
Fine-grained Dynamic Load Balancing in Spatial Join by Work
Stealing on Distributed Memory

Jie Yang and Satish Puri
Department of Computer Science

Marquette University
Milwaukee, USA

jie.yang@marquette.edu,satish.puri@marquette.edu

Hui Zhou
Mathematics and Computer Science Dept.

Argonne National Laboratory, USA
Lemont, USA
zhouh@anl.gov

ABSTRACT

Spatial join is an important operation for combining spatial data.

Parallelization is essential for improving spatial join performance.

However, load imbalance due to data skew limits the scalability of

parallel spatial join. There are many work sharing techniques to

address this problem in a parallel environment. One of the tech-

niques is to use data and space partitioning and then scheduling

the partitions among threads/processes with the goal of minimiz-

ing workload differences across threads/processes. However, load

imbalance still exists due to differences in join costs of different

pairs of input geometries in the partitions.

For the load imbalance problem, we have designed a work steal-

ing spatial join system (WSSJ-DM) on a distributed memory envi-

ronment. Work stealing is an approach for dynamic load balancing

in which an idle processor steals computational tasks from other

processors [5]. This is the first work that uses work stealing concept

(instead of work sharing) to parallelize spatial join computation

on a large compute cluster. We have evaluated the scalability of

the system on shared and distributed memory. Our experimen-

tal evaluation shows that work stealing is an effective strategy.

We compared WSSJ-DM with work sharing implementations of

spatial join on a high performance computing environment using

partitioned and un-partitioned datasets. Static and dynamic load

balancing approaches were used for comparison. We study the ef-

fect of memory affinity in work stealing operations involved in

spatial join on a multi-core processor.

WSSJ-DM performed spatial join using ST_Intersection on Lakes

(8.4M polygons) and Parks (10M polygons) in 30 seconds using

35 compute nodes on a cluster (1260 CPU cores). A work sharing

Master-Worker implementation took 160 seconds in contrast.

CCS CONCEPTS

· Information systems→ Geographic information systems; ·

Computing methodologies→ Parallel algorithms.

KEYWORDS

High Performance Computing, Distributed Computing, NUMA,

MPI

SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560936

ACM Reference Format:

Jie Yang and Satish Puri and Hui Zhou. 2022. Fine-grained Dynamic Load

Balancing in Spatial Join by Work Stealing on Distributed Memory. In

The 30th International Conference on Advances in Geographic Information

Systems (SIGSPATIAL ’22), November 1ś4, 2022, Seattle, WA, USA. ACM,

Seattle,Washington, USA, 12 pages. https://doi.org/10.1145/3557915.3560936

1 INTRODUCTION

In Geographic Information Systems (GIS) and spatial databases, two

datasets are combined based on some spatial relationship among

geometries in the input datasets. For instance, given two sets of

polygons, 𝑅 and 𝑆 , find all of the pairs of overlapping polygons

between the two sets, that is, for each polygon 𝑟 in dataset 𝑅, find

overlapping polygons from dataset 𝑆 [22].

High performance computing (HPC) clusters and supercomput-

ers with GPUs are used to analyze geospatial data [11, 15ś17, 22].

CyberInfrastructure centers like Polar Geospatial Center, Cyber-

GIS project at National Center for Supercomputing Applications

(NCSA), andWiFire project (forest fire) at San Diego Supercomputer

Center are involved in running geospatial computations and simu-

lations in a large-scale HPC environment. The distributed memory

programming model in these environments is Message Passing

Interface (MPI) and the storage layer is a parallel file system like

Lustre. MPI is preferred over MapReduce due to fast communi-

cation on high performance interconnection network and more

flexibility in terms of programming. This is different architecture

when compared to MapReduce model and its distributed file sys-

tem based storage. We have used an HPC compute cluster in our

load balancing design and evaluation. MPI-GIS software utilizes

message passing interface [17], parallel I/O and partitioning ca-

pabilities [16, 22] and GPU acceleration modules [11, 12] for high

performance spatial join and map overlay on HPC clusters. The

present work is a dynamic load balancing component in MPI-GIS

software stack.

The overall load imbalance in spatial join is determined by two

factors - 1) size and distribution of geometries in the two input

maps that need to be joined together by a process (thread) and

2) number of outputs produced per process (thread). The output-

sensitive nature makes load balancing difficult because the number

of outputs is not known a priori and can not be estimated easily for

complex geometries where approximations result in a large number

of false hits [19]. Therefore, input data and intermediate output

data partitioning techniques are used to minimize variation of load

across partitions [16, 22].

Load balancing approaches can be classified into two categories:

1) work sharing and 2) work stealing. In work sharing approach, a

This work is licensed under a Creative Commons Attribution International 4.0 License.



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

busy processor with excess work sends them to idle processor with

less or no work (e.g., master-worker pattern). However, in work

stealing approach, an idle thread initiates task migration from the

work queue of a busy thread with pending tasks. When a processor

finishes all the tasks in its queue, it becomes a thief and tries to

steal a task from another processor (victim). This difference can be

stated as push (work sharing) vs pull (work stealing) techniques.

Work stealing technique has some advantages. First, it has been

shown to improve data locality [1]. In work sharing, a busy proces-

sor incurs context switch overhead while sending work to remote

processor. Second, idle processors are mostly involved in the work

distribution (overhead); busy processors continue spatial join pro-

cessing. Moreover, when (until) all processors are busy, no load

balancing overhead occurs [5].

Dynamically load balancing on a distributed memory system is

challenging because load balancing requires serialization and com-

munication of complex geometries by a busy sending process, and

deserialization (parsing) of geometries at an idle receiving process.

This is a significant computation and communication overhead

for large geometries. In a distributed setting, work stealing can

be a significant overhead if the execution time of the tasks are in

second or millisecond range. However, this overhead is not present

in a shared memory queue based implementation [19]. Another

challenge is effective flow control among processes participating

in pull-based task sharing in spatial join.

Our flow control using MPI Remote Memory Access (RMA)

guides the granularity and timing of task sharing to keep the

idle processes busy and while minimizing the overheads at busy

processes. Our new design is able to leverage multiple compute

nodes efficiently to speedup parallel spatial join, in the presence

of serialization and work coordination overheads. From a perfor-

mance perspective, this is an improvement over shared memory

spatial join [19] and distributed memory MPI-based spatial join

systems [16, 17, 22]. To the best of our knowledge, this is the first

demonstration of effectiveness of work stealing on a large scale

distributed memory machine with thousand processor cores.

We present the effect of memory affinity in work stealing op-

erations involved in spatial join on a NUMA system. Our results

complement existing line of work on spatial join [14, 18].

Contributions of our paper are as follows:

• We present a novel NUMA-optimized Work Stealing Spatial

Join system (WSSJ) on shared memory. We extendedWSSJ to

distributed memory (WSSJ-DM) environment. Source code

is publicly available. 1

• We demonstrate effective mitigation of data skew in a fine-

grained manner to avoid stragglers (threads taking much

longer than others to finish). Both WSSJ and WSSJ-DM are

experimentally shown to be load balanced and efficient.

• Both WSSJ and WSSJ-DM can perform a variety of spatial

relationship joins and spatial overlay joins. Our system can

effectively handle data skew in spatially partitioned and un-

partitioned datasets.

This paper is organized as follows. Section 2 introduces back-

ground and related work. Section 3 describes WSSJ on shared mem-

ory and WSSJ-DM on distributed memory. Section 4 evaluates the

1https://github.com/satishphd/WorkStealing-Spatial-Join

performance of WSSJ and WSSJ-DM. We conclude this paper in

Section 5. Appendix section presents experimental evaluation using

un-partitioned datasets.

2 BACKGROUND AND RELATEDWORK

2.1 Spatial Join

Spatial join involves two spatial datasets 𝑅 and 𝑆 . The output con-

tains all pairs of objects satisfying a given relation between the

objects. The spatial relationships 2 such as ST_Within, ST_Intersects,

etc are supported.We have also handled overlay computation3, such

as ST_Intersection, and ST_Union. ST_Intersects is used to answer a

query - Is there any overlap between the two geometries?

2.2 Load Balancing in Parallel Spatial Join

An existing approach in partition-based spatial join (PBSM) is to

create a certain number of grid cells and assign the cells to pro-

cessors [3, 16, 17]. Some approaches use static round-robin assign-

ment [16, 17] and others use dynamic load balancing [19]. The

unit for load balancing in this approach is a set of geometries in a

grid cell. Our technique for load balancing is fine-grained because

our tasks are at individual geometry level compared to existing

approaches that work at grid cell level. Therefore, our task con-

struction enables fine grained load balancing.

Partitioning of map layers into tiles (grid cells) has been used

in [22]. The tiles are then assigned to processors in a round-robin

fashion. Declustering is proposed as a load balancing strategy

in [20]. [21] uses bitmaps to determine the number of spatial ob-

jects to perform dynamic load balancing. SPINOJA [19] uses object

decomposition based declustering to mitigate data processing skew

on shared memory. MapReduce-based spatial join systems first

create data partitions using various partitioning techniques and

then use dynamic load balancing supported by MapReduce imple-

mentations like Hadoop and Spark to join grid partitions [4, 8, 23].

Current message passing based systems do not support work steal-

ing, for example, MPI-based spatial join systems like MPI-GIS and

ParADP [2, 16, 22].

2.3 Work Stealing

Work stealing is a dynamic load balancing strategy [5ś7, 10, 13].

Work stealing has been used in shared memory and distributed

memory [7] load balancing solutions.

Chase-Lev’s lock-free deque [6] is an important data structure

in many shared-memory work stealing designs. The deque uses a

dynamic-cyclic-array, which allows: 1) the owner to push and pop

elements from the top of the deque, 2) others to perform concurrent

lock-free steal from the bottom of the deque. Nhat’s Work Stealing

Queue [10] implementation in C++11 is based on Chase-Lev’s lock-

free deque and shows a remarkable performance in benchmarks.We

use it in our work stealing implementations. For simplicity, we have

referred to Work Stealing Queue as queue or deque (double-ended).

There are very few work stealing libraries that work on shared

nothing architecture - for instance, Charm++. Our implementation

WSSJ-DM is geared towards spatial computing workloads that will

2https://postgis.net/docs/reference.html#Spatial_Relationships
3https://postgis.net/docs/reference.html#Overlay_Functions



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

be integrated into anMPI-based GIS ecosystem. Charm++ is a differ-

ent programming model compared to message passing framework

that MPI-GIS is based upon.

2.4 Non-Uniform Memory Access (NUMA)

In non-uniformmemory access, processor cores have access to local

memory and remote memory. Remote memory access is costly

compared to local access. There has been some earlier work on

NUMA-aware algorithms. [18] discusses an experimental study on

enabling NUMA-aware main memory spatial join processing. [14]

discusses a systematic approach for efficient in-memory query

processing on NUMA systems.

Many NUMA policies can be used on current Linux systems.

MPOL_DEFAULT, MPOL_INTERLEAVE, MPOL _PREFERRED, and

MPOL_BIND are typically available.4 These policies can be set by

calling a system function 𝑠𝑒𝑡_𝑚𝑒𝑚𝑝𝑜𝑙𝑖𝑐𝑦. Our findings on NUMA

policies are novel.

3 IMPLEMENTATION OF WORK STEALING
SPATIAL JOIN

3.1 Work Stealing Queue

A simple work stealing system for spatial join on shared-memory

consists of the following steps:

(1) Create one thread for each processor core and each thread

uses a queue to hold tasks to be scheduled.

(2) Each thread pushes its tasks to its own queue from the bot-

tom. And then pops and executes tasks from the queue.

(3) A thread can steal tasks from the top of other threads’ queues

after all tasks in its own queue are finished.

Based on these steps, we built a work stealing system for spatial

join on shared memory (WSSJ). In WSSJ, there are multiple worker

threads and each worker thread holds its own queue.

A worker thread generates spatial join refinement tasks after

the filter phase and pushes these tasks into its queue. It can pop

tasks from its own queue and steal tasks from a victim’s queue. The

victim can be chosen randomly. In WSSJ, each worker performs the

filtering phase and refinement phase independently.

3.2 NUMA Memory Policies

The execution of spatial join computations are impacted by NUMA

memory policies. Spatial join algorithms allocate a temporary buffer

to carry out intermediate steps of join algorithm on two geometries.

The spatial objects are copied to the temporary buffer to carry

out Quadtree partitioning of an individual geometry, to order the

coordinates, and to populate the intersection matrix.

The default NUMA policy on most Linux systems after boot-up

is MPOL_DEFAULT, which is łlocal allocationž. Under this pol-

icy, Linux will attempt to satisfy memory requests from the near-

est NUMA node of the CPU which submits the memory requests.

MPOL_DEFAULT works fine in many scenarios. However, in terms

of work stealing, a thread on one NUMA node can steal a task from

another NUMA node. A page in memory corresponding to geome-

try data structure can be accessed by multiple threads because of

many-to-many overlap relationship in spatial join tasks. For spatial

4https://linux.die.net/man/2/mbind

join, in all experiments we have conducted so far, the tasks on a

few worker threads (usually 1 to 4) take much longer to finish than

the rest of the threads. When multiple threads allocate and write to

temporary buffers for tasks from remote NUMA nodes, there can

be memory requests congestion.

MPOL_BIND and MPOL_PREFERRED can mitigate the memory

requests congestion issue. Under these two policies, the temporary

buffers are on the same NUMA node as the pairs of geometries to

be joined. The issue with MPOL_BIND is that it is a strict policy;

the OS can only utilize the memory on specified NUMA node(s).

This can be a problem in case there is more memory required than

available on a single NUMA node.

Under MPOL_INTERLEAVE mode, the memory allocations are

uniformly distributed among all NUMA nodes. The temporary

buffers are allocated in an interleaved manner as the pairs of ge-

ometries are joined.

The NUMA effects discussed here are due to work stealing in-

herent in parallel spatial join with higher number of threads. We

compared the impacts of different memory policies in Section 4.1.

3.3 Work Stealing Algorithm
Now we present details on how to apply work stealing idea us-

ing filter and refine based spatial join. Algorithm 1 describes task

generation by a worker thread. These tasks are added to work steal-

ing queue data structure maintained per thread. 𝑅 and 𝑆 stand for

two spatial datasets to be joined. WSSJ uses spatially partitioned

datasets in this algorithm based on our earlier work [22]. For in-

stance, spatial partitioning of R and S into 4 partitions will result

in grid cells R1 to R4 and S1 to S4. This creates 4 join tasks, (R1,

S1), (R2, S2), (R3, S3), and (R4, S4). Each thread is assigned one or

more partition(s) as input. 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] are instances of work stealing

queue, where 𝑇 equals the number of worker threads.

Task Construction: A spatial join task consists of a subset of

geometries from R and S that spatially overlap using minimum

bounding rectangle (MBR) overlap test. We chose one geometry

from R and multiple geometries from S as a unit task in our system.

For overlap detection using MBR approximation of geometries, we

use a search tree (index) for MBR query. Filter phase is done using

the standard R-tree index-based nested loop spatial join approach.

Assuming, a join on partition pair (R1, S1), where R1 = {𝑟0, 𝑟1, .., 𝑟𝑚}

and S1 = {𝑠0, 𝑠1, .., 𝑠𝑛}, a unit task is a key-value pair, where key is

𝑟𝑖 , 𝑖 ∈ {0,𝑚} and value is an arbitrary subset from S1.

The Break_Down_Task() function splits a large task into a set

of smaller tasks by breaking down the value part of the task. We

set a 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 as the size limit of a task. This step is neces-

sary as a huge geometry 𝑟 usually returns a large query result in

Line 10 of Algorithm 1, which is one reason of load imbalance. As-

suming 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 to be 10, if the MBR query result returns 30

geometries from 𝑆 , then this single task will be broken down into 3

sub-tasks. This step makes sure that individual tasks are relatively

of same computational cost.

In WSSJ, each thread occupies one CPU core and Algorithm 1 is

executed per thread independent of other threads. Work stealing

queues store pointers to tasks.

As presented in Algorithm 2, a worker thread 𝑡𝑖 first pops tasks

from its own queue 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑖], and performs join operations until

its queue becomes empty. Then it finds a victim thread. Get_Victim()



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

Algorithm 1 Algorithm for Pushing Tasks into Queues

1: Input: Subsets of spatial objects from 𝑅 and 𝑆 .

2: T is number of threads.

3: Output: 𝑄𝑢𝑒𝑢𝑒 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] populated with tasks.

4: Assign NUMA memory policy.

5: Initialize all the queues in 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ].

6: for Thread 𝑡𝑖 in 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do

7: Build an index 𝐼𝑛𝑑𝑒𝑥𝑖 using MBRs of 𝑅

8: for Object 𝑠 𝑗 in 𝑆 do

9: Task 𝑡𝑎𝑠𝑘𝑠 ← 𝐼𝑛𝑑𝑒𝑥𝑖 .𝑞𝑢𝑒𝑟𝑦 (𝑠 𝑗 )

10: Task 𝑠𝑢𝑏𝑇𝑎𝑠𝑘𝑠 ← Break_Down_Task(𝑡𝑎𝑠𝑘𝑠)

11: 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] .𝑝𝑢𝑠ℎ(𝑠𝑢𝑏_𝑡𝑎𝑠𝑘𝑠)

12: end for

13: end for

14:

Algorithm 2 Algorithm for Work Stealing Spatial Join

1: Input: 𝑄𝑢𝑒𝑢𝑒 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] populated with tasks.

2: Output: Spatial Join 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 .

3: for Thread 𝑡𝑖 in 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do

4: while 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] not empty do

5: Task 𝑡𝑎𝑠𝑘 ← 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] .𝑝𝑜𝑝 ()

6: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 ← Spatial_Join_OP(𝑡𝑎𝑠𝑘)

7: end while

8: while Not all 𝑞𝑢𝑒𝑢𝑒𝑠 empty do

9: int 𝑣𝑖𝑐𝑡𝑖𝑚 ← Get_Victim()

10: while 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑣𝑖𝑐𝑡𝑖𝑚] not empty do

11: Task 𝑡𝑎𝑠𝑘 ← 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑣𝑖𝑐𝑡𝑖𝑚] .𝑠𝑡𝑒𝑎𝑙 ()

12: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 ← Spatial_Join_OP(𝑡𝑎𝑠𝑘)

13: end while

14: end while

15: end for

function returns the next available victim’s thread id. Thread ids

are checked in cyclic order to get a thread with enough pending

work, beginning with the current thread’s id + 1. This method is

simple and robust. Other methods like choosing random thread

as victim or choosing threads based on NUMA consideration and

data locality are also possible. The thief thread will keep stealing

and performing join operations until the victim’s queue becomes

empty. The granularity of tasks stolen can be configured. All join

results generated by 𝑡𝑖 are pushed into 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 . 𝑂𝑃 stands for type

of spatial join operation.

3.4 Overall Framework on Distributed Memory

In our multi-compute node architecture with distributed mem-

ory (WSSJ-DM) design, each compute node still uses the shared

memory work stealing system WSSJ, plus one coordinator thread.

The coordinators are used to communicate with other compute

nodes and shuffle tasks, as shown in Figure 1. The tasks (including

coordinates of geometries) are serialized by the sending process

and deserialized by the receiving process. The task contains the

geometry coordinates in the message itself. So, the overall commu-

nication of geometries corresponding to the stolen tasks happens

in-memory. When needed, a coordinator spawns multiple threads

to speedup the send/receive and parsing of geometries (from the

message buffer) among compute nodes for load balancing purpose.

In Figure 1, each dashed red rectangle stands for a WSSJ-DM

node. There are multiple compute nodes. Each node has multiple

worker threads to leverage the multiple CPU cores, and one co-

ordinator. Each worker thread has one work stealing deque. The

worker threads and deques are same as in WSSJ.

In the beginning, each node takes grid cells of 𝑅 and 𝑆 in a Round

Robin manner. A worker thread follows the steps as WSSJ: parsing

data files, building indices, and pushing tasks into their own work

stealing queues. Additionally, after all local tasks are finished, the

worker threads in WSSJ-DM wait for tasks from their coordinator,

which "steal" tasks from other coordinators. The coordinators are

responsible for termination detection. A coordinator also informs

its worker threads that all tasks across all nodes are done.

To illustrate how the system works, we present a typical scenario

with two coordinators running on two compute nodes. After all

the tasks get pushed, a coordinator (say Coord A) thread begins

to monitor its memory window. If A’s all local queues are empty,

Coord A begins to seek tasks from other nodes by writing to the

memory window of other coordinators using the remote memory

access (RMA) functions. Another node (say Coord B) notices the

change in its memory window because of A’s recent action. Coord

B resets its window as an acknowledgement (to allow new starving

coordinator) and begins to steal tasks from local queues and then

sends those tasks to Coord A. This is accomplished through non-

blocking message passing.

The worker threads mainly focus on performing join operations,

and behave similarly to worker threads in WSSJ. In the next two

sub-sections, we will discuss about the core module of WSSJ-DM,

the coordinators.

3.5 Coordinator in Send Status

The coordinators are threads within a WSSJ-DM node meant to

facilitate communication with other nodes. A coordinator can be in

two status based on the number of all tasks in local work stealing

queues: 1) send status and 2) receive status.

A coordinator (Coord A) maintains a memory window, initially

as waiting for task requests. It waits until all local spatial join tasks

are enqueued. It then steps into the Send Status. Coord A checks

its memory window periodically. If no change is found, it will

update the window with its current remaining tasks and then goes

on to sleep until next period to save CPU cycles for the worker

threads. If there is information that other coordinators are looking

for tasks, Coord A will mark those coordinators as starving. It then

begins to steal tasks from local queues and send those tasks to other

coordinators.

The vertices of geometries corresponding to a task are converted

to basic data type arrays to be used by message passing functions.

Coord A uses non-blocking send function to send those task arrays.

It will keep sending tasks to starving coordinators until all local

tasks are done or almost done. Coord A can fork multiple threads

to accelerate the task sending process.

While sending tasks, Coord A still checks and updates its memory

window periodically, to signal its current status to other starving

processes.Coord A also uses non-blocking receive function to gather



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

Figure 1: The Work Stealing Spatial Join system on distributed memory (WSSJ-DM). Two multi-core compute nodes are shown

with m threads. łGen Tasks" represents task generation and OP is join operation. The solid blue arrows show the directions of

the flows of spatial join tasks. The dashed orange arrows show the directions of the flows of control messages. łNB send/recv"

stands for łNon-blocking send or receive message passing". łGen buf" stands for "Generate send buffer" and łParse received

buffer".

status signals from other coordinators. If it finds that some coor-

dinators have received too much work to finish on time, it sends

a temporary stop signal to those coordinators and stops sending

tasks to them. When all local tasks are done, Coord A sends a stop

signal to all starving coordinators in its record.

3.6 Coordinator in Receive Status

After all local tasks are done, Coord A enters the Receive Status.

Coord A checks the remote memory windows of other coordinators.

If a window indicates that all its owner’s tasks were finished, Coord

A records this information and checks the next available remote

memory window. Among all the other coordinators, it will ask

for tasks from the one with the most tasks left (say Coord B). If a

window is written by other starving coordinators, Coord Awill skip

this window.

In case when its task request is put on Coord B’s window, Coord

A will use non-blocking receive function and wait for tasks to

arrive. When the data is received, Coord A parses the received data

to spatial join tasks and pushes those tasks to an empty queue.

This task receiving-parsing-pushing progress can be accelerated

by using multiple receive threads. After that, Coord A marks the

queue to allow workers to steal.

Coord A sends the number of its local tasks to Coord B after a few

invocations of receiving function, also using non-blocking send.

Coord B uses this number to judge if Coord A needs a temporary

stop, i.e., Coord A has received toomany tasks but its worker threads

are processing tasks slowly. If Coord A receives a temporary stop,

it will be on sleep until most received tasks are done by its worker

threads. After waiting, it will again seek another coordinator which

still has tasks. If Coord A receives a stop sign, it will mark Coord B

as łAll Tasks Finished" and seek another coordinator for more tasks.

When Coord A finds that all other coordinators have no remaining

task, it will inform all its worker threads and terminate itself.

3.7 Inter-node Communication

Our distributed memory system uses non-blocking communication

functions and remote memory access functions supported by Mes-

sage Passing Interface standard. Appendix section contains some



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

detail on this topic. The most important feature of non-blocking

send and receive in WSSJ-DM is that it allows overlapping commu-

nication and computation.

The coordinators in WSSJ-DM use multiple threads to perform

MPI_Isend() to send spatial join tasks and MPI_Irecv() to receive

tasks. These send/receive threads can perform all send and receive

operations concurrently, and then go to sleep. These threads wake

up periodically to check if their send and receive operations have

finished. Thus, for the most part, send/receive threads are on sleep

and yield the CPUs to the worker threads to perform compute-

intensive join operations.

Remote Memory Access (RMA) allows access to remote memory.

By using the feature, a coordinator in WSSJ-DM nodes can show

the node’s status in its memory window. It can tell others if current

node: 1) has spatial join tasks and the number of tasks, or 2) has no

tasks, or 3) is hand shaking with another node. A coordinator can

also write a request to another coordinator’s window based on the

information on that window, and wait for instructions for moving

tasks and associated geometry data.

3.8 Theoretical Analysis

We analyze the theoretical performance of WSSJ-DM in this sub-

section. The benefit to be gained by WSSJ-DM depends on the

computational complexity of spatial join operations because there

is a tradeoff between doing work locally vs sending the work to a

remote node. For instance, spatial overlay join is more compute-

intensive than overlap-test based join. This difference will impact

the potential speedup made possible by work stealing.

A model is developed here to study the impact of work stealing

by remote compute nodes on overall execution time. Even though

multiple processes are active in parallel join processing in WSSJ-

DM (some in stealing mode and others in victim mode), our model

considers one such extreme scenario, to show the scalability bottle-

necks because of overheads in work stealing.

Let us assume, among 𝑛 nodes, only 𝑁𝑜𝑑𝑒1 has tasks which

require a total computation denoted by 𝑉 and the other 𝑛 − 1

nodes have no tasks. We denote the local processing rate of 𝑁𝑜𝑑𝑒𝑖
by 𝑓𝑖 which means number of computations executed per second

corresponding to local tasks.

WSSJ-DM allows a task originally belonging to a source node S

to be executed by a remote node for load balancing. This leads to

the notion of remote processing rate for stolen tasks. We denote

the remote processing rate of 𝑖th node by 𝑓𝑖𝑆 to finish tasks that

belongs to source node 𝑁𝑜𝑑𝑒𝑆 . For instance, 𝑓𝑖1 means remote

processing rate of 𝑖th node for tasks belonging to 𝑁𝑜𝑑𝑒1. Remote

processing rate is bounded by local processing rate. This is because

of serialization, communication and coordination overheads over

the network.

In WSSJ-DM, multiple compute nodes can be leveraged in paral-

lel, so aggregate processing rate increases by using more compute

nodes upto a limit. For instance, when 𝑁𝑜𝑑𝑒1 sends tasks to a new

node 𝑁𝑜𝑑𝑒𝑖 , the aggregate processing rate of 𝑁𝑜𝑑𝑒1 and 𝑁𝑜𝑑𝑒𝑖 is

𝑓1 + 𝑓𝑖1, minus the processing rate penalty 𝛾 due to inefficiency of

remote processing. 𝛾 is based on the average size of tasks, buffering

of geometries, parsing speed, and the network bandwidth. 𝛾 de-

notes per node penalty. 𝛾 increases with more idle nodes requesting

𝑁𝑜𝑑𝑒1 for tasks. Formula 1 models the execution time of WSSJ-

DM on tasks with computational cost denoted by 𝑉 before 𝑁𝑜𝑑𝑒1
reaches its limit of communicating tasks. Time is computed by

dividing number of computations by processing rate.

𝑇 =

𝑉

𝑓1 + (
∑𝑛
2
𝑓𝑖1) − (𝑛 − 1) ∗ 𝛾

(1)

To explain Formula 1, Figure 2 shows the execution time on

compute cluster with multiple CPUs. We assume 𝛾 is fixed here to 1.

We assume: 𝑓1 = 100, all 𝑓𝑖1 = 𝑓1/3. The range of 𝑉 is [1000, 10000].

The range of 𝑛 is [1, 10]. We can see that for spatial join with larger

computational cost (increasing 𝑉 ), processing time increases. For a

given 𝑉 , the reduction in execution time by using additional CPUs

is more significant for spatial join with higher 𝑉 . For lower 𝑉 , the

benefit is less. WSSJ-DM will be slowed down by using more nodes

after reaching its bottleneck.

Figure 2: Theoretical performance modeling of WSSJ-DM

before reaching bottleneck.

Formula 1 considers that all idle processors steal tasks from a

single node. Formula 2 generalizes the formula to include a subset

of work stealing nodes to model the performance of WSSJ-DM in

which 𝑁𝑜𝑑𝑒1 reaches its limit of sending tasks to𝑚 nodes, where

𝑚 can be fixed and 𝑛 > 𝑚.

𝑇 =

𝑉

𝑓1 + (
∑𝑚
2
𝑓𝑖1) − (𝑛 − 1) ∗ 𝛾

(2)

4 EXPERIMENTAL RESULTS

All of our experiments used five real world datasets: cemetery, sports,

lakes, parks, and roads, which are taken from SpatialHadoop web-

site5. The datasets are stored in Well Known Text (WKT) format

and the characteristics of these datasets are shown in Table 1.

All of the experiments are done on a HPC cluster named Bebop6

at Argonne National Laboratory. A regular node on Bebop has two

5http://spatialhadoop.cs.umn.edu/datasets.html
6https://www.lcrc.anl.gov/systems/resources/bebop/



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

Name Type #Geometries File size

cemetery Polygons 193 K 56 MB

sports Polygons 1.8 M 590 MB

lakes Polygons 8.4 M 9 GB

parks Polygons 10 M 9.3 GB

Roads Polylines 72 M 24 GB

Table 1: Attributes of the datasets

Intel Xeon E5-2695v4 (36 cores per node), and 128GBDDR4memory.

We used GCC 8.2.0, C++ 17, Intel MPI 3.1, and GEOS7 3.9.1 in all of

the following experiments.

For comparison, we used implementations based on Asynchro-

nous Dynamic Load Balancing (ADLB) [13], Round Robin sched-

uling, and shared queue design. Shared queue design was used in

SPINOJA [19]. ADLB is a scheduling strategy for dynamic load

balancing. This library uses message passing interface, so it can use

multiple CPUs in an HPC cluster. Using ADLB, tasks are added to

the run-time task data structure using put operation. Using get op-

erations, idle workers can access tasks. ADLB programming model

handles the load balancing under the hood. In our ADLB implemen-

tation, some servers are in charge of generating and populating

tasks for future processing and tasks are shared among the servers.

The idea of using single-mastermultiple-workers has beenwidely

used in sharedmemory solutions, such as SPINOJA andMPI-GIS [2].

SPINOJA is only designed for shared memory. We did not have

access to SPINOJA code, so we implemented a shared queue based

spatial join system. We call this system SQSJ. SQSJ is a parallel spa-

tial join system where candidate tasks are stored in a shared queue

for concurrent access by available threads. Our shared queue design

was motivated by SPINOJA. Compared to SQSJ, WSSJ uses multiple

queues per compute node. To provide a fair comparison, we ex-

tended shared queue design to distributed memory using the same

distributed framework of WSSJ-DM. We refer to the distributed

memory version of SQSJ as SQSJ-DM.

Round Robin scheduling is a widely used technique where each

core/node takes parts of partitioned 𝑅 and 𝑆 in a cyclic manner, and

the cores/nodes finish its work independently [16, 17, 22]. Dense

areas get distributed among processors due to Round Robin assign-

ment. Because of static partitioning, the overheads are minimal in

this scheduling strategy.

In the following experiments, the value of𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 is set to

20. The number of send/receive threads is set to 5 and the number

of tasks per send/receive is set to 100.

4.1 Impact of NUMA Policies on WSSJ

Based on Section 3.2, we designed comparison experiments among

different NUMA memory policies on WSSJ. The pair of datasets

being used is Sports and Cemetery, which was partitioned using

Quadtree into 8192 grid cells. The reason to use Sports and Cemetery

is that both datasets are small and most of the geometries are small

in these datasets. ST_Intersects is one of the lightest spatial join

operations.

7https://trac.osgeo.org/geos

In the experiments, we controlled the sizes of 𝑅 and 𝑆 by dupli-

cating the original datasets. The duplication coefficient 𝐷 means

that 𝑅 and 𝑆 contain 𝑛 copies of Sports and Cemetery respectively.

The regular nodes on Bebops only have two NUMA nodes, 0

and 1. The policies settings are: I. MPOL_INTERLEAVE, node 0

and 1; II. MPOL_BIND, node 0; III. MPOL_PREFERRED, node 0; IV.

MPOL_DEFAULT. In all of the tests, threads were evenly distributed

on two NUMA nodes. When multiple threads are launched, the

core affinity of threads is managed by the OS.

The results are shown in Figure 3. We can see that different

policies do not have much difference in spatial join execution time

with 4 threads in Figure 3a. With more threads, in Figure 3b, it takes

longer using MPOL_DEFAULT than the other three policies. As

mentioned earlier, more threads may lead to higher memory request

congestion between the NUMA domains. In our experiments, this

performance difference due to memory policy is noticeable for

datasets with small geometries. For datasets with large geometries,

the difference is very small.

Local allocation policy is the default memory policy. This policy

can not necessarily guarantee that all accesses will be local to the

NUMA node because it is possible that a page is allocated by one

thread, but can be accessed by other work stealing threads. The

first thread to touch/write to a memory page will determine its

location in terms of the NUMA node. So, first touch policy may

violate local NUMA node allocation when a geometry is stolen by a

thread on remote NUMA node. In this case, a thread allocated space

for a geometry, however, it was accessed (written) by a thread on a

remote NUMA node. The default policy gets negatively impacted

by resource contention when compared to other policies.

Interleavememory placementworkswell inWSSJ because thread

access pattern is irregular and random due to work stealing among

threads. Interleave policy benefits from the load-balancing of mem-

ory access requests across available NUMA nodes, even though

memory access time is not uniform.

Because MPOL_BIND only use one NUMA node, it runs out of

memory at D=40 while others run out of memory at D=80. In most

cases, using MPOL_PREFERRED shows a similar performance with

using MPOL_INTERLEAVE.

10 20 30 40 50 60 70

50

100

150

OOM

𝐷

T
im

e(
Se
co
n
d
s)

MPOL_DEFAULT

MPOL_INTERLEAVE

MPOL_BIND

MPOL_PREFERRED

(a) 4 Threads

10 20 30 40 50 60 70

20

40

60

80

100

OOM

𝐷

T
im

e(
Se
co
n
d
s)

MPOL_DEFAULT

MPOL_INTERLEAVE

MPOL_BIND

MPOL_PREFERRED

(b) 36 Threads

Figure 3: Execution time comparison of different NUMA poli-

cies inWSSJ for performing ST_Intersects on Sports andCeme-

tery. OOM is out of memory for BIND memory policy.



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

4.2 Tasks Composition of WSSJ

There are two types of tasks for a WSSJ worker thread: owned tasks

and stolen tasks. Owned tasks are tasks being assigned to a worker in

the beginning. Stolen tasks are tasks stolen from the other workers.

We designed experiments to show the tasks composition and

execution time breakdown for owned and stolen tasks using WSSJ

in Figure 4. We used 36 WSSJ workers (one worker for each core) to

perform ST_Intersection on Lakes and Parks which were partitioned

into 8192 grid cells using Adaptive (ADP) [22] or Uniform Parti-

tioning. ADP is workload-aware partitioning method which first

finds all candidates from the two input layers and then partitions

the candidates using quadtree partitioning [22]. ADP method was

shown to be more effective than standard quadtree partitioning of

individual layers.

From Figure 4, we can see that the tasks compositions vary in all

workers. Every worker was able to finish tasks at approximately the

same time.WSSJ is not sensitive to different partitioning approaches.

Using Uniform Partitioning is even slightly faster (172s) than using

ADP (174s), as it has less data duplication (2.38%) than ADP (5.82%).

Figure 4: Execution time breakdown of tasks at different

WSSJ workers. Both cases used 36 workers to perform

ST_Intersection on Lakes and Parks.

4.3 Tasks Composition of WSSJ-DM

AWSSJ-DM node can have two types of tasks: local tasks and remote

tasks. Local tasks are tasks being assigned in a Round Robin scheme

to each node in the beginning. Remote tasks are tasks received from

other nodes by its coordinator.

We designed experiments to show the tasks composition of ev-

ery WSSJ-DM node in Figure 5. We used five WSSJ-DM nodes to

perform ST_Intersection on Lakes and Parks which were partitioned

into 8192 grid cells using ADP or Uniform Partitioning.

From Figure 5, we can see that the tasks compositions vary in

all nodes in both cases. In both cases, there is one node that only

works on local tasks. WSSJ-DM is able to re-balance the tasks which

enabled each node to finish at approximately the same time. We can

observe that using a more statically balanced partitioning (ADP)

shows a better performance in WSSJ-DM. This is because a task

takes more time when performed remotely than locally because

of overheads in serialization, communication and coordination. A

more balanced initial assignment can reduce the total number of

remote tasks. In this example, there is extreme load imbalance at

Node 0 because it only takes a fraction of second to finish local

tasks. Node 4 does not need to steal tasks in this example.

Figure 5: Execution time breakdown of tasks at differ-

ent WSSJ-DM nodes. Both cases used 5 nodes to perform

ST_Intersection on Lakes and Parks.

4.4 Comparison Experiments for WSSJ

We designed experiments to compare the performance of WSSJ,

Master-Worker, ADLB, single shared queue based spatial join (SQSJ)

and Round Robin assignment using different join operations on

𝐿𝑎𝑘𝑒𝑠 and 𝑆𝑝𝑜𝑟𝑡𝑠 which were partitioned into 8192 grid cells using

ADP partitioning. Round Robin assignment has a better load balanc-

ing using ADP partitioning compared with Quadtree or Uniform

partitioning [22].

The results are shown in Figure 6. In all cases, a single compute

node was used but with different number of cores. WSSJ shows

the best performance among four implementations in all cases. In

these experiments, WSSJ has a parallel efficiency between 80% (at

36 cores) and 107% (at 4 cores) with respect to sequential spatial

join using R-tree index (as shown in Table 2).

4.5 Comparison Experiments for WSSJ-DM

We compared WSSJ-DM with Master-Worker, ADLB, single shared

queue-based distributed memory extension (SQSJ-DM), and Round

Robin assignment using different join operations on different pairs

of spatial data in Figure 7. The experiments were using 1 to 10

nodes (36 to 360 CPU cores).

As shown in Figure 7, WSSJ-DM performs better than ADLB,

SQSJ-DM, and Round Robin assignment in most tests. WSSJ-DM

performs similar with SQSJ-DM in the ST_Union test for Lakes and

Parks. For union, using a single shared queue vs multiple work steal-

ing deques did not make much difference. However, for intersects

and intersection join, work stealing deques had an advantage. This

is because on average ST_Union tasks are more compute-intensive

than ST_Intersection and ST_Intersects using GEOS. So, degree of

contention on the single shared queue per node will be different for

various spatial join operations. Execution time of WSSJ-DM and

SQSJ-DM keep decreasing with more CPU cores, while in general

WSSJ-DM shows a better performance. The ADLB and Round-Robin

implementations reach their bottlenecks quickly because of load

imbalance. ADLB works very well in cases where tasks have less



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

10 20 30

50

100

(a) ST_Intersects: Lakes ⊕ Sports

10 20 30

50

100

(b) ST_Intersection: Lakes ⊕ Sports

10 20 30

500

1,000

1,500

(c) ST_Union: Lakes ⊕ Sports

Figure 6: Execution time comparison among WSSJ, ADLB, Single Queue Spatial Join (SQSJ), and Round Robin assignment (R-R)

performing spatial joins on 𝐿𝑎𝑘𝑒𝑠 and 𝑆𝑝𝑜𝑟𝑡𝑠, which are partitioned into 8192 grid cells using ADP partitioning.

memory footprint. However, with geometries, server memory usage

was very high leading to performance degradation.

WSSJ-DM shows amore significant decrease in time for compute-

intensive spatial join operations. In general, Union operation is

computationally more expensive than Intersection. Intersection op-

eration is more expensive than Intersects. This is reflected in the

experimental results and our model also predicted the observed

performance difference in Section 3.8.

4.6 Strong Scaling for WSSJ-DM

We designed strong scaling experiments for WSSJ-DM. WSSJ-DM

was used to perform ST_Intersection on Lakes and Parks parti-

tioned by different methods. By using different number of nodes

(36 cores/node), we show the results in Figure 8. The corresponding

speedups are plotted in Figure 8b.

The results also follow ourmodel that we presented in Section 3.8.

Due to variation of load across different regions of the input, the

performance of WSSJ-DM may fluctuate with different number of

nodes. But the general trend is that WSSJ-DM can finish spatial

join on Lakes and Parks faster with more cores before reaching the

bottleneck.

WSSJ-DM using ADP partitioning shows the best performance,

as ADP is able to provide a better static load balancing thanQuadtree

or Uniform partitioning [22], which means WSSJ-DM nodes can

spend more time on local tasks.

5 CONCLUSION

In this paper, we proposed fine-grained dynamic load balancing

system. To our knowledge, we introduced the first Work Stealing

system for Spatial Join on distributed memory (WSSJ-DM). We

showed that WSSJ takes advantage of NUMA memory policies for

datasets with small geometries.

We have presented experiments on various real-world datasets

and evaluated the performance between WSSJ and other parallel

spatial joinmethods based on dynamic load balancing on shared and

distributed memory. Various experiments were conducted onWSSJ-

DM. WSSJ-DM shows performance improvement and efficient load

balancing in an HPC environment with a thousand CPU cores. The

results of WSSJ-DM follow the theoretical model we presented.

6 ACKNOWLEDGEMENT

This work is partly supported by the National Science Foundation

CAREER Grant No. 2145403 and Grant No. 1756000.

REFERENCES
[1] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. 2000. The data locality of

work stealing. In Proceedings of the twelfth annual ACM symposium on Parallel
algorithms and architectures. 1ś12.

[2] Dinesh Agarwal, Satish Puri, Xi He, and Sushil K Prasad. 2012. A system for
GIS polygonal overlay computation on linux cluster-an experience and perfor-
mance report. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum. IEEE, 1433ś1439.

[3] Kouichi Araki and Taiki Shimbo. 2016. An MPI-based Framework for Proessing
Spatial Vector Data on Heterogeneous Distributed Systems. In 2016 Fourth Inter-
national Symposium on Computing and Networking (CANDAR). IEEE, 554ś558.

[4] Furqan Baig, Hoang Vo, Tahsin Kurc, Joel Saltz, and Fusheng Wang. 2017.
Sparkgis: Resource aware efficient in-memory spatial query processing. In Pro-
ceedings of the 25th ACM SIGSPATIAL international conference on advances in
geographic information systems. 1ś10.

[5] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999), 720ś748. https:
//doi.org/10.1145/324133.324234

[6] David Chase and Yossi Lev. 2005. Dynamic circular work-stealing deque. In
Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures. 21ś28.

[7] James Dinan, D Brian Larkins, Ponnuswamy Sadayappan, Sriram Krishnamoor-
thy, and Jarek Nieplocha. 2009. Scalable work stealing. In Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis.
IEEE, 1ś11.

[8] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce
framework for spatial data. In 2015 IEEE 31st international conference on Data
Engineering. IEEE, 1352ś1363.

[9] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. 2014. Using
advanced MPI: Modern features of the message-passing interface. MIT Press.

[10] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. 2013.
Correct and efficient work-stealing for weak memory models. ACM SIGPLAN
Notices 48, 8 (2013), 69ś80.

[11] Yiming Liu and Satish Puri. 2020. Efficient Filters for Geometric Intersection
Computations Using GPU. In Proceedings of the 28th International Conference on
Advances in Geographic Information Systems (Seattle, WA, USA) (SIGSPATIAL
’20). Association for Computing Machinery, New York, NY, USA, 487ś496. https:
//doi.org/10.1145/3397536.3422264

[12] Yiming Liu, Jie Yang, and Satish Puri. 2019. Hierarchical Filter and Refinement
System Over Large Polygonal Datasets on CPU-GPU. In 2019 IEEE 26th Interna-
tional Conference on High Performance Computing, Data, and Analytics (HiPC).
IEEE, 141ś151.



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

100 200 300

50

100

150

(a) ST_Intersects: Lakes ⊕ Parks

100 200 300

100

200

300

(b) ST_Intersection: Lakes ⊕ Parks

100 200 300

1,000

2,000

(c) ST_Union: Lakes ⊕ Parks

Figure 7: Execution time comparison amongWSSJ-DM, ADLB, SQSJ-DM, and Round Robin assignment (R-R) performing spatial

joins on 𝐿𝑎𝑘𝑒𝑠 and 𝑃𝑎𝑟𝑘𝑠, which are spatially partitioned into 8192 grid cells using ADP partitioning.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

Number of cores

T
im

e
(s
ec
o
n
d
s)

Uniform

Quad-tree

Adaptive

(a) Time (seconds)

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

Number of cores

Sp
ee
d
u
p

(b) Speedup w.r.t sequential spatial join using R-tree index

Figure 8: Execution time and speedup plot of WSSJ-DM w.r.t sequential join. For comparison, ST_INTERSECTION was used on

Lakes and Parks. Input data was partitioned into 8192 grid cells using different approaches.

[13] Ewing L Lusk, Steve C Pieper, Ralph M Butler, et al. 2010. More scalability,
less pain: A simple programming model and its implementation for extreme
computing. SciDAC Review 17, 1 (2010), 30ś37.

[14] Puya Memarzia, Suprio Ray, and Virendra C Bhavsar. 2020. The Art of Efficient
In-memory Query Processing on NUMA Systems: a Systematic Approach. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 781ś792.

[15] Anmol Paudel and Satish Puri. 2022. Accelerating Spatial Autocorrelation Com-
putation with Parallelization, Vectorization and Memory Access Optimization. In
2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). 544ś554. https://doi.org/10.1109/CCGrid54584.2022.00064

[16] Satish Puri, Anmol Paudel, and Sushil K Prasad. 2018. MPI-Vector-IO: Parallel I/O
and partitioning for geospatial vector data. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP. 13.

[17] Satish Puri and Sushil K Prasad. 2015. A parallel algorithm for clipping poly-
gons with improved bounds and a distributed overlay processing system using
mpi. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 576ś585.

[18] Suprio Ray, Catherine Higgins, Vaishnavi Anupindi, and Saransh Gautam. 2020.
Enabling NUMA-aware Main Memory Spatial Join Processing: An Experimental
Study. ADMS@ VLDB (2020).

[19] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014. Skew-
resistant parallel in-memory spatial join. In Proceedings of the 26th International
Conference on Scientific and Statistical Database Management. ACM, 6.

[20] Shashi Shekhar, Sivakumar Ravada, Vipin Kumar, Douglas Chubb, and Greg
Turner. 1995. Load-balancing in high performance GIS: Declustering polygonal
maps. In International Symposium on Spatial Databases. Springer, 196ś215.

[21] Sameh Shohdy, Yu Su, and Gagan Agrawal. 2015. Load balancing and acceler-
ating parallel spatial join operations using bitmap indexing. In 2015 IEEE 22nd
International Conference on High Performance Computing (HiPC). IEEE, 396ś405.

[22] Jie Yang and Satish Puri. 2020. Efficient Parallel and Adaptive Partitioning for
Load-balancing in Spatial Join. In 34th IEEE International Parallel & Distributed
Processing Symposium.

[23] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster com-
puting framework for processing large-scale spatial data. In Proceedings of the
23rd SIGSPATIAL international conference on advances in geographic information
systems. 1ś4.



Fine-grained Dynamic Load Balancing in Spatial Join by Work Stealing on Distributed Memory SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA

7 APPENDIX

7.1 Spatial Join using un-partitioned data

Generally, parallel spatial join implementations use spatially par-

titioned datasets. Partitioned datasets are useful to reduce data

skew in tasks and make it possible to process datasets larger than

available memory. On the other hand, spatial dataset partitioning

requires extra time and extra storage space. As WSSJ can share

tasks among threads, it is feasible to use spatially un-partitioned

datasets (smaller than memory limit) directly.

Let each worker in WSSJ take a part of 𝑅 and a part of 𝑆 as its

input. The subsets of 𝑅 and 𝑆 can be randomly distributed, as long

as the mapping relations of all subsets can be assembled back to

the same relations mapping 𝑅 to 𝑆 , as shown in Formula 3. As there

is no need to consider the spatial localities of geometries in 𝑅, this

step can be done at run-time with no additional cost compared with

using partitioned datasets.

In Formula 3, 𝑅 and 𝑆 are randomly distributed into 𝑛 and 𝑚

parts respectively. ⊕ stands for a spatial join operation. We can get

the same join results of 𝑅 and 𝑆 by performing join operations on

all pairs of 𝑅𝑖 and 𝑆 𝑗 .

𝑅 = 𝑅0 + 𝑅1 + ...𝑅𝑛

𝑆 = 𝑆0 + 𝑆1 + ...𝑆𝑚

𝑅 ⊕ 𝑆 =

𝑛∑︁

𝑖=0

𝑚∑︁

𝑗=0

𝑅𝑖 ⊕ 𝑆 𝑗

(3)

WSSJ using un-partitioned datasets takes slightly longer to finish

when compared to partitioned datasets. The benefit of using un-

partitioned data is that no data pre-processing is required, which

needs extra computing resources and storage space.

To demonstrate that our system performswell with un-partitioned

datasets as well, we used Sequential Spatial Join with Index, WSSJ,

andWSSJ-DM to perform ST_Intersects, ST_Intersection, and ST_Union

on several pairs of spatially un-partitioned datasets, and the results

are shown in Table 2. WSSJ was using 1 node (36 cores) and WSSJ-

DM was using 25 nodes (900 cores).

We can see that bothWSSJ andWSSJ-DM can be helpful in saving

time compared with sequential cases, especially with large datasets.

For instance, performing ST_Union on Roads and Lakes took se-

quential join 53.45 hours, while WSSJ finished in 1.89 hours and

WSSJ-DM finished in 7.26 minutes. ST_Union and ST_Intersection

are slow in GEOS library because these operations do not internally

invoke quadtree indexing for a geometry overlapping with multi-

ple geometries. ST_Intersects is optimized using PreparedGeometry

class provided by GEOS library.

7.2 Duplicate avoidance for spatially
partitioned data

Spatial partitioning of geometries in a single map layer leads to

duplication of geometry across cell boundaries. This can result in

duplicate (redundant) spatial join output pairs while doing parallel

processing of spatial join across cells. We refer to this method as

a single layer partitioning based spatial join. We do not use sin-

gle layer partitioning based method. So, the partitioning scheme

used in this work is different. The spatial partitioning method has

Dataset R⊕S Join OP Sequential WSSJ WSSJ-DM

Sports⊕Cemetery

Intersects

3.39 0.59 0.14

Parks⊕Sports 165.76 10.80 1.78

Lakes⊕Sports 344.71 16.47 2.90

Lakes⊕Parks 2,401.74 119.25 20.95

Roads⊕Lakes 600.60 118.97 20.32

Sports⊕Cemetery

Intersection

3.92 0.61 0.14

Parks⊕Sports 339.32 16.14 2.89

Lakes⊕Sports 389.61 17.546 3.07

Lakes⊕Parks 4,912.32 196.24 29.92

Roads⊕Lakes 14,391.57 520.10 35.29

Sports⊕Cemetery

Union

4.38 0.68 0.13

Parks⊕Sports 1,908.46 71.82 8.60

Lakes⊕Sports 4,550.04 179.66 15.49

Lakes⊕Parks 43,236.40 1,834.39 146.25

Roads⊕Lakes 192,450.86 6,820.24 435.41

Table 2: Execution time (in sec) for Sequential Indexed Spatial

Join, WSSJ (36 cores), WSSJ-DM (25 compute nodes) perform-

ing spatial join on different pairs of un-partitioned datasets.

been described in our prior work (ParADP [22]) on workload-aware

spatial join partitioning. We refer to this as output-sensitive du-

plication avoidance method where we partition the intermediate

output of filter-and-refine based spatial join. In short, ParADP only

partitions the center points corresponding to output candidate pairs

(overlapping MBRs) generated by R-tree indexing and querying of

MBRs of geometries (filter phase). Our technique is an extension of

reference point method for duplicate avoidance. The duplication

avoidance happens before stealing in memory. Please refer to [22]

for more details.

7.3 Handling other spatial join algorithms

In this paper, we showed work stealing based spatial join on par-

titioned and unpartitioned data based on filter and refine phases.

Filter and refine is implemented using indexed nested-loop spatial

join algorithm. However, the proposed work stealing technique

can be used with other spatial join algorithms as well. For instance,

when spatial join is implemented using plane sweep approach, then

the intermediate output produced by plane sweep of MBRs of input

geometries can be stored in the work stealing queue. Once the tasks

are stored in queues, the system will start load balancing. Simi-

larly, when spatial join is implemented by hierarchical traversal

(synchronized traversals) of R-trees, the tree nodes with overlap-

ping ranges will produce intermediate output which can be stored

in work stealing queues for further refinement processing. These

alternative spatial join implementations can be part of future work.

7.4 Fine-grained load balancing

Most of the work on spatial join considers a grid cell generated

from spatial partitioning as a unit task for assignment to a CPU

thread and for the purpose of load balancing. A grid cell can have

an arbitrary number of geometries contained in it. This is a coarse-

grained task in our view. We consider a geometry from a dataset

𝑅 overlapping with a small number (like 10) of geometries from 𝑆

as a unit task for assignment to a CPU thread and for the purpose



SIGSPATIAL ’22, November 1ś4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

of work stealing. This is a fine-grained task for the purpose of

parallelization and load balancing in our view.

7.5 Remote Memory Access (RMA) and
Non-blocking Communication

We have used one-sided (put/get) Message Passing Interface (MPI)

functions for task coordination between any two processes. One-

sided programming model is referred to as Remote Memory Access

(RMA) in MPI. It is suitable for expressing irregular communication

patterns that arise while coordinating tasks among processes in

distributed memory [9]. One-side communication is used for ex-

changing control messages. However, non-blocking send/receive

functions are used for actual data transfers because of programming

simplicity.

RMA uses the concept of memory window which is the memory

in a process that can be accessed by another remote process through

the use of RMA put/get functions.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Spatial Join
	2.2 Load Balancing in Parallel Spatial Join
	2.3 Work Stealing
	2.4 Non-Uniform Memory Access (NUMA)

	3 Implementation of Work Stealing Spatial Join
	3.1 Work Stealing Queue
	3.2 NUMA Memory Policies
	3.3 Work Stealing Algorithm
	3.4 Overall Framework on Distributed Memory
	3.5 Coordinator in Send Status
	3.6 Coordinator in Receive Status
	3.7 Inter-node Communication
	3.8 Theoretical Analysis

	4 Experimental Results
	4.1 Impact of NUMA Policies on WSSJ
	4.2 Tasks Composition of WSSJ
	4.3 Tasks Composition of WSSJ-DM
	4.4 Comparison Experiments for WSSJ
	4.5 Comparison Experiments for WSSJ-DM
	4.6 Strong Scaling for WSSJ-DM

	5 Conclusion
	6 Acknowledgement
	References
	7 Appendix
	7.1 Spatial Join using un-partitioned data
	7.2 Duplicate avoidance for spatially partitioned data
	7.3 Handling other spatial join algorithms
	7.4 Fine-grained load balancing
	7.5 Remote Memory Access (RMA) and Non-blocking Communication


