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Abstract

We present a detailed analysis of the behavior of the triaxial Schwarzschild orbit superposition method near the
axisymmetric limit. Orbit superposition modeling is the primary method used to determine dynamical masses of
supermassive black holes (Mgy) in nearby galaxies; however, prior studies have reported conflicting results when
comparing the outcome from axisymmetric orbit codes with that from a triaxial orbit code in the axisymmetric
limit. We show that in order to achieve (oblate) axisymmetry in a triaxial code, care needs to be taken to
axisymmetrize the short-axis tube orbits and to exclude both the long-axis tube and box orbits from the orbit
library. Using up to 12 Gauss—Hermite moments of the line-of-sight velocity distributions as constraints, we
demonstrate the effects of orbit types on the best-fit Mgy in orbit modeling of the massive elliptical galaxy
NGC 1453 reported in Liepold et al. In addition, we verify the efficacy of our updated code on a mock galaxy data
set. We identify a subset of slowly precessing quasi-planar orbits for which the typical integration times can be
insufficient to fully capture the equilibrium orbital behavior in both axisymmetric and triaxial systems with central
black holes. Further investigation is needed for a more reliable treatment of these orbits.
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1. Introduction

The orbit superposition method of Schwarzschild (1979)
enables efficient construction of self-consistent and equilibrium
mass models of galaxies. The basic procedure consists of two
steps: integrating a representative set of orbits in a static triaxial
gravitational potential, and finding weights for these orbits such
that their superposition reproduces the assumed mass
distribution.

The orbit superposition method has been extended to include
kinematic information and used to determine mass distributions
in real galaxies, starting with studies such as Pfenniger (1984),
Richstone & Tremaine (1984, 1985), and Rix et al. (1997).
From the quality of the fit to both kinematic and photometric
data, this method can be used to assess the relative likelihood of
a range of mass models and to determine best-fit mass
parameters such as Mgy, stellar mass-to-light ratios, galaxy
shapes, and dark matter halo parameters.

Due to the large number of orbits needed to sample the
relevant phase space, the orbit superposition method is
computationally expensive. To reduce the number of orbits
and the dimensions of the model parameter space, a few orbit-
based numerical codes have been developed for axisymmetric
systems (e.g., Cretton et al. 1999; Gebhardt et al. 2000;
Thomas et al. 2004; Valluri et al. 2004; Cappellari et al. 20006).
Many dynamical measurements of Mgy from stellar kinematics
have been obtained using these axisymmetric orbit codes.

Triaxiality allows for more general galaxy shapes and
additional orbit types, but modeling orbits in triaxial potentials
comes at the cost of increased complexity and computation
time. van den Bosch et al. (2008) presented a triaxial orbit-
based code capable of comparing directly to observations,
using an orbital sampling scheme based on Schwarzschild
(1993). van de Ven et al. (2008) performed recovery tests of

this code for analytically tractable triaxial potentials (excluding
central black holes). Only a handful dynamical determinations
of Mgy have been obtained using triaxial models from this
code (van den Bosch & de Zeeuw 2010; Walsh et al. 2012;
Feldmeier-Krause et al. 2017). Several additional Mgy were
determined using this code in the (nearly) axisymmetric limit
(Seth et al. 2014; Walsh et al. 2015, 2016, 2017; Ahn et al.
2018). This code has also been used to construct axisymmetric
and triaxial galaxy models to determine stellar dynamics and
dark matter distributions for a wide range of galaxies (e.g., Zhu
et al. 2018; Poci et al. 2019; Jin et al. 2020). Vasiliev & Valluri
(2020) recently presented a new triaxial orbit-based code using
a different method for phase space sampling and orbit
initialization; the method was tested on mock data but had
not been applied to real data.

An important test of the orbit superposition codes is the
ability to produce consistent results between an axisymmetric
code and a triaxial code in the axisymmetric limit. We note that
the code by van den Bosch et al. (2008) is written for triaxial
potentials and “is not capable of making a perfectly axisym-
metric model” (van den Bosch & de Zeeuw 2010). Studies that
attempt to run it near axisymmetry and then compare with
results from axisymmetric codes have reached conflicting
conclusions. For instance, van den Bosch & de Zeeuw (2010)
used their triaxial code to construct (nearly) axisymmetric
models for M32 and NGC3379, and found the mass-to-light
ratios and Mgy to be consistent with those from earlier studies
using axisymmetric codes (van der Marel et al. 1998; Joseph
et al. 2001; Verolme et al. 2002 for M32; Gebhardt et al. 2000;
Shapiro et al. 2006 for NGC 3379). Ahn et al. (2018), on the
other hand, found a puzzling global x* minimum at Mgy =0
while using this triaxial code to perform axisymmetric
modeling of the ultracompact dwarf galaxy M59-UCD3. They
found this minimum to be inconsistent with the best-fit nonzero
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Mgy from Jeans modeling and the axisymmetric orbit code of
Cappellari et al. (2006).

It is the purpose of our recent work (Liepold et al. 2020) and
this paper to investigate how to modify the van den Bosch et al.
(2008) code to enable it to handle properly both axisymmetric
and triaxial systems. Since no galaxy in nature is likely to be
exactly axisymmetric, it may appear that we are taking a step
backwards in examining the axisymmetric limit of a triaxial
code. While our next goal is indeed to adopt the more realistic
triaxial potentials, we believe that one critical test of a triaxial
code is its behavior in the simpler, axisymmetric limit. Such a
study—the main goal of this paper—is a particularly important
step in the quest for dynamical Mgy measurements in view of
the fact that almost all existing Mgy measurements have been
obtained assuming exact axisymmetry, and that the aforemen-
tioned recent comparison of axisymmetric and triaxial codes
has led to unresolved conflicting results.

In Liepold et al. (2020), we described a set of recipes and
code changes for achieving axisymmetry. We then performed
proper axisymmetric orbit modeling using the revised code to
obtain a new Mgy measurement for the massive elliptical
galaxy NGC 1453, a fast rotator in the MASSIVE survey (Ma
et al. 2014) well suited for axisymmetric orbit modeling.
Similar to Ahn et al. (2018), we had encountered difficulties in
constraining Mgy in NGC 1453 when we used the original
code with comparable settings. Through extensive testing, we
came to two main conclusions: (1) higher Gauss—Hermite
moments (beyond the typically used h,) of the line-of-sight
velocity distributions (LOSVDs) are needed to fully constrain
the orbital weights, and (2) the orbit libraries need to be
modified to satisfy axisymmetry. The use of higher moments is
described in detail in Liepold et al. (2020). Here, we focus on
the construction of axisymmetric orbit libraries in a triaxial
orbit code.

In this paper, we provide a full discussion of the required
steps to axisymmetrize the model and the various modifications
that we have implemented to the triaxial code by van den
Bosch et al. (2008). The code was never given a name; we will
refer to it as the TriOS (“Triaxial Orbit Superposition”) code
from this point on. In Section 2, we provide some background
information about the implementation of the orbit superposition
method in this code. We focus on four topics that are pertinent
to subsequent discussions: the three major orbit types in a
triaxial potential (Section 2.1), orbital sampling and initializa-
tion (Section 2.2), orbital integration (Section 2.3), and
parameters used to quantify triaxial shapes (Section 2.4).

In Section 3, we give an in-depth discussion of the three
main ingredients for axisymmetry listed in Section4.1 of
Liepold et al. (2020): axisymmetrization of short-axis tube
orbits (Section 3.1), criteria for how to exclude long-axis tube
orbits (Section 3.2), and exclusion of box orbits (Section 3.3).

We have made additional improvements and corrections to
the code (Section 4). We identify a subset of slowly precessing
quasi-planar orbits that are misclassified and are “mirrored”
improperly in the orbit library (Section 4.1). We correct an
issue with the zero-point of the logarithmic potential for the
dark matter halo that would otherwise render energy conserva-
tion checks ineffective in the code (Section 4.2). We are able to
speed up the total run time of a mass model by a factor of two
to three by a simple modification to how the point-spread
function (PSF) convolution is implemented in the code
(Section 4.3). An improvement in setting the intrinsic mass
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grid used to constrain stellar density profiles is described in
Section 4.4. Finally, we illustrate the effects of these changes in
the case of NGC 1453 (Section 5).

Three appendices are included as well. Appendix A derives a
simple analytic criterion for the existence of long-axis tube
orbits within a model. Appendix B outlines a change in the thin
orbit finding algorithm that must be made to the TriOS code in
order to generate the correct orbital sampling. Finally,
Appendix C presents a mock recovery test demonstrating the
ability of our revised TriOS code to recover the input mass
parameters.

2. Orbit Modeling Background

A summary of the implementation of the Schwarzschild orbit
superposition method in the TriOS code is given in Section 4 of
Liepold et al. (2020). Here we focus on the topics relevant for
subsequent discussions of axisymmetry (Section 3) and code
modifications (Section 4).

In this paper, we use a Cartesian coordinate system in which
the x-, y-, and z-axes are directed along the intrinsic major,
intermediate, and minor axes of the galaxy, respectively. The z-
axis is therefore the symmetry axis of an oblate axisymmetric
potential, and the x-axis is the symmetry axis of a prolate
axisymmetric potential. We focus on oblate axisymmetric
systems in this paper, although our discussions can be easily
modified for the prolate axisymmetric case.

2.1. Orbit Types in a Triaxial Potential

In a static triaxial gravitational potential, time invariance is
the only global continuous symmetry of the Hamiltonian, H.
By Noether’s theorem, this symmetry gives rise to conservation
of energy as the only “classical” integral of motion. This
conservation law restricts the allowed phase space for a given
orbit from the full six phase space dimensions to a 5D subspace
defined by the energy H=FE. An integral that reduces the
allowed phase space dimension in this way is referred to as an
isolating integral.

Numerical studies have revealed that orbits in many
potentials often conserve two additional “nonclassical” isolat-
ing integrals of motion (Schwarzschild 1979), which we refer
to as I, and I3. These additional integrals do not typically have
simple analytical expressions nor correspond to global
symmetries of H. Orbits that conserve three (or more) isolating
integrals of motion are referred to as regular. These regular
orbits often fall into one of three main orbit types: short-axis
tubes, long-axis tubes, and boxes.

Both types of tubes have a fixed sense of rotation. For short-
axis tubes, the component of angular momentum along the
potential’s minor axis, L., does not change sign. Similarly, for
long-axis tubes, the component of angular momentum along
the potential’s major axis, L,, does not change sign. For box
orbits, all three components of angular momentum change sign,
leaving no fixed sense of rotation. Box orbits also have the
property of touching the equipotential surface, ®(x, y, z) = E, at
some point during their trajectory. Intermediate axis tube orbits
are typically unstable in triaxial models (Heiligman &
Schwarzschild 1979).

A triaxial system generally admits all three of these main
orbit types. For oblate axisymmetric systems, the orbital
structure is simpler because L, is an integral of motion, and
only short-axis tubes are present. Similarly, for prolate
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Figure 1. Two examples of the initial orbit locations in the x—z start space. Two nearly axisymmetric models for massive elliptical galaxy NGC 1453 are shown: (left)
triaxiality parameter 7 = 0.002, (luminosity weighted) axis ratio p = 0.9997, and viewing angles (6, ¢, 1) = (89°, 45°, 90°001); (right) T = 0.05, p = 0.993, and (0, ¢,
) = (89°, 45°, 90°026). Both models have the best-fit My, mass-to-light ratio, and dark matter halo from Liepold et al. (2020) and assume the orbital sampling
parameters (No, Ng, Npimer) = (9, 9, 3) (see Section 3.2). In each panel, one energy is shown, where the energy is chosen such that the potential is dominated by the
stellar mass. Each symbol represents the initial location for a single trajectory, which is bundled with adjacent trajectories to form one dithered orbit. The long-axis
tubes (red crosses) are all contained within the angle 7 of the z-axis for both values of 7, where 7 and T are related by Equation (2). In general, more triaxial potentials

contain a larger fraction of long-axis tubes in the x—z start space.

axisymmetric systems, L, is an integral of motion, and only
long-axis tubes are present.

2.2. Orbital Sampling and Initialization

The set of initial conditions (referred to as a start space)
should sample over all orbit types supported by the potential.
Even though regular orbits in a triaxial potential conserve
energy plus two additional integrals of motion, the nonclassical
integrals of motion, I, and I3, may not be the same quantities
for each orbit type (Binney & Spergel 1984; Binney &
Tremaine 2008). Thus, for a given energy, each orbit type can
be sampled by a 2D start space, but the start spaces for the
different orbit types cannot necessarily be combined into a
single 2D start space.

Schwarzschild (1993) argued that a 4D space can guarantee
that all orbit types of a given energy are sampled, and further
suggested that a pair of 2D start spaces is sufficient for
sampling phase space in realistic galaxy potentials. The first of
these start spaces, the x—z start space, is defined by sampling
over a grid of points in the x—z plane, and setting
y=v,=v,=0 and v, from vy2 = 2[E — ®(x, 0, 7)] for a given
E. For simplicity, v, is taken to be positive, and a second copy
is added to the orbit library with the velocity direction flipped.
Two examples of this x—z start space are shown in Figure 1.

Typically, tube orbits will pass through the positive quadrant
of the x—z plane perpendicularly at two points, separated by the
thin-orbit curve (see Figure 1). Orbits launched along that
curve will perpendicularly pass through the plane at a single
point, so the curve can be found by iteratively launching orbits
at different radii to identify those that pass through the x—z
plane in a thin curve (see Appendix B). Each orbit in the x—z
start space passes once inside and once outside the thin-orbit
radius, so the code avoids double counting by initializing orbits
only between the thin-orbit curve and the equipotential where

E = ®(r), as shown by the crosses in the examples in Figure 1.
All three main orbit types pass through this start space.

The second 2D start space proposed by Schwarzschild
(1993) is referred to as the stationary start space. In this start
space, orbits are started from rest on the equipotential surface
and are sampled over a solid angle. Since tube orbits never
come to rest, box orbits will be the only main orbit family in
this start space. By combining the x—z start space that samples
mainly tube orbits with the stationary start space that samples
mainly box orbits, Schwarzschild (1993) suggested that any
remaining unsampled region of phase space is likely to be
small.

The TriOS code is designed for static triaxial potentials that
possess reflection symmetry along each of the three principal
axes. Under this assumption, any orbital property only needs to
be calculated in one octant; it can then be “mirrored” into the
other seven octants by symmetry. Taking advantage of this
symmetry, the code initializes orbits only in one octant (x, y,
z>0) and integrates only these orbits. Seven additional copies
of each orbit are then created by simply mirroring along the
three axes. The details are described in Section 4.5 of van den
Bosch et al. (2008), and the mirroring scheme is given in their
Table 2. A key feature to note in their Table 2 is that the exact
mirror procedure (i.e., how the signs of the velocity
components are flipped in each octant) depends on whether
the orbit is a short-axis tube, long-axis tube, or box. The orbits
therefore must be classified first.

To classify an orbit, the code determines how the angular
momentum components change sign over the course of its
integrated trajectory and uses these rules: (1) short-axis tubes, if
L, and L, flip signs while L, does not, (2) long-axis tubes, if L,
and L, flip signs while L, does not, and (3) box orbits, if all
three angular momentum components change signs. The
velocities are mirrored in order to maintain the orbit’s sense



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 254:25 (14pp), 2021 June

of rotation. If an orbit does not fall into any of these categories,
its velocity is mirrored to have zero angular momentum.

2.3. Orbital Integration

The TriOS code uses the DOP853 explicit Runga—Kutta
integrator with order 8(5,3). The integrator performs adaptive
time stepping to ensure that the relative error in the positions
and velocities is below a set threshold, typically 10>, After
each orbit is integrated, a relative energy tolerance is used to
check energy conservation. If the change in energy exceeds this
tolerance (typically set to 10%), it is re-integrated with a
smaller integration error threshold.

The default integration time for each orbit is 200 dynamical
times, where a dynamical time is set to the period of a closed
elliptical orbit of the same energy. To enforce smoothness of
the recovered distribution function, the orbital initial conditions
can be “dithered” by combining N34, trajectories corresp-
onding to nearby initial conditions. By merging trajectories in
this way, each orbit represents a small volume of the start space
rather than a single point. This results in smoother orbital
properties without a significant memory increase, since only the
bundled orbital properties are stored.

After integration, the trajectory of each orbit is interpolated
onto a set of points (typically 50,000) that are uniformly spaced
in time. These interpolated points are then stored and used for
computing orbital properties. Once the orbit libraries are
constructed, weights are found for each orbit to reproduce the
observed surface brightness distribution, the LOSVDs, and
intrinsic 3D mass distribution.

2.4. Viewing Angles, Axis Ratios, and Triaxiality

Three viewing angles (6, ¢, 1) can be used to relate the
intrinsic and projected coordinate systems of a triaxial galaxy
(Binney 1985). The two angles 6 and ¢ describe the orientation
of the observer’s line of sight with respect to the intrinsic axes
of the galaxy. The angle i specifies the remaining degree of
freedom—rotation of the galaxy around the line of sight. The
angle ¢ = 90° corresponds to an oblate axisymmetric potential.
In the oblate axisymmetric limit, 6 is the inclination with
6 =90° corresponding to edge-on, and ¢ describes rotations
about the symmetry axis.

These three viewing angles are related to the intrinsic axis
ratios p and g, where p = b/a is the intrinsic intermediate-to-
major axis ratio, ¢ = ¢/a is the intrinsic minor-to-major axis
ratio, and a, b, and c are the lengths of the three principal axes
of a triaxial system (with ¢ <b<a). A third parameter,
u = a'/a, represents a compression factor due to projection,
where a’ is the major axis of the projected shape on the sky;
u =1 corresponds to the intrinsic major axis lying in the plane
of the sky, while u = p corresponds to the intrinsic intermediate
axis lying in the plane of the sky. These quantities obey the
inequality 0 <g<p <u < 1. The relationship between the
viewing angles, intrinsic axis ratios, and observed axis ratio is
given in Equations (7)—(10) of van den Bosch et al. (2008). In
addition, a triaxiality parameter is often used:

1 — 2
T:—l—ZZ' (1)

This parameter ranges from O for oblate axisymmetry to 1 for
prolate axisymmetry, with values in between indicating a
triaxial shape.
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The oblate axisymmetric limit can be achieved by setting
either p=1 or ¢»=90°, but for numerical reasons, the code
does not run when 1) is exactly 90°. As we discussed in Liepold
et al. (2020) and elaborate below (Section 3.2), axisymmetry in
the code can be achieved only with carefully chosen values of

1 or p.

3. Ingredients for Achieving Axisymmetry

In this section, we discuss a number of steps that need to be
taken to generate orbit superposition models in the oblate
axisymmetric limit using the TriOS code. It is straightforward
to modify these steps for the prolate axisymmetric limit. In
Appendix C, we test the modified TriOS code on a mock data
set showing that we can accurately recover input parameters.

3.1. Axisymmetrize Short-axis Tube Orbits

As we described in Section 2.2, a triaxial potential exhibits
reflection symmetry along each principal axis, allowing the
TriOS code to initialize orbits in only one octant of the x—z start
space. These orbits are then mirrored via eight-fold reflections
about the principal axes into each of the other seven octants.
This setup is not meant for axisymmetric systems, in which the
orbit library should respect azimuthal symmetry about the
symmetry axis.

To enable modeling axisymmetric systems, we have
implemented an axisymmetrized version of the orbit library
by creating 80 copies of each short-axis tube orbit in the
original loop library: 40 copies rotated evenly through an angle
27 about the short axis with velocities rotated to preserve L.,
and another 40 copies generated by flipping the sign of z and v,
in each of the 40 rotations. We choose 40 rotations, as this
gives several copies per quadrant, with a comparable density to
the start space grid sampling. Once we perform this operation,
it is unnecessary to perform the eight-fold reflections in the
original code. A similar rotation scheme was tested on mock
data with no central supermassive black hole (SMBH) in
Hagen et al. (2019).

The net result of our axisymmetrization process is to create a
library of short-axis tube orbits in the TriOS code that samples
the azimuthal angle uniformly with effectively equal orbital
weights. In order for this procedure to be justified, the library
should consist solely of short-axis tubes. In the next section, we
show how to ensure that no long-axis tubes occur in this
library.

3.2. Exclude Long-axis Tube Orbits

In an oblate axisymmetric potential, the long-axis tube orbits
become unstable since there is no longer a single preferred long
axis. These orbits therefore should not be present in the orbit
library.?

As we discussed in Section 2.4, the potential is oblate
axisymmetric when 1) is set to 90° exactly, and long-axis tubes
should be absent in this limit. For numerical reasons, however,
the code does not run when 1 is set to 90° within machine
accuracy. Prior work using this code for black hole mass
measurements in the axisymmetric limit chose either |¢) — 90°|
between 0.001° and 0.01° (Walsh et al. 2016; Ahn et al. 2018),
or an axis ratio of p=0.99 (Seth et al. 2014; Walsh et al.

3 Similarly, in the case of a prolate axisymmetric potential, the short-axis tube
orbits become unstable and should be absent.
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2015, 2017). As we first pointed out in Liepold et al. (2020),
some of these values may not have been close enough to the
desired axisymmetric values to exclude long-axis tubes. Here
we provide a detailed explanation.

We use two examples of the x—z start space in Figure 1 to
illustrate how long-axis tube orbits are initialized in the code.
As shown in Appendix A, long-axis tube orbits in many
realistic triaxial potentials are confined to pass through the x—z
start space within an angle n from the z-axis. The angle n
depends on the shape of the potential, and we find the relation
between 7) and the triaxiality parameter T (Equation (1)) to be
well approximated by

T
=tan! | ——. 2
n ’/1—T 2

This is demonstrated in Figure 1 where the black line at angle n
separates the short-axis tube orbits (black crosses) from the
long-axis tube orbits (red crosses). As the potential becomes
more oblate axisymmetric (7= 0.05 in the right panel versus
T =0.002 in the left panel), n becomes smaller, and the area in
the x—z start space occupied by long-axis tubes shrinks. To
effectively achieve oblate axisymmetry, n needs to be small
enough so that no orbits are sampled within an angle of 1 of the
positive z-axis. Two additional mass models with higher
triaxiality, (7’=0.25 and 0.75) are shown in Appendix A.
Equation (2) again provides an excellent approximation for the
angle demarcating the long-axis and short-axis tube orbits in
the x—z start space.

Whether orbits are sampled within the angle 1 on the x—z
plane depends on the input parameters. For a given energy, the
code starts the orbits on a grid of Ng radii between the inner and
outer thin-orbit radii and Ng angles between 0° and 90° in the
positive quadrant on the x—z plane (van den Bosch et al. 2008).
The code further allows for dithering, where Ng., nearby
initial conditions, adjacent in (E, R, ©), are bundled together to
improve the phase space sampling. Orbits are therefore
sampled at a total of Ng X Npjner angles, where the first angle
from the z-axis is chosen to start at half of the grid spacing (i.e.,
at an angle of (7/2)/(2NoNpiner) from the z-axis). The
criterion to satisfy oblate axisymmetry is therefore

_ L s 3
2]\7(—)]\] Dither 2

The two examples of NGC 1453 shown in Figure 1 have
No =Ngr =29, Npjmner = 3, and 27 x 27 orbits initialized in the
x—z start space. The orbits closest to the z-axis are therefore at
an angle of ~1°67 away. These orbits lie within the
demarcation angle n of Equation (2) for either model in
Figure 1: n=2°56 for T=0.002 (left) and n=12°9 for
T=0.05 (right). Both models therefore violate Equation (3)
and contain long-axis tubes. This provides the physical
explanation for our statement in Liepold et al. (2020) that
even |1 — 90°| as small as 0.001 (left panel) is not sufficiently
close to 90° to achieve axisymmetry in our models.

To extend the discussion beyond the two specific mass
models shown in Figure 1, we illustrate in Figure 2 the relation
between T and 1 for nearly axisymmetric models of NGC 1453
(top panel), and the corresponding fraction of long-axis tubes
that are initialized in the x—z plane (bottom panel). The
inclination angle 6 is assumed to be 89° here, and the shaded
band indicates the additional dependence of T on ¢. Figure 2
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Figure 2. (Top panel) Relationship between the viewing angle 1 and the
triaxiality of the deprojected stellar density. Exact oblate axisymmetry has
T =0 and 1) = 90°0. The other viewing angle 6 is taken to be 89°, and ¢ is
varied from 1° to 89°. (Bottom panel) Fraction of long-axis tube orbits in the x—
z start space as a function of the triaxiality of the stellar density near the oblate
axisymmetric limit. The same mass model and orbital sampling parameters for
NGC 1453 shown in Figure 1 is assumed here. In this example, long-axis tube
orbits begin to appear when T'is as small as ~5 x 10~ , or [t/ — 90°| as small
as ~9 x 10’6, and the fraction of these orbits increases monotonically as the
potential becomes more triaxial, reaching ~6% at T = 0.05.

shows that T<5 x 10~ * is needed to exclude long-axis tube
orbits in this case. The corresponding requirement on % is
[ —90° <8.7x 10°° for ¢~ 1°89° and
[ —90°| <25 x 10°*  for  ¢~45°. We advocated
v —90°| =107 in Liepold et al. (2020), which safely
excluded all long-axis tube orbits.

Earlier work using the code in the near axisymmetric limit
does not typically satisfy the criterion in Equation (3). For
M59-UCD3, Ahn et al. (2018) used (0, ¢, 1) = (85°, —49299,
89°99), which we find to correspond to T=0.004 and
17 =3%64. The orbital sampling parameters were not explicitly
given for the runs using the triaxial code. Assuming the same
parameters used in their runs with the axisymmetric orbit code
(No =8, Npimer = 6), we find that the innermost ray would be
at an angle of 0794 from the z-axis, which is well inside
7 =3%64, and therefore violates the criterion in Equation (3).

For M60-UCD1 (Seth et al. 2014), NGC 1271 (Walsh et al.
2015), and Mrk 1216 (Walsh et al. 2017), each paper quoted an
axis ratio of p = 0.99. The minimum possible triaxiality with
this value of p is T= 1 — p* = 0.0199 (in the unrealistic limit of
a razor-thin disk with ¢ = 0), leading to a minimum 7 of 871.
For NGC 1271 and Mrk 1216, Np;mer = 5 was used, while Ng
was set to 8 and 9, respectively. Thus, orbits were sampled
starting at 17125 and 1° away from the z-axis, indicating that
neither satisfies the criterion in Equation (3). For M60-UCDI,
not enough information is given about the orbital sampling to
determine whether the criterion is satisfied. However, for
typical orbital sampling parameters quoted above, the criterion
in Equation (3) would not be satisfied.

The modeling of the NGC 1277 black hole used Ng =9 and
Npimer =95 (Walsh et al. 2016); the innermost ray of initial
orbits therefore lies at 1° from the positive z-axis. The complete
shape information was not given in the paper, but private
communication indicated that (8,¢,)=(75%3,7126,90°001)
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was used. We find this set of viewing angles to correspond to
T=0.0002 and 7= 0285, narrowly satisfying the criterion in
Equation (3).

We note that the presence of the long-axis tube orbits in the
orbit library does not necessarily imply that they receive
significant weights after fitting to observational constraints for a
given galaxy. Direct tests would need to be performed for each
galaxy to assess the impact of these orbits on previous work.

3.3. Exclude Box Orbits

As we discussed in Section 2.1, all orbits in the (oblate)
axisymmetric limit conserve L.. Box orbits in this limit have L,
= 0 and therefore have similar properties to the tube orbits with
small L,. In this case, as long as angular momentum is
sufficiently sampled by the tube orbits, there is no need to
include box orbits explicitly.

The TriOS code devotes an entire library to box orbits and
initializes them in the stationary start space (Section 2.2). One
can modify the code to exclude this library when needed. We
use a simpler approach without changing the code itself: we
skip running the orbital integration routine orblib_f.£90
for the stationary start space, and replace the box library with a
copy of the x—z library in the input file for the weight-finding
routine triaxnnls.f90. These modifications typically
reduce the total computation time of the original code by more
than half.

While box orbits are unnecessary in the axisymmetric limit,
they also should be harmless and not affect the results if
included. As a test, we have run our revised code including the
box library for comparison. Since the box orbits launched at
different azimuthal angles are allowed to have different weights
in the triaxial code, we have to impose an additional constraint
of equal weights to enforce axisymmetry in the box library.
Once these weights are forced to be equal, we indeed find
similar results as the case when the box library is excluded
altogether. The case where the box library weights are free to
differ between azimuthal angles is discussed in Section 5. To
reduce computational cost, we recommend excluding the
stationary start space for axisymmetric models.

For a triaxial potential, we note that box orbits can also occur
in the x—z start space (e.g., Figure 1 of Schwarzschild 1993).
However, the region in the x—z start space that would generate
box orbits shrinks as the potential becomes increasingly
axisymmetric. When exact axisymmetry is reached, only the
orbits that begin exactly on the equipotential surface in the x—z
start space have L, =0 (since they have zero initial velocities)
and are box orbits. The TriOS code does not sample orbits
lying exactly on the equipotential curve in the x—z start space,
so the number of box orbits will shrink to zero as axisymmetry
is approached. In other orbit-based codes that assume
axisymmetry from the start, the L, =0 orbits also are not
usually sampled, as they are presumed to be represented by the
tube orbits with small but nonzero L, (e.g., Cretton et al. 1999;
Thomas et al. 2004).

4. Additional Code Fixes and Improvements

We have made several modifications in the TriOS code in
addition to those described in Section 3. These modifications
include corrections, improvements, and speedups that are
general to the code regardless of the issue of axisymmetry. We
describe these changes in this section.
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4.1. Correct Orbit Misclassifications

As we described in Section 2.2, the TriOS code assumes the
triaxial potential to possess reflection symmetry along each of
the three principal axes and integrates only orbits that are
initialized in one octant of space to save computation time. It
then uses an eight-fold reflection scheme to generate seven
more copies of each orbit. How the orbits are “mirrored”
depends on whether the orbit is classified as a short-axis tube,
long-axis tube, or box orbit.

We have discovered that the mirroring scheme in the original
code misclassifies a subset of orbits for which the angular
momenta vary on timescales slower than the integration time.
We find this to happen in at least two situations. First, in nearly
oblate axisymmetric models, many box orbits in the stationary
start space tend to be misclassified as short-axis tubes due to
the near conservation of L,. Because L, varies slowly, it may
not change sign throughout the integration time. However,
these orbits have very low angular momentum, so it is unlikely
that mirroring these orbits to preserve L, would cause
significant issues in the models themselves.

The second situation occurs in regions of space where the
potential is nearly spherical, e.g., deep within the sphere of
influence (SOI) of an SMBH, or in the outer part of a galaxy
where a (spherical) dark matter dominates the potential. Some
orbits in these regions follow quasi-planar rosettas or
Keplerian-like ellipses with nearly constant angular momentum
vectors, consistent with prior studies of orbits near a central
point mass (Sridhar & Touma 1999, 2016; Valluri et al. 2016).
For the subset of orbits with precession time longer than the
integration time, no component of their angular momentum
changes sign over the entire integrated trajectories. These orbits
therefore do not fall into any of the categories listed above and
are mirrored incorrectly to have no net angular momentum.

These quasi-planar orbits will not be significant in most
Schwarzschild models, as they are only present at extreme
radii. We checked this in our models of NGC 1453, with the
properly axisymmetrized code as described in Section 3 using
the lowest four Gauss—Hermite kinematic moments as
constraints. In this model, we find that ~10% of the total
weight after orbital weight minimization is assigned to orbits
that would have been quasi-planar in the original version of the
code (~10% of the mass within the Mitchell apertures and
~2% of the mass within the Gemini Multi-Object
Spectrograph apertures). These relatively low percentages
suggest a minimal effect on the model for NGC 1453.

We expect the issues with orbital integration time and
misclassification to be more severe for galaxies with data that
resolve well within the black hole’s SOI, or well beyond the
stellar half-light radius, e.g., M87 and the Milky Way black
hole. The effect is also likely to be more significant if the
galaxy has a net rotation at these radii.

We find a further issue with orbit classification in the orbital
composition information outputted in the file intrinsic_-
moments.out. This file reports the mass fraction of box
orbits for each bin in the intrinsic spatial grid described in
Section 4.4. In this case, however, all orbits that are neither
long-axis tubes or short-axis tubes are grouped together as box
orbits. Since this includes the quasi-planar orbits discussed
above, the reported fraction of true box orbits may be
overestimated.

In our revised code for axisymmetric systems, these orbit
misclassification issues are not present because we manually
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Figure 3. Illustration of the issue with setting the zero-point of the logarithmic
potential to &5 = 0 in Equation (4), as is assumed in the original code. As an
example, we use the best-fit mass model for NGC 1453 in Liepold et al. (2020)
with a logarithmic dark matter halo of R. = 15 kpc and V. = 633km s~!. The
ratio of the potential energy to the maximum Kinetic energy is plotted for this
halo (dotted), halo plus stars (dotted—dashed), and all three mass components
(dashed). When this ratio is much larger than one, as is shown for a large range
of radii, even large errors in the kinetic energy would have little effect on the
total energy. Energy conservation is therefore effectively not enforced in the
original code for a logarithmic potential. The solid line shows the same ratio
with all three mass components included, but with the halo zero-point set
according to Equation (6).

assign all orbits as short-axis tubes and exclude all other orbit
types. We will discuss further these quasi-planar orbits in
triaxial systems in Section 6.

4.2. Fix Zero-point Issues with the Logarithmic Halo

A logarithmic potential has often been used to approximate
the dark matter halo in prior orbit modeling work. The
spherical version of a logarithmic halo is given by

D(r) = %Vf In(R2 + r?) + ®, 4)

where R, is the core radius, and V. is the circular velocity at
large r:

Ver

The zero-point @ can in principle be chosen arbitrarily; the
original code set ®;=0. In practice, we find the choice of
®, =0 and the use of physical units such as kilometers for all
distances to create numerical problems. The cause is simple:
unlike other commonly used dark matter potentials such as
Hernquist (1990) and Navarro et al. (1996) that are negative at
all locations and approach zero at large r, the logarithmic
potential with ®,=0 1is positive everywhere and grows
unbounded at large r. Thus, for the other potentials, |P(r)]
can be interpreted as the local maximum kinetic energy for a
bound orbit, but the orbital binding energy is infinite in the
logarithmic potential. Furthermore, with the choice of &5 =0, |
®(r)| is much larger than the kinetic energy for all orbits in a
logarithmic halo. This is because the central potential energy
value, ®(0) = Vf In(R.), is much larger than the maximum
possible kinetic energy sampled by the orbits, which is
D (Fmax) — P(0), where ry,y is the largest equipotential radius
of any orbit in a model.

Vo(r) = (&)
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To illustrate this point, we plot the ratio of |®(r)| and
| P (nax) — P(0)] for the best-fit logarithmic dark matter halo of
NGC 1453 (Liepold et al. 2020) in Figure 3 (dotted curve).
Additional contributions to the potential from the stars and
black hole reduce the value of the potential energy and help
lower this ratio (dotted—dashed and dashed solid curves), but
the ratio is well above unity for all relevant radii in all cases.

An unintended consequence of this large central offset is that
even a ~100% change in the kinetic energy would contribute to
only a tiny fraction of the total energy and would be difficult to
detect. The energy conservation checks in the code are
therefore effectively not performed for most orbits. While
these numbers are worrying, we did not find the choice of
Py, =0 to affect significantly the best-fit mass parameters of
NGC 1453 in Liepold et al. (2020). The reason for this
particular case is that the orbital integrator happened to be
accurate enough to satisfy the energy conservation tolerance
(set to the default 10%) even when this conservation criterion
was unchecked. There is, however, no guarantee that this
would be true for other galaxies or for parameters outside the
ranges that we had explored.

To ensure that energy conservation is checked in the code for
the logarithmic potential, we choose a different zero-point

Dy = —P(r = 2rmax), (6)

so that ®(r) is negative for the entire allowed radial range of the
orbits and approaches zero outside the largest equipotential
radius ryax. The resulting ratio of |®(r)| to [P (rnax) — P(0)| for
the best-fit model of NGC 1453 is shown by the solid line in
Figure 3.

Our choice of @ in Equation (6) also removes another issue
that we have encountered with the original code: the orbit start
space was sometimes not calculated correctly for mass models
in which the black hole is either absent or has small mass
compared to the stellar component and the logarithmic halo. As
discussed in Section 2.2 and shown in Figure 1, the x—z start
space of Schwarzschild (1993) requires finding equipotential
curves in the x—z plane. The code locates it by finding the
equipotential radius for each of a series of angles in the plane.
For each angle, the equipotential radius is found via bisection
with a relative tolerance that is typically taken between 10~
and 10>, For ®, = 0, this tolerance again is not enforcing the
intended accuracy level due to the large central value of . For
NGC 1453, this issue exists only for a few central equipotential
radii, and thus it did not have a significant impact on our
results.

4.3. Speed Up Point-spread Function Implementation

The PSF of the relevant observations needs to be
incorporated into a mass model before the model is fitted to
data to determine the orbital weights. The TriOS code
approximates the effect of the PSF by perturbing each
trajectory at every stored time step with a pair of dx and &y
randomly drawn from the PSF, which is assumed to be a single
or multiple Gaussian functions. This scheme involves a large
number of operations since an orbit is typically stored at 50,000
points along the trajectory (see Section 2.3), and up to ~10°
orbits can be used to represent a single mass model.

The code generates each orbit perturbation by drawing two
independent numbers, k, and k,, from a uniform distribution
over the interval (— 1, 1) repeatedly until a pair with k=

ke

) . _ >
k| <1 is found. The perturbations éx = ;«/—21n(k) and
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by = %\/fZIn(kz) are then normally distributed. This large

number of operations is not easily vectorized and is computed
sequentially.

We are able to speed up this process significantly using
instead the Box—Muller transform, which is easily vectorized.
In this scheme, we draw a pair of independent numbers A and B
from the uniform distribution over (0, 1) and then construct the
normal distribution with éx = V—2InA cos(2nrB) and
0y = v—2InA sin(2nB). We have tested that the resulting
distributions of displacements are consistent with analytical
PSFs to within the counting error from the finite number of
time steps, and the consistency increases as expected when the
number of time steps increases.

To benchmark the amount of speedup gained by our scheme,
we note that PSF convolution is one of several operations
performed in the orbit library construction subroutine
orblib_f.f90 in the code. This subroutine first integrates
the orbits and generates the necessary reflected or rotated
copies of the orbits about the symmetry axes (see Section 3.1).
It then computes each orbit’s contribution to the 3D mass grid
and projects each orbit onto the sky plane. The projected
trajectories are then perturbed according to the PSF as
described above. Finally, the subroutine determines each
orbit’s contribution to each observed kinematic aperture on
the sky and stores the associated LOSVDs. The tasks
performed in this subroutine consume the bulk (>90%) of
the total run time of the code (for one mass model); much of the
remaining time is spent on performing minimizations to find
optimal orbital weights.

To our surprise, our timing analysis of the various tasks
executed in this subroutine (using Npjmer = 5 and NGC 1453 as
a test case) shows that the PSF portion of the code (before
implementing orbit axisymmetrization in Section 3.1) takes up
~55% of the run time, while the orbital integration itself only
contributes ~20%, and sky projections contribute the remain-
ing ~25%. When we switch to the vectorized Box—Muller
transform, the computation time for the PSF step becomes
negligible. We are therefore able to reduce the total run time of
the code by a factor of ~2 in this test.

The speedup is even more dramatic in our axisymmetrized
version when the orbits are copied azimuthally (Section 3.1). In
this case, 80 (instead of eight) copies of each orbit are projected
onto the sky and perturbed by the PSF. We find ~70% of the
run time is spent on the PSF portion with the original scheme,
while our new scheme reduces the run time by a factor of ~3.

4.4. Improve Intrinsic 3D Mass Grid

The TriOS code uses an intrinsic 3D spatial grid to constrain
the stellar component in a model to reproduce the 3D stellar
density profile deprojected from the photometry of a galaxy.
The code calculates the mass contributed by each orbit as it
passes through a spatial bin and records this information during
the stage of orbit library construction. At the subsequent stage
of orbital weight optimization, the superposition of the orbits is
required to match the input mass profile within a pre-specified
precision (typically 1%) in each bin.

In each octant of this 3D spatial grid, the code uses azimuthal
and polar bins for the two angles, each linearly spaced between
0° and 90°. The radial bins are logarithmically spaced between
Fmin and 7.y /2, where rpin and rp,, are the innermost and
outermost equipotential radii used to determine the orbital
energies sampled in the model. The innermost bin is then
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extended down to r=0, and the outermost is extended out
to 1007ax.

For the outer boundary of the innermost mass bin, we find it
preferable not to base the value on rp,;,, which is used for a
different purpose of specifying the innermost equipotential
radius for sampling orbital energy. Instead, we modify the code
to make it an independent parameter, which we set to be of
similar scale as the PSF of the photometric data since these are
the data used to constrain the deprojected 3D mass density. To
ensure that sufficient orbits are used to represent the innermost
mass bins, we recommend that r,,;, be set to be smaller than the
outer boundary of the innermost mass bin. In the case of
NGC 1453, we set the outer boundary of the innermost mass
bin to be 0.03” and set ry;, to 0.01”.

For similar reasons, we allow the outermost mass bin’s edges
to also be set independently from the outermost equipotential
radius, 7. The remaining bin boundaries are then logarith-
mically sampled between the outer boundary of the innermost
bin and the inner boundary of the outermost bin.

5. A Case Study: NGC 1453

We use the massive elliptical galaxy NGC 1453 reported in
Liepold et al. (2020) to illustrate the effects of the modifications
described thus far. In Liepold et al. (2020), we demonstrated
that using more than four Gauss—Hermite moments was
essential for obtaining robust constraints on the model
LOSVDs. Below we examine the effects in both the four-
moment and 12-moment cases, with the latter being our chosen
configuration. We stress that the four-moment case is included
here only for comparison purposes since this is the typical
configuration used in the literature. We have found the four-
moment case to lead to unconstrained higher moments and
spurious features in the LOSVDs for NGC 1453 (Figures 10
and 11 of Liepold et al. 2020); the resulting x” in this case
should therefore not be trusted.

5.1. Fitting up to hy

We begin with the case labeled “up to h,” and “original
Leiden version” in Figure 12 of Liepold et al. (2020). This case
is run with the original code, Npijner =3, No =9, and the
viewing angles (8, ¢, ¥) =(89°, 45°, 90°001), corresponding
to a nearly oblate axisymmetric potential with a triaxiality
parameter of 7= 0.002. As we discussed in Section 3.2, these
parameters are chosen to resemble those used in earlier studies,
and the models include both the x—z and stationary start spaces
and contain all three major types of orbits: short-axis tubes,
long-axis tubes, and box orbits. The left panel of Figure 1
illustrates the starting locations of both short- and long-axis
tube orbits in the x—z start space for one energy in this
configuration.

The 1D X2 as a function of Mpy (marginalized over the
mass-to-light ratio) is shown in the left panel of Figure 4 (red
dotted curve). As first shown in Liepold et al. (2020), the
favored model in this case contains no black hole. The >
minimum at Mgy = 0 here resembles the finding for the dwarf
galaxy M59-UCD3 by Ahn et al. (2018), which also used four
Gauss—Hermite moments as constraints and a set of viewing
angles with a similar deviation from axisymmetry.

Applying the code changes described in Section 4 results in
minor changes in the x> contour for NGC 1453 (purple short-
dashed curve in Figure 4), but the Mgy = 0 minimum remains.
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Figure 4. Illustration of the changing Mgy constraints in NGC 1453 as the orbit model goes through the step-by-step axisymmetrization procedure described in
Sections 3 and 4. The starting case (red dotted) uses the original code with typical (near) axisymmetric parameters assumed in the literature (1) = 90°001; see
Section 5.1 for details). The end case (black solid) uses our final axisymmetrized code including all changes from Sections 3 and 4. The four intermediate curves have
all of the code fixes described in Section 4, but have different combinations of orbit types according to Sections 3.2 and 3.3. The left panel is for models with orbital
weights chosen by fitting to the first four Gauss—Hermite moments of the LOSVDs determined from kinematic data, as is typical in the literature. The right panel uses
12 moments as constraints and shows tighter constraints on Mgy, as is reported in Liepold et al. (2020). The 1D X2 in Mpy is obtained by marginalizing over the stellar
mass-to-light ratio using a smoothed 2D x> landscape generated by Gaussian process regression with a squared-exponential covariance function (Pedregosa
et al. 2011). The dark matter halo is fixed to the best-fit logarithmic halo in Liepold et al. (2020).

In the next step, we exclude the box orbits and long-axis tube
orbits as described in Section 3. The box orbits are eliminated
by the simple procedure in Section 3.3. To remove the long-
axis tube orbits, we choose a galaxy shape that is sufficiently
axisymmetric, as discussed in Section 3.2. For NGC 1453, we
simply change 1 from 90°001 to (90 + 10~°%)°, as was done in
Liepold et al. (2020). This new value is far enough from 90.0°
to avoid numerical issues in the code but is close enough to
90.0° so that all of our orbits lie outside the long-axis tube
region in the x—z start space shown in Figure 1.

The effect of excluding these orbits on the best-fit parameter
values for NGC 1453 is significant. The preferred Mgy is
changed from zero to 2.8 x 10°M, (green dotted—dashed curve
in Figure 4(a)). Before their removal, box orbits generally
accounted for less than 10%-35% of total mass, while long-
axis tube orbits accounted for less than 2%. Removing box
orbits (orange long-dashed curve in Figure 4(a)) has a
significant effect on Mpy because box orbits starting at
different azimuthal angles are not forced to have equal weights
in the original code (Section 3.3). Removing the long-axis
tubes (blue dashed curve in Figure 4(a)) has a significant
impact likely due to their ability to fit minor-axis rotation in
triaxial potentials.

In addition to excluding the box and long-axis tubes, we
describe in Section 3.1 the need to enforce axisymmetry in the
code by generating many azimuthally rotated copies of each
short-axis tube in the x—z start space. For NGC 1453, we find
that the main effect on the x* contour of this axisymmetrization
procedure is to widen the minimum (black solid curve in

Figure 4(a)), as a broader range of orbital weights are able to fit
the mass constraint for each mass model.

The results presented thus far with the original version of the
code all assumed a viewing angle of ¢ =45°. When the model
galaxy is perfectly axisymmetric, this angle is irrelevant, and
the resulting x> landscape should be independent of ¢. As a
test, we have repeated the run with the original code (using four
Gauss—Hermite moments) with two other values of ¢ (15° and
75°) while keeping all other parameters fixed. The resulting x>
as a function of Mgy for the three values of ¢ is shown in
Figure 5. The dependence on ¢ indicates that the mass models
are indeed not consistent with axisymmetry. All three values of
¢ exhibit the same preference for Mgy = 0.

5.2. Fitting up to h;,

We now examine models in which the orbital weights are
constrained to fit the first 12 Gauss—Hermite moments of the
observed LOSVDs for NGC 1453. The first eight moments are
measured from spectroscopic observations, while the 9th—12th
moments are set to zero with an error bar based on the lower
moments, as described in detail in Liepold et al. (2020). Even
without any of the modifications described in this paper,
Liepold et al. (2020) showed that the original code performed
better when 12, rather than four, moments were used as
constraints. The right panel of Figure 12 in Liepold et al.
(2020) illustrated how the best-fit black hole mass moved from
Mgy=0 for four moments (green curve) to
Mgy =2.2 % 109M@ for 12 moments (black curve). The result
from the original code, however, was highly dependent on the
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Figure 5. The same as the left panel of Figure 4 but showing the azimuthal
dependence of the original code when 1) is chosen to be 90°001, and all three
main orbit types are included (red curves). Our final axisymmetrized code does
not depend on ¢ and obeys azimuthal symmetry.

number of input moments and showed no convergence even at
12 moments. By contrast, after the orbit and code modifications
were implemented, the main effect of increasing the constrain-
ing kinematic moments was to tighten the error bars while
leaving the best-fit values largely unchanged (left panel of
Figure 12 in Liepold et al. 2020).

Here we examine the progression of changes after each of
the key modifications described in Sections 3 and 4 is
implemented, all for the case of using 12 moments as
constraints. The right panel of Figure 4 shows that implement-
ing the code fixes described in Section 4 (purple dotted—dotted—
dashed curve) and removing long-axis tubes (blue dotted—
dashed curve) move the best-fit Mgy by ~10% in comparison
to Mgy~ 2.2 X 109M@ from the original code (red dotted
curve). Removing the box orbits increases Mpy to
~2.9 % 10° M., (orange dotted—dashed—dashed and green
dashed curve). The subsequent axisymmetrization of short-
axis tubes (Section 3.1) has essentially no effect (black solid
curve).

To ensure that the number of orbits included in the modeling
is sufficient, we tested the effect of increasing the number of
orbits. We increased the density of energy sampling by a factor
of four, from 40 energy values to 160 over the same range.
With four times the number of orbits, the best-fit Mgy changed
by less than 3%, and the 1o error changed by less than 10%,
demonstrating that our results do not depend on the exact
number of orbits used.

6. Conclusion

We have presented a revised version of the triaxial orbit
superposition code by van den Bosch et al. (2008), which we
refer to as the TriOS code, which is capable of properly
modeling axisymmetric systems. The original code was
designed for triaxial systems with (discrete) reflection sym-
metry along each of the three principal axes. The setup was not
capable of modeling exactly axisymmetric systems in which
the orbit library should respect (continuous) azimuthal
symmetry about the symmetry axis.

10

Quenneville, Liepold, & Ma

We have implemented two main changes needed for
modeling axisymmetric systems within the triaxial code:
excluding all orbit types that are not allowed in an axisym-
metric model, and enforcing axisymmetry among the allowed
orbits. In the case of oblate axisymmetry, our recipe involves
(1) axisymmetrizing the short-axis tube orbits by creating
multiple copies of the orbits rotated about the symmetry axis
(Section 3.1), (2) setting the viewing angle v to be sufficiently
close to 90° to allow no long-axis tube orbits (Section 3.2), and
(3) excluding the stationary start space used to generate box
orbits (Section 3.3).

We have made further improvements and corrections to the
code in general. We discussed an issue with slowly precessing
quasi-planar orbits that are misclassified and are mirrored
improperly in the orbit library (Section 4.1). We also corrected
a problem with the logarithmic halo implementation that
prevented checking energy conservation of the integrated orbits
(Section 4.2). We achieved a factor of two to three speedup in
the run time of the code by adopting a different algorithm for
modeling PSF convolution (Section 4.3). Finally, we allowed
the orbital sampling and mass constraints to be set indepen-
dently (Section 4.4).

For NGC 1453, we found the shape of the x> contours for
Mgy to vary significantly as we went through the step-by-step
axisymmetrization procedure described in this paper (Figure 4).
As we described in Liepold et al. (2020), the orbit models
favored no black holes when we used the original code with
typical (near) axisymmetric parameters in the literature and four
Gauss—Hermite moments to constrain the stellar LOSVDs. In
contrast, we obtained a well constrained nonzero Mgy using
our final axisymmetrized code including all of the changes
described in Sections 3 and 4.

One issue that warrants further investigation in triaxial
models is the equilibrium behavior of quasi-planar orbits in
regions where the potential is nearly spherical, e.g., well within
an SMBH’s SOI, or far outside the galaxy’s effective radius in
a spherical dark matter halo. As we discussed in Section 4.1,
the subset of quasi-planar orbits with precession times longer
than the integration time has a nearly constant L and is
misclassified and mirrored incorrectly in the original code.
Furthermore, the integration time for these orbits is not long
enough to fill the allowed volume of phase space. For
axisymmetric systems, we resolve these issues in our revised
code described in this paper by including only short-axis tubes
and enforcing axisymmetry in the orbits, while preserving L..

We also expect the severity of the orbital integration issue to
vary from system to system: the better an SMBH’s SOI is
resolved by the available kinematic data, the more care is
needed to test orbital integration time because quasi-planar
orbits occupy a large fraction of the orbit library, and more
orbits are deeper in the SMBH’s potential and hence have
longer precession times. For the NGC 1453 SMBH studied in
Liepold et al. (2020) and here, since our kinematic data do not
reach deep inside the SOI, orbits in our mass models with
precession times exceeding 200 dynamical times account for
less than 4% of luminosity within the central arcsecond. The
integration issue (and the resulting misclassification) therefore
does not significantly impact our results, as is evidenced by the
similarity between the solid black and green dashed curves in
Figure 4. We expect a different situation for better resolved
systems such as the M87 and Milky Way SMBHs.
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In future work, a straightforward solution to ensure that
quasi-planar orbits are representative of their equilibrium
distributions is to extend the default integration time of 200
dynamical times in the code. Our preliminary tests suggest that
integrating the orbits up to ~10 times longer is computationally
feasible, but this may still be insufficient for the orbits closest
to the SMBH and in the outermost part of the galaxy where the
precession times are slowest. A more reliable treatment of these
orbits would be needed.
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Appendix A
Criterion for Existence of Long-axis Tubes

We use Stickel potentials to gain insights into the existence
of long-axis tubes. A potential is said to be in Stickel form if it
can be written as:

VOl o v) = — F() _ F(u)
A=A —=-v)  (u—v)(p—2AN
v (AD)
=MW —p

for some function F(r) where (\, u, v) are ellipsoidal
coordinates defined as the roots of 7 in the equation

x2 2 2
X4 =

T+a T+
such that —y<v< - pu<—a<< A Here, (o, 8, 7) are
constants that define the coordinate system. Such a potential is
said to be separable in these coordinates. When a density
corresponding to a Stickel potential is projected in any
direction to give a 2D surface density, it will have no isophotal
twists (Franx 1988). Thus, we can use the viewing angles (6, ¢,
1) of Binney (1985) to define the relationship between the
primary axes of the projected and intrinsic densities. This set of
viewing angles imposes a constraint on the allowed values of
(o, B, 7y) given by:

VB —
y=8

J

This expression follows from Equation (B9) of Franx (1988).
Orbital structure in Stdckel potentials has been well studied (de
Zeeuw 1985). This structure is what motivated the x—z start

:1,
T+

(A2)

sin® 0
cot2¢ sin2¢ cos 6 + cos? p(cos?f + 1) — 1

(A3)
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space described in Schwarzschild (1993). Long-axis tube orbits
pass through the x—z start space above the focal curve, defined
by

Z2 2

7-8 " a-3

= 1. (A4)

For large x, this curve is approximately a line given by

IR X Nk Therefore, the angle that this line forms with the
z-axis can be written simply in terms of the viewing angles as
sin* 0
tann = - .
cot21) sin2¢ cos § + cos? ¢(cos?d + 1) — 1

(A5)

Any orbits launched initially between the focal curve and the
positive z-axis in the x—z plane will be long-axis tubes, which
violate axisymmetry. To effectively achieve axisymmetry, the
angle 1 must be small enough for no orbits to be sampled above
the focal curve. Since the line defined by the angle 7 is a lower
bound to this curve, if all initial orbits in the positive x—z
quadrant are launched outside of the approximate angular
region between the z-axis and the angle 7, there will be no
long-axis tubes in the model.

This expression is derived for Stickel potentials. However,
in the absence of isophotal twists, we expect it to apply
reasonably well to more realistic models as they can often be
locally approximated by a Stidckel potential (Sanders &
Binney 2015). A central SMBH is inconsistent with a Stickel
potential and can thus destroy the ordered orbital structure.
However, we suggest that Equation (A5) could give a rough
rule-of-thumb for where the boundary between long-axis and
short-axis tubes will exist in models from the code, particularly
at radii far from the SMBH.

The stellar mass distribution is represented by a multi-
Gaussian expansion (MGE) in our models (Cappellari 2002).
Each Gaussian component is stratified on similar ellipsoids,
and can thus be related to its deprojection via the equations
given in Binney (1985). These equations can be rearranged to
give

T
1-T

B sin® 0
cot2¢ sin2¢ cos O + cos? p(cos?@ + 1) — 1~
(A6)

where 7= (1 — pz) /(1= qz) of each MGE component. For an
MGE with no isophotal twists, each MGE component has the
same triaxiality parameter, 7. Thus, in this case, the angle, 7,
can be written simply as:

T
n=tan"! | ——,
1-T

(A7)
where T is the triaxiality parameter for each MGE component.
Two examples of triaxial start spaces for NGC 1453 models are
shown in Figure 6. The boundary between long-axis tubes and
short-axis tubes is well approximated by the angle 7 for a wide
range of galaxy shapes.
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Figure 6. The same as Figure 1 but for two additional mass models with larger triaxiality: (left) triaxiality parameter 7 = 0.25, (luminosity averaged) shape parameters
(u, p, q) = (0.96, 0.95, 0.77), and viewing angles (6, ¢, 1) = (67°62, —28°38, 86°61); and (right) = 0.75, (u, p, q) = (0.96, 0.85, 0.79), and (0, ¢, ¥) = (48°74,
—51933, 67°15). The diagonal black line in each panel represents the angle 1 given in Equation (2). As in Figure 1, this angle approximates the boundary separating
long-axis (red symbols) and short-axis (black symbols) tube orbits in the x—z start space.

Appendix B
Thin Orbit Finding

The TriOS code uses the thin-orbit curve to construct its start
space. This curve has to be found numerically in the x—z plane.
For a given angle in this plane, the thin-orbit radius is found by
integrating test orbits starting at different radii. For each orbit,
the radius of the orbit is recorded each time it passes through
the x—z plane. The thin-orbit radius is found by minimizing the
difference between the maximum and minimum of these radii.

This algorithm should work for triaxial models but needs
some revision in the axisymmetric case, particularly when there
is no central density cusp or mass concentration. In this case,
when close enough to the center, the potential should be well
approximated by a harmonic oscillator. When the potential is
axisymmetric, the motion can be regarded as two separate
contributions: an oscillation in the z-axis and a closed elliptical
orbit about the z-axis. Since the x—y motion constitutes a closed
ellipse centered on the z-axis, all orbits will pass through the x—
z plane at a fixed x-value, with some z-value. The orbital width
is then simply set by the maximum and minimum z-values.
Thus, for a given ray in the x—z plane, the orbital width in this
plane can be minimized by simply taking the initial radius to be
as small as possible. To solve this issue when running an
axisymmetric model, we instead record radii when passing
through the x—y plane. Closed ellipses will have a finite width
in this plane while all thin orbits should pass through this plane
in a circle of zero width.

It is unclear how much this issue should affect the resulting
orbit libraries. If orbits are sampled starting at the origin instead
of the thin orbit, the result should be a less uniform sampling of
angular momentum. There should also be some range of
energies where the thin-orbit radius is not estimated to be zero
or the correct value, but rather somewhere in between. This
would result in a significantly nonuniform sampling of angular
momentum since orbits passing through the x—z plane within
this radius will be undersampled relative those that do not. This
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issue should be essentially resolved outside of the axisym-
metric limit, or if a black hole or density cusp is included.
However, axisymmetric studies that use this code with no
central cusp may be affected (Hagen et al. 2019).

Appendix C
Mock Recovery Tests

In the above sections, we demonstrated that our changes to
the TriOS code result in a consistent, nonzero SMBH mass
estimate for our NGC 1453 data set. Here, we show that the
changes correctly recover the SMBH mass in a mock data set
with known parameter values. Mock tests have been performed
within various other Schwarzschild codes (e.g., Valluri et al.
2004; Cretton & Emsellem 2004; Magorrian 2006; Siopis et al.
2009; Vasiliev & Valluri 2020).

For our mock galaxy, we use a flattened version of the
spherical potential introduced in Siopis et al. (2009). These
models have an axisymmetric gravitational potential given by

R2+ 2 2
BR, 2) = ~V2In C/dn|  _GMsn 1)
2 lpc2 [R? + 22

where g¢ is the flattening of the potential due to the extended
mass distribution. The stellar distribution function (DF) is
chosen to have a Michie-like form:

E+L}/Q2r})
2

] L2 M (E, E, Ey), (C2)
g

f=Aexp [

where A is the normalization, and r,, N, o, E;, and E, are
parameters of the model: r, is an anisotropy distance, N
controls the L, dependence, o is a characteristic velocity
dispersion, and E; and E, are energy cutoffs. The symbol 1
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Figure 7. Illustration of the Mgy constraints for the mock data sets described in the text. Each dashed curve represents a separate realization of the noise. In the left
panel, the potential is spherical, no PSF convolution is performed, and each DF component has 5 x 10® stars. In the right panel, the model is flattened, projected stellar
positions are convolved with a circular Gaussian PSF with a standard deviation of 5 pc, and each DF component has 5 x 107 stars. The 1D x° curves are obtained by
marginalizing over V, in the smoothed 2D y? landscape generated by Gaussian process regression with a squared-exponential covariance function (Pedregosa

et al. 2011).

denotes a step function defined by

I, ifE;<ELE,

C3
0, otherwise. ©3)

M(E), E, E>) = {
Because L, only enters Equation (C2) in even powers, there is
additional freedom in how f differs for positive and negative
values of L,. Here, we set a fixed fraction of stars to rotate in
each positive direction. In this model, the stars are essentially
regarded as massless tracers of the underlying potential in
Equation (C2). Even when the potential is chosen to be
spherical, the stellar distribution function can be axisymmetric.

We use the same potential parameters as Siopis et al. (2009),
with V,=220kms ' and Mgy = 1.126 x 10° M. We gener-
ated two models: one model with a spherical potential (g = 1)
to compare with Siopis et al. (2009), and one model with a
flattened potential (g = 0.95). The models both have a sphere
of influence of about 10 pc. We also use the same two
component DF parameters as Siopis et al. (2009): the first
component is a nonrotating nearly spherical bulge-like
component, which has o= 160km sfl, r,=600pc, N=0,
E,=®(0pc), and E, = P(1000 pc) with equal numbers of
stars having positive and negative L; the second component is
a rotating disk-like component, which has ¢=120kms ',
r,=200pc, N=2, E; =®(10 pc), and E, = ®(1000 pc) with
three-fourths of the stars having positive L, and one-fourth
having negative L,. The two components have equal numbers
of stars.

We draw points in phase space from this distribution
function for each star to generate mock data. We use a nearly
edge-on projection, with an inclination of #=89°. For the
model with the flattened potential, we convolve the projected
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positions with a circular Gaussian PSF with a standard
deviation of 5 pc. We bin the stars into mock integral field
unit data with a resolution of 10 pc, with a square field of view
of 1000 pc. We fit an MGE to the projected surface brightness.
We then run Voronoi binning on all bins with central radii
>20 pc, resulting in 12 inner unbinned kinematic points and
108 larger outer bins. In order to keep the bins between the two
models fixed, we use the Voronoi bins derived from the
spherical potential. Each LOSVD is fit with a Gauss—Hermite
expansion up to h;,. Gaussian noise is added to each LOSVD
bin, resulting in a scatter of about 0.03 in each moment and
about 0.03+/2 o in the average velocity and velocity dispersion
for each bin. We draw 20 realizations of this noise, and run the
updated TriOS code for each realization.

Figure 7 shows the resulting constraint on Mpy for each
noise realization. The left panel is for the mock in the spherical
potential, while the right panel is for the mock in the flattened
potential. The kinematic contribution to the reduced x? in these
realizations ranges from 0.81 to 0.94 for the spherical potential
and 0.71 to 0.84 for the flattened potential, indicating a good fit
to the projected kinematics for all realizations.

The average SMBH masses and corresponding sample
standard deviations from these combined 20 runs are
Mgy = (1.17 £0.09) x 108M@ for the spherical potential, and
Mgy = (1.18 £0.13) x 10°M., for the flattened potential. In
both test cases, the estimated Mgy values are in excellent
agreement with the true value of Mg = 1.126 x 10°M...
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