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1. Introduction

Large-scale optimization and machine learning problems are
often solved using stochastic approximation (SA) methods (i.e., it-
erative algorithms in the presence of noise). For example, in
optimization, the stochastic gradient descent (SGD) algorithm is
commonly used to find an optimal solution of a target objective
function (Bottou, Curtis, & Nocedal, 2018; Lan, 2020). In rein-
forcement learning (RL), Q-learning and TD-learning are popular
algorithms used to solve the Bellman equations (Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 2018).

The behavior of SA algorithms is highly dependent on the
nature of the associated noise (e.g., i.i.d., martingale difference,
or Markovian). In robust optimization problems as considered
in Duchi, Agarwal, Johansson, and Jordan (2012) where the data
is generated by an auto-regressive process, the corresponding
SGD algorithm naturally involves Markovian noise. In RL, al-
gorithms such as Q-learning, TD-learning, and actor-critic use
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sample trajectories generated from a Markov decision process
(MDP) to carry out the update, and hence can also be modeled
as Markovian SA algorithms.

The asymptotic convergence of SA algorithms with Markovian
noise has been studied extensively in the literature (Benveniste,
Meétivier, & Priouret, 2012; Bertsekas & Tsitsiklis, 1996; Borkar,
2009). Beyond asymptotic convergence, it is of more practical
interest to study finite-sample guarantees, i.e., to provide per-
formance guarantees on the output of SA algorithms after per-
forming a finite number of iterations. More formally, suppose we
perform k iterations of an SA algorithm and denote the output by
6. Then the goal of finite-sample analysis is to understand how
the quantity E[||6x — 0*|*] decay as a function of k, where 6* is
the desired limit point, and || - || is a suitable norm. This leads to
our main contributions in the following.

Finite-Sample Analysis for Nonlinear Markovian SA. We es-
tablish finite-sample convergence guarantees for nonlinear SA
with Markovian noise for using various stepsizes, where we do
not require an artificial projection step in the algorithm. The
results state that Markovian SA algorithms enjoy exponential
convergence rate to a neighborhood around the desired limit
when using constant stepsize, and an O(log(k)/k) convergence
rate when using appropriate diminishing stepsizes. We prove the
results by applying a suitable Lyapunov function on the stochastic
iterates, and show that in expectation it produces a negative drift.
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To handle the Markovian noise, we exploit the geometric mixing
of the underlying Markov chain.

Finite-Sample Analysis of Q-Learning with Linear Function
Approximation. To demonstrate the effectiveness of our SA re-
sults, we use them to establish for the first time finite-sample
bounds for Q-learning under linear function approximation. Since
the algorithm does not necessarily converge (Baird, 1995), we
use our SA results to provide a sufficient condition which guar-
antees the convergence. In addition, we verify the sufficiency
of our proposed condition and the resulting convergence rates
via numerical experiments based on a well-known divergent
counter-example of Q-learning from Baird (1995). Specifically,
we demonstrate that if our condition is satisfied, the algorithm
converges, and the rates match with our theoretical results.

1.1. Related literature

Stochastic Approximation. The SA method, originally proposed
in Robbins and Monro (1951), is an iterative method for solving
root-finding problems with incomplete information. The asymp-
totic behavior of SA algorithms is captured by its associated
ordinary differential equation (ODE), which leads to the popu-
lar ODE approach for analyzing SA algorithms Benveniste et al.
(2012) and Kushner and Clark (2012). Specifically, given certain
assumptions, it was shown in Borkar (2009) and Ljung (1977) that
the SA algorithm converges almost surely as long as the corre-
sponding ODE is stable. The ODE approach was extended to more
general cases in Benaim (1996), Karmakar and Bhatnagar (2021)
and Yaji and Bhatnagar (2019), where the ODE lacks stability,
or has multiple equilibrium points. The convergence of various
SA algorithms such as SA with Markovian noise and multiple
time-scale SA was studied in Bhatnagar and Borkar (1997, 1998),
Karmakar and Bhatnagar (2021) and Ramaswamy and Bhatnagar
(2018), respectively. While the results presented there were very
general, they study SA algorithms in the asymptotic regime. In
this paper, we perform finite-sample analysis, which is differ-
ent in flavor and provides stronger finite-sample convergence
guarantees.

For linear SA algorithms, finite-sample mean-square bounds
were established under either i.i.d. sampling or Markovian sam-
pling in Bhandari, Russo, and Singal (2018) and Srikant and Ying
(2019). Concentration results were established in Dalal, Sz6rényi,
Thoppe, and Mannor (2018) and Thoppe and Borkar (2019). For
non-linear SA algorithms, finite-sample bounds in general are
only derived in a special form of SA, namely SGD (Bottou et al,,
2018; Lan, 2020; Moulines & Bach, 2011). Moreover, unlike i.i.d.
sampling, in the case of Markovian sampling, an artificial projec-
tion (onto a ball) is introduced in the algorithm to ensure that the
iterates are bounded (Duchi et al., 2012).

Q-Learning (with Linear Function Approximation). Q-learning
(Watkins & Dayan, 1992) is perhaps one of the most popular
algorithms for solving RL problems (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 2018). The asymptotic convergence and finite-
sample guarantees of Q-learning were studied in Borkar and
Meyn (2000), Jaakkola, Jordan, and Singh (1994), Tsitsiklis (1994)
and Beck and Srikant (2012), Even-Dar and Mansour (2003) and
Kearns and Singh (1998), respectively.

A major limitation with Q-learning is that it becomes com-
putationally intractable when the size of the state-action space
is large. One way to overcome this difficulty is to use function
approximation. In this work, we consider Q -learning under linear
function approximation, which can be modeled as a nonlinear
Markovian SA algorithm (Melo, Meyn, & Ribeiro, 2008). However,
as shown by the counter-example in Baird (1995), Q-learning
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with linear function approximation does not necessarily con-
verge. Therefore, additional assumptions were imposed in Melo
et al. (2008) to ensure the asymptotic convergence. Under a
similar condition, we establish the finite-sample bounds by ex-
ploiting some natural properties of Q-learning (such as Lipschitz
continuity), and the fast mixing of finite-state Markov chains.
The mixing time argument for dealing with Markovian noise was
inspired by Bertsekas and Tsitsiklis (1996, Section 4.4) and Srikant
and Ying (2019), where linear SA algorithms were studied. Im-
portantly, our approach does not require a projection step in the
algorithm (Bhandari et al., 2018), which is impractical in RL since
one needs to know the problem parameters to pick the projection
set so that the desired limiting solution lies in it.

2. Nonlinear SA with Markovian noise

Consider the problem of solving for 6* in the equation
F(6) = E. [F(X, 0)] =0, (1)

where X € 2~ C R™ is a random vector with distribution wx, and
the function F : 2~ x R? — RY is a general nonlinear operator.
When the distribution uy is unknown, Eq. (1) cannot be solved
analytically. Therefore, we consider solving the equation using
the SA method. With initialization 6, € RY, the estimate 6 of
6* is updated according to

Ok1 = Ok + ap(F(X, O) + wi), (2)

where {X;} (taking values in 27) is a uniformly ergodic Markov
chain with unique stationary distribution uy, {wy} represents
the additive martingale difference noise that possibly depends
on {6}, and {«y} is the stepsize sequence. To better understand
Algorithm (2), consider the special case where F(x, 8) = —V](6)+
x for some cost function J(-), Algorithm (2) reduces to the popular
SGD algorithm for minimizing J(-).

The behavior of Algorithm (2) is closely related to the trajec-
tory of the ODE

A(t) = F(O(t)). (3)

A popular approach to analyze an ODE is to construct a Lyapunov
function and study the time-derivative of the Lyapunov func-
tion along the trajectory of the ODE. Inspired by the Lyapunov
technique for ODE stability analysis, in this paper, we directly
study SA algorithm (2) using a Lyapunov approach. See Fazlyab,
Ribeiro, Morari, and Preciado (2017), Franca, Robinson, and Vidal
(2018), Hu, Seiler, and Rantzer (2017), Hu and Syed (2019) and
Romero and Benosman (2020) for more details on using Lyapunov
functions to study the behavior of iterative algorithms. Since
Algorithm (2) is a discrete and stochastic counterpart of ODE (3), a
major challenge is to handle the error caused by the discretization
and the noise. We begin by stating our assumptions to study
Algorithm (2). Let || - || be the £;-norm for vectors and the induced
2-norm for matrices.

Assumption 1. There exists a constant L; > 0 s.t. (1) ||[F(x, 61) —
F(x, )|l < L1]|601 — 62| for all 6y, 6, and x, and (2) [|F(x, 0)]| < L,
for all x.

Assumption 1 states that the operator F(x, 0) is Li-Lipschitz
continuous with respect to 6 uniformly in x. In the special case
where F(x, 0) is a linear function of 6 as considered in Bhandari
et al. (2018) and Srikant and Ying (2019), i.e., F(x,0) = A(x)0 +
b(x), Assumption 1 is satisfied when sup,. o- |A(X)] < oo and
SUpPye o ||b(x)|| < oo.In our setting, although F(x, ) is a nonlinear
function of 6, Assumption 1 implies that the growth rate of both
IIF(x,0)| and ||[F(0)|| can at most be affine in terms of ||f|. To
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see this, under Assumption 1, we have by triangle inequality and
Jensen’s inequality that

IF(x, 0)1 < Lillol + IF(x, 01l < Li([10]] + 1), (4)
IFO)I < By [IFX, )11 < Li(ll6]] + 1) (5)

These properties for F(x, #) and F(8) essentially let us establish
the finite-sample bounds akin to the case where F(x, 0) is a linear
function of 6.

Assumption 2. The target equation F(0) = 0 has a unique
solution 6*, and there exists co > 0 s.t. (8 —0*)TF(0) < —co||6 —
6*||? for all 6 € RY.

In the SGD setting (i.e., F(x, 8) = —VJ(0) + x), Assumption 2
is satisfied when the objective function J(-) is strongly convex.
Moreover, Assumption 2 can be viewed as an exponential dis-
sipativeness property of the ODE (3) with a quadratic storage
function. In fact, this assumption guarantees that 8* is the unique
exponentially stable equilibrium point of ODE (3). To see this, let
W(8) = |16 — 6*|]? be a candidate Lyapunov function. Then we
have

d

dtW(G(t)) =2(6(t)
which implies that W(6(t)) < W(#(0))e~2%! for all t > 0. The
parameter cg is called the negative drift, and we see that the larger
Co is, the faster 6(t) converges.

Our next assumption is about the noise sequences {X;} and
{wy}. Let Z be the o-algebra generated by {6;, Xi, wi}o<i<k—1 U
{6k, Xi}, and denote || - ||tv as the total variation distance between
probability distributions (Levin & Peres, 2017).

—0")70(t) < —2coW(A(t)), (6)

Assumption 3. (1) The Markov chain {X;} is uniformly geomet-
rically ergodic with unique stationary distribution uyx. (2) The
sequence {wy} satisfies E[wy | #] = 0 and ||w| < La(]|6k]| + 1)
for all k > 0, where L, > 0 is a constant.

Assumption 3 (1) is made to control the Markovian noise in
Algorithm (2), and implies that there exist C > 1 and p € (0, 1)
S.t. SUPye o 1P*(%, -) — ux()llv < Cp* for all k > 0, where p*(x, -)
represents the distribution of X, given Xo = x. When compared to
{Xi} being i.i.d., the major difference for {X;} being Markovian is
that there is a bias in the update, i.e., E[F(X, 6) | Xo = x] # F(6).
Since Assumption 3 (1) states that the Markov chain {X)} mixes
geometrically fast, it enables us to control such bias and to show
that it is not strong enough to cause major deviation from the
desired direction of the update. In the special case where the
state-space 2" of the Markov chain {X,} is finite, Assumption 3
(1) is satisfied when the Markov chain {X;} is irreducible and
aperiodic (Levin & Peres, 2017, Theorem 4.9). Assumption 3 (2)
states that {wy} is a martingale difference sequence, and w; may
depend on 6 in the sense that ||wy|| is allowed to scale affinely
with respect to ||6||.

In addition to these assumptions, the choice of the stepsize
sequence {«y} is important. In order to state certain conditions
on the stepsizes we pick, we need to use the mixing time of the
Markov chain {Xi} defined in the following.

Definition 1. For any § > 0, the mixing time of the Markov
chain {X,} with precision § is defined as t; = min{k > 0 :
SUPye o IP"(%, -) — pux(llv < 8).

Under Assumption 3 (1), we have for any § > 0 that

log(1/8) + log(C
;< OB HI08C/0) _y ogt1/5) 4 1) 7)
log(1/p)
where L3 := max(1 As a result, we have limg_.q 6t; = 0.

’ log(
Analogous to Srikant anc{Ymg 2019), we only require t5 = o(1/§)

log(C/ﬂ
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to carry out our finite-sample analysis. We assume the stronger
geometric mixing property merely for an ease of exposition. We
next use ts to state our condition on the stepsize sequence {«y}.
For simplicity of notation, denote t, = t,, and o;; = Y _; . Let
L = Ly + Ly, and assume wolg. that L > 1.

Condition 1. The stepsize sequence {ay} is non-increasing and
satisfies o € (0, 1) and o_g, j—1 < gﬁ for all k > t,.

The reason we impose Condition 1 on the stepsize sequence is
the following. Recall that a key step in deriving the convergence
rate of ODE (3) is to establish the negative drift (cf. Eq. (6)).
Similarly, when deriving finite-sample bounds for Algorithm (2),
there will also be a negative drift term. In addition, there are error
terms that arise because of the discretization and the stochastic
noise. Using small stepsize helps suppressing these error terms
and hence ensures that the negative drift is the dominant term
in our analysis.

Suppose we use constant stepsize, i.e., oy = « for all k > 0.
Since in this case we have ay_ -1 = at, and lim,_oat, =
0, Condition 1 is satisfied when « is small enough. In addition
to constant stepsize, consider using polynomially diminishing
stepsizes of the form oy = o/(k + h)’. We show in Section 5.2
that Condition 1 is satisfied for any @ > 0 and & € (0, 1], provided
that h is appropriately chosen.

2.1. Finite-sample bounds for nonlinear SA

In this section, we present our main results. We begin with
the finite-sample bound of Algorithm (2), the proof of which is
presented in Section 2.2.

Theorem 1. Consider {0;} of Algorithm (2). Suppose that Assump-
tion 1-3 are satisfied, and {ay} satisfies Condition 1. Let K = min{k :
k > ty}. Then we have for all k > K:

k-1 k—

Ell16x — 6" 11”1 < B ]‘[(1 — cooy) + B2 Za,]‘p — cocy),

Jj=K i=K j=i+1

where By = ([|6oll + 160 — 6|l + 1)%, B2 = 130L(||6*|| + 1), and

i = Qili—; i1

Remark 1. Although the parameter K is defined as K = min{k :
k > t¢}, we indeed have K = tk. To see this, suppose that K > ti.
Since both K and ti are integers, we must have K—1 > tx > tx_1,
where the second inequality follows from the fact that ty = ty, is
an increasing function of k. This contradict to the definition of K
and hence we have K = ti.

On the RHS of the convergence bound, the first term repre-
sents the bias due to the initial guess 6y, and the second term
captures the variance due to the noise. Theorem 1 is one of our
main contributions in that (1) the function F(x, 0) is allowed to
be nonlinear, (2) it holds when {X,} is a Markov chain instead of
being i.i.d., and (3) no modification on Algorithm (2) (e.g., adding
a projection step) is needed to establish the results.

After establishing the finite-sample bounds of Algorithm (2)
in its general form, we next consider several common choices
of stepsizes, and derive the corresponding convergence rates.
We begin by presenting the result when using constant stepsize,
i.e.,, ay = «. The proof of the following corollary is presented in
Section 5.1.

Corollary 1. When « is chosen s.t. at, < 130L2’

%1171 < Ba(1 = o) " + Br %= for all k = t.

we have E[||6, —
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We see from Corollary 1 that when using constant stepsize,
the bias term converges to zero geometrically fast as the number
of iterations increases, while the variance term remains as a
constant of size O(« log(1/a)). Since t, < L3(log(1/a) + 1) (cf.
Eq. (7)), using constant stepsize efficiently eliminates the bias.
However, since the noise is added to the iterates without being
progressively suppressed, the variance does not converge to zero
as k goes to infinity.

We next consider diminishing stepsizes. Let a = o/(k + h)¢
where @« > 0, £ € (0,1], and h is chosen s.t. Condition 1 is
satisfied. The requirement for choosing h and the proof of the
following corollary are presented in Section 5.2.

Corollary 2. Suppose oy = o /(k+h)
finite-sample bounds.
(1) (a) When &€ = 1 and o« < 1/cg, we have for all k > K:

o 2 lOg k+h +1
E[[|6x — 0*]1]1 < B4 (’;j,’;)q’ + S Mi)
(b) When & = 1 and « = 1/cy, we have for all k > K: E[||6, —
log(k+h)[log( k&) 1]
9*|]<ﬂl(ﬁ)+8ﬂ 4
(c) When & =1 and @ > l/co, we have forallk > K:
a 2. log +1
ELloe — 07171 < Br (58" + %%
(2) When & € (0, 1) and « > 0, suppose that K > [2£ /(coa)]V/1—%),
then we have for all k > K:

E[||6x — 6%]?] < Bie T g((k+h)1 §_(K+h)1 é)

, then we have the following

4 s log(4%) +1
o (k+h)

Observe from Corollary 2 (1) that when using oy, = «/(k + h),
the constant o must be chosen carefully (i.e., @ > 1/¢o) to achieve
the optimal O(1/k) convergence rate, otherwise the convergence
rate is O(1/k*), which can be arbitrarily slow. From Corollary 2
(2), we see that when & € (0, 1), the convergence rate is O(1/k%),
which is sub-optimal, but more robust in the sense that it is
independent of «. The above analysis indicates that our choice
of stepsizes should depend on how precise our estimate of the
negative drift parameter cy is. When our estimate of ¢y is accurate,
we should use oy = «a/(k + h) with @« > 1/co so that the
convergence rate is the optimal O(1/k). When our understanding
to the system model is poor (therefore inaccurate estimate of ¢p),
we should use o = «/(k + h). In that case, we sacrifice the
convergence rate for robustness.

Unlike almost sure convergence, where the usual require-
ments for stepsizes are Y oo = oo and Y oo af < 0o (Rob-
bins & Monro, 1951) (which correspond to & € (1/2, 1] in our
case), we have convergence in the mean-square sense for all
& € (0, 1]. The same phenomenon has been observed in Bhandari
et al. (2018), where linear SA was studied.

2.2. Proof of Theorem 1

In this section, we present the proof of Theorem 1. Before
going into the details, we first provide some intuition. Recall that
the Lyapunov function W(6) = [|6 — 6*||> can be used to show
the stability of ODE (3). To analyze the convergence rate of the
iterates {0y} generated by Algorithm (2), naturally we want to use
the Lyapunov function W(-) on {6} to show something like

E[W(6kt1)] — E[W ()] < (—coa + e1)E[W(6k)] + ey. (8)

Note that on an aside, Eq. (8) is a discrete analog of Eq. (6), and
so W(-) is a Lyapunov function (Haddad & Chellaboina, 2011).
In continuous time, Eq. (6) enables one to determine the rate of
convergence of ODE (3). Eq. (8) is the discrete-time equivalent
for SA algorithm (2). To make connection to standard control
literature, suppose we view e, as the input. Then when e, = 0,
Eq. (8) is of the desired form used to prove the asymptotic stabil-
ity (Sontag, 2008). In our case, due to a non-vanishing e;, when
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using constant stepsize we do not have asymptotic convergence
but have convergence to a neighborhood around 6*.

We next proceed to elaborate our plan of proving Theorem 1.
On the RHS of Eq. (8), the —coa, term corresponds to the negative
drift of the ODE, and the two terms e; and e, account for the
discretization error and the stochastic error in Algorithm (2). The
discretization error can be handled using the properties of the
function F(x, 8) (cf. Assumption 1) and properly chosen stepsizes
(cf. Condition 1). As for the stochastic error, since Markovian noise
naturally produces bias in the update, we show that E[F(X, 6) |
Xo = x] converges to F(0) (as k increases) fast enough for any
6, where we make use of Assumption 3 (1). Once we show that
both error terms are dominated by the drift term, i.e., e; = o(a)
and e; = o(ag), Eq. (8) can be repeatedly used to establish a
finite-sample bound of Algorithm (2).

Following from the high level idea stated above, we now prove
Theorem 1. To begin, we apply W(8) = |6 — 6*||? on the iterates
6, of Algorithm (2). To utilize the mixing time of the Markov
chain {X;}, we take expectation conditioning on Xy, and 6.
For simplicity, we use E[ - ] for E[- | Xy, 6k—¢, ] in the following.
Then we have for all k > t;:

Ex[[6k1 — 6%11°1 — Ex[ 1|6k — 6*]1%]
= 2Ei[(6k — 6% (Bk1 — 0)] + ExlllOkr1 — 6kl1%]

= 204 Ek[(6k — 0") F(O)] + 2B [(0 — 0%) "wi]
(a) (b)
+ 20 Ex[(6 — 0%) " (F(Xx, 6k) — F(6)))]
(c)
+ o ErlIIF(Xk, 61) + will?], (9)

(d)
where the last line follows by using the update Eq. (2) and by
adding and subtracting F(6y).

The term (a) corresponds to the negative drift of ODE (3), and
we have (a) < —2coaiEy [ 16« — 6*[1*] under Assumption 2. The
term (b) corresponds to the error due to martingale difference
noise {wy}. Using the tower property of conditional expectation
and Assumption 3 (2), we have (b) = 0. The term (c) corresponds
to the error due to the Markovian noise {X}, and the term (d)
arises mainly because of the error due to discretization. What
remains to show is that the terms (c) and (d) are dominated by
the term (a). We begin by bounding the term (d) in the following
lemma, the proof of which is presented in Section 5.3.

Lemma 1. The following inequality holds for all k > t;:

(d) < 2% [Exlll6 — 6*11P1 + (11671 + 1)%].

Observe that Lemma 1 implies that (d) = O(a?) = o(ax). We
next consider the term (c). To control it, we need the following
two results.

Lemma 2. For any given § > 0, the following inequality holds for
any x, 6, and k > ts:

IE[F(Xk, 6) | Xo = x] = F(O)I| < 2Li8([16]] + 1).

Lemma 2 uses the mixing time to bound the bias (due to
Markovian noise) in Algorithm (2). See Section 5.4 for the proof.
The next lemma enables us to control the difference between 6,
and 6y, when k; — k; is not too large.

Lemma 3. For any ki < ky satisfying o, x,—1 < 4L,
two inequalities hold:

(1) 16k — Oy Il < 2Lty ky 1110k | + 1),

(2) 116k, — Ok, I < ALay ky—1([16k, 11 + 1).

the following
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The proof of Lemma 3 is presented in Section 5.5. With the
help of Lemmas 2 and 3, we are now ready to bound the term (c)
in the following lemma. See Section 5.6 for the proof.

Lemma 4. The following inequality holds for all k s.t. atg_g, k-1 < L

i
(where we recall that o—_g, -1 = Zﬁ:kl_tk a;i):

(c) < 128L%apatk—g k-1 [ElllOk — 0% 1171 + (116*] + 1)°] .

Substituting the upper bounds we obtained for the terms (a)—
(d) into Eq. (9), we have the following result, the proof of which
is presented in Section 5.7.

Lemma 5. It holds for all k satisfying o k-1 < 7 that:
E[[|6+1 — 0*11°]

< (1 — 2co0y + 130L% etk k-1 )EL||6 — 0%[1%]
+ 130L% otk k—1(1107]] + 1)%. (10)

Eq. (10) is of the desired recursive form presented in Eq. (8).
Therefore, as long as the drift term dominates the error terms,
ie. 2coor > 130L2akak,tk,k,1, we can repeatedly use Eq. (10) to
derive finite-sample error bounds of Algorithm (2). When Condi-
tion 1 is satisfied and k > K (see Theorem 1 for the definition of
K), we have by Eq. (10) that

E[l0ke1 — 0*11°1 < (1 — coo)EL1|6k — 0*[1*1 + Badi,

where &, and B, are defined in Theorem 1. Repeatedly using the
previous inequality starting from K and we obtain

E[ |6 — 6*[1%]
k—1 k—1 k—1
< Elll6x — 0" 1°1] (1 = coop) + B2 Y& J(1 = coerp).

j=K =K j=it+1

To bound E[||6x — 6*||*], we use Lemma 3 and OK—ge k-1 =
Ao Kk—1 = ﬁ to obtain

E[ll6k — 6*1I°] < E[(l6x — 6oll + 16" — 6ol1Y’] < B1.

The proof is now complete.
3. Applications in reinforcement learning

We begin by describing the underlying model for RL. Consider
an infinite horizon discounted MDP .# comprised by a tuple
(&, ,p, #,y), where . C R™ is a compact state-space, .« is
a finite action-space, p : .¥ X & x . +— R, is the transition
function s.t. fB p(s,a,s')ds’ = P(Sgr1 € B | Sk = s,Ax = a)
where B is a (measurable) subset of .7, Z : . X & +> [0, 'max]
is the reward function, and y € (0, 1) is the discount factor. The
underlying model of the RL problem is essentially an MDP except
that the transition function and reward function are unknown to
the agent.

The goal of RL is to find a policy for choosing actions based
on the state of the environment so that the expected long-term
reward is maximized. Formally, define the state-action value
function (aka. the Q-function) of a policy 7 at (s, a) by Q. (s, a) =
Er[> poo v*%(Sk, Ax) | So = s,Ap = al, where we use the
notation E,[ - | to mean that the actions are chosen according to
policy =, i.e., Ay ~ 7(-|Sk) for all k > 1. Our goal is to find an
optimal policy 7* in the sense that its corresponding Q -function,
denote by Q*, satisfies Q*(s, a) > Q,(s, a) for any (s, a) and 7.
A fundamental property of the function Q* is that, if one simply
selects actions greedy based on Q*, then that is an optimal policy.
More formally, we have {a | 7*(a|s) > 0} C arg maXqc.» Q*(s, a)
for all state s € .7 (Bertsekas & Tsitsiklis, 1996). Therefore, solving
the RL problem reduces to finding the optimal Q-function.
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3.1. Q-learning with linear function approximation

The Q-learning algorithm proposed in Watkins and Dayan
(1992) is a popular approach for estimating the function Q*.
However, a fundamental limitation of Q-learning is that the al-
gorithm becomes intractable when the number of state-action
pairs is large, or even infinite as considered in this work. There-
fore, we consider approximating the optimal Q-function from a
pre-specified function class parametrized by a finite number of
parameters. We next describe the approximation model.

Let ¢ : ¥/ x & — R, 1 < i < d be a set of basis functions.
Denote ¢(s,a) = [¢i(s,a), ..., ¢dq(s,a)]" (which is a column
vector). We assume wolg. that the basis functions {¢;}1<i<q are
linearly independent and are normalized so that ||¢(s,a)|| < 1
for all (s, a). This is possible since we work with MDPs with
compact state-spaces and finite action-spaces. The sub-space %’
spanned by the basis functions {¢;} can be written as # = {Qy =
ZL ¢i0; | 0 € RY}. We will use # as our aPproximating function
space, and the goal here is to find 0* s.t. Qg+ best approximates
Q.

Using the notation above, we now present Q-learning under
linear function approximation (Bertsekas & Tsitsiklis, 1996). Let
{(Sk, Ax)} be a sample trajectory generated by applying some be-
havior policy 7 to the underlying MDP model. Note that {(Si, Ax)}
forms a Markov chain. Then, the parameter 6 of the approxima-
tion Qp is updated according to:

Ok1 = Ok + axd(Sk, Ax) A(Ok, Sk, Ak, Sk+1), (11)

where A(6,s,a,s') = %(s,a)+ y MaXyey ¢S, a)0 — (s, a)T6
for all & and (s, a,s’), and represents the temporal difference.
Note that implementing Algorithm (11) requires computing
MaXye ¢(s', @) 6. Even when using linear parametrization,
¢(s,a)" 6 as a function a € « is not necessarily convex. This is
the main reason for us to consider MDPs with finite action-spaces
because it is in general hard to solve non-convex optimization
problems.

Algorithm (11) can be viewed as an SA algorithm for solving
the equation

Espg(-).a~x(-15),5'~p(s.a,)[0(S, A)A(O, S, A, S')] = 0, (12)

where s stands for the stationary distribution of the Markov
chain {Si} under policy 7 (provided that it exists and is unique).
Under some mild conditions, Eq. (12) is equivalent to a so-called
projected Bellman equation (Melo et al., 2008).

In general, Eq. (12) may not necessarily admit a solution, see
Appendix A for such an example, and the iteration in Eq. (11)
may diverge (Baird, 1995). However, it was shown in Melo et al.
(2008) that under an assumption on the behavior policy 7, 6
converges to the solution of Eq. (12), denoted by 6*, almost surely.
In this paper, we work with a similar condition, and focus on
establishing the finite-sample bounds of Algorithm (11). We next
state our assumptions.

Assumption 4. The behavior policy n satisfies w(als) > 0 for
all (s, a), and the Markov chain {Si} induced by 7 is uniformly
geometrically ergodic.

Assumption 4 essentially requires that the behavior policy
has enough exploration, and is commonly used in studying value-
based RL algorithms (Tsitsiklis & Van Roy, 1997, 1999). Under
Assumption 4, the Markov chain {S;} has a unique stationary
distribution, which we have denoted by us. In addition, there
exist C’ > 1and p’ € (0, 1)s.t. maxse o [|pX (s, -)—ps()llrv < C'p¥
for all k > 0 (Levin & Peres, 2017), where p,(-, -) denotes the
transition function of the Markov chain {S;} induced by 7.
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Assumption 5. The target equation (12) has a unique solution
0*, and there exists ¥ > 0 s.t. the following inequality holds for
all 6 e R%:

Y Eps[max Qu(S, a)°] = s Qs (S, AV < =k 617, (13)

We make Assumption 5 and especially Eq. (13) to ensure the
stability of Algorithm (11), which is in the same spirit to the
conditions proposed in Melo et al. (2008). A detailed discussion
about this assumption and comparison to related conditions are
presented in Section 3.3.

3.2. Finite-sample convergence guarantees

To apply our SA results, we begin by modeling Algorithm (11)
in the form of Algorithm (2). Define X, = (Sk, Ak, Sk+1) for all
k > 0.1t is clear that {X,} is also a Markov chain, with state-space
2 = .7 x o x . Moreover, under Assumption 4, the Markov
chain {X,} also has a unique stationary distribution, which we
denote by uy and is given by ux(s, a,s’) = us(s)z(als)p(s, a, ")
for all (s, a, s') € 2. Define an operator F : . x & x.% xR > RY
by

F(x,0) =F(s,a,s,0) = ¢(s,a)A0,s,a,s’) (14)

for all ® and x = (s, a,s’). Then Algorithm (11) can be written
in the same form as SA algorithm (2) with the additive noise wy
being identically equal to zero. Let F(0) = E,, [F(X, 8)]. We see
that F(9) = 0 is exactly the target equation (12).

To apply Theorem 1, we first show in the following proposi-
tion that Assumption 1, 2, and 3 are satisfied in the context of
Q-learning. The proof is presented in Section 6.1.

Proposition 1. Suppose that Assumptions 4 and 5 are satisfied,
then we have the following results: (1) The Markov chain {Xi}
satisfies Maxye o [PET1(x, ) — px()llv < C'p™ for all k > 0. (2)
Let M = 14 y + rmax- Then we have (a) ||F(x, 61) — F(x, 6;)| <
M||61 — 6,]| for all x, 64, and 6,, and (b) ||F(x,0)]| < M for all x.
(3) The equation F(0) = 0 has a unique solution 6%, and we have
(0 —6*)TF(6) < —5116 — 6% for all 6 € R™.

Similarly as in Section 2, given § > 0, we define t5 as the
mixing time of the Markov chain {X;} with precision § > 0.
Observe that Prop(/)si/tion 1 (1) implies that there exists a constant
M; = max(1, ll‘fg((c]///f,))) st ts < My(log(1/8) + 1) for any & > 0.
This is analogous to Eq. (7) in Section 2.

We next use Theorem 1 to establish the finite-sample bounds
of the Q-learning algorithm (11). In the diminishing stepsize
regime, we only present case (1) (c) of Corollary 2, which has
the best convergence rate. Let 1 = (||6g] + |60 — 6*|| + 1)
and n, = 130M?(]|6*|| + 1)%. The following theorem is a direct
implication of Theorem 1, hence we omit its proof.

Theorem 2. Consider {6y} of the Q-learning algorithm (11). Sup-
pose that Assumptions 4 and 5 are satisfied, Then we have the
following results.

(1) When ay, = a with « chosen s.t. at, < LG(I)(T’

k> ty:

E[I6x — 6% 1121 < 1 (1 — kot /)K" + 2mpaty /i

(2) When ay, = a/(k + h), where « > 2/k and h is large enough,
there exists K’ > 0 s.t. we have for all k > K':

Ko k+h
K+h) 2 | 16ena®my 087 )+
E[”Qk—@*”z] Snl(k:—h) +MM_

Kka—2 k+h
Theorem 2 (1) is qualitatively similar to Corollary 1 in that
the iterates of Q-learning converge exponentially fast to a ball
centered at 6%, and the size of the ball is proportional to «t,.
This agrees with results in Bhandari et al. (2018) and Srikant and

we have for all
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Ying (2019), where the popular TD-learning under linear func-
tion approximation was studied. Theorem 2 (2) suggests that for
properly chosen diminishing stepsizes, the optimal convergence
rate is roughly O(log(k)/k). The log(k) factor is a consequence of
performing Markovian sampling of {(Sk, Ax)}.

3.3. Discussion about Assumption 5 on the Behavior Policy

In this section, we take a closer look at Assumption 5 and
especially Eq. (13), which is made for the stability of Q-learning
with linear function approximation. For ease of exposition, from
now on, we assume that the state-action space of the MDP is
finite, i.e, n := |.#| < oo and m = || < oco. Let @ € R™xd
be the feature matrix defined as

| | - #lsi,a)T -
@:[@ ¢d]:
| | - sn.am) -

First note that Eq. (13) is equivalent to
Y Epus[max Qo(S. a)’] < Eyg x[Qo(S. AY] (15)

for all nonzero 6. The direction Eq. (13) implying Eq. (15) is trivial.
As for the other direction, let

o= max {y*Es[Max Qs(S, '] - B2 [Qu(S. AV D).

By Weierstrass extreme value theorem (Rudin et al., 1964), « is
well-defined and strictly positive because it is the maximum of a
continuous function over a compact set. This immediately gives
Eq. (13).

Similar assumptions on the behavior policy were also pro-
posed in Lee and He (2019) and Melo et al. (2008). Although the
exact form of the conditions are different, they all follow the same
spirit. That is, with a chosen Lyapunov function, the condition
should enable us to show that the corresponding ODE

o(t) = F(6(¢)) (16)

of the Q-learning algorithm (11) is globally asymptotically stable
(GAS). We next briefly compare our condition to those proposed
in Lee and He (2019) and Melo et al. (2008). The condition in Melo
et al. (2008) (their Eq. (7)) implies

2y Eyis[(Max Qs(S, 0))°) < Ey2[Qo(S, AV (17)

for all nonzero 6. The RHS is the same for both Eqgs. (15) and
(17). On the LHS, Eq. (17) has an additional factor of 2, and the
square is outside the max operator. Although they are similar, our
condition and the condition proposed in Melo et al. (2008) do not
imply each other. As for the condition proposed in Lee and He
(2019), while it is not clear if it is less restrictive than ours, it was
shown that the condition in Lee and He (2019) implies the con-
dition in Melo et al. (2008) under more restrictive assumptions.
However, Lee and He (2019) assumes i.i.d. sampling, and studies
only the asymptotic convergence rather than finite-sample error
bounds.

We next analyze how the discount factor, the basis vectors
{#i}, and the behavior policy 7 impact condition (15). In terms
of the dependence on the discount factor, it is clear that condi-
tion (15) is easier to satisfy for smaller discount factor. This agrees
with our numerical simulations provided in Section 3.4. The use
of smaller discount factors in RL was also noted in Jiang, Kulesza,
Singh, and Lewis (2015), albeit in a completely different context

1 The factor of 2 appears to be missing in Melo et al. (2008).
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of generalization. To see the impact of the basis vectors and the
behavior policy, consider the following two examples.

Uni-Dimension Case. Suppose that d = 1. That is, there is only
one basis vector ¢, and the weight 6 is a scalar. Condition (15)
reduces to

Y Eus [Max ¢(S, a)°] < Eyus [4(S, AY]. (18)

Define H™ = E, »[y$(S, A)maxge #(S', a') — (S, A, H =

By x[yd(S, A)minge.y ¢(S'.d) — ¢(S,AP], and 1, =
E, s x[¢(S,A)Z%(S,A)]. Then we have the following result. See
Section 6.2 for the proof.

Proposition 2. Eq. (18) implies HY < 0 and H- < 0, and the
following statements regarding the relation between the stability of
ODE (16) and the sign of H and H~ hold:

HT <0,H <0,
Ht <0,H <0,
Ht <0,H <0,

when r, =0,

ODE (16) is GAS <— when 1, > 0,

when r, < 0.

Proposition 2 states that Condition (18) implies H", H~ < 0,
which is “almost necessary” for the GAS of ODE (16). Moreover,
it is clear from Eq. (18) that when d = 1, there always exists
a behavior policy 7 s.t. Eq. (18) is satisfied. For example, an ¢-
greedy policy (for a sufficiently small €) with respect to ¢(s, a)?
is a feasible behavior policy.

Full-Dimension Case. Suppose that d = mn, i.e., there is no
dimension reduction at all. We want to emphasize that this is
not equivalent to tabular Q-learning. Even when @ is a full-rank
square matrix, Q-learning with linear function approximation
does not coincide with tabular Q-learning. In fact, the divergent
counter-example provided in Baird (1995) belongs to this setting.
We show in the following proposition that, in the full-dimension
case, condition (15) is feasible in terms of the behavior policy
s only when the discount factor y is sufficiently small. See
Section 6.3 for its proof.

Proposition 3. When d = mn and y? > 1/m, condition (15) is
infeasible for any behavior policy .

We now compare the results for the two extreme cases,
iie, d = 1 and d = mn. We see that in the uni-dimensional
case, Eq. (15) implies a condition which is almost sufficient
and necessary for the GAS of the equilibrium 6* to ODE (16).
Moreover, there always exists a behavior policy 7 satisfying (15).
However, in the full-dimensional case, condition (15) is infeasible
in terms of the behavior policy # when y? > 1/m, which can
usually happen in practice, especially when the number of actions
is large.

3.4. Numerical simulations

In this section, we present numerical experiments to ver-
ify the sufficiency of Condition (13), and the convergence rates
of Q-learning with linear function approximation. Let w(x) =
ming. joj=1) Eyg.2[Qs(S, A)*1/E, [max, Qs(S, a)?]. Then Condition
(13) is equivalent to w(w) > y2. One way to compute () is
presented in Section 6.4.

In our simulation, we consider the divergent example of
Q-learning with linear function approximation introduced in Baird
(1995), which is an MDP with 7 states and 2 actions. To demon-
strate the effectiveness of Condition (13) for the stability of
Q-learning, in our first set of simulations, the reward function
is set to zero. Since the reward function is identically zero, Q* is
zero, implying 0* is zero. We choose the behavior policy = which
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Fig. 1. Convergence of Q-learning with linear function approximation for
different discount factors.

log EL||6k[*]

0 1 2 3
iteration (k) x10*

Fig. 2. Exponentially fast convergence of Q-learning with linear function
approximation for y = 0.7.

takes each action with equal probability. In this case, we have
w(m) ~ 0.5, giving the threshold for y to satisfy Eq. (13) being
()2 ~ 0.7. In our simulation, we choose constant stepsize
a = 0.01, discount factor y € {0.7,0.9,0.97}, and plot ||6]|
as a function of the number of iterations k in Fig. 1. Here, 0
converges when y = 0.7, 0.9, but diverges when y = 0.97. This
demonstrates that Condition (13) is sufficient but not necessary
for convergence. This also shows that when Eq. (13) is satisfied,
the counter-example from Baird (1995) converges.

To show the exponential convergence rate for using constant
stepsize, we consider the convergence of 6, when y = 0.7 given
in Fig. 2, where we plot log E[||6]|*] as a function of the number
of iterations k. In this case, 6y seems to converge geometrically,
which agrees with Theorem 2 (1).

We next numerically verify the convergence rates of
Q-learning with linear function approximation for using dimin-
ishing stepsizes oy = a/(k + h)}. We use the same MDP model
and behavior policy. The only difference is that the reward is no
longer set to zero, but is sampled independently from a uniform
distribution on [0, 1] for all state-action pairs. The constant «
given in Eq. (13) is estimated by numerical optimization, and the
discount factor y is set to be 0.7 to ensure convergence. In Fig. 3,
we plot E[[|6, — 6*||?] as a function of k for £ € {0.4, 0.6, 0.8, 1}.
In the case where & = 1, the constant coefficient « is chosen s.t.
ka > 2 in order to achieve the optimal convergence rate. We see
that the iterates converge for all £ € (0, 1]. Moreover, the larger
the value of £ is, the faster 6, converges.

To further verify the convergence rates, we plot log E[|| 6, —
#*]1?] as a function of log(k) in Fig. 4 and look at its asymptotic
behavior. We see that the slope is approximately —&, which
agrees with Theorem 2 (2).

In addition to the MDP used in Baird’s counter-example (Baird,
1995), numerical simulations corresponding to a larger MDP are
presented in Appendix B, and the results are consistent with the
theory as well as the outcomes of the simulations in this section.
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Fig. 3. Convergence for diminishing stepsizes.
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Fig. 4. Asymptotic convergence rate for diminishing stepsizes.

4. Conclusion

In this paper we establish finite-sample convergence guaran-
tees for a general nonlinear SA algorithm with Markovian noise.
We adopt a Lyapunov approach and control the error due to
Markovian noise by exploiting the fast mixing of the underlying
Markov chain. The result is used to derive, for the first time,
finite-sample bounds for Q-learning with linear function approx-
imation. Since such an algorithm is known to diverge in general,
we study it under a condition on the basis functions, the behavior
policy, and the discount factor that ensures stability. Sufficiency
of this condition and the rate of convergence of Q-learning are
verified numerically in the context of a well-known example.

5. Proof of all technical results in Section 2
5.1. Proof of Corollary 1

When oy = «, since K = t,, we have (1) ]_[] 1<(1 — C()O{J) =

k=1 A
(1 — coar) ", and (2 Z_Ka,]_[ i1 — coo) = a’t, Z, (1-—
coar Y1 < % This proves the result.

5.2. Proof of Corollary 2

We first verify Condition 1. When «; = «/(k+h)¢, using Eq. (7)
and we have

ti < L3(log(1/ay) + 1)
It follows that

= L3(& log(k + h) + log(1/a)).

Oty k=1 = LkOk—g,
a
< L3(log(1 1) —
< Ls(log(1/a) + N —

als(log(1/ak) + 1)
= (k — Ls(log(1/ay) + 1) + )t
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_ als(log(1/ar) + 1)

T (k= L3(¢ log(k + h) + log(1/a)) + 1 + h)t
B ails(log(1/ay) + 1)(k + h)*

© (k= L3(& log(k + h) + log(1/a)) + 1 + h)’

where the last line follows from multiplying o and dividing

Yhk—ty . k—1 _ :
(k+h)f Therefore, we have lim4h)— oo o /et = 1, which

implies that there exists hy = hy(c, &) > 0 such that a_g k-1 <
2L3ay(log(1/ax) + 1) for all k > 0. Since we also have
lim(kﬁ,h)*)oo ak(log(l/ak) ) = 0, there exists h2 = hz(O[ .‘;:) >0

such that ag_g -1 < 130L2 for all k > f. Let h = max(hl,hz)

Then when h > h, Condition 1 is satisfied for any k > 0. Moreover,
we have in this case ay_g k-1 < 2Lza(log(1/ay) + 1) for any
k > 0. This is useful for us to derive the explicit convergence rate
in the following.

To prove Corollary 2, we begin by simplifying the result of

Theorem 1. For k > K, we have

E[[|6x — 0*[1%]
k=1 k=1 k=1
< B l_[(1 — Cooj) + B2 Zaiai—ki.i—l 1—[ (1 - coaj)
=K i—K =it

k—1
<A [0 - o)
j=K
k—1 k—1
+ B2y 2Lsef(log(1/ai) + 1) [ | (1 - coay)
i=K j=it1
k—1
< B [](1 = coo)

j=K

k—1 k—1
+ 2Lspy(log(1 /) + Za [T - cow)

Jj=i+1
k—1

< B l_[(l — coej) +2L3Bo <log (k:{—7h> + 1) x

j=K
————
A

k—1 k—1
Zoz,-z H(l—cocxj). (19)

=K j=it1

Ay
We next bound the terms A; and A,. For A;, we have

k—1

A12H<] T )
<exp (_CO(XZ(]—i—hﬁ

( p x+h>d>
i
k

C()Ot’ %_:_17

=< coa -6 1-¢
= ((k+h) —(K+h) )

(20)
, £€€(0,1).

For A, when & = 1, we have

k—1

2 Co
A= Z (i+hp H ( j+h)
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e (it 1+h\
Z (i+h)? < k+h )

i=K

(Same to Eq. (20))

&> i+ 1+h 1
" (k + h)c —\ i+h (i+ 1+ h)>—coc
2 k—1

[

= (k+ hyoe

=

1+ ! ’ !
— i+h/) (i+1+h)y
40? - 1
<
= (k + h)to (i+ 1+ h)2 o

=~
—_

i=K
e, @ €(0,1/co),
< dallogle) o
e, @€ (1/c, ).

Substituting the upper bounds for the terms A; (cf. Eq. (20))
and A; (cf. Eq. ) into Eq. (19) proves Corollary 2 (1).

Now consider the case where & € (0, 1). Let {ug}k>x be a
sequence defined as

u =11 Co u + o ug =0
k1 = (k+ h)E k kKt hE’ k = 0.
It is easy to verify that uy = A,. We next use induction on uy to
show that
20 1

N
= kT hy

Since uy =0 <

(22)

< cO (K+h)§' we have the base case. Now suppose

for some k > K. Consider the difference between

o < G T
@ (k+1+hE and uyq. We have
2a 1
& T
- 2a 1

o 1 (i Coo 2£ 1 _ a?
co (k+1+h) (k+hY¥ ) co (k+h)  (k+h)*

20{ 1 Coxt k+h §
co (k+ h)% |: — (kY ( <k+l+h) ):|

2 1 Coxt £
= cou (k+ h)% [2 - W] (23)

>0, (24)

where Eq. (23) follows from

kth \¢ 1\ K —&/(kth)
_ " ) = 1
<k+1+h> |:< +k+h) :|

— Uk41

> p=§/(k+h)
>1- L,
- k+nh

and Eq. (24) follows from k > K > [2&/(coxx)]V'%). The
induction is now complete.

Substituting the upper bounds for the terms A; (cf. Eq. (20))
and A; (cf. Eq. (22)) into Eq. (19) proves Corollary 2 (2).

5.3. Proof of Lemma 1

For all k > t;, we have

]Ek[”F(Xk’ 9!() + wk”2]
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IA

Ex[(IF(Xe, 61l + 1wl )] (triangle inequality)

IA

Exl(Ly + L)*(I6kll + 1)*] (Eq. (4) and Assumption 3 (2))

IA

L*Eel(16 — 0" + 16%1 + 1)*]

(L = L1 + L, and triangle inequality)

< 2Bl |16 — 0711° + (J10%] + 1)1,

where the last line follows from (x + y)?
x,y € R.

< 2(x* + y?) for any

5.4. Proof of Lemma 2

We first recall an equivalent formula of computing the total
variation distance (Charalambous, Tzortzis, Loyka, & Charalam-
bous, 2014).

Lemma 6. Let i1 and u;, be two probability measures on a prob-
ability space ($2, .F). Let py, p» be the Radon-Nikodym derivatives
of 1 and u, w.r.t. some base probability measure v. Then we have
it — wallv = 5 [ Ip1 — paldv.

We next proceed to prove Lemma 2. For any given statex € 2,
let p* and gy be the Radon-Nikodym derivatives of the probability
measures pX(x, -) and ux(-) with respect to some base probability
measure v. Use the definition of mixing time (cf. Definition 1) and
Lemma 6, and we have for all x, 8, and k > ts that

IELF (X, 0) | Xo = X] — F(6))|

H / v, )0 (x, dy)) — / (y,e)ux(dy)H
[
X

(P¥ — gx)dv

< / I F(y. 6) || Ipy — qxldv

x
< LOOI+ 1) /y 17t — qeldv (Eq. (4)
= 2Li([161 + DIp*X. ) — mx()llr (Lemma 6)
< 2Li(|19]l + 1)Cp* (Assumption 3)
< 2Ly(]|0]] + 1)§ (k > ts and Definition 1)

5.5. Proof of Lemma 3

Given ki < kj, we first upper bound ||6;|| for any t € [kq, k2].
Using Eq. (4) and Assumption 3 (2), we have

16e1ll = 10l < N6e+1 — Ol

= ok ||F(Xk, Ok) + will

< (L1 + L)e(llON + 1)

< Lac(l16e]l + 1), (25)
which gives ([|6;+1]4+1) < (Lae+1)(||6¢ || +1). Recursively applying

the previous inequality, then using the fact that 14 x < e* for all
x € R, we have for all t € [kq, ky]:

-1
6:11 4+ 1 < l_[(LOlj + D160k, I + 1)
J=kq
< exp(Latg, i, —1)(16k, II + 1).
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1

Since e* < 1+2x for all x € [0, 1/2] and g, k,—1 < g;, we further

obtain
6:1 + 1 < (1 + 2Lotky ey~ 1)1k | + 1) < 2([|6k, | + 1)
It follows from the previous inequality and Eq. (25) that

ky—1

16k, = O, 1l < 161 — 6cll < 2Lotiy k1 (16, | + 1),
t=kq

Since oy, k,—1 < 5 and

16k, — Ok, Il < 2Lotky ky—1(116k, | + 1)
< 2Lotky ey —1(16ky — Ok I + 110k, Il + 1)
1
< 5||9k2 — O, I + 2Lotg gy —1 (116, [l + 1),
we have by rearranging terms that

16k, — Oky | < ALty iy —1(116k, | + 1)
5.6. Proof of Lemma 4

We begin by decomposing the following term on the LHS of
the target inequality:

Eel(6k — 0%)" (F(Xk, 61) — F(6k))]
= Ex[(Ok — Ok, )T (F(Xk, 6c) — F(6k))]

(T1)
+ (T2)O—g, — 0) " (Ekl[F(Xe, Okt )] — F(Ok—g,))

+ Ex(Ok—r, — 0™) T (F(X, 1) — F(Xk, Ok—g,.))

T3
+ Exl[(Ok—g, — 0%)T(F(6k—g,) — F(O))].

(Ty)

Consider the term (Ty). Since ay— k-1 < 77, Lemma 3 is applica-

ble for k; = k — t; and k, = k. Therefore, we have:
(T1) = Exl(6k — Okr) " (F(Xk, Ok) — F(0))]
< Egll16k — Ok—g [HF(Xk» Ok) — F(Ok)I]

< Exll6 — Ok ICIF X, 011 + 1F 01
< 2LE[[16k — B—g ICNOK]1 + 1)]

< 8Ly g k1B [(16k]l + 1)%] (Lemma 3)
< 8L k1 Ex [(16k — 671 + 1671 + 1)]
< 160 k- 1(Ex [ 16k — 0% 12] + (1671 + 1)%). (26)

Now consider the term (T). Since Lemma 2 implies that
IE[F (X, Ok )] = F(Be—g )| < 200L(l16e—g, || + 1),

we have by Cauchy-Schwarz inequality that

(T2) = 204lLE[(10k—g Il + DI O—g, — 07 [11-

To further control (T;), using Lemma 3 together with our assump-
tion that ay_¢, k-1 < 77, We have
16k — Ok—g Il < ALok—g k—1(Nl6kIl + 1) < 116kl + 1. (27)
Therefore, we have

16—, — O (O Il + 1)
< (I6k = Or—ge Il + 16 — 671
X (116 = O Il + 16 — 61 + 11671 + 1)
=< (16l + 116 — %I + D)UON + 16 — 0711 + 107]1 + 2)

10
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< (2116 = O*I + 116" + 1)2N16k — ™1 + 2[10%]| +2)
4116 — 0% + 110*1| + 1)*
8116k — 0% 11> + (10*[| + 1)].

It follows that
(T2) < 16y L(ER[[16k — 6% 1171+ (110* ]| + 1)%).

=
=

(28)

We next bound the terms (T3) and (T4). Using Assumption 1, we
have

(T3) + (T4)
< 2L||6k—g, — O™ 1Bk 1Ok — Or—g, ]

< 8Ly k1 Bkl 16k—e, — OFI1(1I6kll + 1)] (Lemma 3)
< 8Ltk k=1 Bkl ([16k — Ok Il + 116 — 6%[1)x

U6kl + 1)1
< 8L k1 Ex[ 16kl + 116 — 0% + 1)x

(16 — 0*[1 + 16%] + 1)] (Eq. (27))
< 8L k1 Ek[(2[16k — 07| + 107 ]| + 1)

(16 — 0*[1 + 16%] + 1)]
< 16tk k1 B[ (166 — 0% + 167 [ + 1)°]
< 32L% 00 k-1 Exl 16k — 0% 11> + (16*]] + 1)%]. (29)

Finally, combining the upper bounds we derived for the terms
{(Ti)}1<i<4 in Egs. (26), (28), and (29), we have
(c) = 2a4((Ty) + (T2) + (T3) + (T4))

< 128 agatk—g k-1 [Exll16k — 01171+ (110*]] + 1)*],

where the last line follows from L > 1 and oy < otg—g k1.
5.7. Proof of Lemma 5

Substituting the upper bounds we obtained for the terms (a)—
(d) into Eq. (9) and we have

Exll6+1 — 6%117] — Exlll6k — 67(1%]
< (—2coa + 12817 -1 + 2Lied Bkl 116k — 6711

+ (128L% ket -1 + 2L3e (1167 | + 1)
< (—2coak + 13012 ctete—gy k1 Eil 16k — %11

+ 130L%0k0tk—g k-1 (1167 + 1)

The result then follows by taking the total expectation on both
sides of the previous inequality.

6. Proof of all technical results in Section 3
6.1. Proof of Proposition 1

(1) For any xo = (So, o, Sp) € 2, where the state space 2" of
the Markov chain {X,} is given by = {(s,a,s') | s € .7, w(a|s) >
0, p(s, a,s’) > 0}, we have

k+1

%" (%0, -) — mx(lltv

/ u()PE (o, dx) — f u(x)pax ()
X x

— sup
2 wfulloo<1

For simplicity, for any x = (s,a,s’) € 2, we denote v,(s)
Y e mlals) ([, uls, a, s')p(s, a, s')ds’). Note that we have [|vy |
< 1 for all u(-) such that ||u||oc < 1. Using the definition of vy(-),
we have for any xo = (So, ao, S;) € 2" that

k+1

%" (%0, *) — mx(lltv
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f U()PkH (o, ) — f u(X)pix(dx)
X X

/ wu(S)p (55, ds) — / (s (ds)
& .5”

! sup
2 wulloo=1

1
— sup
2 wjulloo=1

<= sup f u(s)pl (sp, ds) — / v(s)us(ds)
2 yules=1 |/ &
= [Ip% (sp, ) — ws(liv

< C/p/k

for all k > 0, where the last line follows from Assumption 4.
Since the previous inequality holds for all x, € 2°, we have
maxye o [PXT(x, ) — px()llrv < C'p™ for all k > 0.

(2) Using Cauchy-Schwarz inequality, and our assumption that
llo(s, a)|| = 1 for all state-action pairs, we have for any 61, 6, and
x=(s,a,s):

IIF(x, 61) — F(x, 62)|l
= || ¢(s, a)%(s,a) + y max X (s, ai)" 6 — ¢(s, a)" 61)
— (s, a) (s, a) + y max (s’, )"0, — ¢(s,0)"6,) ||

ayeof

IA

Ilg(s. axmax o(s' ) 6,

+ llg(s, (s, @) (6 = 6)]
<yl max g(s ) 0, — max g(s". @) 6| + 161 ~ .

_ / T
gea;g (s, a2) 6,)ll

Since

| max ¢(s, a1)"0; — max ¢(s', ar) " 6]
a el e

IA

max |¢(s', ') (01 — 65)]

deot

< max [¢(s’, @)[[[|61 — 62|
deot

IA

161 — 6211,

we have for any 61, 6, and x:

IF(x, 01) — F(x, ) <(y + 161 — 651l <M |61 — 65]].
Moreover, we have ||F(x, 0)|| = ||¢(s, a)%(s, a)|| < rmax for any
Xex. _

(3) Using the fact that F(6*) = 0, we have

(6 — 6*)(F(8) — F(6*))
=y(6 -0 x

Eys [4(S. A max ¢S, a1)"0 — max P(S', az)" 6]

— Eu[(#(S,A)T (6 — 6%))]
< yE,[1$(S,A)" (6 — 6%)| max ¢S, a) (0 — 6]

— Eu[(#(S,A)T (6 — 6%))] (31)
< 7B l(9(5. AT (6 — 6))]

x| [BusImax(@(s, ayT(0 — 0]
— Eu[(p(S,A)T (6 — 6%))1. (32)

Eq. (31) follows from Eq. (30). Eq.
fact that when S ~ pus, we have S’ ~ ,us For simplicity
of notation, denote A VE[(9(S,A)T(6 —6%)?] and
B= \/Eus [Maxge o (P(S, a)T (0 — 6*))2]. Smce Assumptlon 5 gives

(32) follows from the

y2B? — A’ < —«||® — 6*|)?, we have
_ 232 —A2
O0—0"TFo)< L2 < ||e 0|12,
yBJ/A+1

11
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6.2. Proof of Proposition 2

We first show that Eq. (18) implies H" < 0, and H~ < 0. Note
that Jensen’s inequality implies

E,is[max ¢(S, a')’]
=E, {max [(max (S, a))?, (min ¢(S, a’))z] }
deot deot
> max {Eus [(max §(S. @))%, Ey [(min ¢S, a/))z]} : (33)
Thus, using Eq. (18
=E,ly¢(S, A)g@( ¢S, a’)]l
=E,ly¢(S, A)ﬂg ¢S, a’)]l

) and we have

H* — Eu[¢(S, A

— VL [0(5. APIE, [9(5. AV]
< Bysly¢(S. A) max (S, a')]

- y\/EM [max ¢(S, a' P18, [4(S, AP
<o,

where the last inequality follows from Cauchy-Schwarz inequal-
ity and the fact that S’ and S are equal in distribution if S ~ us.
Similarly, we also have H™ < 0.

We next prove the equivalence stated in Proposition 2. By
definition of H™ and H™, in uni-dimensional case, ODE (16) can
be equivalently written as

HYO(t) + 1y,
Hie(t) + rﬂa

In the case where r, = 0, it is easy to see that ODE (16) is globally
asymptotically stable if and only if HY, H~ < 0. Now we assume
without loss of generality that r, > 0. The proof for the other
case is entirely similar.

Sufficiency: We first note that 6* = —r,/H" > 0. Let W(0) =
%(9 — 6*)? be a candidate Lyapunov function. It is clear that
W() > 0 for all & € R, and W(6) = 0 if and only if 6 = 6*.

Moreover, we have

o(t) > 0,
o(t) < 0.

W(o(t) = (6(t) — 07)A(t)
HH(0(t) — 9*)2, 0(t)>=0
(B(t) — 0*)H~O(t) —H'O*), 6(t) <0

It is clear that W(G(t)) < 0 when 6(t) € [0,0%) U (6%, o0). For
O(t) < 0, since §(t) —0* <0, HT0* = —r, < 0,and H 0(t) > 0
we must also have W((t)) < 0. Therefore, the time derivative
of the Lyapunov function W(@) along the trajectory of ODE (16)
is strictly negative when 6(t) # 6*. It then follows from the
Lyapunov stability theorem (Haddad & Chellaboina, 2011; Khalil
& Grizzle, 2002) that 6* is globally asymptotically stable.

Necessity: We prove by contradiction. Suppose that the equilib-
rium point 6* is globally asymptotically stable, but H™ > 0 or
H~ > 0. Suppose that H* > 0. When 6(0) > max(0, 6*), we have
6(t) = HTO(t) + ry > 1y > 0. It follows that 6(t) > 6(0) > 6*
for all t > 0, which contradict to the fact that 6* is a globally
asymptotically stable equilibrium point. Suppose that H~ > 0.
When 6(0) < min(6*, —(1 + r,)/H™), we have o(t) = H™o(t) +
rr < —1 < 0. It follows that 6(t) < 6(0) < 6* for all t > 0, which
also contradict to the fact 6* being globally asymptotically stable.
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6.3. Proof of Proposition 3

When d = mn, the feature matrix @ is a square matrix. Define
Osqa=span ({¢(s, a)|(s’, a)e.s x o, (s, d)#(s, a)})l )

Note that ©;, exists for all state-action pairs. Now for a given
state-action pair (s,a), let 6 # 0 be in O, Eq. (15) im-
plies y2us(s)((s,a)T0? < us(s)m(als)o(s, a)T6)?, which fur-
ther gives y?2 < m(als). Therefore, by running (s, a) though all
state-action pairs, we have y? < MiNs g)e. 7 x oz T(A|S) < %
Thus, if 2 > 1/m, there is no behavior policy 7 that satisfies
Condition (15).

6.4. Computing ()

We here present one way to compute w(rr) for an MDP with
a chosen policy 7 when the underlying model is known. Before
that, the following definitions are needed.

Definition 2. Let D € R™*™ be a diagonal matrix with diagonal
entries {us(s)m(als)}s.mes x> and let X &TDP e RIXI,
where @ € R™*¢ is the feature matrix.

Definition 3. Let Z = " C R" be the set of all deterministic
policies.

Definition 4. Let Ds € R™" be a diagonal matrix with diagonal
entries {s(s)}se., and let X, = @,/ Ds®, € R™?, where @), €
R™? (b € %) is defined by:

(51, b)T
Blsn. D)

We now compute w(rr) given in the following lemma. Let
Amax(+) return the largest eigenvalue of a positive semi-definite
matrix

Dy

Lemma 7. o(7) = Minpeg [1/Amax(Z 22, 2712)).

Proof of Lemma 7. Recall our definition for w(r):
() = min ez 150) Ve TG T0F
020 D o o Ms(S) MaXae o (¢(s, a)T6)
Let f(0) be the numerator. Then we have
FO)="" us(s) Y w(als)(s, )7 6)
ses aco
=0"®d ' DPH =0"30.

Since the diagonal entries of D are all positive, and & is full
column rank, the matrix X is symmetric and positive definite.
To represent the denominator of (34) in a similar form, let

2(0,b) =Y us(s)(s, b) 0)

=0"®, Ds®y0 = 0" 5,0,

where b € £. Since the columns of &, can be dependent,
the matrix X, is in general only symmetric and positive semi-
definite. Using the definition of f(0) and g(@, b), we can rewrite
w(m) as

() = min L
00 MaXpe oz &(0, b)

()
= min min
0+0 bex g(0, b)

12
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= min min .
bez 670 g(0, b)

Now since ¥ is positive definite, X/? and X ~/? are both well-
defined and positive definite, we have

-1
O Y
min =
0#0 g(0, b) L 00  f(O)
0Tz,
= | max
| 6#0 0T X6

-1

Il

2
||2,}/22”2x||>

(max
x#0
o 1

N Amax(zil/zzbzil/z).
It follows that

() = min[1/Anax( 2122, 27 12)).
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Appendix A. On the existence of solutions to Eq. (12)

In this section, we construct an example to show that Eq. (12)
for Q-learning with linear function approximation may not admit
a solution. Consider an MDP with states-space . {1,2},
action-space «# = {1, 2}, transition probability matrices P; =
[1,0;1,0], P, =[0,1;0, 1], reward function

R(1, 1) 1
e | R12) 2 ,

R2, 1) 2

R(2,2) 4

and a tunable discount factor y € (0, 1). Let the feature matrix
be defined by

#(1,1)
#(1,2)
#(2,1)
#(2,2)
We use a uniform behavior policy, ie., 7(1|1) m(2|1)
w(1]2) = w(2]2) = 0.5. Then the transition probability matrix
P, under policy r is given by
0.5 0.5

05 05]’
and the unique stationary distribution us of the Markov chain
{Sk} under policy = is given by us(1) = us(2) = 0.5.

Consider the target Eq. (12). In this example, after straightfor-
ward calculation, Eq. (12) reduces to
o {1+y§9, 6=0,

3
1+ y§9, 6 <0,

SO =

P, = 0.5P; + 0.5P, = |:

which has no solution when y € (5/6, 1).
Appendix B. More numerical simulations

To complement the numerical experiments presented in Sec-
tion 3.4, here we implement the Q-learning with linear function
approximation algorithm on a larger MDP. We first introduce our
experimental setup and then state our results.
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201 i

0 1 2 3
iteration (k) x10*

Fig. B.1. Convergence of Q-learning with linear function approximation for
discount factor y € {0.5,0.7, 0.9}.

B.1. Setup

We consider an MDP with 100 states and 10 actions, where
rewards and transition probabilities are generated as follows:

Rewards. The reward #(s, a) for each state-action pair (s, a) is
drawn from the uniform distribution on [0, 1].

Transition probabilities. For each state-action pair (s, a) € .¥ x
</, the probabilities p(s, a,s’) of each successor state s' € .7
are chosen as random partitions of the unit interval. That is,
99 numbers are chosen uniformly randomly between 0 and 1,
dividing that interval into 100 numbers that sum to one — the
probabilities of the 100 successor states.

Moreover, we consider a feature matrix @ with 100 features
(recall that there are total 1000 state-action pairs) for each state—
action pair (s, a) € .# x <7, where each element is drawn from the
Bernoulli distribution with success probability p = 0.5. We repeat
this process until we obtain a full column rank feature matrix @.
We further normalize the features to ensure ||¢(s, a)|| < 1 for all
(s,a) € ¥ x &. Furthermore, the behavior policy 7 is chosen to
take each action with equal probability in each state s € .7.

B.2. Results

In our first set of experiments, we choose constant stepsize
o = 0.01 and discount factor y € {0.5,0.7,0.9}. In Fig. B.1,
we plot ||®@6;, — Q*|| as a function of the iteration k, where Q*
associated with each y is the optimal Q value function computed
by the value iteration algorithm. Here, @6, converges when y €
{0.5, 0.7}, but diverges when y = 0.9. This again shows that the
algorithm is likely to diverge when y is close to 1 and that the
Condition (13) is sufficient but not necessary for convergence. To
demonstrate the exponential convergence rate for constant step-
size, we plot log E [||6x — 6* (1] as the function of the iteration k
when y = 0.5, where 6* is the solution of the projected Bellman
equation (12), estimated by the projected value iteration algo-
rithm. Note that, we repeat running the algorithm for 1000 times
and use the average as an approximation to the expectation. In
Fig. B.2, we observe that the graph is nearly a straight line when
k is large enough, meaning that 6, converges to 6* geometrically
fast, which agrees with Theorem 2 (1).

In our second set of experiments, we consider diminishing
stepsizes ay = % where £ € {0.4,0.6,0.8,1.0}. In the case
where £ = 1, the constant « is chosen s.t. ko > 2 to achieve
the optimal convergence rate. In addition, the discount factor y
is set to be 0.5. Fig. B.3 shows that the algorithm converges for all
& € {0.4,0.6,0.8, 1.0} and the algorithm converges faster with
larger &. To further illustrate the rate of convergence for each
choice of &, we plot logE [ |6, — 6*]|*] as a function of logk in
Fig. B.4 and focus on its asymptotic behavior. We can observe that
the slope is approximately —&, which agrees with Corollary 2.
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0.51
0.0

log E[[|6x— 67?1

—0.51

0 1 2 3
iteration (k) x10*

Fig. B.2. Exponential convergence rate of Q-learning with linear function

approximation for y = 0.5.
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=05
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| 0.4
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203
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0 2 4 6 8
iteration (k) x10%

Fig. B.3. Convergence for diminishing stepsizes.
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Fig. B.4. Asymptotic convergence rate.
References

Baird, Leemon (1995). Residual algorithms: Reinforcement learning with function
approximation. In Machine learning proceedings 1995 (pp. 30-37). Elsevier.

Beck, Carolyn L., & Srikant, Rayadurgam (2012). Error bounds for constant
step-size Q-learning. Systems & Control Letters, 61(12), 1203-1208.

Benaim, Michel (1996). A dynamical system approach to stochastic approxima-
tions. SIAM Journal on Control and Optimization, 34(2), 437-472.

Benveniste, Albert, Métivier, Michel, & Priouret, Pierre (2012). vol. 22, Adaptive
algorithms and stochastic approximations. Springer Science & Business Media.

Bertsekas, Dimitri P., & Tsitsiklis, John N. (1996). Neuro-dynamic programming.
Athena Scientific.

Bhandari, Jalaj, Russo, Daniel, & Singal, Raghav (2018). A finite time analysis
of temporal difference learning with linear function approximation. In
Conference on learning theory (pp. 1691-1692).

Bhatnagar, Shalabh, & Borkar, Vivek S. (1997). Multiscale stochastic approxima-
tion for parametric optimization of hidden Markov models. Probability in the
Engineering and Informational Sciences, 11(4), 509-522.

Bhatnagar, Shalabh, & Borkar, Vivek S. (1998). A two timescale stochastic approx-
imation scheme for simulation-based parametric optimization. Probability in
the Engineering and Informational Sciences, 12(4), 519-531.

Borkar, Vivek S. (2009). vol. 48, Stochastic approximation: A dynamical systems
viewpoint. Springer.

Borkar, Vivek S., & Meyn, Sean P. (2000). The ODE method for convergence of
stochastic approximation and reinforcement learning. SIAM Journal on Control
and Optimization, 38(2), 447-469.

Bottou, Léon, Curtis, Frank E., & Nocedal, Jorge (2018). Optimization methods for
large-scale machine learning. Siam Review, 60(2), 223-311.


http://refhub.elsevier.com/S0005-1098(22)00487-3/sb1
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb1
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb1
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb2
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb2
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb2
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb3
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb3
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb3
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb4
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb4
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb4
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb5
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb5
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb5
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb6
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb6
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb6
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb6
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb6
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb7
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb7
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb7
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb7
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb7
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb8
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb8
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb8
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb8
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb8
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb9
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb9
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb9
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb10
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb10
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb10
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb10
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb10
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb11
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb11
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb11

Z. Chen, S. Zhang, T.T. Doan et al.

Charalambous, Charalambos D, Tzortzis, loannis, Loyka, Sergey, & Charalam-
bous, Themistoklis (2014). Extremum problems with total variation distance
and their applications. [EEE Transactions on Automatic Control, 59(9),
2353-2368.

Dalal, Gal, Szorényi, Baldzs, Thoppe, Gugan, & Mannor, Shie (2018). Finite
sample analysis for TD(0) with function approximation. In Thirty-second AAAI
conference on artificial intelligence.

Duchi, John C, Agarwal, Alekh, Johansson, Mikael, & Jordan, Michael I (2012).
Ergodic mirror descent. SIAM Journal on Optimization, 22(4), 1549-1578.
Even-Dar, Eyal, & Mansour, Yishay (2003). Learning rates for Q-learning. Journal

of Machine Learning Research, 5(Dec), 1-25.

Fazlyab, Mahyar, Ribeiro, Alejandro, Morari, Manfred, & Preciado, Victor M
(2017). A dynamical systems perspective to convergence rate analy-
sis of proximal algorithms. In 2017 55th annual allerton conference on
communication, control, and computing (Allerton) (pp. 354-360). IEEE.

Franca, Guilherme, Robinson, Daniel, & Vidal, Rene (2018). ADMM and acceler-
ated ADMM as continuous dynamical systems. In International conference on
machine learning (pp. 1559-1567). PMLR.

Haddad, Wassim M., & Chellaboina, VijaySekhar (2011). Nonlinear dynamical
systems and control: A Lyapunov-based approach. Princeton University Press.

Hu, Bin, Seiler, Peter, & Rantzer, Anders (2017). A unified analysis of stochastic
optimization methods using jump system theory and quadratic constraints.
In Conference on learning theory (pp. 1157-1189). PMLR.

Hu, Bin, & Syed, Usman Ahmed (2019). Characterizing the exact behaviors
of temporal difference learning algorithms using Markov jump linear sys-
tem theory. In Proceedings of the 33rd international conference on neural
information processing systems (pp. 8479-8490).

Jaakkola, Tommi, Jordan, Michael I, & Singh, Satinder P. (1994). Convergence of
stochastic iterative dynamic programming algorithms. In Advances in neural
information processing systems (pp. 703-710).

Jiang, Nan, Kulesza, Alex, Singh, Satinder, & Lewis, Richard (2015). The depen-
dence of effective planning horizon on model accuracy. In Proceedings of the
2015 international conference on autonomous agents and multiagent systems
(pp. 1181-1189). Citeseer.

Karmakar, Prasenjit, & Bhatnagar, Shalabh (2021). Stochastic approximation
with iterate-dependent Markov noise under verifiable conditions in compact
state space with the stability of iterates not ensured. IEEE Transactions on
Automatic Control.

Kearns, Michael, & Singh, Satinder (1998). Finite-sample convergence rates for
Q-learning and indirect algorithms. In Proceedings of the 11th international
conference on neural information processing systems (pp. 996-1002).

Khalil, Hassan K., & Grizzle, Jessy W. (2002). vol. 3, Nonlinear systems. Prentice
hall Upper Saddle River, NJ.

Kushner, Harold Joseph, & Clark, Dean S. (2012). vol. 26, Stochastic approxima-
tion methods for constrained and unconstrained systems. Springer Science &
Business Media.

Lan, Guanghui (2020). First-order and stochastic optimization methods for machine
learning. Springer.

Lee, Donghwan, & He, Niao (2019). A unified switching system perspective and
ODE analysis of Q-learning algorithms. Preprint arXiv:1912.02270.

Levin, David A., & Peres, Yuval (2017). vol. 107, Markov chains and mixing times.
American Mathematical Soc..

Ljung, Lennart (1977). Analysis of recursive stochastic algorithms. IEEE
Transactions on Automatic Control, 22(4), 551-575.

Melo, Francisco S., Meyn, Sean P., & Ribeiro, M. Isabel (2008). An analysis of
reinforcement learning with function approximation. In Proceedings of the
25th international conference on machine learning (pp. 664-671).

Moulines, Eric, & Bach, Francis (2011). Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning. Advances in Neural Information
Processing Systems, 24, 451-459.

Ramaswamy, Arunselvan, & Bhatnagar, Shalabh (2018). Stability of stochastic
approximations with “controlled markov” noise and temporal difference
learning. IEEE Transactions on Automatic Control, 64(6), 2614-2620.

Robbins, Herbert, & Monro, Sutton (1951). A stochastic approximation method.
The Annals of Mathematical Statistics, 400-407.

Romero, Orlando, & Benosman, Mouhacine (2020). Finite-time convergence in
continuous-time optimization. In International conference on machine learning
(pp. 8200-8209). PMLR.

Rudin, Walter, et al. (1964). vol. 3, Principles of mathematical analysis.
McGraw-hill New York.

Sontag, Eduardo D. (2008). Input to state stability: Basic concepts and results.
In Nonlinear and optimal control theory (pp. 163-220). Springer.

Srikant, R, & Ying, Lei (2019). Finite-time error bounds for linear stochas-
tic approximation and TD learning. In Conference on learning theory (pp.
2803-2830).

Sutton, Richard S., & Barto, Andrew G. (2018). Reinforcement learning: an
introduction. MIT Press.

Thoppe, Gugan, & Borkar, Vivek (2019). A concentration bound for stochastic
approximation via Alekseev’s formula. Stochastic Systems, 9(1), 1-26.

Tsitsiklis, John N. (1994). Asynchronous stochastic approximation and
Q-learning. Machine Learning, 16(3), 185-202.

Automatica 146 (2022) 110623

Tsitsiklis, John N., & Van Roy, Benjamin (1997). Analysis of temporal-difference
learning with function approximation. In Advances in neural information
processing systems (pp. 1075-1081).

Tsitsiklis, John N., & Van Roy, Benjamin (1999). Average cost temporal-difference
learning. Automatica, 35(11), 1799-1808.

Watkins, Christopher J. C. H., & Dayan, Peter (1992). Q-learning. Machine
Learning, 8(3-4), 279-292.

Yaji, Vinayaka G., & Bhatnagar, Shalabh (2019). Analysis of stochastic ap-
proximation schemes with set-valued maps in the absence of a stability
guarantee and their stabilization. IEEE Transactions on Automatic Control,
65(3), 1100-1115.

Zaiwei Chen is currently a CMI postdoctoral fellow
at Caltech CMS department, hosted by Prof. Adam
Wierman and Prof. Eric Mazumdar. He received his
Ph.D. degree in Machine Learning from the School
of Industrial & Systems Engineering at Georgia Tech,
advised by Prof. Siva Theja Maguluri and Prof. John-
Paul Clarke. He also obtained two M.S. degrees from
Georgia Tech, one in Mathematics, and the other in
Operations Research. Before that, he received his B.S.
degree in Electrical Engineering from Chu Kochen Hon-
ors College, Zhejiang University, China. He is interested
in applied probability with applications in reinforcement learning, optimization,
and control theory.

Sheng Zhang is currently a Ph.D. student in the H.
Milton Stewart School of Industrial and Systems En-
gineering at Georgia Tech. He received his B.S. in
Mathematics and Applied Mathematics from Wuhan
University and M.S. in Applied Mathematics from
Columbia University. His primary research interests
are in sequential decision making under uncertainty,
reinforcement learning, bandit algorithms, decentral-
ized and distributed optimization, statistical machine
learning and their various applications.

Thinh T. Doan is an Assistant Professor in the Electri-
cal and Computer Engineering Department at Virginia
Tech. He obtained his Ph.D. degree at the University of
Illinois, Urbana-Champaign, his M.S. at the University of
Oklahoma, and his B.S. at Hanoi University of Science
and Technology, Vietnam, all in Electrical Engineering.
His research interests span the intersection of control
theory, optimization, machine learning, reinforcement
learning, game theory, and applied probability theory.

John-Paul Clarke is a professor of Aerospace Engineer-
ing and Engineering Mechanics at The University of
Texas at Austin, where he holds the Ernest Cockrell Jr.
Memorial Chair in Engineering. Previously, he was a
faculty member at the Georgia Institute of Technology
and the Massachusetts Institute of Technology (MIT);
Vice President of Strategic Technologies at United Tech-
nologies Corporation (now Raytheon); and a researcher
at Boeing and NASA JPL.

Siva Theja Maguluri is Fouts Family Early Career Pro-
fessor and Assistant Professor in the H. Milton Stewart
School of Industrial and Systems Engineering at Georgia
Tech. He received his B.Tech in Electrical Engineering
from IIT Madras in 2008, M.S in ECE, M.S. in Applied
Math and a Ph.D. in ECE all from University of Illinois
at Urbana Champaign. His research interests span the
areas of Networks, Control, Optimization, Algorithms,
Applied Probability and Reinforcement Learning. He is
a recipient of the biennial “Best Publication in Applied
Probability” award, NSF CAREER award, “CTL/BP Junior
Faculty Teaching Excellence Award”, and “Student Recognition of Excellence in
Teaching: Class of 1934 CIOS Award”.


http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb12
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb13
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb13
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb13
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb13
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb13
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb14
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb14
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb14
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb15
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb15
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb15
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb16
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb17
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb17
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb17
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb17
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb17
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb18
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb18
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb18
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb19
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb19
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb19
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb19
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb19
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb20
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb21
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb21
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb21
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb21
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb21
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb22
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb23
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb24
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb24
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb24
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb24
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb24
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb25
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb25
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb25
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb26
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb26
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb26
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb26
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb26
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb27
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb27
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb27
http://arxiv.org/abs/1912.02270
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb29
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb29
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb29
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb30
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb30
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb30
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb31
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb31
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb31
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb31
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb31
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb32
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb32
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb32
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb32
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb32
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb33
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb33
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb33
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb33
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb33
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb34
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb34
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb34
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb35
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb35
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb35
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb35
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb35
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb36
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb36
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb36
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb37
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb37
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb37
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb38
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb38
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb38
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb38
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb38
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb39
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb39
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb39
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb40
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb40
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb40
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb41
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb41
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb41
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb42
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb42
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb42
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb42
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb42
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb43
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb43
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb43
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb44
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb44
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb44
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45
http://refhub.elsevier.com/S0005-1098(22)00487-3/sb45

	Finite-sample analysis of nonlinear stochastic approximation with applications in reinforcement learning
	Introduction
	Related Literature

	Nonlinear SA with Markovian Noise
	Finite-Sample Bounds for Nonlinear SA
	Proof of Theorem 1 

	Applications in Reinforcement Learning
	Q-Learning with Linear Function Approximation
	Finite-Sample Convergence Guarantees
	Discussion about Assumption 5 on the Behavior Policy
	Numerical Simulations

	Conclusion
	Proof of all technical results in Section 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

	Proof of all technical results in Section 3 
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Computing ω(π)

	Acknowledgments
	Appendix A. On the Existence of Solutions to eq:pbj
	Appendix B. More Numerical Simulations
	Setup
	Results

	References


