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ABSTRACT

Spatial join is an important operation for combining spatial data.
Parallelization is essential for improving spatial join performance.
However, load imbalance due to data skew limits the scalability of
parallel spatial join. There are many work sharing techniques to
address this problem in a parallel environment. One of the tech-
niques is to use data and space partitioning and then scheduling
the partitions among threads/processes with the goal of minimiz-
ing workload differences across threads/processes. However, load
imbalance still exists due to differences in join costs of different
pairs of input geometries in the partitions.

For the load imbalance problem, we have designed a work steal-
ing spatial join system (WSSJ-DM) on a distributed memory envi-
ronment. Work stealing is an approach for dynamic load balancing
in which an idle processor steals computational tasks from other
processors [5]. This is the first work that uses work stealing concept
(instead of work sharing) to parallelize spatial join computation
on a large compute cluster. We have evaluated the scalability of
the system on shared and distributed memory. Our experimen-
tal evaluation shows that work stealing is an effective strategy.
We compared WSSJ-DM with work sharing implementations of
spatial join on a high performance computing environment using
partitioned and un-partitioned datasets. Static and dynamic load
balancing approaches were used for comparison. We study the ef-
fect of memory affinity in work stealing operations involved in
spatial join on a multi-core processor.

WSSJ-DM performed spatial join using ST_Intersection on Lakes
(8.4M polygons) and Parks (10M polygons) in 30 seconds using
35 compute nodes on a cluster (1260 CPU cores). A work sharing
Master-Worker implementation took 160 seconds in contrast.
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1 INTRODUCTION

In Geographic Information Systems (GIS) and spatial databases, two
datasets are combined based on some spatial relationship among
geometries in the input datasets. For instance, given two sets of
polygons, R and S, find all of the pairs of overlapping polygons
between the two sets, that is, for each polygon r in dataset R, find
overlapping polygons from dataset S [22].

High performance computing (HPC) clusters and supercomput-
ers with GPUs are used to analyze geospatial data [11, 15-17, 22].
CyberInfrastructure centers like Polar Geospatial Center, Cyber-
GIS project at National Center for Supercomputing Applications
(NCSA), and WiFire project (forest fire) at San Diego Supercomputer
Center are involved in running geospatial computations and simu-
lations in a large-scale HPC environment. The distributed memory
programming model in these environments is Message Passing
Interface (MPI) and the storage layer is a parallel file system like
Lustre. MPI is preferred over MapReduce due to fast communi-
cation on high performance interconnection network and more
flexibility in terms of programming. This is different architecture
when compared to MapReduce model and its distributed file sys-
tem based storage. We have used an HPC compute cluster in our
load balancing design and evaluation. MPI-GIS software utilizes
message passing interface [17], parallel I/O and partitioning ca-
pabilities [16, 22] and GPU acceleration modules [11, 12] for high
performance spatial join and map overlay on HPC clusters. The
present work is a dynamic load balancing component in MPI-GIS
software stack.

The overall load imbalance in spatial join is determined by two
factors - 1) size and distribution of geometries in the two input
maps that need to be joined together by a process (thread) and
2) number of outputs produced per process (thread). The output-
sensitive nature makes load balancing difficult because the number
of outputs is not known a priori and can not be estimated easily for
complex geometries where approximations result in a large number
of false hits [19]. Therefore, input data and intermediate output
data partitioning techniques are used to minimize variation of load
across partitions [16, 22].

Load balancing approaches can be classified into two categories:
1) work sharing and 2) work stealing. In work sharing approach, a
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busy processor with excess work sends them to idle processor with
less or no work (e.g., master-worker pattern). However, in work
stealing approach, an idle thread initiates task migration from the
work queue of a busy thread with pending tasks. When a processor
finishes all the tasks in its queue, it becomes a thief and tries to
steal a task from another processor (victim). This difference can be
stated as push (work sharing) vs pull (work stealing) techniques.

Work stealing technique has some advantages. First, it has been
shown to improve data locality [1]. In work sharing, a busy proces-
sor incurs context switch overhead while sending work to remote
processor. Second, idle processors are mostly involved in the work
distribution (overhead); busy processors continue spatial join pro-
cessing. Moreover, when (until) all processors are busy, no load
balancing overhead occurs [5].

Dynamically load balancing on a distributed memory system is
challenging because load balancing requires serialization and com-
munication of complex geometries by a busy sending process, and
deserialization (parsing) of geometries at an idle receiving process.
This is a significant computation and communication overhead
for large geometries. In a distributed setting, work stealing can
be a significant overhead if the execution time of the tasks are in
second or millisecond range. However, this overhead is not present
in a shared memory queue based implementation [19]. Another
challenge is effective flow control among processes participating
in pull-based task sharing in spatial join.

Our flow control using MPI Remote Memory Access (RMA)
guides the granularity and timing of task sharing to keep the
idle processes busy and while minimizing the overheads at busy
processes. Our new design is able to leverage multiple compute
nodes efficiently to speedup parallel spatial join, in the presence
of serialization and work coordination overheads. From a perfor-
mance perspective, this is an improvement over shared memory
spatial join [19] and distributed memory MPI-based spatial join
systems [16, 17, 22]. To the best of our knowledge, this is the first
demonstration of effectiveness of work stealing on a large scale
distributed memory machine with thousand processor cores.

We present the effect of memory affinity in work stealing op-
erations involved in spatial join on a NUMA system. Our results
complement existing line of work on spatial join [14, 18].

Contributions of our paper are as follows:

e We present a novel NUMA-optimized Work Stealing Spatial
Join system (WSSJ) on shared memory. We extended WSSJ to
distributed memory (WSSJ-DM) environment. Source code
is publicly available. !

o We demonstrate effective mitigation of data skew in a fine-

grained manner to avoid stragglers (threads taking much

longer than others to finish). Both WSSJ and WSSJ-DM are
experimentally shown to be load balanced and efficient.

Both WSSJ and WSSJ-DM can perform a variety of spatial

relationship joins and spatial overlay joins. Our system can

effectively handle data skew in spatially partitioned and un-
partitioned datasets.

This paper is organized as follows. Section 2 introduces back-
ground and related work. Section 3 describes WSSJ on shared mem-
ory and WSSJ-DM on distributed memory. Section 4 evaluates the

!https://github.com/satishphd/WorkStealing-Spatial-Join
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performance of WSSJ and WSSJ-DM. We conclude this paper in
Section 5. Appendix section presents experimental evaluation using
un-partitioned datasets.

2 BACKGROUND AND RELATED WORK

2.1 Spatial Join

Spatial join involves two spatial datasets R and S. The output con-
tains all pairs of objects satisfying a given relation between the
objects. The spatial relationships ? such as ST_Within, ST_Intersects,
etc are supported. We have also handled overlay computation®, such

as ST Intersection, and ST Union. ST Intersects is used to answer a
query - Is there any overlap between the two geometries?

2.2 Load Balancing in Parallel Spatial Join

An existing approach in partition-based spatial join (PBSM) is to
create a certain number of grid cells and assign the cells to pro-
cessors [3, 16, 17]. Some approaches use static round-robin assign-
ment [16, 17] and others use dynamic load balancing [19]. The
unit for load balancing in this approach is a set of geometries in a
grid cell. Our technique for load balancing is fine-grained because
our tasks are at individual geometry level compared to existing
approaches that work at grid cell level. Therefore, our task con-
struction enables fine grained load balancing.

Partitioning of map layers into tiles (grid cells) has been used
in [22]. The tiles are then assigned to processors in a round-robin
fashion. Declustering is proposed as a load balancing strategy
in [20]. [21] uses bitmaps to determine the number of spatial ob-
jects to perform dynamic load balancing. SPINOJA [19] uses object
decomposition based declustering to mitigate data processing skew
on shared memory. MapReduce-based spatial join systems first
create data partitions using various partitioning techniques and
then use dynamic load balancing supported by MapReduce imple-
mentations like Hadoop and Spark to join grid partitions [4, 8, 23].
Current message passing based systems do not support work steal-
ing, for example, MPI-based spatial join systems like MPI-GIS and
ParADP [2, 16, 22].

2.3 Work Stealing

Work stealing is a dynamic load balancing strategy [5-7, 10, 13].
Work stealing has been used in shared memory and distributed
memory [7] load balancing solutions.

Chase-Lev’s lock-free deque [6] is an important data structure
in many shared-memory work stealing designs. The deque uses a
dynamic-cyclic-array, which allows: 1) the owner to push and pop
elements from the top of the deque, 2) others to perform concurrent
lock-free steal from the bottom of the deque. Nhat’s Work Stealing
Queue [10] implementation in C++11 is based on Chase-Lev’s lock-
free deque and shows a remarkable performance in benchmarks. We
use it in our work stealing implementations. For simplicity, we have
referred to Work Stealing Queue as queue or deque (double-ended).
There are very few work stealing libraries that work on shared
nothing architecture - for instance, Charm++. Our implementation
WSSJ-DM is geared towards spatial computing workloads that will

Zhttps://postgis.net/docs/reference html#Spatial_Relationships
Shttps://postgis.net/docs/reference.html#Overlay_Functions



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory

be integrated into an MPI-based GIS ecosystem. Charm++ is a differ-
ent programming model compared to message passing framework
that MPI-GIS is based upon.

2.4 Non-Uniform Memory Access (NUMA)

In non-uniform memory access, processor cores have access to local
memory and remote memory. Remote memory access is costly
compared to local access. There has been some earlier work on
NUMA-aware algorithms. [18] discusses an experimental study on
enabling NUMA-aware main memory spatial join processing. [14]
discusses a systematic approach for efficient in-memory query
processing on NUMA systems.

Many NUMA policies can be used on current Linux systems.
MPOL_DEFAULT, MPOL_INTERLEAVE, MPOL _PREFERRED, and
MPOL_BIND are typically available.* These policies can be set by
calling a system function set_mempolicy. Our findings on NUMA
policies are novel.

3 IMPLEMENTATION OF WORK STEALING
SPATIAL JOIN

3.1 Work Stealing Queue

A simple work stealing system for spatial join on shared-memory
consists of the following steps:

(1) Create one thread for each processor core and each thread
uses a queue to hold tasks to be scheduled.

(2) Each thread pushes its tasks to its own queue from the bot-
tom. And then pops and executes tasks from the queue.

(3) A thread can steal tasks from the top of other threads’ queues
after all tasks in its own queue are finished.

Based on these steps, we built a work stealing system for spatial
join on shared memory (WSSJ). In WSS]J, there are multiple worker
threads and each worker thread holds its own queue.

A worker thread generates spatial join refinement tasks after
the filter phase and pushes these tasks into its queue. It can pop
tasks from its own queue and steal tasks from a victim’s queue. The
victim can be chosen randomly. In WSSJ, each worker performs the
filtering phase and refinement phase independently.

3.2 NUMA Memory Policies

The execution of spatial join computations are impacted by NUMA
memory policies. Spatial join algorithms allocate a temporary buffer
to carry out intermediate steps of join algorithm on two geometries.
The spatial objects are copied to the temporary buffer to carry
out Quadtree partitioning of an individual geometry, to order the
coordinates, and to populate the intersection matrix.

The default NUMA policy on most Linux systems after boot-up
is MPOL_DEFAULT, which is “local allocation”. Under this pol-
icy, Linux will attempt to satisfy memory requests from the near-
est NUMA node of the CPU which submits the memory requests.
MPOL_DEFAULT works fine in many scenarios. However, in terms
of work stealing, a thread on one NUMA node can steal a task from
another NUMA node. A page in memory corresponding to geome-
try data structure can be accessed by multiple threads because of
many-to-many overlap relationship in spatial join tasks. For spatial

“4https://linux.die.net/man/2/mbind
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join, in all experiments we have conducted so far, the tasks on a
few worker threads (usually 1 to 4) take much longer to finish than
the rest of the threads. When multiple threads allocate and write to
temporary buffers for tasks from remote NUMA nodes, there can
be memory requests congestion.

MPOL_BIND and MPOL_PREFERRED can mitigate the memory
requests congestion issue. Under these two policies, the temporary
buffers are on the same NUMA node as the pairs of geometries to
be joined. The issue with MPOL_BIND is that it is a strict policy;
the OS can only utilize the memory on specified NUMA node(s).
This can be a problem in case there is more memory required than
available on a single NUMA node.

Under MPOL_INTERLEAVE mode, the memory allocations are
uniformly distributed among all NUMA nodes. The temporary
buffers are allocated in an interleaved manner as the pairs of ge-
ometries are joined.

The NUMA effects discussed here are due to work stealing in-
herent in parallel spatial join with higher number of threads. We
compared the impacts of different memory policies in Section 4.1.

3.3 Work Stealing Algorithm

Now we present details on how to apply work stealing idea us-
ing filter and refine based spatial join. Algorithm 1 describes task
generation by a worker thread. These tasks are added to work steal-
ing queue data structure maintained per thread. R and S stand for
two spatial datasets to be joined. WSSJ uses spatially partitioned
datasets in this algorithm based on our earlier work [22]. For in-
stance, spatial partitioning of R and S into 4 partitions will result
in grid cells R1 to R4 and S1 to S4. This creates 4 join tasks, (R1,
S1), (R2, S2), (R3, S3), and (R4, S4). Each thread is assigned one or
more partition(s) as input. queues[T] are instances of work stealing
queue, where T equals the number of worker threads.

Task Construction: A spatial join task consists of a subset of
geometries from R and S that spatially overlap using minimum
bounding rectangle (MBR) overlap test. We chose one geometry
from R and multiple geometries from S as a unit task in our system.
For overlap detection using MBR approximation of geometries, we
use a search tree (index) for MBR query. Filter phase is done using
the standard R-tree index-based nested loop spatial join approach.
Assuming, a join on partition pair (R1, S1), where R1 = {ro, r1, .., rm }
and S1 = {so, 51, .., Sn }, @ unit task is a key-value pair, where key is
ri, i € {0,m} and value is an arbitrary subset from S1.

The Break_Down_Task() function splits a large task into a set
of smaller tasks by breaking down the value part of the task. We
set a Threshold, . as the size limit of a task. This step is neces-
sary as a huge geometry r usually returns a large query result in
Line 10 of Algorithm 1, which is one reason of load imbalance. As-
suming Threshold, . to be 10, if the MBR query result returns 30
geometries from S, then this single task will be broken down into 3
sub-tasks. This step makes sure that individual tasks are relatively
of same computational cost.

In WSS]J, each thread occupies one CPU core and Algorithm 1 is
executed per thread independent of other threads. Work stealing
queues store pointers to tasks.

As presented in Algorithm 2, a worker thread #; first pops tasks
from its own queue queues[i], and performs join operations until
its queue becomes empty. Then it finds a victim thread. Get_Victim()
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Algorithm 1 Algorithm for Pushing Tasks into Queues

: Input: Subsets of spatial objects from R and S.
: T is number of threads.
: Output: Queue queues|[T] populated with tasks.
: Assign NUMA memory policy.
: Initialize all the queues in queues[T].
. for Thread t; in Threads do
Build an index Index; using MBRs of R
for Object s; in S do
Task tasks < Index;.query(s;)
Task subTasks < Break_Down_Task(tasks)
queues|[t;].push(sub_tasks)
end for
. end for

TR B LI N S R RN
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Algorithm 2 Algorithm for Work Stealing Spatial Join

1: Input: Queue queues[T] populated with tasks.
2: Output: Spatial Join results.

3: for Thread t; in Threads do

4. while queues[t;] not empty do

5 Task task « queues[t;].pop()

6: results; < Spatial_Join_OP(task)

7. end while

8:  while Not all queues empty do

9: int victim « Get_Victim()

10: while queues[victim] not empty do
11 Task task «— queues[victim].steal()
12: results; « Spatial_Join_OP(task)
13: end while

14:  end while

15: end for

function returns the next available victim’s thread id. Thread ids
are checked in cyclic order to get a thread with enough pending
work, beginning with the current thread’s id + 1. This method is
simple and robust. Other methods like choosing random thread
as victim or choosing threads based on NUMA consideration and
data locality are also possible. The thief thread will keep stealing
and performing join operations until the victim’s queue becomes
empty. The granularity of tasks stolen can be configured. All join
results generated by t; are pushed into results;. OP stands for type
of spatial join operation.

3.4 Overall Framework on Distributed Memory

In our multi-compute node architecture with distributed mem-
ory (WSSJ-DM) design, each compute node still uses the shared
memory work stealing system WSS], plus one coordinator thread.
The coordinators are used to communicate with other compute
nodes and shuffle tasks, as shown in Figure 1. The tasks (including
coordinates of geometries) are serialized by the sending process
and deserialized by the receiving process. The task contains the
geometry coordinates in the message itself. So, the overall commu-
nication of geometries corresponding to the stolen tasks happens
in-memory. When needed, a coordinator spawns multiple threads
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to speedup the send/receive and parsing of geometries (from the
message buffer) among compute nodes for load balancing purpose.

In Figure 1, each dashed red rectangle stands for a WSSJ-DM
node. There are multiple compute nodes. Each node has multiple
worker threads to leverage the multiple CPU cores, and one co-
ordinator. Each worker thread has one work stealing deque. The
worker threads and deques are same as in WSS].

In the beginning, each node takes grid cells of R and S in a Round
Robin manner. A worker thread follows the steps as WSSJ: parsing
data files, building indices, and pushing tasks into their own work
stealing queues. Additionally, after all local tasks are finished, the
worker threads in WSSJ-DM wait for tasks from their coordinator,
which "steal" tasks from other coordinators. The coordinators are
responsible for termination detection. A coordinator also informs
its worker threads that all tasks across all nodes are done.

To illustrate how the system works, we present a typical scenario
with two coordinators running on two compute nodes. After all
the tasks get pushed, a coordinator (say Coord A) thread begins
to monitor its memory window. If A’s all local queues are empty,
Coord A begins to seek tasks from other nodes by writing to the
memory window of other coordinators using the remote memory
access (RMA) functions. Another node (say Coord B) notices the
change in its memory window because of A’s recent action. Coord
Bresets its window as an acknowledgement (to allow new starving
coordinator) and begins to steal tasks from local queues and then
sends those tasks to Coord A. This is accomplished through non-
blocking message passing.

The worker threads mainly focus on performing join operations,
and behave similarly to worker threads in WSSJ. In the next two
sub-sections, we will discuss about the core module of WSSJ-DM,
the coordinators.

3.5 Coordinator in Send Status

The coordinators are threads within a WSSJ-DM node meant to
facilitate communication with other nodes. A coordinator can be in
two status based on the number of all tasks in local work stealing
queues: 1) send status and 2) receive status.

A coordinator (Coord A) maintains a memory window, initially
as waiting for task requests. It waits until all local spatial join tasks
are enqueued. It then steps into the Send Status. Coord A checks
its memory window periodically. If no change is found, it will
update the window with its current remaining tasks and then goes
on to sleep until next period to save CPU cycles for the worker
threads. If there is information that other coordinators are looking
for tasks, Coord A will mark those coordinators as starving. It then
begins to steal tasks from local queues and send those tasks to other
coordinators.

The vertices of geometries corresponding to a task are converted
to basic data type arrays to be used by message passing functions.
Coord A uses non-blocking send function to send those task arrays.
It will keep sending tasks to starving coordinators until all local
tasks are done or almost done. Coord A can fork multiple threads
to accelerate the task sending process.

While sending tasks, Coord A still checks and updates its memory
window periodically, to signal its current status to other starving
processes. Coord A also uses non-blocking receive function to gather
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Figure 1: The Work Stealing Spatial Join system on distributed memory (WSSJ-DM). Two multi-core compute nodes are shown
with m threads. “Gen Tasks" represents task generation and OP is join operation. The solid blue arrows show the directions of
the flows of spatial join tasks. The dashed orange arrows show the directions of the flows of control messages. “NB send/recv"
stands for “Non-blocking send or receive message passing”. “Gen buf" stands for "Generate send buffer" and “Parse received

buffer".

status signals from other coordinators. If it finds that some coor-
dinators have received too much work to finish on time, it sends
a temporary stop signal to those coordinators and stops sending
tasks to them. When all local tasks are done, Coord A sends a stop
signal to all starving coordinators in its record.

3.6 Coordinator in Receive Status

After all local tasks are done, Coord A enters the Receive Status.
Coord A checks the remote memory windows of other coordinators.
If a window indicates that all its owner’s tasks were finished, Coord
A records this information and checks the next available remote
memory window. Among all the other coordinators, it will ask
for tasks from the one with the most tasks left (say Coord B). If a
window is written by other starving coordinators, Coord A will skip
this window.

In case when its task request is put on Coord B’s window, Coord
A will use non-blocking receive function and wait for tasks to
arrive. When the data is received, Coord A parses the received data
to spatial join tasks and pushes those tasks to an empty queue.

This task receiving-parsing-pushing progress can be accelerated
by using multiple receive threads. After that, Coord A marks the
queue to allow workers to steal.

Coord A sends the number of its local tasks to Coord B after a few
invocations of receiving function, also using non-blocking send.
Coord B uses this number to judge if Coord A needs a temporary
stop, i.e., Coord A has received too many tasks but its worker threads
are processing tasks slowly. If Coord A receives a temporary stop,
it will be on sleep until most received tasks are done by its worker
threads. After waiting, it will again seek another coordinator which
still has tasks. If Coord A receives a stop sign, it will mark Coord B
as “All Tasks Finished" and seek another coordinator for more tasks.
When Coord A finds that all other coordinators have no remaining
task, it will inform all its worker threads and terminate itself.

3.7 Inter-node Communication

Our distributed memory system uses non-blocking communication
functions and remote memory access functions supported by Mes-
sage Passing Interface standard. Appendix section contains some
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detail on this topic. The most important feature of non-blocking
send and receive in WSSJ-DM is that it allows overlapping commu-
nication and computation.

The coordinators in WSSJ-DM use multiple threads to perform
MPI Isend() to send spatial join tasks and MPI_Irecv() to receive
tasks. These send/receive threads can perform all send and receive
operations concurrently, and then go to sleep. These threads wake
up periodically to check if their send and receive operations have
finished. Thus, for the most part, send/receive threads are on sleep
and yield the CPUs to the worker threads to perform compute-
intensive join operations.

Remote Memory Access (RMA) allows access to remote memory.
By using the feature, a coordinator in WSSJ-DM nodes can show
the node’s status in its memory window. It can tell others if current
node: 1) has spatial join tasks and the number of tasks, or 2) has no
tasks, or 3) is hand shaking with another node. A coordinator can
also write a request to another coordinator’s window based on the
information on that window, and wait for instructions for moving
tasks and associated geometry data.

3.8 Theoretical Analysis

We analyze the theoretical performance of WSSJ-DM in this sub-
section. The benefit to be gained by WSSJ-DM depends on the
computational complexity of spatial join operations because there
is a tradeoff between doing work locally vs sending the work to a
remote node. For instance, spatial overlay join is more compute-
intensive than overlap-test based join. This difference will impact
the potential speedup made possible by work stealing.

A model is developed here to study the impact of work stealing
by remote compute nodes on overall execution time. Even though
multiple processes are active in parallel join processing in WSSJ-
DM (some in stealing mode and others in victim mode), our model
considers one such extreme scenario, to show the scalability bottle-
necks because of overheads in work stealing.

Let us assume, among n nodes, only Node; has tasks which
require a total computation denoted by V and the other n — 1
nodes have no tasks. We denote the local processing rate of Node;
by f; which means number of computations executed per second
corresponding to local tasks.

WSSJ-DM allows a task originally belonging to a source node S
to be executed by a remote node for load balancing. This leads to
the notion of remote processing rate for stolen tasks. We denote
the remote processing rate of ith node by fis to finish tasks that
belongs to source node Nodes. For instance, fi; means remote
processing rate of ith node for tasks belonging to Node;. Remote
processing rate is bounded by local processing rate. This is because
of serialization, communication and coordination overheads over
the network.

In WSSJ-DM, multiple compute nodes can be leveraged in paral-
lel, so aggregate processing rate increases by using more compute
nodes upto a limit. For instance, when Node; sends tasks to a new
node Node;, the aggregate processing rate of Node; and Node; is
fi + fi1, minus the processing rate penalty y due to inefficiency of
remote processing. y is based on the average size of tasks, buffering
of geometries, parsing speed, and the network bandwidth. y de-
notes per node penalty. y increases with more idle nodes requesting
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Node; for tasks. Formula 1 models the execution time of WSSJ-
DM on tasks with computational cost denoted by V before Node;
reaches its limit of communicating tasks. Time is computed by
dividing number of computations by processing rate.

T ” o
fi+ (23 fi) —(n=1) =y

To explain Formula 1, Figure 2 shows the execution time on

compute cluster with multiple CPUs. We assume y is fixed here to 1.

We assume: fi = 100, all fi; = fi/3. The range of V is [1000, 10000].

The range of n is [1, 10]. We can see that for spatial join with larger

computational cost (increasing V), processing time increases. For a

given V, the reduction in execution time by using additional CPUs

is more significant for spatial join with higher V. For lower V, the

benefit is less. WSSJ-DM will be slowed down by using more nodes
after reaching its bottleneck.

< 1 Vv
/\&T — A+ Fa)—(n—1)xy

100

Time

Figure 2: Theoretical performance modeling of WSSJ-DM
before reaching bottleneck.

Formula 1 considers that all idle processors steal tasks from a
single node. Formula 2 generalizes the formula to include a subset
of work stealing nodes to model the performance of WSSJ-DM in
which Node; reaches its limit of sending tasks to m nodes, where
m can be fixed and n > m.

.
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4 EXPERIMENTAL RESULTS

All of our experiments used five real world datasets: cemetery, sports,
lakes, parks, and roads, which are taken from SpatialHadoop web-
site®. The datasets are stored in Well Known Text (WKT) format
and the characteristics of these datasets are shown in Table 1.

All of the experiments are done on a HPC cluster named Bebop®
at Argonne National Laboratory. A regular node on Bebop has two

@)

Shttp://spatialhadoop.cs.umn.edu/datasets.html
®https://www.lcrc.anl.gov/systems/resources/bebop/
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H Name ‘ Type ‘ #Geometries File size H
cemetery Polygons 193K 56 MB
sports Polygons 1.8 M 590 MB
lakes Polygons 84 M 9 GB
parks Polygons 10 M 9.3 GB
Roads Polylines 72M 24 GB

Table 1: Attributes of the datasets

Intel Xeon E5-2695v4 (36 cores per node), and 128GB DDR4 memory.
We used GCC 8.2.0, C++ 17, Intel MPI 3.1, and GEOS” 3.9.1 in all of
the following experiments.

For comparison, we used implementations based on Asynchro-
nous Dynamic Load Balancing (ADLB) [13], Round Robin sched-
uling, and shared queue design. Shared queue design was used in
SPINOJA [19]. ADLB is a scheduling strategy for dynamic load
balancing. This library uses message passing interface, so it can use
multiple CPUs in an HPC cluster. Using ADLB, tasks are added to
the run-time task data structure using put operation. Using get op-
erations, idle workers can access tasks. ADLB programming model
handles the load balancing under the hood. In our ADLB implemen-
tation, some servers are in charge of generating and populating
tasks for future processing and tasks are shared among the servers.

The idea of using single-master multiple-workers has been widely
used in shared memory solutions, such as SPINOJA and MPI-GIS [2].
SPINOJA is only designed for shared memory. We did not have
access to SPINOJA code, so we implemented a shared queue based
spatial join system. We call this system SQSJ. SQS]J is a parallel spa-
tial join system where candidate tasks are stored in a shared queue
for concurrent access by available threads. Our shared queue design
was motivated by SPINOJA. Compared to SQSJ, WSSJ uses multiple
queues per compute node. To provide a fair comparison, we ex-
tended shared queue design to distributed memory using the same
distributed framework of WSSJ-DM. We refer to the distributed
memory version of SQSJ as SQSJ-DM.

Round Robin scheduling is a widely used technique where each
core/node takes parts of partitioned R and S in a cyclic manner, and
the cores/nodes finish its work independently [16, 17, 22]. Dense
areas get distributed among processors due to Round Robin assign-
ment. Because of static partitioning, the overheads are minimal in
this scheduling strategy.

In the following experiments, the value of Threshold, . is set to
20. The number of send/receive threads is set to 5 and the number
of tasks per send/receive is set to 100.

4.1 Impact of NUMA Policies on WSS]

Based on Section 3.2, we designed comparison experiments among
different NUMA memory policies on WSSJ. The pair of datasets
being used is Sports and Cemetery, which was partitioned using
Quadtree into 8192 grid cells. The reason to use Sports and Cemetery
is that both datasets are small and most of the geometries are small
in these datasets. ST Intersects is one of the lightest spatial join
operations.

"https://trac.osgeo.org/geos
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In the experiments, we controlled the sizes of R and S by dupli-
cating the original datasets. The duplication coefficient D means
that R and S contain n copies of Sports and Cemetery respectively.

The regular nodes on Bebops only have two NUMA nodes, 0
and 1. The policies settings are: . MPOL_INTERLEAVE, node 0
and 1; I. MPOL_BIND, node 0; IIl. MPOL_PREFERRED, node 0; IV.
MPOL_DEFAULT. In all of the tests, threads were evenly distributed
on two NUMA nodes. When multiple threads are launched, the
core affinity of threads is managed by the OS.

The results are shown in Figure 3. We can see that different
policies do not have much difference in spatial join execution time
with 4 threads in Figure 3a. With more threads, in Figure 3b, it takes
longer using MPOL_DEFAULT than the other three policies. As
mentioned earlier, more threads may lead to higher memory request
congestion between the NUMA domains. In our experiments, this
performance difference due to memory policy is noticeable for
datasets with small geometries. For datasets with large geometries,
the difference is very small.

Local allocation policy is the default memory policy. This policy
can not necessarily guarantee that all accesses will be local to the
NUMA node because it is possible that a page is allocated by one
thread, but can be accessed by other work stealing threads. The
first thread to touch/write to a memory page will determine its
location in terms of the NUMA node. So, first touch policy may
violate local NUMA node allocation when a geometry is stolen by a
thread on remote NUMA node. In this case, a thread allocated space
for a geometry, however, it was accessed (written) by a thread on a
remote NUMA node. The default policy gets negatively impacted
by resource contention when compared to other policies.

Interleave memory placement works well in WSS] because thread
access pattern is irregular and random due to work stealing among
threads. Interleave policy benefits from the load-balancing of mem-
ory access requests across available NUMA nodes, even though
memory access time is not uniform.

Because MPOL_BIND only use one NUMA node, it runs out of
memory at D=40 while others run out of memory at D=80. In most
cases, using MPOL_PREFERRED shows a similar performance with
using MPOL_INTERLEAVE.

»
—e—  MPOL_DEFAULT » 100 | [~ MPOL_DEFAULT
MPOL_INTERLEAVE MPOL_INTERLEAVE
150 1 | MPOL_BIND 7 ——  MPOL_BIND ¥
MPOL_PREFERRED 50 MPOL_PREFERRED .
g 100 g 6o
] ]
3 &
$ g o
g P £
=} i E 40
-
50 "
7 »
/ < 20
________ g 00M /"'./' 0oM
10 20 30 40 50 60 70 10 20 30 40 50 60 70
D D
(a) 4 Threads (b) 36 Threads

Figure 3: Execution time comparison of different NUMA poli-
cies in WSSJ for performing ST _Intersects on Sports and Ceme-
tery. OOM is out of memory for BIND memory policy.
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4.2 Tasks Composition of WSS]J

There are two types of tasks for a WSSJ worker thread: owned tasks
and stolen tasks. Owned tasks are tasks being assigned to a worker in
the beginning. Stolen tasks are tasks stolen from the other workers.

We designed experiments to show the tasks composition and
execution time breakdown for owned and stolen tasks using WSSJ
in Figure 4. We used 36 WSSJ workers (one worker for each core) to
perform ST Intersection on Lakes and Parks which were partitioned
into 8192 grid cells using Adaptive (ADP) [22] or Uniform Parti-
tioning. ADP is workload-aware partitioning method which first
finds all candidates from the two input layers and then partitions
the candidates using quadtree partitioning [22]. ADP method was
shown to be more effective than standard quadtree partitioning of
individual layers.

From Figure 4, we can see that the tasks compositions vary in all
workers. Every worker was able to finish tasks at approximately the
same time. WSS] is not sensitive to different partitioning approaches.
Using Uniform Partitioning is even slightly faster (172s) than using
ADP (174s), as it has less data duplication (2.38%) than ADP (5.82%).

200 200
150 150

100 100

Time (seconds)
Time (seconds)

50 50

0 0
0 17 35 0 17 35

Thread 1D Owned Tasks ¥ Stolen Tasks Thread ID

(b) Using ADP Partitioning

(a) Using Uniform Partitioning

Figure 4: Execution time breakdown of tasks at different
WSS]J workers. Both cases used 36 workers to perform
ST Intersection on Lakes and Parks.

4.3 Tasks Composition of WSSJ-DM

A WSSJ-DM node can have two types of tasks: local tasks and remote
tasks. Local tasks are tasks being assigned in a Round Robin scheme
to each node in the beginning. Remote tasks are tasks received from
other nodes by its coordinator.

We designed experiments to show the tasks composition of ev-
ery WSSJ-DM node in Figure 5. We used five WSSJ-DM nodes to
perform ST _Intersection on Lakes and Parks which were partitioned
into 8192 grid cells using ADP or Uniform Partitioning.

From Figure 5, we can see that the tasks compositions vary in
all nodes in both cases. In both cases, there is one node that only
works on local tasks. WSSJ-DM is able to re-balance the tasks which
enabled each node to finish at approximately the same time. We can
observe that using a more statically balanced partitioning (ADP)
shows a better performance in WSSJ-DM. This is because a task
takes more time when performed remotely than locally because
of overheads in serialization, communication and coordination. A
more balanced initial assignment can reduce the total number of
remote tasks. In this example, there is extreme load imbalance at
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Node 0 because it only takes a fraction of second to finish local
tasks. Node 4 does not need to steal tasks in this example.

80 80

60 60

113

23.2

10 81 M5 81.2 324

49.3

Time (seconds)

Time (seconds)

20 20 . 0
©o238
7.6 7.9

| B 0
Node 0 Node 1 Node 2 Node 3 Node 4 Node 0 Node I Node 2 Node 3 Node 4

Local Tasks ™ Remote Tasks

(a) Using Uniform Partitioning (b) Using ADP Partitioning
Figure 5: Execution time breakdown of tasks at differ-
ent WSSJ-DM nodes. Both cases used 5 nodes to perform
ST Intersection on Lakes and Parks.

4.4 Comparison Experiments for WSSJ

We designed experiments to compare the performance of WSS],
Master-Worker, ADLB, single shared queue based spatial join (SQS])
and Round Robin assignment using different join operations on
Lakes and Sports which were partitioned into 8192 grid cells using
ADP partitioning. Round Robin assignment has a better load balanc-
ing using ADP partitioning compared with Quadtree or Uniform
partitioning [22].

The results are shown in Figure 6. In all cases, a single compute
node was used but with different number of cores. WSS7 shows
the best performance among four implementations in all cases. In
these experiments, WSS7 has a parallel efficiency between 80% (at
36 cores) and 107% (at 4 cores) with respect to sequential spatial
join using R-tree index (as shown in Table 2).

4.5 Comparison Experiments for WSSJ-DM

We compared WSSJ-DM with Master-Worker, ADLB, single shared
queue-based distributed memory extension (SQSJ-DM), and Round
Robin assignment using different join operations on different pairs
of spatial data in Figure 7. The experiments were using 1 to 10
nodes (36 to 360 CPU cores).

As shown in Figure 7, WSSJ-DM performs better than ADLB,
SQSJ-DM, and Round Robin assignment in most tests. WSSJ-DM
performs similar with SQSJ-DM in the ST_Union test for Lakes and
Parks. For union, using a single shared queue vs multiple work steal-
ing deques did not make much difference. However, for intersects
and intersection join, work stealing deques had an advantage. This
is because on average ST_Union tasks are more compute-intensive
than ST _Intersection and ST_Intersects using GEOS. So, degree of
contention on the single shared queue per node will be different for
various spatial join operations. Execution time of WSSJ-DM and
SQSJ-DM keep decreasing with more CPU cores, while in general
WSSJ-DM shows a better performance. The ADLB and Round-Robin
implementations reach their bottlenecks quickly because of load
imbalance. ADLB works very well in cases where tasks have less
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Figure 6: Execution time comparison among WSSJ, ADLB, Single Queue Spatial Join (SQSJ), and Round Robin assignment (R-R)
performing spatial joins on Lakes and Sports, which are partitioned into 8192 grid cells using ADP partitioning.

memory footprint. However, with geometries, server memory usage
was very high leading to performance degradation.

WSSJ-DM shows a more significant decrease in time for compute-
intensive spatial join operations. In general, Union operation is
computationally more expensive than Intersection. Intersection op-
eration is more expensive than Intersects. This is reflected in the
experimental results and our model also predicted the observed
performance difference in Section 3.8.

4.6 Strong Scaling for WSSJ-DM

We designed strong scaling experiments for WSSJ-DM. WSSJ-DM
was used to perform ST Intersection on Lakes and Parks parti-
tioned by different methods. By using different number of nodes
(36 cores/node), we show the results in Figure 8. The corresponding
speedups are plotted in Figure 8b.

The results also follow our model that we presented in Section 3.8.
Due to variation of load across different regions of the input, the
performance of WSSJ-DM may fluctuate with different number of
nodes. But the general trend is that WSSJ-DM can finish spatial
join on Lakes and Parks faster with more cores before reaching the
bottleneck.

WSSJ-DM using ADP partitioning shows the best performance,
as ADP is able to provide a better static load balancing than Quadtree
or Uniform partitioning [22], which means WSSJ-DM nodes can
spend more time on local tasks.

5 CONCLUSION

In this paper, we proposed fine-grained dynamic load balancing
system. To our knowledge, we introduced the first Work Stealing
system for Spatial Join on distributed memory (WSSJ-DM). We
showed that WSSJ takes advantage of NUMA memory policies for
datasets with small geometries.

We have presented experiments on various real-world datasets
and evaluated the performance between WSSJ and other parallel
spatial join methods based on dynamic load balancing on shared and
distributed memory. Various experiments were conducted on WSSJ-
DM. WSSJ-DM shows performance improvement and efficient load

balancing in an HPC environment with a thousand CPU cores. The
results of WSSJ-DM follow the theoretical model we presented.
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7 APPENDIX

7.1 Spatial Join using un-partitioned data

Generally, parallel spatial join implementations use spatially par-
titioned datasets. Partitioned datasets are useful to reduce data
skew in tasks and make it possible to process datasets larger than
available memory. On the other hand, spatial dataset partitioning
requires extra time and extra storage space. As WSS] can share
tasks among threads, it is feasible to use spatially un-partitioned
datasets (smaller than memory limit) directly.

Let each worker in WSS]J take a part of R and a part of S as its
input. The subsets of R and S can be randomly distributed, as long
as the mapping relations of all subsets can be assembled back to
the same relations mapping R to S, as shown in Formula 3. As there
is no need to consider the spatial localities of geometries in R, this
step can be done at run-time with no additional cost compared with
using partitioned datasets.

In Formula 3, R and S are randomly distributed into n and m
parts respectively. @ stands for a spatial join operation. We can get
the same join results of R and S by performing join operations on
all pairs of R; and S;.

R=Ry+Ri+..R,
S=8Sy+S1+..5,

n m
R@S:ZZR,'GBSJ-

i=0 j=0

®)

WSS]J using un-partitioned datasets takes slightly longer to finish
when compared to partitioned datasets. The benefit of using un-
partitioned data is that no data pre-processing is required, which
needs extra computing resources and storage space.

To demonstrate that our system performs well with un-partitioned
datasets as well, we used Sequential Spatial Join with Index, WSS],
and WSSJ-DM to perform ST _Intersects, ST Intersection, and ST_Union
on several pairs of spatially un-partitioned datasets, and the results
are shown in Table 2. WSSJ was using 1 node (36 cores) and WSSJ-
DM was using 25 nodes (900 cores).

We can see that both WSSJ and WSSJ-DM can be helpful in saving
time compared with sequential cases, especially with large datasets.
For instance, performing ST Union on Roads and Lakes took se-
quential join 53.45 hours, while WSSJ finished in 1.89 hours and
WSS]J-DM finished in 7.26 minutes. ST_Union and ST_Intersection
are slow in GEOS library because these operations do not internally
invoke quadtree indexing for a geometry overlapping with multi-
ple geometries. ST _Intersects is optimized using PreparedGeometry
class provided by GEOS library.

7.2 Duplicate avoidance for spatially
partitioned data

Spatial partitioning of geometries in a single map layer leads to
duplication of geometry across cell boundaries. This can result in
duplicate (redundant) spatial join output pairs while doing parallel
processing of spatial join across cells. We refer to this method as
a single layer partitioning based spatial join. We do not use sin-
gle layer partitioning based method. So, the partitioning scheme
used in this work is different. The spatial partitioning method has
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Dataset R®S Join OP Sequential WSS] WSSJ-DM
Sports®Cemetery 3.39 0.59 0.14
Parks®Sports 165.76 10.80 1.78
Lakes®Sports Intersects 344.71 16.47 2.90
Lakes®Parks 2,401.74 119.25 20.95
Roads®Lakes 600.60 118.97 20.32
Sports®Cemetery 3.92 0.61 0.14
Parks®Sports 339.32 16.14 2.89
Lakes®Sports Intersection  389.61 17.546 3.07
Lakes®Parks 4,912.32 196.24 29.92
Roads®Lakes 14,391.57 520.10 35.29
Sports®Cemetery 4.38 0.68 0.13
Parks®Sports 1,908.46 71.82 8.60
Lakes®Sports Union 4,550.04 179.66 15.49
Lakes®Parks 43,236.40 1,834.39 146.25
Roads®Lakes 192,450.86  6,820.24 435.41

Table 2: Execution time (in sec) for Sequential Indexed Spatial
Join, WSSJ (36 cores), WSSJ-DM (25 compute nodes) perform-
ing spatial join on different pairs of un-partitioned datasets.

been described in our prior work (ParADP [22]) on workload-aware
spatial join partitioning. We refer to this as output-sensitive du-
plication avoidance method where we partition the intermediate
output of filter-and-refine based spatial join. In short, ParADP only
partitions the center points corresponding to output candidate pairs
(overlapping MBRs) generated by R-tree indexing and querying of
MBRs of geometries (filter phase). Our technique is an extension of
reference point method for duplicate avoidance. The duplication
avoidance happens before stealing in memory. Please refer to [22]
for more details.

7.3 Handling other spatial join algorithms

In this paper, we showed work stealing based spatial join on par-
titioned and unpartitioned data based on filter and refine phases.
Filter and refine is implemented using indexed nested-loop spatial
join algorithm. However, the proposed work stealing technique
can be used with other spatial join algorithms as well. For instance,
when spatial join is implemented using plane sweep approach, then
the intermediate output produced by plane sweep of MBRs of input
geometries can be stored in the work stealing queue. Once the tasks
are stored in queues, the system will start load balancing. Simi-
larly, when spatial join is implemented by hierarchical traversal
(synchronized traversals) of R-trees, the tree nodes with overlap-
ping ranges will produce intermediate output which can be stored
in work stealing queues for further refinement processing. These
alternative spatial join implementations can be part of future work.

7.4 Fine-grained load balancing

Most of the work on spatial join considers a grid cell generated
from spatial partitioning as a unit task for assignment to a CPU
thread and for the purpose of load balancing. A grid cell can have
an arbitrary number of geometries contained in it. This is a coarse-
grained task in our view. We consider a geometry from a dataset
R overlapping with a small number (like 10) of geometries from S
as a unit task for assignment to a CPU thread and for the purpose



SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

of work stealing. This is a fine-grained task for the purpose of
parallelization and load balancing in our view.

7.5 Remote Memory Access (RMA) and
Non-blocking Communication

We have used one-sided (put/get) Message Passing Interface (MPI)
functions for task coordination between any two processes. One-
sided programming model is referred to as Remote Memory Access

Jie Yang and Satish Puri and Hui Zhou

(RMA) in MPL. It is suitable for expressing irregular communication
patterns that arise while coordinating tasks among processes in
distributed memory [9]. One-side communication is used for ex-
changing control messages. However, non-blocking send/receive
functions are used for actual data transfers because of programming
simplicity.

RMA uses the concept of memory window which is the memory
in a process that can be accessed by another remote process through
the use of RMA put/get functions.
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