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a b s t r a c t

Motivated by applications in reinforcement learning (RL), we study a nonlinear stochastic approx-
imation (SA) algorithm under Markovian noise, and establish its finite-sample convergence bounds
under various stepsizes. Specifically, we show that when using constant stepsize (i.e., αk ≡ α), the
algorithm achieves exponential fast convergence to a neighborhood (with radius O(α log(1/α))) around
the desired limit point. When using diminishing stepsizes with appropriate decay rate, the algorithm
converges with rate O(log(k)/k). Our proof is based on Lyapunov drift arguments, and to handle the
Markovian noise, we exploit the fast mixing of the underlying Markov chain. To demonstrate the
generality of our theoretical results on Markovian SA, we use it to derive the finite-sample bounds
of the popular Q -learning algorithm with linear function approximation, under a condition on the
behavior policy. Importantly, we do not need to make the assumption that the samples are i.i.d., and
do not require an artificial projection step in the algorithm. Numerical simulations corroborate our
theoretical results.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Large-scale optimization and machine learning problems are
ften solved using stochastic approximation (SA) methods (i.e., it-
rative algorithms in the presence of noise). For example, in
ptimization, the stochastic gradient descent (SGD) algorithm is
ommonly used to find an optimal solution of a target objective
unction (Bottou, Curtis, & Nocedal, 2018; Lan, 2020). In rein-
orcement learning (RL), Q -learning and TD-learning are popular
lgorithms used to solve the Bellman equations (Bertsekas &
sitsiklis, 1996; Sutton & Barto, 2018).
The behavior of SA algorithms is highly dependent on the

ature of the associated noise (e.g., i.i.d., martingale difference,
r Markovian). In robust optimization problems as considered
n Duchi, Agarwal, Johansson, and Jordan (2012) where the data
s generated by an auto-regressive process, the corresponding
GD algorithm naturally involves Markovian noise. In RL, al-
orithms such as Q -learning, TD-learning, and actor–critic use

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Mattia
Zorzi under the direction of Editor Alessandro Chiuso.
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ample trajectories generated from a Markov decision process
MDP) to carry out the update, and hence can also be modeled
s Markovian SA algorithms.
The asymptotic convergence of SA algorithms with Markovian

oise has been studied extensively in the literature (Benveniste,
étivier, & Priouret, 2012; Bertsekas & Tsitsiklis, 1996; Borkar,
009). Beyond asymptotic convergence, it is of more practical
nterest to study finite-sample guarantees, i.e., to provide per-
ormance guarantees on the output of SA algorithms after per-
orming a finite number of iterations. More formally, suppose we
erform k iterations of an SA algorithm and denote the output by
k. Then the goal of finite-sample analysis is to understand how
he quantity E[∥θk − θ∗

∥
2
] decay as a function of k, where θ∗ is

he desired limit point, and ∥ · ∥ is a suitable norm. This leads to
ur main contributions in the following.

inite-Sample Analysis for Nonlinear Markovian SA. We es-
ablish finite-sample convergence guarantees for nonlinear SA
ith Markovian noise for using various stepsizes, where we do
ot require an artificial projection step in the algorithm. The
esults state that Markovian SA algorithms enjoy exponential
onvergence rate to a neighborhood around the desired limit
hen using constant stepsize, and an O(log(k)/k) convergence
ate when using appropriate diminishing stepsizes. We prove the
esults by applying a suitable Lyapunov function on the stochastic
terates, and show that in expectation it produces a negative drift.
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o handle the Markovian noise, we exploit the geometric mixing
f the underlying Markov chain.

inite-Sample Analysis of Q -Learning with Linear Function
pproximation. To demonstrate the effectiveness of our SA re-
ults, we use them to establish for the first time finite-sample
ounds for Q -learning under linear function approximation. Since
he algorithm does not necessarily converge (Baird, 1995), we
se our SA results to provide a sufficient condition which guar-
ntees the convergence. In addition, we verify the sufficiency
f our proposed condition and the resulting convergence rates
ia numerical experiments based on a well-known divergent
ounter-example of Q -learning from Baird (1995). Specifically,
e demonstrate that if our condition is satisfied, the algorithm
onverges, and the rates match with our theoretical results.

.1. Related literature

tochastic Approximation. The SA method, originally proposed
n Robbins and Monro (1951), is an iterative method for solving
oot-finding problems with incomplete information. The asymp-
otic behavior of SA algorithms is captured by its associated
rdinary differential equation (ODE), which leads to the popu-
ar ODE approach for analyzing SA algorithms Benveniste et al.
2012) and Kushner and Clark (2012). Specifically, given certain
ssumptions, it was shown in Borkar (2009) and Ljung (1977) that
he SA algorithm converges almost surely as long as the corre-
ponding ODE is stable. The ODE approach was extended to more
eneral cases in Benaim (1996), Karmakar and Bhatnagar (2021)
nd Yaji and Bhatnagar (2019), where the ODE lacks stability,
r has multiple equilibrium points. The convergence of various
A algorithms such as SA with Markovian noise and multiple
ime-scale SA was studied in Bhatnagar and Borkar (1997, 1998),
armakar and Bhatnagar (2021) and Ramaswamy and Bhatnagar
2018), respectively. While the results presented there were very
eneral, they study SA algorithms in the asymptotic regime. In
his paper, we perform finite-sample analysis, which is differ-
nt in flavor and provides stronger finite-sample convergence
uarantees.
For linear SA algorithms, finite-sample mean-square bounds

ere established under either i.i.d. sampling or Markovian sam-
ling in Bhandari, Russo, and Singal (2018) and Srikant and Ying
2019). Concentration results were established in Dalal, Szörényi,
hoppe, and Mannor (2018) and Thoppe and Borkar (2019). For
on-linear SA algorithms, finite-sample bounds in general are
nly derived in a special form of SA, namely SGD (Bottou et al.,
018; Lan, 2020; Moulines & Bach, 2011). Moreover, unlike i.i.d.
ampling, in the case of Markovian sampling, an artificial projec-
ion (onto a ball) is introduced in the algorithm to ensure that the
terates are bounded (Duchi et al., 2012).

-Learning (with Linear Function Approximation). Q -learning
Watkins & Dayan, 1992) is perhaps one of the most popular
lgorithms for solving RL problems (Bertsekas & Tsitsiklis, 1996;
utton & Barto, 2018). The asymptotic convergence and finite-
ample guarantees of Q -learning were studied in Borkar and
eyn (2000), Jaakkola, Jordan, and Singh (1994), Tsitsiklis (1994)
nd Beck and Srikant (2012), Even-Dar and Mansour (2003) and
earns and Singh (1998), respectively.
A major limitation with Q -learning is that it becomes com-

utationally intractable when the size of the state–action space
s large. One way to overcome this difficulty is to use function
pproximation. In this work, we consider Q -learning under linear
unction approximation, which can be modeled as a nonlinear
arkovian SA algorithm (Melo, Meyn, & Ribeiro, 2008). However,
s shown by the counter-example in Baird (1995), Q -learning
2

ith linear function approximation does not necessarily con-
erge. Therefore, additional assumptions were imposed in Melo

et al. (2008) to ensure the asymptotic convergence. Under a
similar condition, we establish the finite-sample bounds by ex-
ploiting some natural properties of Q -learning (such as Lipschitz
continuity), and the fast mixing of finite-state Markov chains.
The mixing time argument for dealing with Markovian noise was
inspired by Bertsekas and Tsitsiklis (1996, Section 4.4) and Srikant
and Ying (2019), where linear SA algorithms were studied. Im-
portantly, our approach does not require a projection step in the
algorithm (Bhandari et al., 2018), which is impractical in RL since
one needs to know the problem parameters to pick the projection
set so that the desired limiting solution lies in it.

2. Nonlinear SA with Markovian noise

Consider the problem of solving for θ∗ in the equation

F̄ (θ ) = EµX [F (X, θ )] = 0, (1)

where X ∈ X ⊆ RnX is a random vector with distribution µX , and
the function F : X × Rd

↦→ Rd is a general nonlinear operator.
When the distribution µX is unknown, Eq. (1) cannot be solved
analytically. Therefore, we consider solving the equation using
the SA method. With initialization θ0 ∈ Rd, the estimate θk of
θ∗ is updated according to

θk+1 = θk + αk(F (Xk, θk)+ wk), (2)

where {Xk} (taking values in X ) is a uniformly ergodic Markov
chain with unique stationary distribution µX , {wk} represents
the additive martingale difference noise that possibly depends
on {θk}, and {αk} is the stepsize sequence. To better understand
Algorithm (2), consider the special case where F (x, θ ) = −∇J(θ )+
x for some cost function J(·), Algorithm (2) reduces to the popular
SGD algorithm for minimizing J(·).

The behavior of Algorithm (2) is closely related to the trajec-
tory of the ODE

θ̇ (t) = F̄ (θ (t)). (3)

A popular approach to analyze an ODE is to construct a Lyapunov
function and study the time-derivative of the Lyapunov func-
tion along the trajectory of the ODE. Inspired by the Lyapunov
technique for ODE stability analysis, in this paper, we directly
study SA algorithm (2) using a Lyapunov approach. See Fazlyab,
Ribeiro, Morari, and Preciado (2017), Franca, Robinson, and Vidal
(2018), Hu, Seiler, and Rantzer (2017), Hu and Syed (2019) and
Romero and Benosman (2020) for more details on using Lyapunov
functions to study the behavior of iterative algorithms. Since
Algorithm (2) is a discrete and stochastic counterpart of ODE (3), a
major challenge is to handle the error caused by the discretization
and the noise. We begin by stating our assumptions to study
Algorithm (2). Let ∥·∥ be the ℓ2-norm for vectors and the induced
2-norm for matrices.

Assumption 1. There exists a constant L1 > 0 s.t. (1) ∥F (x, θ1)−
F (x, θ2)∥ ≤ L1∥θ1 − θ2∥ for all θ1, θ2, and x, and (2) ∥F (x, 0)∥ ≤ L1
for all x.

Assumption 1 states that the operator F (x, θ ) is L1-Lipschitz
continuous with respect to θ uniformly in x. In the special case
where F (x, θ ) is a linear function of θ as considered in Bhandari
et al. (2018) and Srikant and Ying (2019), i.e., F (x, θ ) = A(x)θ +

b(x), Assumption 1 is satisfied when supx∈X ∥A(x)∥ < ∞ and
supx∈X ∥b(x)∥ < ∞. In our setting, although F (x, θ ) is a nonlinear
function of θ , Assumption 1 implies that the growth rate of both
∥F (x, θ )∥ and ∥F̄ (θ )∥ can at most be affine in terms of ∥θ∥. To
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ee this, under Assumption 1, we have by triangle inequality and
ensen’s inequality that

F (x, θ )∥ ≤ L1∥θ∥ + ∥F (x, 0)∥ ≤ L1(∥θ∥ + 1), (4)

∥F̄ (θ )∥ ≤ EµX [∥F (X, θ )∥] ≤ L1(∥θ∥ + 1). (5)

These properties for F (x, θ ) and F̄ (θ ) essentially let us establish
the finite-sample bounds akin to the case where F (x, θ ) is a linear
function of θ .

Assumption 2. The target equation F̄ (θ ) = 0 has a unique
solution θ∗, and there exists c0 > 0 s.t. (θ − θ∗)⊤F̄ (θ ) ≤ −c0∥θ −

θ∗
∥
2 for all θ ∈ Rd.

In the SGD setting (i.e., F (x, θ ) = −∇J(θ ) + x), Assumption 2
is satisfied when the objective function J(·) is strongly convex.
Moreover, Assumption 2 can be viewed as an exponential dis-
sipativeness property of the ODE (3) with a quadratic storage
function. In fact, this assumption guarantees that θ∗ is the unique
exponentially stable equilibrium point of ODE (3). To see this, let
W (θ ) = ∥θ − θ∗

∥
2 be a candidate Lyapunov function. Then we

have
d
dt

W (θ (t)) = 2(θ (t)− θ∗)⊤θ̇ (t) ≤ −2c0W (θ (t)), (6)

which implies that W (θ (t)) ≤ W (θ (0))e−2c0t for all t ≥ 0. The
parameter c0 is called the negative drift, and we see that the larger
c0 is, the faster θ (t) converges.

Our next assumption is about the noise sequences {Xk} and
{wk}. Let Fk be the σ -algebra generated by {θi, Xi, wi}0≤i≤k−1 ∪

{θk, Xk}, and denote ∥ ·∥TV as the total variation distance between
probability distributions (Levin & Peres, 2017).

Assumption 3. (1) The Markov chain {Xk} is uniformly geomet-
rically ergodic with unique stationary distribution µX . (2) The
sequence {wk} satisfies E[wk | Fk] = 0 and ∥wk∥ ≤ L2(∥θk∥ + 1)
for all k ≥ 0, where L2 > 0 is a constant.

Assumption 3 (1) is made to control the Markovian noise in
Algorithm (2), and implies that there exist C ≥ 1 and ρ ∈ (0, 1)
s.t. supx∈X ∥pk(x, ·)−µX (·)∥TV ≤ Cρk for all k ≥ 0, where pk(x, ·)
represents the distribution of Xk given X0 = x. When compared to
{Xk} being i.i.d., the major difference for {Xk} being Markovian is
that there is a bias in the update, i.e., E[F (Xk, θ ) | X0 = x] ̸= F̄ (θ ).
Since Assumption 3 (1) states that the Markov chain {Xk} mixes
geometrically fast, it enables us to control such bias and to show
that it is not strong enough to cause major deviation from the
desired direction of the update. In the special case where the
state-space X of the Markov chain {Xk} is finite, Assumption 3
(1) is satisfied when the Markov chain {Xk} is irreducible and
aperiodic (Levin & Peres, 2017, Theorem 4.9). Assumption 3 (2)
states that {wk} is a martingale difference sequence, and wk may
depend on θk in the sense that ∥wk∥ is allowed to scale affinely
with respect to ∥θk∥.

In addition to these assumptions, the choice of the stepsize
sequence {αk} is important. In order to state certain conditions
on the stepsizes we pick, we need to use the mixing time of the
Markov chain {Xk} defined in the following.

Definition 1. For any δ > 0, the mixing time of the Markov
chain {Xk} with precision δ is defined as tδ = min{k ≥ 0 :

supx∈X ∥pk(x, ·)− µX (·)∥TV ≤ δ}.

Under Assumption 3 (1), we have for any δ > 0 that

tδ ≤
log(1/δ)+ log(C/ρ)

log(1/ρ)
≤ L3(log(1/δ)+ 1), (7)

where L3 := max(1, log(C/ρ)
log(1/ρ) ). As a result, we have limδ→0 δtδ = 0.

nalogous to Srikant and Ying (2019), we only require t = o(1/δ)
δ θ

3

to carry out our finite-sample analysis. We assume the stronger
geometric mixing property merely for an ease of exposition. We
next use tδ to state our condition on the stepsize sequence {αk}.
For simplicity of notation, denote tk = tαk and αi,j =

∑j
k=i αk. Let

= L1 + L2, and assume wolg. that L ≥ 1.

ondition 1. The stepsize sequence {αk} is non-increasing and
atisfies α0 ∈ (0, 1) and αk−tk,k−1 <

c0
130L2

for all k ≥ tk.

The reason we impose Condition 1 on the stepsize sequence is
the following. Recall that a key step in deriving the convergence
rate of ODE (3) is to establish the negative drift (cf. Eq. (6)).
imilarly, when deriving finite-sample bounds for Algorithm (2),
here will also be a negative drift term. In addition, there are error
erms that arise because of the discretization and the stochastic
oise. Using small stepsize helps suppressing these error terms
nd hence ensures that the negative drift is the dominant term
n our analysis.

Suppose we use constant stepsize, i.e., αk = α for all k ≥ 0.
ince in this case we have αk−tk,k−1 = αtα and limα→0 αtα =

, Condition 1 is satisfied when α is small enough. In addition
o constant stepsize, consider using polynomially diminishing
tepsizes of the form αk = α/(k + h)ξ . We show in Section 5.2
hat Condition 1 is satisfied for any α > 0 and ξ ∈ (0, 1], provided
hat h is appropriately chosen.

.1. Finite-sample bounds for nonlinear SA

In this section, we present our main results. We begin with
he finite-sample bound of Algorithm (2), the proof of which is
resented in Section 2.2.

heorem 1. Consider {θk} of Algorithm (2). Suppose that Assump-
ion 1–3 are satisfied, and {αk} satisfies Condition 1. Let K = min{k :

≥ tk}. Then we have for all k ≥ K:

[∥θk − θ∗
∥
2
]≤β1

k−1∏
j=K

(1− c0αj)+ β2

k−1∑
i=K

α̂i

k−1∏
j=i+1

(1− c0αj),

here β1 = (∥θ0∥ + ∥θ0 − θ∗
∥ + 1)2, β2 = 130L2(∥θ∗

∥ + 1)2, and
ˆ i = αiαi−ti,i−1.

emark 1. Although the parameter K is defined as K = min{k :

≥ tk}, we indeed have K = tK . To see this, suppose that K > tK .
ince both K and tK are integers, we must have K−1 ≥ tK ≥ tK−1,
here the second inequality follows from the fact that tk = tαk is
n increasing function of k. This contradict to the definition of K
nd hence we have K = tK .

On the RHS of the convergence bound, the first term repre-
ents the bias due to the initial guess θ0, and the second term
aptures the variance due to the noise. Theorem 1 is one of our
ain contributions in that (1) the function F (x, θ ) is allowed to
e nonlinear, (2) it holds when {Xk} is a Markov chain instead of
eing i.i.d., and (3) no modification on Algorithm (2) (e.g., adding
projection step) is needed to establish the results.
After establishing the finite-sample bounds of Algorithm (2)

n its general form, we next consider several common choices
f stepsizes, and derive the corresponding convergence rates.
e begin by presenting the result when using constant stepsize,

.e., αk ≡ α. The proof of the following corollary is presented in
ection 5.1.

orollary 1. When α is chosen s.t. αtα ≤
c0

130L2
, we have E[∥θk −

∗
∥
2
]≤β (1− c α)k−tα + β αtα for all k ≥ t .
1 0 2 c0 α
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We see from Corollary 1 that when using constant stepsize,
the bias term converges to zero geometrically fast as the number
of iterations increases, while the variance term remains as a
constant of size O(α log(1/α)). Since tα ≤ L3(log(1/α) + 1) (cf.
Eq. (7)), using constant stepsize efficiently eliminates the bias.
However, since the noise is added to the iterates without being
progressively suppressed, the variance does not converge to zero
as k goes to infinity.

We next consider diminishing stepsizes. Let αk = α/(k + h)ξ
where α > 0, ξ ∈ (0, 1], and h is chosen s.t. Condition 1 is
satisfied. The requirement for choosing h and the proof of the
following corollary are presented in Section 5.2.

Corollary 2. Suppose αk = α/(k+h)ξ , then we have the following
finite-sample bounds.
(1) (a) When ξ = 1 and α < 1/c0, we have for all k ≥ K:

E[∥θk − θ∗
∥
2
] ≤ β1

( K+h
k+h

)c0α
+

8β2α2L3
1−c0α

log
(
k+h
α

)
+1

(k+h)c0α .
(b) When ξ = 1 and α = 1/c0, we have for all k ≥ K: E[∥θk −
∗
∥
2
] ≤ β1

( K+h
k+h

)
+ 8β2α

2L3
log(k+h)[log

(
k+h
α

)
+1]

k+h .
c) When ξ = 1 and α > 1/c0, we have for all k ≥ K:

[∥θk − θ∗
∥
2
] ≤ β1

( K+h
k+h

)c0α
+

8eβ2α2L3
c0α−1

log
(
k+h
α

)
+1

k+h .
(2) When ξ ∈ (0, 1) and α > 0, suppose that K ≥ [2ξ/(c0α)]1/(1−ξ ),
then we have for all k ≥ K:

E[∥θk − θ∗
∥
2
] ≤ β1e

−
c0α

1−ξ

(
(k+h)1−ξ

−(K+h)1−ξ
)
+

4β2αL3
c0

log
(
k+h
α

)
+1

(k+h)ξ .

Observe from Corollary 2 (1) that when using αk = α/(k+ h),
the constant α must be chosen carefully (i.e., α > 1/c0) to achieve
the optimal Õ(1/k) convergence rate, otherwise the convergence
rate is Õ(1/kc0α), which can be arbitrarily slow. From Corollary 2
(2), we see that when ξ ∈ (0, 1), the convergence rate is Õ(1/kξ ),
which is sub-optimal, but more robust in the sense that it is
independent of α. The above analysis indicates that our choice
of stepsizes should depend on how precise our estimate of the
negative drift parameter c0 is. When our estimate of c0 is accurate,
we should use αk = α/(k + h) with α > 1/c0 so that the
convergence rate is the optimal Õ(1/k). When our understanding
to the system model is poor (therefore inaccurate estimate of c0),
we should use αk = α/(k + h)ξ . In that case, we sacrifice the
convergence rate for robustness.

Unlike almost sure convergence, where the usual require-
ments for stepsizes are

∑
∞

k=0 αk = ∞ and
∑

∞

k=0 α2
k < ∞ (Rob-

bins & Monro, 1951) (which correspond to ξ ∈ (1/2, 1] in our
case), we have convergence in the mean-square sense for all
ξ ∈ (0, 1]. The same phenomenon has been observed in Bhandari
et al. (2018), where linear SA was studied.

2.2. Proof of Theorem 1

In this section, we present the proof of Theorem 1. Before
going into the details, we first provide some intuition. Recall that
the Lyapunov function W (θ ) = ∥θ − θ∗

∥
2 can be used to show

the stability of ODE (3). To analyze the convergence rate of the
iterates {θk} generated by Algorithm (2), naturally we want to use
the Lyapunov function W (·) on {θk} to show something like

E[W (θk+1)] − E[W (θk)] ≤ (−c0αk + e1)E[W (θk)] + e2. (8)

Note that on an aside, Eq. (8) is a discrete analog of Eq. (6), and
so W (·) is a Lyapunov function (Haddad & Chellaboina, 2011).
In continuous time, Eq. (6) enables one to determine the rate of
convergence of ODE (3). Eq. (8) is the discrete-time equivalent
for SA algorithm (2). To make connection to standard control
literature, suppose we view e2 as the input. Then when e2 = 0,
Eq. (8) is of the desired form used to prove the asymptotic stabil-
ity (Sontag, 2008). In our case, due to a non-vanishing e , when
2

4

using constant stepsize we do not have asymptotic convergence
but have convergence to a neighborhood around θ∗.

We next proceed to elaborate our plan of proving Theorem 1.
On the RHS of Eq. (8), the−c0αk term corresponds to the negative
drift of the ODE, and the two terms e1 and e2 account for the
discretization error and the stochastic error in Algorithm (2). The
discretization error can be handled using the properties of the
function F (x, θ ) (cf. Assumption 1) and properly chosen stepsizes
(cf. Condition 1). As for the stochastic error, since Markovian noise
naturally produces bias in the update, we show that E[F (Xk, θ ) |
X0 = x] converges to F̄ (θ ) (as k increases) fast enough for any
θ , where we make use of Assumption 3 (1). Once we show that
both error terms are dominated by the drift term, i.e., e1 = o(αk)
and e2 = o(αk), Eq. (8) can be repeatedly used to establish a
finite-sample bound of Algorithm (2).

Following from the high level idea stated above, we now prove
Theorem 1. To begin, we apply W (θ ) = ∥θ − θ∗

∥
2 on the iterates

θk of Algorithm (2). To utilize the mixing time of the Markov
chain {Xk}, we take expectation conditioning on Xk−tk and θk−tk .
For simplicity, we use Ek[ · ] for E[· | Xk−tk , θk−tk ] in the following.
Then we have for all k ≥ tk:

Ek[∥θk+1 − θ∗
∥
2
] − Ek[∥θk − θ∗

∥
2
]

= 2Ek[(θk − θ∗)⊤(θk+1 − θk)] + Ek[∥θk+1 − θk∥
2
]

= 2αkEk[(θk − θ∗)⊤F̄ (θk)]  
(a)

+ 2αkEk[(θk − θ∗)⊤wk]  
(b)

+ 2αkEk[(θk − θ∗)⊤(F (Xk, θk)− F̄ (θk))]  
(c)

+ α2
kEk[∥F (Xk, θk)+ wk∥

2
]  

(d)

, (9)

where the last line follows by using the update Eq. (2) and by
adding and subtracting F̄ (θk).

The term (a) corresponds to the negative drift of ODE (3), and
we have (a) ≤ −2c0αkEk

[
∥θk − θ∗

∥
2
]
under Assumption 2. The

term (b) corresponds to the error due to martingale difference
noise {wk}. Using the tower property of conditional expectation
and Assumption 3 (2), we have (b) = 0. The term (c) corresponds
o the error due to the Markovian noise {Xk}, and the term (d)
rises mainly because of the error due to discretization. What
emains to show is that the terms (c) and (d) are dominated by
he term (a). We begin by bounding the term (d) in the following
emma, the proof of which is presented in Section 5.3.

emma 1. The following inequality holds for all k ≥ tk:

d) ≤ 2L2α2
k

[
Ek[∥θk − θ∗

∥
2
] + (∥θ∗

∥ + 1)2
]
.

Observe that Lemma 1 implies that (d) = O(α2
k ) = o(αk). We

ext consider the term (c). To control it, we need the following
wo results.

emma 2. For any given δ > 0, the following inequality holds for
ny x, θ , and k ≥ tδ:

E[F (Xk, θ ) | X0 = x] − F̄ (θ )∥ ≤ 2L1δ(∥θ∥ + 1).

Lemma 2 uses the mixing time to bound the bias (due to
arkovian noise) in Algorithm (2). See Section 5.4 for the proof.

The next lemma enables us to control the difference between θk1
and θk2 when k2 − k1 is not too large.

Lemma 3. For any k1 < k2 satisfying αk1,k2−1 ≤
1
4L , the following

two inequalities hold:
(1) ∥θk2 − θk1∥ ≤ 2Lαk1,k2−1(∥θk1∥ + 1),
(2) ∥θ − θ ∥ ≤ 4Lα (∥θ ∥ + 1).
k2 k1 k1,k2−1 k2
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The proof of Lemma 3 is presented in Section 5.5. With the
help of Lemmas 2 and 3, we are now ready to bound the term (c)
in the following lemma. See Section 5.6 for the proof.

Lemma 4. The following inequality holds for all k s.t. αk−tk,k−1 ≤
1
4L

where we recall that αk−tk,k−1 =
∑k−1

i=k−tk
αi):

(c) ≤ 128L2αkαk−tk,k−1
[
Ek[∥θk − θ∗

∥
2
] + (∥θ∗

∥ + 1)2
]
.

Substituting the upper bounds we obtained for the terms (a)−
(d) into Eq. (9), we have the following result, the proof of which
is presented in Section 5.7.

Lemma 5. It holds for all k satisfying αk−tk,k−1 ≤
1
4L that:

E[∥θk+1 − θ∗
∥
2
]

≤ (1− 2c0αk + 130L2αkαk−tk,k−1)E[∥θk − θ∗
∥
2
]

+ 130L2αkαk−tk,k−1(∥θ∗
∥ + 1)2. (10)

Eq. (10) is of the desired recursive form presented in Eq. (8).
herefore, as long as the drift term dominates the error terms,
.e., 2c0αk > 130L2αkαk−tk,k−1, we can repeatedly use Eq. (10) to
erive finite-sample error bounds of Algorithm (2). When Condi-
ion 1 is satisfied and k ≥ K (see Theorem 1 for the definition of
), we have by Eq. (10) that

[∥θk+1 − θ∗
∥
2
] ≤ (1− c0αk)E[∥θk − θ∗

∥
2
] + β2α̂k,

here α̂k and β2 are defined in Theorem 1. Repeatedly using the
revious inequality starting from K and we obtain

E[∥θk − θ∗
∥
2
]

E[∥θK − θ∗
∥
2
]

k−1∏
j=K

(1− c0αj)+ β2

k−1∑
i=K

α̂i

k−1∏
j=i+1

(1− c0αj).

o bound E[∥θK − θ∗
∥
2
], we use Lemma 3 and αK−tK ,K−1 =

0,K−1 ≤
1
4L to obtain

E[∥θK − θ∗
∥
2
] ≤ E[(∥θK − θ0∥ + ∥θ∗

− θ0∥)2] ≤ β1.

he proof is now complete.

. Applications in reinforcement learning

We begin by describing the underlying model for RL. Consider
n infinite horizon discounted MDP M comprised by a tuple
S , A , p, R, γ ), where S ⊆ RnS is a compact state-space, A is
a finite action-space, p : S × A × S ↦→ R+ is the transition
unction s.t.

∫
B p(s, a, s

′)ds′ = P(Sk+1 ∈ B | Sk = s, Ak = a)
here B is a (measurable) subset of S , R : S × A ↦→ [0, rmax]

s the reward function, and γ ∈ (0, 1) is the discount factor. The
nderlying model of the RL problem is essentially an MDP except
hat the transition function and reward function are unknown to
he agent.

The goal of RL is to find a policy for choosing actions based
n the state of the environment so that the expected long-term
eward is maximized. Formally, define the state–action value
unction (aka. the Q -function) of a policy π at (s, a) by Qπ (s, a) =
π [
∑

∞

k=0 γ kR(Sk, Ak) | S0 = s, A0 = a], where we use the
otation Eπ [ · ] to mean that the actions are chosen according to
olicy π , i.e., Ak ∼ π (·|Sk) for all k ≥ 1. Our goal is to find an
ptimal policy π∗ in the sense that its corresponding Q -function,
enote by Q ∗, satisfies Q ∗(s, a) ≥ Qπ (s, a) for any (s, a) and π .
fundamental property of the function Q ∗ is that, if one simply

elects actions greedy based on Q ∗, then that is an optimal policy.
ore formally, we have {a | π∗(a|s) > 0} ⊆ argmaxa∈A Q ∗(s, a)

or all state s ∈ S (Bertsekas & Tsitsiklis, 1996). Therefore, solving

he RL problem reduces to finding the optimal Q -function.

5

.1. Q-learning with linear function approximation

The Q -learning algorithm proposed in Watkins and Dayan
1992) is a popular approach for estimating the function Q ∗.
owever, a fundamental limitation of Q -learning is that the al-
orithm becomes intractable when the number of state–action
airs is large, or even infinite as considered in this work. There-
ore, we consider approximating the optimal Q -function from a
re-specified function class parametrized by a finite number of
arameters. We next describe the approximation model.
Let φi : S × A ↦→ R, 1 ≤ i ≤ d be a set of basis functions.

Denote φ(s, a) = [φ1(s, a), . . . , φd(s, a)]⊤ (which is a column
vector). We assume wolg. that the basis functions {φi}1≤i≤d are
linearly independent and are normalized so that ∥φ(s, a)∥ ≤ 1
for all (s, a). This is possible since we work with MDPs with
compact state-spaces and finite action-spaces. The sub-space W

spanned by the basis functions {φi} can be written as W = {Q̃θ =∑d
i=1 φiθi | θ ∈ Rd

}. We will use W as our approximating function
space, and the goal here is to find θ∗ s.t. Q̃θ∗ best approximates
Q ∗.

Using the notation above, we now present Q -learning under
linear function approximation (Bertsekas & Tsitsiklis, 1996). Let
{(Sk, Ak)} be a sample trajectory generated by applying some be-
havior policy π to the underlying MDP model. Note that {(Sk, Ak)}
forms a Markov chain. Then, the parameter θ of the approxima-
tion Q̃θ is updated according to:

θk+1 = θk + αkφ(Sk, Ak)∆(θk, Sk, Ak, Sk+1), (11)

where ∆(θ, s, a, s′) = R(s, a)+ γ maxa′∈A φ(s′, a′)⊤θ − φ(s, a)⊤θ

for all θ and (s, a, s′), and represents the temporal difference.
Note that implementing Algorithm (11) requires computing
maxa′∈A φ(s′, a′)⊤θk. Even when using linear parametrization,
φ(s, a)⊤θ as a function a ∈ A is not necessarily convex. This is
the main reason for us to consider MDPs with finite action-spaces
because it is in general hard to solve non-convex optimization
problems.

Algorithm (11) can be viewed as an SA algorithm for solving
the equation

ES∼µS (·),A∼π (·|S),S′∼p(S,A,·)[φ(S, A)∆(θ, S, A, S ′)] = 0, (12)

where µS stands for the stationary distribution of the Markov
chain {Sk} under policy π (provided that it exists and is unique).
Under some mild conditions, Eq. (12) is equivalent to a so-called
projected Bellman equation (Melo et al., 2008).

In general, Eq. (12) may not necessarily admit a solution, see
Appendix A for such an example, and the iteration in Eq. (11)
may diverge (Baird, 1995). However, it was shown in Melo et al.
(2008) that under an assumption on the behavior policy π , θk
converges to the solution of Eq. (12), denoted by θ∗, almost surely.
In this paper, we work with a similar condition, and focus on
establishing the finite-sample bounds of Algorithm (11). We next
state our assumptions.

Assumption 4. The behavior policy π satisfies π (a|s) > 0 for
all (s, a), and the Markov chain {Sk} induced by π is uniformly
geometrically ergodic.

Assumption 4 essentially requires that the behavior policy π

has enough exploration, and is commonly used in studying value-
based RL algorithms (Tsitsiklis & Van Roy, 1997, 1999). Under
Assumption 4, the Markov chain {Sk} has a unique stationary
distribution, which we have denoted by µS . In addition, there
exist C ′

≥ 1 and ρ ′
∈ (0, 1) s.t. maxs∈S ∥pkπ (s, ·)−µS(·)∥TV ≤ C ′ρ ′k

for all k ≥ 0 (Levin & Peres, 2017), where pπ (·, ·) denotes the

transition function of the Markov chain {Sk} induced by π .
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ssumption 5. The target equation (12) has a unique solution
∗, and there exists κ > 0 s.t. the following inequality holds for

all θ ∈ Rd:

γ 2EµS [max
a∈A

Q̃θ (S, a)2] − EµS ,π [Q̃θ (S, A)2]≤−κ∥θ∥2. (13)

We make Assumption 5 and especially Eq. (13) to ensure the
stability of Algorithm (11), which is in the same spirit to the
conditions proposed in Melo et al. (2008). A detailed discussion
about this assumption and comparison to related conditions are
presented in Section 3.3.

3.2. Finite-sample convergence guarantees

To apply our SA results, we begin by modeling Algorithm (11)
in the form of Algorithm (2). Define Xk = (Sk, Ak, Sk+1) for all
k ≥ 0. It is clear that {Xk} is also a Markov chain, with state-space
X = S × A × S . Moreover, under Assumption 4, the Markov
chain {Xk} also has a unique stationary distribution, which we
denote by µX and is given by µX (s, a, s′) = µS(s)π (a|s)p(s, a, s′)
for all (s, a, s′) ∈ X . Define an operator F : S ×A ×S ×Rd

↦→ Rd

by

F (x, θ ) = F (s, a, s′, θ ) = φ(s, a)∆(θ, s, a, s′) (14)

for all θ and x = (s, a, s′). Then Algorithm (11) can be written
in the same form as SA algorithm (2) with the additive noise wk
being identically equal to zero. Let F̄ (θ ) = EµX [F (X, θ )]. We see
that F̄ (θ ) = 0 is exactly the target equation (12).

To apply Theorem 1, we first show in the following proposi-
ion that Assumption 1, 2, and 3 are satisfied in the context of
-learning. The proof is presented in Section 6.1.

roposition 1. Suppose that Assumptions 4 and 5 are satisfied,
hen we have the following results: (1) The Markov chain {Xk}

atisfies maxx∈X ∥pk+1
π (x, ·) − µX (·)∥TV ≤ C ′ρ ′k for all k ≥ 0. (2)

et M = 1 + γ + rmax. Then we have (a) ∥F (x, θ1) − F (x, θ2)∥ ≤

∥θ1 − θ2∥ for all x, θ1, and θ2, and (b) ∥F (x, 0)∥ ≤ M for all x.
3) The equation F̄ (θ ) = 0 has a unique solution θ∗, and we have
θ − θ∗)⊤F̄ (θ ) ≤ −

κ
2∥θ − θ∗

∥
2 for all θ ∈ Rd.

Similarly as in Section 2, given δ > 0, we define tδ as the
mixing time of the Markov chain {Xk} with precision δ > 0.
Observe that Proposition 1 (1) implies that there exists a constant
M1 = max(1, log(C ′/ρ′)

log(1/ρ′) ) s.t. tδ ≤ M1(log(1/δ) + 1) for any δ > 0.
This is analogous to Eq. (7) in Section 2.

We next use Theorem 1 to establish the finite-sample bounds
of the Q -learning algorithm (11). In the diminishing stepsize
regime, we only present case (1) (c) of Corollary 2, which has
the best convergence rate. Let η1 = (∥θ0∥ + ∥θ0 − θ∗

∥ + 1)2
and η2 = 130M2(∥θ∗

∥ + 1)2. The following theorem is a direct
implication of Theorem 1, hence we omit its proof.

Theorem 2. Consider {θk} of the Q -learning algorithm (11). Sup-
pose that Assumptions 4 and 5 are satisfied, Then we have the
following results.
(1) When αk ≡ α with α chosen s.t. αtα ≤

κ

260M2 , we have for all
≥ tα:
[∥θk − θ∗

∥
2
] ≤ η1 (1− κα/2)k−tα + 2η2αtα/κ.

2) When αk = α/(k + h), where α > 2/κ and h is large enough,
here exists K ′ > 0 s.t. we have for all k ≥ K ′:

[∥θk − θ∗
∥
2
] ≤ η1

(
K ′
+h

k+h

) κα
2
+

16eη2α2M1
κα−2

log
(
k+h
α

)
+1

k+h .

Theorem 2 (1) is qualitatively similar to Corollary 1 in that
he iterates of Q -learning converge exponentially fast to a ball
entered at θ∗, and the size of the ball is proportional to αtα .
his agrees with results in Bhandari et al. (2018) and Srikant and
6

ing (2019), where the popular TD-learning under linear func-
ion approximation was studied. Theorem 2 (2) suggests that for
roperly chosen diminishing stepsizes, the optimal convergence
ate is roughly O(log(k)/k). The log(k) factor is a consequence of
erforming Markovian sampling of {(Sk, Ak)}.

.3. Discussion about Assumption 5 on the Behavior Policy

In this section, we take a closer look at Assumption 5 and
specially Eq. (13), which is made for the stability of Q -learning
ith linear function approximation. For ease of exposition, from
ow on, we assume that the state–action space of the MDP is
inite, i.e., n := |S | < ∞ and m := |A | < ∞. Let Φ ∈ Rmn×d

e the feature matrix defined as

=

[
| |

φ1 ... φd
| |

]
=

⎡⎣ — φ(s1, a1)⊤ —
... ... ...

— φ(sn, am)⊤ —

⎤⎦ .

irst note that Eq. (13) is equivalent to

γ 2EµS [max
a∈A

Q̃θ (S, a)2] < EµS ,π [Q̃θ (S, A)2] (15)

for all nonzero θ . The direction Eq. (13) implying Eq. (15) is trivial.
As for the other direction, let

κ=− max
θ :∥θ∥=1

{γ 2EµS [max
a∈A

Q̃θ (S, a)2] − EµS ,π [Q̃θ (S, A)2]}.

By Weierstrass extreme value theorem (Rudin et al., 1964), κ is
well-defined and strictly positive because it is the maximum of a
continuous function over a compact set. This immediately gives
Eq. (13).

Similar assumptions on the behavior policy were also pro-
posed in Lee and He (2019) and Melo et al. (2008). Although the
exact form of the conditions are different, they all follow the same
spirit. That is, with a chosen Lyapunov function, the condition
should enable us to show that the corresponding ODE

θ̇ (t) = F̄ (θ (t)) (16)

of the Q -learning algorithm (11) is globally asymptotically stable
(GAS). We next briefly compare our condition to those proposed
in Lee and He (2019) and Melo et al. (2008). The condition in Melo
et al. (2008) (their Eq. (7)) implies

2γ 2EµS [(max
a∈A

Q̃θ (S, a))2] < EµS ,π [Q̃θ (S, A)2] (17)

for all nonzero θ1. The RHS is the same for both Eqs. (15) and
(17). On the LHS, Eq. (17) has an additional factor of 2, and the
square is outside the max operator. Although they are similar, our
condition and the condition proposed in Melo et al. (2008) do not
imply each other. As for the condition proposed in Lee and He
(2019), while it is not clear if it is less restrictive than ours, it was
shown that the condition in Lee and He (2019) implies the con-
dition in Melo et al. (2008) under more restrictive assumptions.
owever, Lee and He (2019) assumes i.i.d. sampling, and studies
nly the asymptotic convergence rather than finite-sample error
ounds.
We next analyze how the discount factor, the basis vectors

φi}, and the behavior policy π impact condition (15). In terms
f the dependence on the discount factor, it is clear that condi-
ion (15) is easier to satisfy for smaller discount factor. This agrees
ith our numerical simulations provided in Section 3.4. The use
f smaller discount factors in RL was also noted in Jiang, Kulesza,
ingh, and Lewis (2015), albeit in a completely different context

1 The factor of 2 appears to be missing in Melo et al. (2008).
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f generalization. To see the impact of the basis vectors and the
ehavior policy, consider the following two examples.

ni-Dimension Case. Suppose that d = 1. That is, there is only
ne basis vector φ1, and the weight θ is a scalar. Condition (15)

reduces to

γ 2EµS [max
a∈A

φ(S, a)2] < EµS ,π [φ(S, A)
2
]. (18)

Define H+
= EµS ,π [γφ(S, A)maxa′∈A φ(S ′, a′) − φ(S, A)2], H−

=

µS ,π [γφ(S, A)mina′∈A φ(S ′, a′) − φ(S, A)2], and rπ =

µS ,π [φ(S, A)R(S, A)]. Then we have the following result. See
ection 6.2 for the proof.

roposition 2. Eq. (18) implies H+ < 0 and H− < 0, and the
following statements regarding the relation between the stability of
ODE (16) and the sign of H+ and H− hold:

DE (16) is GAS ⇐⇒

⎧⎪⎨⎪⎩
H+ < 0,H− < 0, when rπ = 0,

H+ < 0,H−
≤ 0, when rπ > 0,

H+
≤ 0,H− < 0, when rπ < 0.

Proposition 2 states that Condition (18) implies H+,H− < 0,
which is ‘‘almost necessary’’ for the GAS of ODE (16). Moreover,
it is clear from Eq. (18) that when d = 1, there always exists
a behavior policy π s.t. Eq. (18) is satisfied. For example, an ϵ-
greedy policy (for a sufficiently small ϵ) with respect to φ(s, a)2
is a feasible behavior policy.

Full-Dimension Case. Suppose that d = mn, i.e., there is no
dimension reduction at all. We want to emphasize that this is
not equivalent to tabular Q -learning. Even when Φ is a full-rank
square matrix, Q -learning with linear function approximation
does not coincide with tabular Q -learning. In fact, the divergent
counter-example provided in Baird (1995) belongs to this setting.
We show in the following proposition that, in the full-dimension
case, condition (15) is feasible in terms of the behavior policy
π only when the discount factor γ is sufficiently small. See
Section 6.3 for its proof.

Proposition 3. When d = mn and γ 2
≥ 1/m, condition (15) is

infeasible for any behavior policy π .

We now compare the results for the two extreme cases,
i.e., d = 1 and d = mn. We see that in the uni-dimensional
case, Eq. (15) implies a condition which is almost sufficient
and necessary for the GAS of the equilibrium θ∗ to ODE (16).
Moreover, there always exists a behavior policy π satisfying (15).
However, in the full-dimensional case, condition (15) is infeasible
in terms of the behavior policy π when γ 2

≥ 1/m, which can
usually happen in practice, especially when the number of actions
is large.

3.4. Numerical simulations

In this section, we present numerical experiments to ver-
ify the sufficiency of Condition (13), and the convergence rates
of Q -learning with linear function approximation. Let ω(π ) =

min{θ :∥θ∥=1} EµS ,π [Q̃θ (S, A)2]/EµS [maxa Q̃θ (S, a)2]. Then Condition
(13) is equivalent to ω(π ) > γ 2. One way to compute ω(π ) is
presented in Section 6.4.

In our simulation, we consider the divergent example of
Q -learning with linear function approximation introduced in Baird
(1995), which is an MDP with 7 states and 2 actions. To demon-
strate the effectiveness of Condition (13) for the stability of
Q -learning, in our first set of simulations, the reward function
is set to zero. Since the reward function is identically zero, Q ∗ is
zero, implying θ∗ is zero. We choose the behavior policy π which
7

Fig. 1. Convergence of Q -learning with linear function approximation for
different discount factors.

Fig. 2. Exponentially fast convergence of Q -learning with linear function
approximation for γ = 0.7.

takes each action with equal probability. In this case, we have
ω(π ) ≈ 0.5, giving the threshold for γ to satisfy Eq. (13) being
ω(π )1/2 ≈ 0.7. In our simulation, we choose constant stepsize
α = 0.01, discount factor γ ∈ {0.7, 0.9, 0.97}, and plot ∥θk∥
as a function of the number of iterations k in Fig. 1. Here, θk
converges when γ = 0.7, 0.9, but diverges when γ = 0.97. This
demonstrates that Condition (13) is sufficient but not necessary
for convergence. This also shows that when Eq. (13) is satisfied,
he counter-example from Baird (1995) converges.

To show the exponential convergence rate for using constant
tepsize, we consider the convergence of θk when γ = 0.7 given
n Fig. 2, where we plot logE[∥θk∥2] as a function of the number
f iterations k. In this case, θk seems to converge geometrically,
hich agrees with Theorem 2 (1).
We next numerically verify the convergence rates of

-learning with linear function approximation for using dimin-
shing stepsizes αk = α/(k + h)ξ . We use the same MDP model
nd behavior policy. The only difference is that the reward is no
onger set to zero, but is sampled independently from a uniform
istribution on [0, 1] for all state–action pairs. The constant κ
iven in Eq. (13) is estimated by numerical optimization, and the
iscount factor γ is set to be 0.7 to ensure convergence. In Fig. 3,
e plot E[∥θk − θ∗

∥
2
] as a function of k for ξ ∈ {0.4, 0.6, 0.8, 1}.

n the case where ξ = 1, the constant coefficient α is chosen s.t.
α ≥ 2 in order to achieve the optimal convergence rate. We see
hat the iterates converge for all ξ ∈ (0, 1]. Moreover, the larger
he value of ξ is, the faster θk converges.

To further verify the convergence rates, we plot logE[∥θk −
∗
∥
2
] as a function of log(k) in Fig. 4 and look at its asymptotic

ehavior. We see that the slope is approximately −ξ , which
grees with Theorem 2 (2).
In addition to the MDP used in Baird’s counter-example (Baird,

995), numerical simulations corresponding to a larger MDP are
resented in Appendix B, and the results are consistent with the
heory as well as the outcomes of the simulations in this section.
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Fig. 3. Convergence for diminishing stepsizes.

Fig. 4. Asymptotic convergence rate for diminishing stepsizes.

4. Conclusion

In this paper we establish finite-sample convergence guaran-
ees for a general nonlinear SA algorithm with Markovian noise.
e adopt a Lyapunov approach and control the error due to
arkovian noise by exploiting the fast mixing of the underlying
arkov chain. The result is used to derive, for the first time,

inite-sample bounds for Q -learning with linear function approx-
imation. Since such an algorithm is known to diverge in general,
we study it under a condition on the basis functions, the behavior
policy, and the discount factor that ensures stability. Sufficiency
of this condition and the rate of convergence of Q -learning are
erified numerically in the context of a well-known example.

. Proof of all technical results in Section 2

.1. Proof of Corollary 1

When αk ≡ α, since K = tα , we have (1)
∏k−1

j=K (1 − c0αj) =

(1− c0α)k−tα , and (2)
∑k−1

i=K α̂i
∏k−1

j=i+1(1− c0αj) = α2tα
∑k−1

i=tα (1−
c0α)k−i−1

≤
αtα
c0

. This proves the result.

5.2. Proof of Corollary 2

We first verify Condition 1. When αk = α/(k+h)ξ , using Eq. (7)
nd we have

k ≤ L3(log(1/αk)+ 1) = L3(ξ log(k+ h)+ log(1/α)).

t follows that

k−tk,k−1 ≤ tkαk−tk

≤ L3(log(1/αk)+ 1)
α

(k− tk + h)ξ

≤
αL3(log(1/αk)+ 1)
(k− L3(log(1/αk)+ 1)+ h)ξ

8

=
αL3(log(1/αk)+ 1)

(k− L3(ξ log(k+ h)+ log(1/α))+ 1+ h)ξ

=
αkL3(log(1/αk)+ 1)(k+ h)ξ

(k− L3(ξ log(k+ h)+ log(1/α))+ 1+ h)ξ
,

here the last line follows from multiplying αk and dividing
α

(k+h)ξ . Therefore, we have lim(k+h)→∞

αk−tk,k−1
αkL3(log(1/αk)+1) = 1, which

implies that there exists h̄1 = h̄1(α, ξ ) > 0 such that αk−tk,k−1 ≤

2L3αk(log(1/αk) + 1) for all k ≥ 0. Since we also have
lim(k+h)→∞ αk(log(1/αk)+ 1) = 0, there exists h̄2 = h̄2(α, ξ ) > 0
such that αk−tk,k−1 ≤

c0
130L2

for all k ≥ tk. Let h̄ = max(h̄1, h̄2).
hen when h ≥ h̄, Condition 1 is satisfied for any k ≥ 0. Moreover,
e have in this case αk−tk,k−1 ≤ 2L3αk(log(1/αk) + 1) for any
≥ 0. This is useful for us to derive the explicit convergence rate

n the following.
To prove Corollary 2, we begin by simplifying the result of

heorem 1. For k ≥ K , we have

E[∥θk − θ∗
∥
2
]

β1

k−1∏
j=K

(1− c0αj)+ β2

k−1∑
i=K

αiαi−ki,i−1

k−1∏
j=i+1

(1− c0αj)

β1

k−1∏
j=K

(1− c0αj)

+ β2

k−1∑
i=K

2L3α2
i (log(1/αi)+ 1)

k−1∏
j=i+1

(1− c0αj)

≤ β1

k−1∏
j=K

(1− c0αj)

+ 2L3β2(log(1/αk)+ 1)
k−1∑
i=K

α2
i

k−1∏
j=i+1

(1− c0αj)

≤ β1

k−1∏
j=K

(1− c0αj)  
A1

+2L3β2

(
log
(
k+ h

α

)
+ 1

)
×

k−1∑
i=K

α2
i

k−1∏
j=i+1

(1− c0αj)  
A2

. (19)

e next bound the terms A1 and A2. For A1, we have

1 =

k−1∏
j=K

(
1−

c0α
(j+ h)ξ

)

≤ exp

⎛⎝−c0α
k−1∑
j=K

1
(j+ h)ξ

⎞⎠
≤ exp

(
−c0α

∫ k

K

1
(x+ h)ξ

dx
)

≤

⎧⎨⎩
( K+h
k+h

)c0α
, ξ = 1,

e−
c0α

1−ξ

(
(k+h)1−ξ

−(K+h)1−ξ
)
, ξ ∈ (0, 1).

(20)

For A2, when ξ = 1, we have

A2 =

k−1∑ α2

(i+ h)2

k−1∏ (
1−

c0α
j+ h

)

i=K j=i+1
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U

≤

k−1∑
i=K

α2

(i+ h)2

(
i+ 1+ h
k+ h

)c0α

(Same to Eq. (20))

=
α2

(k+ h)c0α

k−1∑
i=K

(
i+ 1+ h
i+ h

)2 1
(i+ 1+ h)2−c0α

=
α2

(k+ h)c0α

k−1∑
i=K

(
1+

1
i+ h

)2 1
(i+ 1+ h)2−c0α

≤
4α2

(k+ h)c0α

k−1∑
i=K

1
(i+ 1+ h)2−c0α

≤

⎧⎪⎪⎨⎪⎪⎩
4α2

(1−c0α)(k+h)c0α , α ∈ (0, 1/c0),
4α2 log(k+h)

k+h , α = 1/c0,
4eα2

(c0α−1)(k+h) , α ∈ (1/c0,∞).

(21)

Substituting the upper bounds for the terms A1 (cf. Eq. (20))
nd A2 (cf. Eq. ) into Eq. (19) proves Corollary 2 (1).
Now consider the case where ξ ∈ (0, 1). Let {uk}k≥K be a

equence defined as

k+1 =

(
1−

c0α
(k+ h)ξ

)
uk +

α2

(k+ h)2ξ
, uK = 0.

It is easy to verify that uk = A2. We next use induction on uk to
how that

k ≤
2α
c0

1
(k+ h)ξ

. (22)

Since uK = 0 ≤
2α
c0

1
(K+h)ξ , we have the base case. Now suppose

k ≤
2α
c0

1
(k+h)ξ for some k ≥ K . Consider the difference between

2α
c0

1
(k+1+h)ξ and uk+1. We have

2α
c0

1
(k+ 1+ h)ξ

− uk+1

≥
2α
c0

1
(k+ 1+ h)ξ

−

(
1−

c0α
(k+ h)ξ

)
2α
c0

1
(k+ h)ξ

−
α2

(k+ h)2ξ

2α
c0

1
(k+ h)2ξ

[
c0α
2

− (k+ h)ξ
(
1−

(
k+ h

k+ 1+ h

)ξ
)]

≥
2

c0α
1

(k+ h)2ξ

[
c0α
2

−
ξ

(k+ h)1−ξ

]
(23)

≥ 0, (24)

here Eq. (23) follows from

k+ h
k+ 1+ h

)ξ

=

[(
1+

1
k+ h

)k+h
]−ξ/(k+h)

≥ e−ξ/(k+h)

≥ 1−
ξ

k+ h
,

and Eq. (24) follows from k ≥ K ≥ [2ξ/(c0α)]1/(1−ξ ). The
nduction is now complete.

Substituting the upper bounds for the terms A1 (cf. Eq. (20))
nd A2 (cf. Eq. (22)) into Eq. (19) proves Corollary 2 (2).

.3. Proof of Lemma 1

For all k ≥ tk, we have

[∥F (X , θ )+ w ∥
2
]
k k k k

9

Ek[(∥F (Xk, θk)∥ + ∥wk∥)2] (triangle inequality)

Ek[(L1 + L2)2(∥θk∥ + 1)2] (Eq. (4) and Assumption 3 (2))

L2Ek[(∥θk − θ∗
∥ + ∥θ∗

∥ + 1)2]
(L = L1 + L2 and triangle inequality)

2L2Ek[∥θk − θ∗
∥
2
+ (∥θ∗

∥ + 1)2],
here the last line follows from (x + y)2 ≤ 2(x2 + y2) for any
, y ∈ R.

.4. Proof of Lemma 2

We first recall an equivalent formula of computing the total
ariation distance (Charalambous, Tzortzis, Loyka, & Charalam-
ous, 2014).

emma 6. Let µ1 and µ2 be two probability measures on a prob-
bility space (Ω, F ). Let p1, p2 be the Radon–Nikodym derivatives
f µ1 and µ2 w.r.t. some base probability measure ν. Then we have
µ1 − µ2∥TV =

1
2

∫
Ω
|p1 − p2|dν.

We next proceed to prove Lemma 2. For any given state x ∈ X ,
et pkx and qX be the Radon–Nikodym derivatives of the probability
easures pk(x, ·) and µX (·) with respect to some base probability
easure ν. Use the definition of mixing time (cf. Definition 1) and

Lemma 6, and we have for all x, θ , and k ≥ tδ that

∥E[F (Xk, θ ) | X0 = x] − F̄ (θ )∥∫
X

F (y, θ )pk(x, d(y))−
∫

X

F (y, θ )µX (dy)
∫

X

F (y, θ )(pkx − qX )dν


≤

∫
X

∥ F (y, θ ) ∥ |pkx − qX |dν

L1(∥θ∥ + 1)
∫

X

|pkx − qX |dν (Eq. (4))

2L1(∥θ∥ + 1)∥pk(x, ·)− µX (·)∥TV (Lemma 6)

2L1(∥θ∥ + 1)Cρk (Assumption 3)

2L1(∥θ∥ + 1)δ (k ≥ tδ and Definition 1)

.5. Proof of Lemma 3

Given k1 < k2, we first upper bound ∥θt∥ for any t ∈ [k1, k2].
sing Eq. (4) and Assumption 3 (2), we have

∥θt+1∥ − ∥θt∥ ≤ ∥θt+1 − θt∥

= αk∥F (Xk, θk)+ wk∥

≤ (L1 + L2)αk(∥θ∥ + 1)

≤ Lαt (∥θt∥ + 1), (25)

which gives (∥θt+1∥+1) ≤ (Lαt+1)(∥θt∥+1). Recursively applying
the previous inequality, then using the fact that 1+ x ≤ ex for all
x ∈ R, we have for all t ∈ [k1, k2]:

∥θt∥ + 1 ≤

t−1∏
j=k1

(Lαj + 1)(∥θk1∥ + 1)

≤ exp(Lαk1,k2−1)(∥θk1∥ + 1).
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ince ex ≤ 1+2x for all x ∈ [0, 1/2] and αk1,k2−1 ≤
1
4L , we further

btain

θt∥ + 1 ≤ (1+ 2Lαk1,k2−1)(∥θk1∥ + 1) ≤ 2(∥θk1∥ + 1).

t follows from the previous inequality and Eq. (25) that

∥θk2 − θk1∥ ≤

k2−1∑
t=k1

∥θt+1 − θt∥ ≤ 2Lαk1,k2−1(∥θk1∥ + 1).

Since αk1,k2−1 ≤
1
4L and

∥θk2 − θk1∥ ≤ 2Lαk1,k2−1(∥θk1∥ + 1)
≤ 2Lαk1,k2−1(∥θk2 − θk1∥ + ∥θk2∥ + 1)

≤
1
2
∥θk2 − θk1∥ + 2Lαk1,k2−1(∥θk2∥ + 1),

we have by rearranging terms that

∥θk2 − θk1∥ ≤ 4Lαk1,k2−1(∥θk2∥ + 1).

5.6. Proof of Lemma 4

We begin by decomposing the following term on the LHS of
the target inequality:

Ek[(θk − θ∗)⊤(F (Xk, θk)− F̄ (θk))]

= Ek[(θk − θk−tk )
⊤(F (Xk, θk)− F̄ (θk))]  
(T1)

+ (T2)(θk−tk − θ∗)⊤(Ek[F (Xk, θk−tk )] − F̄ (θk−tk ))  
+ Ek(θk−tk − θ∗)⊤(F (Xk, θk)− F (Xk, θk−tk ))  

T3

+ Ek[(θk−tk − θ∗)⊤(F̄ (θk−tk )− F̄ (θk))]  
(T4)

.

Consider the term (T1). Since αk−tk,k−1 ≤
1
4L , Lemma 3 is applica-

le for k1 = k− tk and k2 = k. Therefore, we have:

(T1) = Ek[(θk − θk−tk )
⊤(F (Xk, θk)− F̄ (θk))]

≤ Ek[∥θk − θk−tk∥∥F (Xk, θk)− F̄ (θk)∥]

≤ Ek[∥θk − θk−tk∥(∥F (Xk, θk)∥ + ∥F̄ (θk)∥)]
≤ 2LEk[∥θk − θk−tk∥(∥θk∥ + 1)]

≤ 8L2αk−tk,k−1Ek
[
(∥θk∥ + 1)2

]
(Lemma 3)

≤ 8L2αk−tk,k−1Ek
[
(∥θk − θ∗

∥ + ∥θ∗
∥ + 1)2

]
≤ 16L2αk−tk,k−1(Ek

[
∥θk − θ∗

∥
2]

+ (∥θ∗
∥ + 1)2). (26)

Now consider the term (T2). Since Lemma 2 implies that

∥Ek[F (Xk, θk−tk )] − F̄ (θk−tk )∥ ≤ 2αkL(∥θk−tk∥ + 1),

we have by Cauchy–Schwarz inequality that

(T2) ≤ 2αkLEk[(∥θk−tk∥ + 1)∥θk−tk − θ∗
∥].

To further control (T2), using Lemma 3 together with our assump-
tion that αk−tk,k−1 ≤

1
4L , we have

∥θk − θk−tk∥ ≤ 4Lαk−tk,k−1(∥θk∥ + 1) ≤ ∥θk∥ + 1. (27)

Therefore, we have

∥θk−tk − θ∗
∥(∥θk−tk∥ + 1)

≤ (∥θk − θk−tk∥ + ∥θk − θ∗
∥)

× (∥θk − θk−tk∥ + ∥θk − θ∗
∥ + ∥θ∗

∥ + 1)
≤ (∥θ ∥ + ∥θ − θ∗

∥ + 1)(∥θ ∥ + ∥θ − θ∗
∥ + ∥θ∗

∥ + 2)
k k k k

10
≤ (2∥θk − θ∗
∥ + ∥θ∗

∥ + 1)(2∥θk − θ∗
∥ + 2∥θ∗

∥ + 2)

≤ 4(∥θk − θ∗
∥ + ∥θ∗

∥ + 1)2

≤ 8[∥θk − θ∗
∥
2
+ (∥θ∗

∥ + 1)2].

It follows that

(T2) ≤ 16αkL(Ek[∥θk − θ∗
∥
2
] + (∥θ∗

∥ + 1)2). (28)

We next bound the terms (T3) and (T4). Using Assumption 1, we
have

(T3)+ (T4)
≤ 2L∥θk−tk − θ∗

∥Ek[∥θk − θk−tk∥]

≤ 8L2αk−tk,k−1Ek[∥θk−tk − θ∗
∥(∥θk∥ + 1)] (Lemma 3)

≤ 8L2αk−tk,k−1Ek[(∥θk − θk−tk∥ + ∥θk − θ∗
∥)×

(∥θk∥ + 1)]

≤ 8L2αk−tk,k−1Ek[(∥θk∥ + ∥θk − θ∗
∥ + 1)×

(∥θk − θ∗
∥ + ∥θ∗

∥ + 1)] (Eq. (27))

≤ 8L2αk−tk,k−1Ek[(2∥θk − θ∗
∥ + ∥θ∗

∥ + 1)×
(∥θk − θ∗

∥ + ∥θ∗
∥ + 1)]

≤ 16L2αk−tk,k−1Ek[(∥θk − θ∗
∥ + ∥θ∗

∥ + 1)2]

≤ 32L2αk−tk,k−1Ek[∥θk − θ∗
∥
2
+ (∥θ∗

∥ + 1)2]. (29)

Finally, combining the upper bounds we derived for the terms
{(Ti)}1≤i≤4 in Eqs. (26), (28), and (29), we have

(c) = 2αk((T1)+ (T2)+ (T3)+ (T4))

≤ 128L2αkαk−tk,k−1
[
Ek[∥θk − θ∗

∥
2
] + (∥θ∗

∥ + 1)2
]
,

where the last line follows from L ≥ 1 and αk ≤ αk−tk,k−1.

5.7. Proof of Lemma 5

Substituting the upper bounds we obtained for the terms (a)−
(d) into Eq. (9) and we have

Ek[∥θk+1 − θ∗
∥
2
] − Ek[∥θk − θ∗

∥
2
]

≤ (−2c0αk + 128L2αkαk−tk,k−1 + 2L21α
2
k )Ek[∥θk − θ∗

∥
2
]

+ (128L2αkαk−tk,k−1 + 2L21α
2
k )(∥θ

∗
∥ + 1)2

≤ (−2c0αk + 130L2αkαk−tk,k−1)Ek[∥θk − θ∗
∥
2
]

+ 130L2αkαk−tk,k−1(∥θ∗
∥ + 1)2.

The result then follows by taking the total expectation on both
sides of the previous inequality.

6. Proof of all technical results in Section 3

6.1. Proof of Proposition 1

(1) For any x0 = (s0, a0, s′0) ∈ X , where the state space X of
the Markov chain {Xk} is given by = {(s, a, s′) | s ∈ S , π (a|s) >

0, p(s, a, s′) > 0}, we have

∥pk+1
π (x0, ·)− µX (·)∥TV

=
1
2

sup
u:∥u∥∞≤1

⏐⏐⏐⏐∫
X

u(x)pk+1
π (x0, dx)−

∫
X

u(x)µX (dx)
⏐⏐⏐⏐ .

or simplicity, for any x = (s, a, s′) ∈ X , we denote vu(s) =

a∈A π (a|s)
(∫

S
u(s, a, s′)p(s, a, s′)ds′

)
. Note that we have ∥vu∥∞

1 for all u(·) such that ∥u∥∞ ≤ 1. Using the definition of vu(·),
e have for any x0 = (s0, a0, s′0) ∈ X that

∥pk+1(x , ·)− µ (·)∥
π 0 X TV
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sup
u:∥u∥∞≤1

⏐⏐⏐⏐∫
X

u(x)pk+1
π (x0, dx)−

∫
X

u(x)µX (dx)
⏐⏐⏐⏐

=
1
2

sup
u:∥u∥∞≤1

⏐⏐⏐⏐∫
S

vu(s)pkπ (s
′

0, ds)−
∫

S

vu(s)µS(ds)
⏐⏐⏐⏐

≤
1
2

sup
v:∥v∥∞≤1

⏐⏐⏐⏐∫
S

v(s)pkπ (s
′

0, ds)−
∫

S

v(s)µS(ds)
⏐⏐⏐⏐

∥pkπ (s
′

0, ·)− µS(·)∥TV
≤ C ′ρ ′k

for all k ≥ 0, where the last line follows from Assumption 4.
ince the previous inequality holds for all x0 ∈ X , we have

maxx∈X ∥pk+1
π (x, ·)− µX (·)∥TV ≤ C ′ρ ′k for all k ≥ 0.

(2) Using Cauchy–Schwarz inequality, and our assumption that
∥φ(s, a)∥ = 1 for all state–action pairs, we have for any θ1, θ2 and
x = (s, a, s′):

∥F (x, θ1)− F (x, θ2)∥

= ∥ φ(s, a)(R(s, a)+ γ max
a1∈A

φ(s′, a1)⊤θ1 − φ(s, a)⊤θ1)

− φ(s, a)(R(s, a)+ γ max
a2∈A

φ(s′, a2)⊤θ2 − φ(s, a)⊤θ2) ∥

≤ γ ∥φ(s, a)(max
a1∈A

φ(s′, a1)⊤θ1 − max
a2∈A

φ(s′, a2)⊤θ2)∥

+ ∥φ(s, a)φ(s, a)⊤(θ1 − θ2)∥

≤ γ | max
a1∈A

φ(s′, a1)⊤θ1 − max
a2∈A

φ(s′, a2)⊤θ2| + ∥θ1 − θ2∥.

Since

| max
a1∈A

φ(s′, a1)⊤θ1 − max
a2∈A

φ(s′, a1)⊤θ2|

≤ max
a′∈A

|φ(s′, a′)⊤(θ1 − θ2)| (30)

≤ max
a′∈A

∥φ(s′, a′)∥∥θ1 − θ2∥

≤ ∥θ1 − θ2∥,

we have for any θ1, θ2 and x:

∥F (x, θ1)− F (x, θ2)∥≤ (γ + 1)∥θ1 − θ2∥≤M∥θ1 − θ2∥.

Moreover, we have ∥F (x, 0)∥ = ∥φ(s, a)R(s, a)∥ ≤ rmax for any
x ∈ X .

(3) Using the fact that F̄ (θ∗) = 0, we have

(θ − θ∗)⊤(F̄ (θ )− F̄ (θ∗))

= γ (θ − θ∗)⊤×

EµS [φ(S, A)(max
a1∈A

φ(S ′, a1)⊤θ − max
a2∈A

φ(S ′, a2)⊤θ∗)]

− EµS [(φ(S, A)
⊤(θ − θ∗))2]

≤ γEµS [|φ(S, A)
⊤(θ − θ∗)|max

a′∈A
|φ(S ′, a′)⊤(θ − θ∗)|]

− EµS [(φ(S, A)
⊤(θ − θ∗))2] (31)

≤ γ

√
EµS [(φ(S, A)⊤(θ − θ∗))2]

×

√
EµS [max

a∈A
(φ(S, a)⊤(θ − θ∗))2]

− EµS [(φ(S, A)
⊤(θ − θ∗))2]. (32)

Eq. (31) follows from Eq. (30). Eq. (32) follows from the
fact that when S ∼ µS , we have S ′ ∼ µS . For simplicity
f notation, denote A =

√
EµS [(φ(S, A)⊤(θ − θ∗))2] and

=
√
EµS [maxa∈A (φ(S, a)⊤(θ − θ∗))2]. Since Assumption 5 gives

γ 2B2
− A2

≤ −κ∥θ − θ∗
∥
2, we have

(θ − θ∗)⊤F̄ (θ ) ≤
γ 2B2

− A2
≤ −

κ
∥θ − θ∗

∥
2.
γ B/A+ 1 2
11
6.2. Proof of Proposition 2

We first show that Eq. (18) implies H+ < 0, and H− < 0. Note
that Jensen’s inequality implies

EµS [max
a′∈A

φ(S, a′)2]

= EµS

{
max

[
(max
a′∈A

φ(S, a′))2, (min
a′∈A

φ(S, a′))2
]}

≥ max
{
EµS [(max

a′∈A
φ(S, a′))2],EµS [(min

a′∈A
φ(S, a′))2]

}
. (33)

Thus, using Eq. (18) and we have

H+
= EµS [γφ(S, A) max

a′∈A
φ(S ′, a′)] − EµS [φ(S, A)

2
]

= EµS [γφ(S, A) max
a′∈A

φ(S ′, a′)]

−

√
EµS [φ(S, A)2]EµS [φ(S, A)2]

< EµS [γφ(S, A) max
a′∈A

φ(S ′, a′)]

− γ
√
EµS [max

a′∈A
φ(S, a′)2]EµS [φ(S, A)2]

≤ 0,

here the last inequality follows from Cauchy–Schwarz inequal-
ty and the fact that S ′ and S are equal in distribution if S ∼ µS .
imilarly, we also have H− < 0.
We next prove the equivalence stated in Proposition 2. By

definition of H+ and H−, in uni-dimensional case, ODE (16) can
be equivalently written as

θ̇ (t) =

{
H+θ (t)+ rπ , θ (t) ≥ 0,

H−θ (t)+ rπ , θ (t) < 0.

In the case where rπ = 0, it is easy to see that ODE (16) is globally
asymptotically stable if and only if H+,H− < 0. Now we assume
without loss of generality that rπ > 0. The proof for the other
case is entirely similar.

Sufficiency: We first note that θ∗
= −rπ/H+ > 0. Let W (θ ) =

1
2 (θ − θ∗)2 be a candidate Lyapunov function. It is clear that
W (θ ) ≥ 0 for all θ ∈ R, and W (θ ) = 0 if and only if θ = θ∗.
oreover, we have

˙ (θ (t)) = (θ (t)− θ∗)θ̇ (t)

=

{
H+(θ (t)− θ∗)2, θ (t) ≥ 0

(θ (t)− θ∗)(H−θ (t)− H+θ∗), θ (t) < 0.

t is clear that Ẇ (θ (t)) < 0 when θ (t) ∈ [0, θ∗) ∪ (θ∗,∞). For
θ (t) < 0, since θ (t)− θ∗ < 0, H+θ∗

= −rπ < 0, and H−θ (t) ≥ 0,
we must also have Ẇ (θ (t)) < 0. Therefore, the time derivative
of the Lyapunov function W (θ ) along the trajectory of ODE (16)
is strictly negative when θ (t) ̸= θ∗. It then follows from the
Lyapunov stability theorem (Haddad & Chellaboina, 2011; Khalil

Grizzle, 2002) that θ∗ is globally asymptotically stable.

ecessity: We prove by contradiction. Suppose that the equilib-
ium point θ∗ is globally asymptotically stable, but H+

≥ 0 or
− > 0. Suppose that H+

≥ 0. When θ (0) > max(0, θ∗), we have
˙ (t) = H+θ (t) + rπ ≥ rπ > 0. It follows that θ (t) > θ (0) > θ∗

or all t ≥ 0, which contradict to the fact that θ∗ is a globally
symptotically stable equilibrium point. Suppose that H− > 0.
hen θ (0) < min(θ∗,−(1 + rπ )/H−), we have θ̇ (t) = H−θ (t) +

π ≤ −1 < 0. It follows that θ (t) < θ (0) < θ∗ for all t ≥ 0, which
lso contradict to the fact θ∗ being globally asymptotically stable.
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.3. Proof of Proposition 3

When d = mn, the feature matrix Φ is a square matrix. Define

s,a=span
({

φ(s′, a′)|(s′, a′)∈S × A , (s′, a′) ̸= (s, a)
})⊥

.

Note that Θs,a exists for all state–action pairs. Now for a given
state–action pair (s, a), let θ ̸= 0 be in Θs,a, Eq. (15) im-
plies γ 2µS(s)(φ(s, a)⊤θ )2 < µS(s)π (a|s)(φ(s, a)⊤θ )2, which fur-
ther gives γ 2 < π (a|s). Therefore, by running (s, a) though all
state–action pairs, we have γ 2 < min(s,a)∈S×A π (a|s) ≤

1
m .

Thus, if γ 2
≥ 1/m, there is no behavior policy π that satisfies

Condition (15).

6.4. Computing ω(π )

We here present one way to compute ω(π ) for an MDP with
a chosen policy π when the underlying model is known. Before
that, the following definitions are needed.

Definition 2. Let D ∈ Rmn×mn be a diagonal matrix with diagonal
entries {µS(s)π (a|s)}(s,a)∈S×A , and let Σ = Φ⊤DΦ ∈ Rd×d,
where Φ ∈ Rmn×d is the feature matrix.

Definition 3. Let B = A n
⊆ Rn be the set of all deterministic

policies.

Definition 4. Let DS ∈ Rn×n be a diagonal matrix with diagonal
entries {µS(s)}s∈S , and let Σb = Φ⊤

b DSΦb ∈ Rd×d, where Φb ∈

Rn×d (b ∈ B) is defined by:

Φb =

⎡⎣ — φ(s1, b)⊤ —
... ... ...

— φ(sn, b)⊤ —

⎤⎦ .

We now compute ω(π ) given in the following lemma. Let
λmax(·) return the largest eigenvalue of a positive semi-definite
matrix

Lemma 7. ω(π ) = minb∈B

[
1/λmax(Σ−1/2ΣbΣ

−1/2)
]
.

Proof of Lemma 7. Recall our definition for ω(π ):

ω(π ) = min
θ ̸=0

∑
s∈S µS(s)

∑
a∈A π (a|s)(φ(s, a)⊤θ )2∑

s∈S µS(s)maxa∈A (φ(s, a)⊤θ )2
· (34)

et f (θ ) be the numerator. Then we have

(θ ) =
∑
s∈S

µS(s)
∑
a∈A

π (a|s)(φ(s, a)⊤θ )2

= θ⊤Φ⊤DΦθ = θ⊤Σθ.

ince the diagonal entries of D are all positive, and Φ is full
olumn rank, the matrix Σ is symmetric and positive definite.
o represent the denominator of (34) in a similar form, let

(θ, b) =
∑
s

µS(s)(φ(s, b)⊤θ )2

= θ⊤Φ⊤

b DSΦbθ = θ⊤Σbθ,

here b ∈ B. Since the columns of Φb can be dependent,
he matrix Σb is in general only symmetric and positive semi-
efinite. Using the definition of f (θ ) and g(θ, b), we can rewrite
(π ) as

(π ) = min
θ ̸=0

f (θ )
maxb∈B g(θ, b)

= minmin
f (θ )
θ ̸=0 b∈B g(θ, b)
12
= min
b∈B

min
θ ̸=0

f (θ )
g(θ, b)

.

Now since Σ is positive definite, Σ1/2 and Σ−1/2 are both well-
defined and positive definite, we have

min
θ ̸=0

f (θ )
g(θ, b)

=

[
max
θ ̸=0

g(θ, b)
f (θ )

]−1

=

[
max
θ ̸=0

θ⊤Σbθ

θ⊤Σθ

]−1

=

⎡⎣(max
x̸=0

∥Σ
1/2
b Σ−1/2x∥
∥x∥

)2
⎤⎦−1

=
1

λmax(Σ−1/2ΣbΣ
−1/2)

.

It follows that

ω(π ) = min
b∈B

[1/λmax(Σ−1/2ΣbΣ
−1/2)].
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Appendix A. On the existence of solutions to Eq. (12)

In this section, we construct an example to show that Eq. (12)
for Q -learning with linear function approximation may not admit
a solution. Consider an MDP with states-space S = {1, 2},
action-space A = {1, 2}, transition probability matrices P1 =

[1, 0 ; 1, 0], P2 = [0, 1 ; 0, 1], reward function

R =

⎡⎢⎢⎣
R(1, 1)
R(1, 2)
R(2, 1)
R(2, 2)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
2
4

⎤⎥⎥⎦ ,

and a tunable discount factor γ ∈ (0, 1). Let the feature matrix
be defined by

Φ =

⎡⎢⎢⎣
φ(1, 1)
φ(1, 2)
φ(2, 1)
φ(2, 2)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
2
4

⎤⎥⎥⎦ .

We use a uniform behavior policy, i.e., π (1|1) = π (2|1) =

π (1|2) = π (2|2) = 0.5. Then the transition probability matrix
Pπ under policy π is given by

Pπ = 0.5P1 + 0.5P2 =
[
0.5 0.5
0.5 0.5

]
,

and the unique stationary distribution µS of the Markov chain
{Sk} under policy π is given by µS(1) = µS(2) = 0.5.

Consider the target Eq. (12). In this example, after straightfor-
ward calculation, Eq. (12) reduces to

θ =

{
1+ γ 6

5θ, θ ≥ 0,

1+ γ 3
5θ, θ < 0,

which has no solution when γ ∈ (5/6, 1).

Appendix B. More numerical simulations

To complement the numerical experiments presented in Sec-
tion 3.4, here we implement the Q -learning with linear function
approximation algorithm on a larger MDP. We first introduce our
experimental setup and then state our results.
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Fig. B.1. Convergence of Q -learning with linear function approximation for
iscount factor γ ∈ {0.5, 0.7, 0.9}.

B.1. Setup

We consider an MDP with 100 states and 10 actions, where
rewards and transition probabilities are generated as follows:

Rewards. The reward R(s, a) for each state–action pair (s, a) is
drawn from the uniform distribution on [0, 1].

Transition probabilities. For each state–action pair (s, a) ∈ S ×

A , the probabilities p(s, a, s′) of each successor state s′ ∈ S
are chosen as random partitions of the unit interval. That is,
99 numbers are chosen uniformly randomly between 0 and 1,
dividing that interval into 100 numbers that sum to one — the
probabilities of the 100 successor states.

Moreover, we consider a feature matrix Φ with 100 features
(recall that there are total 1000 state–action pairs) for each state–
action pair (s, a) ∈ S ×A , where each element is drawn from the
Bernoulli distribution with success probability p = 0.5. We repeat
this process until we obtain a full column rank feature matrix Φ .
We further normalize the features to ensure ∥φ(s, a)∥ ≤ 1 for all
(s, a) ∈ S × A . Furthermore, the behavior policy π is chosen to
take each action with equal probability in each state s ∈ S .

B.2. Results

In our first set of experiments, we choose constant stepsize
α = 0.01 and discount factor γ ∈ {0.5, 0.7, 0.9}. In Fig. B.1,
we plot ∥Φθk − Q ∗

∥ as a function of the iteration k, where Q ∗

associated with each γ is the optimal Q value function computed
by the value iteration algorithm. Here, Φθk converges when γ ∈

{0.5, 0.7}, but diverges when γ = 0.9. This again shows that the
algorithm is likely to diverge when γ is close to 1 and that the
Condition (13) is sufficient but not necessary for convergence. To
demonstrate the exponential convergence rate for constant step-
size, we plot logE

[
∥θk − θ∗

∥
2
]
as the function of the iteration k

when γ = 0.5, where θ∗ is the solution of the projected Bellman
equation (12), estimated by the projected value iteration algo-
rithm. Note that, we repeat running the algorithm for 1000 times
and use the average as an approximation to the expectation. In
Fig. B.2, we observe that the graph is nearly a straight line when
k is large enough, meaning that θk converges to θ∗ geometrically
fast, which agrees with Theorem 2 (1).

In our second set of experiments, we consider diminishing
stepsizes αk =

α

kξ , where ξ ∈ {0.4, 0.6, 0.8, 1.0}. In the case
where ξ = 1, the constant α is chosen s.t. κα > 2 to achieve
the optimal convergence rate. In addition, the discount factor γ
is set to be 0.5. Fig. B.3 shows that the algorithm converges for all
∈ {0.4, 0.6, 0.8, 1.0} and the algorithm converges faster with

arger ξ . To further illustrate the rate of convergence for each
hoice of ξ , we plot logE

[
∥θk − θ∗

∥
2
]
as a function of log k in

ig. B.4 and focus on its asymptotic behavior. We can observe that
he slope is approximately −ξ , which agrees with Corollary 2.
13
Fig. B.2. Exponential convergence rate of Q -learning with linear function
approximation for γ = 0.5.

Fig. B.3. Convergence for diminishing stepsizes.

Fig. B.4. Asymptotic convergence rate.
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