

|Γ(π, θ1, O)− Γ(π, θ2, O)|
(a)

≤ (‖r(O)‖+ ‖A(O)‖.‖Qπ‖)‖θ1 − θ2‖
+ ‖A(O)− Āπ‖.‖θ1 − θ2‖(‖θ1‖+ ‖θ2‖)
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(b)

≤(1 + 9
√

2|S||A|Qmax)‖θ1 − θ2‖
where (a) follows from Cauchy–Schwarz and triangle inequal-
ity, and (b) is due to Lemmas 5 and 16.

Proof of Lemma 13: We have:

E
[
Γ(π̂t−τ−1, θt−τ , Ot)− Γ(π̂t−τ−1, θt−τ , Õt)|Ft−τ

]
=θ>t−τE

[
r (Ot)−r(Õt)+

(
A (Ot)−A(Õt)

)
Qπ̂t−τ−1 |Ft−τ

]
+ θ>t−τE

[
A(Ot)−A(Õt)|Ft−τ

]
θt−τ

(a)

≤‖θt−τ‖∞
∥∥∥E [r (Ot)− r(Õt)|Ft−τ

]∥∥∥
1

+ ‖θt−τ‖∞
∥∥∥E [(A (Ot)−A(Õt)

)
|Ft−τ

]
Qπ̂t−τ−1

∥∥∥
1

+ ‖θt−τ‖∞
∥∥∥E [A (Ot)−A(Õt)|Ft−τ

]
θt−τ

∥∥∥
1

(b)

≤ ‖θt−τ‖∞
∥∥∥E [r (Ot)− r(Õt)|Ft−τ

]∥∥∥
1

+ ‖θt−τ‖∞
∥∥∥E [(A (Ot)−A(Õt)

)
|Ft−τ

]∥∥∥
1

∥∥Qπ̂t−τ−1
∥∥

1

+ ‖θt−τ‖∞ .
∥∥∥E [A (Ot)−A(Õt)|Ft−τ

]∥∥∥
1
. ‖θt−τ‖1

(c)

≤2Qmax × 2|S||A|dTV
(
Ot, Õt|Ft−τ

)
+ 2Qmax × 2|S||A|dTV

(
Ot, Õt|Ft−τ

)
×Qmax|S||A|

+ 2Qmax × 2|S||A|dTV
(
Ot, Õt|Ft−τ

)
× 2Qmax|S||A|

=4Qmax|S||A|(1 + 3Qmax|S||A|)dTV
(
Ot, Õt|Ft−τ

)
where (a) is due to the Hölder’s inequality, (b) is due to
definition of matrix induced norm, (c) is due to Lemma 16.
Using Lemma 17, we get the result.

Proof of Lemma 14: Consider the tuple O′t =
(S′t, A

′
t, S
′
t+1, A

′
t+1), where S′t ∼ µπ̂t−τ−1 , A′t ∼

π̂t−τ−1(·|S′t), S′t+1 ∼ P(·|S′t, A′t), and A′t+1 ∼
π̂t−τ−1(·|S′t+1). We have

E
[
Γ(π̂t−τ−1, θt−τ , O

′t)
∣∣Ft−τ ]

=θ>t−τE
[
r(O′t) +A(O′t)Q

π̂t−τ−1 |Ft−τ
]

+ θ>t−τE [A(O′t)|Ft−τ ] θt−τ − θ>t−τ Āπ̂t−τ−1θt−τ = 0,

where the last equality is due to the Bellman equation and the
definition of Āπt−τ−1 . As a result, we have:

E
[
Γ(π̂t−τ−1, θt−τ , Õt)

∣∣Ft−τ ]
= E

[
Γ(π̂t−τ−1, θt−τ , Õt)− Γ(π̂t−τ−1, θt−τ , O

′t)
∣∣Ft−τ]

(a)

≤ ‖θt−τ‖∞
∥∥∥E [r(Õt)− r (O′t) |Ft−τ

]∥∥∥
1

+ ‖θt−τ‖∞
∥∥∥E [A(Õt)−A(O′t)

∣∣Ft−τ]∥∥∥
1

∥∥Qπ̂t−τ−1
∥∥

1

+ ‖θt−τ‖∞ .
∥∥∥E [A(Õt)−A(O′t)

∣∣Ft−τ]∥∥∥
1
. ‖θt−τ‖1

(b)

≤ 2Qmax × 2|S||A|dTV
(
Õt, O

′
t|Ft−τ

)
+ 2Qmax × 2|S||A|dTV (Õt, O

′
t|Ft−τ )× 3|S||A|Qmax

(c)
=Cb

∑
s,a,s′,a′

|P (S̃t = s|Ft−τ )π̂t−τ−1(a|s)P(s′|s, a)π̂t−τ−1(a′|s′)

− P (S′t = s|Ft−τ )π̂t−τ−1(a|s)P(s′|s, a)π̂t−τ−1(a′|s′)|
= Cb

∑
s,a,s′,a′

π̂t−τ−1(a|s)P(s′|s, a)π̂t−τ−1(a′|s′)

× |P (S̃t = s|Ft−τ )− P (S′t = s|Ft−τ )|
= Cb

∑
s

|P (S̃t = s|Ft−τ )− P (S′t = s|Ft−τ )|

(d)

≤ Cbmρ
τ ,

where (a) follows from Hölder’s inequality and the definition
of the matrix norm, (b) follows from Lemma 5, in (c) we
defined Cb = 4Qmax|S||A|(1 + 3|S||A|Qmax), and (d) is due
to the Lemma 7.

Proof of Lemma 15:

t∑
i=t−τ

‖π̂i − π̂t−τ−1‖ =
t∑

i=t−τ

∥∥∥∥∥∥
i∑

j=t−τ
π̂j − π̂j−1

∥∥∥∥∥∥
≤

t∑
i=t−τ

i∑
j=t−τ
‖π̂j − π̂j−1‖

(a)

≤
t∑

i=t−τ

i∑
j=t−τ

[
L3

εj−2

j − 1
+ L1βj−1

]
≤ (τ + 1)2

[
L3

εt−τ−2

t− τ − 1
+ L1βt−τ−1

]
where (a) follows from Lemma 9.

Proof of Lemma 16:
1) The proof follows directly by Frobenius norm upper

bound on the two norm of a matrix.
2) Follows directly from assumption R(s, a) ≤ 1 ∀s, a.
3) ‖Āπ‖ = ‖EπA(O)‖ ≤ Eπ‖A(O)‖ ≤

√
2.

4) ‖E[r (O1)− r(O2)]‖1 =
∑
s,a

∣∣∣E (r(O1)− r(O2))s,a

∣∣∣
≤ 2|S||A|dTV (O1, O2)
where the inequality is due to |r(O)s,a| ≤ 1.

5) ‖E[A (O1)−A(O2)]‖1
(a)
= maxs′,a′

∑
s,a

∣∣∣E (A(O1)−A(O2))s,a,s′,a′
∣∣∣

(b)

≤maxs′,a′ 2|S||A|dTV (O1, O2)=2|S||A|dTV (O1, O2),
where (a) is due to the definition of matrix norm, and
(b) is due to |A(O)s,a,s′,a′ | ≤ 1.

6) ‖Qt+1 − Qt‖ ≤
√∑

s,a α
2
t (s, a)(2Qmax + 1)2 =

αt(2Qmax + 1)
7) ‖θt − θt−1‖ ≤ ‖Qt −Qt−1‖+

∥∥Qπ̂t−1 −Qπ̂t−2
∥∥

≤ ∆Qαt−1 + L2

(
L3

εt−3

t−2 + L1βt−2

)
where the last inequality follows from the previous part,
and Lemmas 8 and 9.

Proof of Lemma 17:

dTV (P (Ot ∈ · | Ft−τ )||P (Õt ∈ · | Ft−τ ))

=
∑

s,a,s′,a′

∣∣∣∣P (

Ht︷ ︸︸ ︷
St = s,At = a, St+1 = s′, At+1 = a′|Ft−τ )

− P (S̃t = s, Ãt = a, S̃t+1 = s′, Ãt+1 = a′|Ft−τ )

∣∣∣∣
=
∑

s,a,s′,a′

∣∣E[π̂t(a
′|s′)|Ft−τ ,Ht]P(s′|s, a)P (St=s,At=a|Ft−τ )

− π̂t−τ−1(a′|s′)P(s′|s, a)P (S̃t = s, Ãt = a|Ft−τ )
∣∣
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≤
∑

s,a,s′,a′

P(s′|s, a)P (St = s,At = a|Ft−τ )

×
∣∣E[π̂t(a

′|s′)|Ft−τ ,Ht]− π̂t−τ−1(a′|s′)
∣∣ (I1)

+
∑
s,a

∣∣P (St = s,At = a|Ft−τ )−P (S̃t = s, Ãt = a|Ft−τ )
∣∣.

(I2)

We bound I1 and I2 separately:

I1 ≤
∑

s,a,s′,a′

P(s′|s, a)P (St = s,At = a|Ft−τ )

× E[|π̂t(a′|s′)− π̂t−τ−1(a′|s′)|
∣∣Ft−τ ,Ht]

≤
∑

s,a,s′,a′

P (St = s,At = a|Ft−τ )

× E[|π̂t(a′|s′)− π̂t−τ−1(a′|s′)|
∣∣Ft−τ ,Ht]

=
∑
s′,a′

E[|π̂t(a′|s′)− π̂t−τ−1(a′|s′)|
∣∣Ft−τ ]

≤
√
|A||S|E[‖π̂t − π̂t−τ−1‖

∣∣Ft−τ ],

I2 =
∑
s,a

∣∣∣∣∣∑
s′′,a′′

P (St = s,At = a, St−1 = s′′, At−1 = a′′|Ft−τ )

− P (S̃t = s, Ãt = a, S̃t−1 = s′′, Ãt−1 = a′′|Ft−τ )

∣∣∣∣∣
≤
∑

s,a,s′′,a′′

∣∣∣∣P (St = s,At = a, St−1 = s′′, At−1 = a′′|Ft−τ )

− P (S̃t = s, Ãt = a, S̃t−1 = s′′, Ãt−1 = a′′|Ft−τ )

∣∣∣∣
= dTV (P (Ot−1 ∈ ·|Ft−τ )||P (Õt−1 ∈ ·|Ft−τ )).

Combining the above bounds, we get:

dTV (P (Ot ∈ ·|Ft−τ )||P (Õt ∈ ·|Ft−τ ))

≤
√
|A||S|E

[
‖π̂t − π̂t−τ−1‖

∣∣∣∣Ft−τ]
+ dTV (P (Ot−1 ∈ ·|Ft−τ )||P (Õt−1 ∈ ·|Ft−τ )).

Following this induction, and noting that P (St−τ = s,At−τ =
a|Ft−τ ) = P (S̃t−τ = s, Ãt−τ = a|Ft−τ ) (due to the
definition of S̃ and Ã), we get the result.

Proof of Lemma 18: The proof follows directly from Lemma
A.1 in [50].

APPENDIX II
DETAILS OF THE PROOF OF PROPOSITION 1

A. Useful lemmas

Proof of Lemma 1: We have:

logZt(s) = log
∑
a′

πt(a|s) exp(βtQt+1(s, a))

≥
∑
a

πt(a|s)βtQt+1(s, a), (41)

where the inequality is due to the concavity of log(·) function
and Jensen’s inequality. Furthermore, we have:

V πt+1(µ)− V πt(µ)

(a)
=

1

1− γ
∑
s,a

dπt+1
µ (s)πt+1(a|s)

[
Qt+1(s, a) +Qπt(s, a)

−Qt+1(s, a)− V πt(s)
]

(b)
=

1

1− γ
∑
s,a

dπt+1
µ (s)πt+1(a|s)

[
1

βt
log

πt+1(a|s)
πt(a|s)

+
1

βt
logZt(s) +Qπt(s, a)−Qt+1(s, a)− V πt(s)

]
(c)

≥ 1

1− γ
∑
s,a

dπt+1
µ (s)πt+1(a|s)

[
1

βt
logZt(s) +Qπt(s, a)

−Qt+1(s, a)− V πt(s)
]

=
1

1− γ

[∑
s,a

dπt+1
µ (s)πt(a|s)

[
1

βt
logZt(s)−Qt+1(s, a)

]
+
∑
s,a

dπt+1
µ (s)(πt+1(a|s)− πt(a|s))×

[Qπt(s, a)−Qt+1(s, a)]

]
(d)

≥
∑
s,a

µ(s)πt(a|s)
[

1

βt
logZt(s)−Qt+1(s, a)

]

− 2QmaxL1

√
|A|

1− γ βt

=
∑
s

µ(s)

[
1

βt
logZt(s)− V π̂t(s)

]
+
∑
s,a

µ(s)π̂t(a|s)
[
Qπ̂t(s, a)−Qt+1(s, a)

]
+
∑
s,a

µ(s)(π̂t(a|s)− πt(a|s))Qt+1(s, a)

− 2QmaxL1

√
|A|

1− γ βt,

where (a) is due to Performance Difference Lemma [68], (b)
is by the update rule in Algorithm 1, (c) is by positivity of
the KL-divergence [66], and (d) is by the definition of dπt+1

and (41). Taking µ = d∗, we have:∑
s

d∗(s)

[
1

βt
logZt(s)− V π̂t(s)

]
≤ V πt+1(d∗)− V πt(d∗)

+ ‖Qπ̂t −Qt+1‖+
2L1

√
|A|

(1− γ)2
βt +

εt−1

1− γ
which gets the result.
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