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1 Introduction
We study a load-balancing queuing system in which a single stream

of jobs arrives governed by a Poisson process and is routed to one

of 𝑛 homogeneous servers, operating with a service rate equal to

one. Each server has a queue of maximum buffer size 𝑏.

The job dispatcher uses a load balancing or routing algorithm to

route arriving jobs to the queues. Many possible routing algorithms

ranging from random routing to Joining the Shortest Queue (JSQ)

are studied in the literature. Random routing routes a new job to a

queue selected uniformly at random. On the other hand, the JSQ

algorithm routes to the server with the lowest queue length. While

random routing has no informational requirements—the dispatcher

does not need to know any information about the system primi-

tives and state—it does not provide optimal delay performance. In

contrast, JSQ has more informational requirements—the dispatcher

needs to know the system state to determine the shortest queue—

but it has a proven near-optimal delay performance. In this paper,

we consider an in-between policy known as Power-of-𝑑 choices, in

which once a job arrives,𝑑 queues are sampled uniformly at random

from the 𝑛 queues. Then, the job joins the smallest among the 𝑑

sampled queues. Note that 𝑑 = 1 is the same as random routing,

and 𝑑 = 𝑛 is the same as JSQ.

In order to study the performance of different routing policies,

the literature has considered different asymptotic regimes where

the number of servers goes to infinity or the load of the system

approaches its capacity, or both happen simultaneously. In fact,

the performance of JSQ has been studied extensively under these

regimes and combinations thereof. However, Power-of-𝑑 choices

(for certain values of𝑑) have been relatively less studied.We analyze

the Power-of-𝑑 choices routing algorithm under the Sub-Halfin

Whitt asymptotic regime. In this regime, the arrival rate of jobs

increases with the number of servers at a rate 𝜆 = 𝑛−𝑛1−𝛾 with 𝛾 ∈
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(0, 0.5). Under this scaling, we characterize the system’s asymptotic

delay performance and steady-state behavior for growing choices,

i.e., 𝑑 → ∞ as 𝑛 → ∞.

If 𝑑 is sufficiently large (𝑑 ≥ 𝑛𝛾 log𝑛), then [5] showed that

Power-of-𝑑 behaves like JSQ, and the jobs experience zero asymp-

totic delays in steady-state. In particular, the asymptotic queue

lengths at each server are either zero or one. However, for smaller

values of 𝑑 , one expects the delay to be higher. In particular, we

show that the queue lengths can be finite but greater than one

or even asymptotically infinite depending on how 𝑑 scales with 𝑛.

Thus the asymptotic queue lengths are qualitatively different from

JSQ, i.e., they are not just zero-one but exhibit a rich steady-state

distribution. Characterizing such a non-degenerate behavior under

different scenarios warrants a new approach. We provide a uni-

fied framework to characterize the system performance for various

scalings of 𝑑 .

2 Model
A natural state descriptor for the system is the number of jobs

in each queue. However, it is mathematically more convenient to

consider s ∈ (Z+ ∪ {0})𝑏 as the state descriptor. Here, 𝑠𝑖 is the

number of queues with a length of at least 𝑖 and 𝑏 is the maximum

buffer size.

Once a job arrives, 𝑑 queues are sampled uniformly at random,

with replacement from 𝑛 queues. Then, the job joins the smallest

among the 𝑑 sampled queues. This algorithm is known as Power-of-

𝑑 choices in the literature. Under this routing scheme, the process

{s(𝑡) : 𝑡 ≥ 0} is a finite state-space, irreducible, continuous time

Markov chain. Thus, the CTMC {s(𝑡) : 𝑡 ≥ 0} is positive recurrent
and exhibits a unique stationary distribution. Denote by s̄ a random
variable with the same distribution as the stationary distribution of

the CTMC.

As the exact analysis is challenging, we consider a many-server-

heavy-traffic asymptotic regime, wherein the number of servers

scales to infinity (𝑛 → ∞) and the arrival rate increases to the

capacity (𝜆/𝑛 → 1). In particular, consider a sequence of load-

balancing systems parameterized by 𝑛. The arrival rate for the 𝑛th

system is given by 𝜆 = 𝑛 − 𝑛1−𝛾 for 𝛾 ∈ (0, 0.5), known as the sub-

Halfin Whitt regime. In addition, our focus is on growing choices

in Power-of-𝑑 , i.e., 𝑑 → ∞ as 𝑛 → ∞. The goal is to characterize

the limiting steady-state distribution s̄(𝑛) as 𝑛 → ∞.

3 Main Result
Fig. 1 (left) provides the performance of JSQ, and augmenting it

with Power-of-𝑑 would correspond to adding a third dimension

for 𝑑 as a function of 𝑛. The case of JSQ depicted in Fig. 1 (left)

corresponds to one slice of the three-dimensional figure with 𝑑 = 𝑛.
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Figure 1: Performance of JSQ (𝑑 = 𝑛) under many-server-heavy-traffic regimes (𝛾 ∈ [0,∞]), where 𝜖 = 𝑛−𝛾 (left) and performance
of Power-of-𝑑 for different choices of 𝑑 under the sub-Halfin Whitt regime, i.e. 𝛾 ∈ (0, 0.5) (right).

In this paper, we restrict ourselves to 𝛾 ∈ (0, 0.5) and consider a

broad range of 𝑑 . We present the result below and illustrate it in

Fig. 1 (right).

Theorem 3.1. Let {𝑚𝑛 ∈ Z+ : 𝑛 ∈ Z+} be such that either𝑚𝑛 ≡
𝑚 ∈ Z+ or𝑚𝑛 → ∞ and consider 𝑑 = (2𝑚𝑛𝑛

𝛾 )1/𝑚𝑛
log(𝑑)1/𝑚𝑛 . If

further 𝑑 = Ω(log(𝑛)3) and 𝑏 = 𝑂 (log(𝑛)3), then with probability

at least 1 −
(
1

𝑛

) (𝑚𝑛 log𝑛)/9
, for large enough 𝑛, we have

1

𝑛
𝑠
(𝑛)
𝑖

=


1 − 𝑛−𝛾𝑑𝑖−1 (1 + 𝑜 (1)) ∀𝑖 ∈ [𝑚𝑛]
𝑜 (1) for 𝑖 =𝑚𝑛 + 1

𝑜

(
1

𝑛

)
otherwise.

Finite Delay: First, consider the case when 𝑚𝑛 ≡ 𝑚, i.e. 𝑑 =

(𝑛𝛾 log𝑛)1/𝑚 for some positive integer𝑚. Theorem 3.1 shows that

the queue lengths exhibits the following behavior with high proba-

bility: most of the queues are of length𝑚 and a vanishing fraction

are either longer or shorter. In particular, we show that the fraction

of queues with length less than 𝑖 is equal to 𝑛−𝛾𝑑𝑖−1 (1 + 𝑜 (1))
for 𝑖 ≤ 𝑚 and the fraction of queues with length more than𝑚 is

at most 𝑜 (𝑛−𝛾𝑑𝑚−1) which is 𝑜 (1). It is worth noting that these

results are applicable for the pre-limit system as well, i.e. for all

finite, large enough 𝑛, and we provide explicit expressions for all

the 𝑜 (·) terms in the technical report [7]. These results imply that

when𝑚 ≥ 2, the queue lengths are non-zero but finite, behaving

qualitatively similar to that of JSQ in the non-degenerate slowdown

(NDS) [3] regime. However, a fundamental difference in behavior

is that while our results show that the queue lengths are essentially

concentrated around𝑚 for Power-of-𝑑 in sub-Halfin Whitt regime,

the limiting queue lengths of JSQ in NDS are spread over multiple

values and the distribution has a nontrivial support. Also note that,

when we pick𝑚 = 1, our result implies that the jobs experience

zero asymptotic delay and the queue lengths are zero or one. The

result in this special case was first established in [5].

Infinite Asymptotic Delay: Now, we consider the case when
𝑚𝑛 → ∞, i.e. 𝑑 is Poly-Log(𝑛) (slower than any polynomial) but

is at least Ω
(
log(𝑛)3

)
. We show that all the queue lengths are

Θ(𝑚𝑛) = Θ(log𝑛/log𝑑) with high probability. This implies that the

asymptotic queue lengths are infinite. Similar to the finite delay case,

we characterize the fraction of queue lengths smaller or larger than

𝑚 for the pre-limit system. Note that, such a behavior is qualitatively

similar to that of JSQ in the super slowdown regime. However, there

is again a fundamental difference in behavior because while we

show that the queue lengths concentrate around Θ(log𝑛/log𝑑) for
Power-of-𝑑 , JSQ in the super slowdown regime has a large support.

The case when 𝑑 < log(𝑛)3 is an open future research direction.
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