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Abstract. We study an inverse problem for the wave equation, concerned with estimating the wave speed from
data gathered by an array of sources and receivers that emit probing signals and measure the resulting
waves. The typical approach to solving this problem is a nonlinear least squares minimization of
the data misfit, over a search space. There are two main impediments to this approach, which
manifest as multiple local minima of the objective function: The nonlinearity of the mapping from
the wave speed to the data, which accounts for multiple scattering effects, and poor knowledge
of the kinematics (smooth part of the wave speed), which causes cycle skipping. We show that
the nonlinearity can be mitigated using a data driven estimate of the wave field at points inside
the medium, also known as the “internal wave field.” This leads to improved performance of the
inversion for a reasonable initial guess of the kinematics.
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1. Introduction. Inverse wave scattering is concerned with inferring properties of an in-
accessible medium using remote sensors that emit probing signals and measure the generated
waves. It is an important technology in nondestructive evaluation of materials, exploration
geophysics, medical imaging with ultrasound, underwater sonar, radar imaging, etc. We con-
sider scalar (sound) waves in a medium with constant mass density, so the unknown is the
wave speed c(x). The data are gathered by an array of m co-located sources and receivers.
The sources probe the medium sequentially with a signal, and the receivers record the gen-
erated wave. These recordings are organized in the time ¢ dependent m x m array response
matrix M(t), the data for estimating c(x).
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There is extensive literature on qualitative methods for inverse wave scattering, also known
as imaging methods, that seek to estimate the support of the rough part of the wave speed,
called the reflectivity, which causes wave back-scattering. The smooth part of ¢(x), which
determines the kinematics of the wave propagation, is assumed known in imaging and, with
few exceptions, it is taken as constant. The most popular imaging methods, like reverse time
migration [3, 28] and the related filtered back-projection [14, 13], are based on the single
scattering (Born) approximation, which linearizes the forward mapping from the reflectivity
to the array response matrix. Approaches like the factorization method [23] and the linear
sampling method [12], which use the nonlinear forward mapping, are developed mostly for
time-harmonic waves and work best for large arrays that almost surround the imaging region.

The literature on quantitative estimation of both the smooth and the rough part of ¢(x),
called “waveform inversion” in this paper, consists of mainly two approaches: (1) PDE driven
nonlinear least squares minimization of the data misfit, known as full waveform inversion
(FWI) [31] in the seismology literature, and (2) iterative methods that alternate between
imaging the reflectivity and adjusting the kinematics [29, 28]. Both approaches suffer from
the nonlinearity of the forward mapping ¢(x) — M(t), which accounts for multiple scattering
effects. The mitigation of such effects remains an active topic of research [32, 30]. Poor
knowledge of the kinematics is also problematic, because travel time errors that exceed half
the period of the probing signal cause the “cycle skipping” phenomenon [31]. The mitigation
of cycle skipping is of great interest in exploration geophysics. The growing literature on
the topic consists of methods that use lower frequency and wide-azimuth data, if available
[10, 26], as well as travel time tomography to improve the guess kinematics [25]. Alternative
approaches are to measure the data misfit using the optimal transport metric [33] or to add
systematically degrees of freedom in the optimization [21]. A very different inversion method
has emerged recently in [9], where cycle skipping is mitigated using a data driven reduced
order model (ROM) of the wave operator.

In this paper we also use tools from data driven reduced order modeling to mitigate
multiple scattering effects in waveform inversion. The main idea is that the forward mapping,
given by the Lippmann—Schwinger integral equation for the scattered field, can be linearized
approximately with a data driven estimate of the internal wave. The accuracy of this estimate
relies on having a reasonable guess of the kinematics, and it can be improved iteratively during
the inversion.

Our data driven approximation of the internal wave is rooted in the construction of the
ROM for the wave propagator operator, developed in [15, 16, 7]. This operator controls the
evolution of the wave field at discrete and equidistant time instants, and its ROM analogue
is a matrix with special algebraic structure, which can be computed from the array response
matrix. The propagator ROM has been used for imaging in [16] and for the linearization
of the mapping from the wave impedance to the array response matrix, in a medium with
known kinematics, in [5, 6]. Data driven approximations of the internal wave in the spectral
(Laplace) domain have been introduced recently for estimating the scattering potential in
diffusive equations [4, 17]. Time domain approximations of the internal wave, of the kind
used in this paper, have also been used for imaging in the time domain in [8]. In this paper we
extend the ideas developed in these works to waveform inversion. We formulate and motivate
a novel inversion algorithm and assess its performance with numerical simulations.
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The paper is organized as follows: We begin in section 2 with the formulation of the
problem, the data model, and the integral equation that defines the forward mapping. The
nonlinearity in this equation is due to the internal wave, which we estimate in section 3. The
inversion algorithm is given in section 4, and the results of the numerical simulations are in
section 5. We end with a summary in section 6.

2. Formulation of the problem. Here we formulate mathematically the waveform inver-
sion problem. We give first, in section 2.1, the model of the array response matrix M(t).
Then, we explain in section 2.2 that if the medium near the sensors is known, which is typical
in most applications, M(t) can be mapped to a new “data matrix” D(t). This mapping can
be computed and there is no loss of information when working with D(¢). The advantage is
that we can get from D(t) an estimate of the internal wave, as explained in section 3. This is
used for linearizing approximately the forward mapping c(x) — D(t) defined in section 2.3.

2.1. Mathematical model of the array response matrix. Suppose that the sources and
receivers are point-like, at locations x4, for s =1,...,m, and the probing signal is f(t), with
support in the interval (—ts,ts). The wave field generated by the sth excitation is denoted
by p(®)(t,x). It is the solution of the wave equation

(2.1) (02 — (@) A] p) (1, @) = f(8)0, (2), LER, @EQ,
with quiescent initial condition
(2.2) P (t,x) =0, t<—ty, €.

Here 64, (x) denotes the Dirac delta at x4, and Q is a bounded, simply connected domain in
R, for d € {2,3}. The methodology works the same for any homogeneous boundary conditions
at 0Q2. We assume henceforth that 92 is the union of a sound soft boundary 9€2p and a sound
hard boundary 0y, i.e., for all £ € R we have

(2.3) [Loa, (&) + Lo, (2)0,] p) (t, ) =0, @€ dQ=0QpUdy.

Here 0,, denotes the normal derivative and 1p(z) is the indicator function of a set T' C R,
equal to 1 when @ € I' and zero otherwise.

Remark 2.1. The boundary 02 may be physical or it can be introduced mathematically
using the hyperbolicity of the problem, the finite wave speed, and the finite duration 1" of the
measurements. That is to say, if the distance between 92 and the set {xs, s =1,...,m} is
larger than max,cqc(x)T, then the recorded waves will not feel the boundary, and we can
model it with whatever boundary conditions are most convenient for the computations. In
our numerical simulations we use a physical sound hard boundary near the array, but the
methodology extends verbatim to other setups.

The measurements are organized in the m x m time dependent array response matrix
M(t), with entries defined by

(2.4) MED () = —f/(=t) % pO (t,2,), s,r=1,...,m, t€(0,T),
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0Qp

Figure 2.1. Illustration of the setup: An array of co-located sources and receivers (indicated with red crosses)
probes a medium with incident waves and measures the backscattered waves. The unknown medium is in the
remote, inaccessible subdomain Qin shown in blue.

where — f/(—t) is the derivative of the time reversed emitted signal and *; denotes convolution
in time. Note that convolving the recorded wave signal with f(—t) is common in radar, sonar,
and echography. In particular, in radar, the balance between the limited power of transmitters
and the need for high signal to noise ratios requires using long probing signals f(t), like linear
frequency modulated chirps, instead of short pulses. To improve the resolution of imaging,
the generated waves p(*) (t,x,) are compressed in time by the “pulse compression” processing
f(=t) % p®)(t,2,). Mathematically, this is equivalent to working with the wave generated by
the source signal

(2.5) F(t) = f(=t) % f(b),

which is of short duration. In (2.4) we convolve the wave with — f/(—t) instead of f(—t), so the
resulting wave corresponds to the source signal F’(¢). This is to facilitate a Duhamel principle
type transformation of the inhomogeneous equation (2.1) to a homogeneous one, where the
forcing is mapped to the initial state of the wave.

Let henceforth supp(F') C (—tr,tr), and assume that the medium is known and homoge-
neous near the array, with constant wave speed ¢. This assumption holds in most applications
and by near we mean within a distance of order ¢tr from the array. The unknown variations
of ¢(x) are supported in the inaccessible subdomain €, C Q, as illustrated in Figure 2.1. We
suppose that i, does not intersect 9y .

2.2. The new data matrix. From the mathematical point of view, it is convenient to
work with a wave operator that is symmetric with respect to the L?(Q) inner product. Thus,
we define the new wave field

(2.6) PO (t,a) = C(i)f’(t) (¢, @),

which satisfies the initial boundary value problem

(2.7) (07 + A(c)] PO)(t,x) = F' ()05, (), teR, e,
(2.8) P (t,x)=0, t<—tp, €,
(2.9) [laq, (&) + laq, (2)8,] P9 (t,2) =0, teR, xe€dQ,

with self-adjoint and positive definite operator A(c), acting on test functions ®(x) as

(2.10) A(e)D(z) = —c(z)Ale(z)D(x)].
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For our purpose, it is useful to have a homogeneous wave equation, so we map the source
term in (2.7) to an initial condition. We can think of this mapping as a Duhamel principle,
although it is not in the usual form [22]. It amounts to working with the even in time wave

field

(2.11) W ()= PO (t,z) + PO (—t,x),

which, as shown in Appendix A, solves the initial boundary value problem
(2.12) [07 + A(e)] W (t,2) =0, t>0,z€Q,
(2.13) WE(0,2) =) (x), x €,
(2.14) W) (0,2) =0, zeq,
(2.15) [Loa, (&) + Lo, (2)8,) W) (t,2) =0, t>0, xed.

The source term in (2.7) is mapped to the initial condition in (2.13), given by
(2.16) o (@) = FIVA(0) oo, ().

where the hat denotes the Fourier transform and functions of the operator A(c) are defined
using its spectral decomposition: If {6;};>1 are the eigenvalues of A(c) and {y;(x)};>1 are
the eigenfunctions, which form an orthonormal basis of L?(2) with the homogeneous bound-
ary conditions, then a function ¢ of A(c) is the operator with eigenvalues {¢(6;)};>1 and
eigenfunctions {y;(x)};>1.

It is important to point out that there is no loss of information when working with
W) (t,z). Indeed, due to the initial condition (2.8), we have

(2.17) W (t,z) =P (t,x),  t>tp.

Moreover, by the hyperbolicity of the wave equation, the wave W) (t,x) is supported near
the array at |t| < tp, and it can be computed using the constant wave speed ¢ there. Thus,
we can define the “data matrix” D(t), with entries

(2.18) DU () =W (t, ) = MTD (@) + M (—t), >0, rs=1,...,m,

where the last term contributes only at 0 <t < tp and can be computed.
The advantage of working with the formulation (2.12)—(2.15) is that we can use operator
calculus to write the solution as

(2.19) W) (t, ) = cos [t\/A(e)] ) ().
Moreover, we can use the trigonometric identity

cos[(t + At)a] + cos[(t — At)a] = 2cos(Ata) cos(ta) VaeR
and the definition of cos[t\/m ] to obtain the exact time stepping relation
(2.20) W) (¢ + At, ) = 2 cos [At\/A(e) WO (t, ) — W) (¢ — At, x)

for any t and At > 0. This is an important tool for the ROM construction and the estimation
of the internal wave in section 3.
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2.3. The forward mapping. The next proposition defines the forward mapping c¢(x) —
D(t) using a Lippmann—Schwinger type integral equation for the scattered wave field. This
field is given by the difference between the wave W) (t,x) in the unknown medium and the
reference wave

(2.21) W) (£, @3 rer) = cos [t/ Al crer) |0 (),

calculated with the wave speed cpef(), our guess of c(x).

Note that we use henceforth the following notation convention: To distinguish the fields
calculated with an incorrect wave speed, like cyee(x), from the fields in the true medium, we
introduce the extra argument c¢r. Thus, W) (t,2) and D(t) denote the wave and data in
the true medium and W) (t,x; cror) and D(t; cref) are the analogues in the reference medium.

Proposition 2.2. Let G(t,x,x';crer) denote the causal Green’s function in the reference
medium, the solution of the initial boundary value problem

(2.22) (07 + Alcrep)] G(t, T, @5 Crep) = &' ()6 s (), teR, zeQ,

(2.23) G(t,x,x';crep) =0, t<0, xe,

2.24 Loa, (x) + Loay ()0 G(t, 2, x'; crep) =0, teR, x e 0.
)

The mapping c(x) — D(t) is defined componentwise by
t

(2.25) DTS () = DTS (o) + / dt’ / da p(z)0, W (', 2)G(t — t', @, Ty Cret)
0 Q

forr,s=1,...,m and t >0, where DT (t; cref) = W) (t, 2, Creg) and

_ 62<$) B C?ef(w)

(2.26) pla) = Tt

The proof of this proposition is in Appendix B. Note that the forward map is nonlinear,
not only because of the definition of p(x) in terms of ¢(x), but also because the right hand
side involves the internal wave W) (t,z). This depends on the unknown c(x) in a com-
plicated way, as seen from (2.19). Our goal is to obtain an estimate of this internal wave,
called W) (t,2; crer), and use it to define the linear mapping p(x) — L[p](t; cret), defined
componentwise by

t —~
(2.27) LU [p](t; eref) = / dt’ / dx p(2)0, W (', @ Crer) G(t — ', 2, 13 Crer).
0 Q

The inversion can then be carried out via the linear least squares minimization

T
(2.28) plx) = argmin/ dt||D(t) — D(t; cref) — L]pg | (t; coef) |3 + regularization,
pr Jo
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where p_, (x) lies in some search space R and |- || denotes the Frobenius norm. The estimated
wave speed is determined by the minimizer (2.28), according to (2.26), as follows:

(2.29) () = ‘”2("’“') [5@) /4 ;ﬁ(;c)} .

Remark 2.3. While the internal wave W) (t,2) depends on the true and unknown c(x), its
estimate W) (¢, &; ¢,ef) depends both on ¢(z), because it is calculated from the ¢(x) dependent
data, and on cef(x). According to our notation convention, we indicate the latter dependence
by adding ¢t to its arguments. The dependence of w(s) (t,; Cref) ON Cref s different than
that of the wave W) (t,; cref) in the reference medium, as we explain in the next section and
illustrate later with numerical simulations. It is mostly the smooth part of c.of that affects
w(s) (t,; cref), whereas w(s) (t,x; cref) is sensitive to both the smooth and rough parts of cef.

3. Estimation of the internal wave. Before explaining how we compute W) (t,@; Crof)
for a given cef(), let us write the internal wave as the time convolution (see Appendix C)

(3.1) WO (t, x) = §(t) x u® (¢, x)

of the even pulse

(3.2) f(t) = /O; Z—:\/ F(w) cos(wt),

~

with Fourier transform! j(w) =/ F(w), and the wave field

(3.3) u'® (t, ) = cos [t\/A(c)]u(()S) (x),

that satisfies the same homogeneous wave equation as W) (t,x), but has the initial state

TVA©) e ().

The advantage of expression (3.1) is twofold: First, we have

(3.4) ul®)(0,2) = ués)(w)

(3.5) QW) (t, ) =F(t) % u'® (¢, ),

where the time derivative is shifted to the known pulse f(¢), i.e., we do not need to estimate
the time derivative of the internal wave (3.3), just the wave itself. Second, from discrete,
equidistant time samples of the data, at interval®r,

(3.6) D;=D(jr), j=0,...,2(n—1),

and we can estimate u(®) (¢, x) at time t € (0,T), with T = (n — 1)7.

'Observe from (2.5) that the Fourier transform F(w) of F(t) is nonnegative.

2The interval 7 should be chosen close to the Nyquist sampling rate for the highest frequency in the essential
support of F'(w), defined, for example, using a 6dB power drop from the peak value. This ensures a stable and
more accurate estimation of the internal wave. A smaller 7 requires regularization, as we explain later, and a
larger T gives a worse estimate of the wave.
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Remark 3.1. To estimate the internal wave at ¢t € (0,7), as needed in (2.28), we use
measurements up to 27". This is due to the back-scattering data acquisition setup: The waves
make a round-trip from the sources in the array to points inside the medium, where they
scatter, and then travel back to the array, where they are measured. Thus, data (3.6) carry
information about the parts of the medium reached by the waves up to travel time 7.

Our estimate of the internal wave is based on a ROM for the evolution equation satisfied
by the snapshots

(3.7) uj(a:):(u(l)(jT,w),...,u(m)(jr,cc)), j>0.

These are m dimensional row vector fields with components given by the waves (3.3) evaluated
at the instants ¢ = j7 for all the sources in the array. They evolve from one instant to the
next according to the time stepping scheme

(3.8) uj1(x) = 2Puj(x) — ujj_q (), j>0, xeq,
with initial condition

(3.9) uo(x) :ﬂ\/A(c)] (0, (x),..., 0z, (), x e

The evolution is driven by the propagator operator P = cos[T4/A(c)], and the time stepping
scheme is exact, i.e., it does not stem from a finite difference approximation of 92. It is derived
from (2.20) evaluated at t = j7 and At =rT.

The ROM introduced and analyzed in [15, 5, 7] can be understood as the Galerkin pro-
jection of (3.8)—(3.9) on the space . spanned by the first n snapshots. We review it briefly
in section 3.1, and then use it in section 3.2 to estimate the internal wave.

3.1. Data driven ROM. Let us assume that .# has dimension nm, which is typically
the case if the step size 7 is chosen properly. Otherwise, the construction below requires
regularization (see section 4).

If we gather the first n snapshots (3.7) in the nm dimensional row vector field

(3.10) U(x)=(uo(x),...,up—1(x)),

we have, in linear algebra notation, . = range[U (x)]. To write the Galerkin projection of
(3.8)—(3.9) we use an orthonormal basis of .7, stored in the nm dimensional row vector field
V(x) and defined by the Gram—Schmidt orthogonalization procedure

(3.11) V(z)= (vo(x),...,vn1(x)) =U(x) R
This procedure is causal, meaning that
(3.12) vj(x) € span{ug(x),...,u;(x)}, j=0,...,n—1,

so the nm x nm matrix R™', and therefore R, are block upper triangular, with m x m blocks.
The orthonormality of the basis means that

(3.13) /de VI(x)V(x)=1,

where I is the nm x nm identity matrix.
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The projection of (3.8)—(3.9) gives the algebraic (ROM) time stepping scheme [15, 5, 7],

ROM ROM, ROM ROM .

where PROM is the nm x nm ROM propagator matrix, defined by

(3.15) PpROM / dze VT (z)PV(x)=R™ " [ / deUT (x)PU(x)| R,
Q Q
and the ROM snapshots are nm x m matrices, given by
(3.16) ufoM :/Qda: Vi@)u§l(z), j=>0.
Gal

Here u;* () is the Galerkin approximation of the snapshots (3.7), defined in the standard

way, as the linear combination of the components of U (x), which span .,

(3.17) ui(z)=U(z)g,,

with coefficient matrices g; € R"™*™ calculated so that the residual

(3.18) ufif) (@) +uf? (2) — 2Puf (@) =U(x) (9,41 +9,-1) — 2PU(2)g;,

is orthogonal to .. This gives
(3.19) M(gj41+9;-1)—28g,;=0, J=0,
where M and S are the Galerkin “mass” and “stiffness” matrices

(3.20) M= /Q dUT(2)U(x), S— /Q dzU” (z)PU (x).

Substituting (3.17) in (3.16) and using that (3.11) is equivalent to
(3.21) Ux)=V ()R,
we get that the ROM snapshots are

(3.22) ufOM = / de V' (xz)V(z)Rg;=Rg;, j>0.
Q
What we have described so far follows the standard procedure for computing model driven
Galerkin projection ROMs [2, 11, 20]. However, there are two essential points to make:

1. The snapshots stored in U (x) are unknown in inverse scattering, so the ROM cannot
be computed as above. In fact, as explained below, our ROM is data driven, i.e., it
can be computed from the data matrices {D; 32'261-

2. Because the time stepping scheme (3.8) is exact, our ROM has better approximation
properties than the usual ROMs for the wave equation [19, 24, 20], which use either
the derivative 97 or a finite difference approximation of it. This is important for the

estimation of the internal wave.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/10/23 to 129.104.78.167 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

WAVEFORM INVERSION 289

We begin the explanation of these two points with the following observation: The definition
of the approximation space . and (3.8)—(3.9) imply that the residual (3.18) vanishes for the
first n time instants. Consequently, the Galerkin approximation at these instants is exact,

(3.23) ui(z) =U(z)g; =u;(x), j=0,....,n—1,

or, equivalently, the first n Galerkin coefficient matrices are trivial,

(3.24) g;=ej, j=0,...,n—1.

Here e; are the nm x m block columns of the nm x nm identity matrix I, i.e.,
I=(ep,...,en-1).

Next, we note that the Galerkin mass matrix defined in (3.20) can be computed as follows:
Let M be organized in m x m blocks M ;, indexed by the pair (7,7), with 7,7 =0,...,n— 1.
The entries in the (7, j)th block are denoted by MEZ?S), withr,s=1,...,m, and are determined
by the data matrices (3.6) as follows:

Mi(;-’s):/dccu(r)(iT,:p)u(s)(jT,w)
Q

/ da cos [i7/A(0) [flv/A(e) 16w, () cos [j7+/A(0) [/ A(C) 10w, ()
5(ka¢M)mWVMMGWMMfM@)

) {cos [+ )7 VA) ]+ cos [(i — )T V/A(O)] } ) (@)

&
8
&

quww»+W (i = gl

I
[\D\H[\D\}—‘ [\.')M—t\
&

l—|r—|

(3.25) p{" 4 p )}

i+j li—J]

The first equality in this equation is by definition (3.20), the second equality is by definitions

(3.3)—(3.4), the third equality is because A(c) is self-adjoint and functions of A(c) commute,

the fourth equality uses definitions (2.16) and (3.2) as well as (2.20) evaluated at ¢ = i7 and

At = j7, the fifth equality uses definition (2.19), and the last equality is by definition (2.18).
Similarly, the entries of the stiffness matrix are, for block indexes i, =0,...,n — 1 and

for entry indexes r,s =1,...,m in the blocks,

S(zs):/d:cu(r)(iT,m)’Pu(s)(jT,a:)
’ Q
1 (") (; ") ( 5 ()14
=— [ dxu (m—,ac){u G+ D)71,x] +u HJ_HT#U]}
2 Jo

_1lr5m9 (r,5) (r,s) (r:5)
(3.26) =1 [Di+j+1 D55+ Dy +D\i—j+1|} ’

where the first equality is by definition (3.20), the second equality uses (3.8), and the last
equality follows as in (3.25).
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Note that the calculation of the mass matrix uses the data matrices {D); 5262, while the
calculation of the stiffness matrix requires the extra matrix Dg,_1. Once we compute M
and S, we can obtain from (3.19) all the Galerkin coefficient matrices g, for j > n, starting
with the trivial ones given in (3.24). Next, substituting the Gram—Schmidt orthogonalization
equation (3.21) in the definition (3.20) of the mass matrix, and recalling the orthonormality

equation (3.13), we get
(3.27) M = RT/ de VT (z)V(z) R=R"R.
Q

Thus, R can be computed from the data as the block Cholesky square root of M. This gives
the ROM snapshots (3.22). The ROM propagator is also data driven, by definitions (3.15)
and (3.20),

(3.28) PROM _ R-1"SR .

Remark 3.2. There are various ways to compute the block Cholesky factorization (3.27).
They differ in the computation of the diagonal blocks of R, which involves taking the square
root of an m X m symmetric and positive definite matrix. Any factorization should work, as
long as it is used consistently throughout the inversion. We use [16, Algorithm 5.2], which
takes the square root using the spectral decomposition of the matrix.

3.2. Data driven estimate of the internal wave. Ideally, the internal wave u(®)(t,z)

would be given by the interpolation in ¢ of the snapshots

J
(3.29) uC)(jrx) = [V (2) Rej], = ) [Vo(x) Ryl
q=0

at indexes j and j + 1 corresponding to the ends of the interval [j7,(j + 1)7] that contains
t. Here [-]s denotes the sth component and the right hand side is due to the Gram—Schmidt
orthogonalization equations (3.11), (3.21) and the block upper triangular structure of R, with
nonzero m X m blocks denoted by R, ; for indexes 0 <¢g<j<n—1.

Unfortunately, we only know the matrix R in (3.29), the square root of the mass matrix M
computed from {D; }3252 as in (3.25). We do not know V' (x), whose orthonormal components
span the unknown space .. To estimate the internal wave, we replace V (x) by V (x; cref),
the row vector field that stores the orthonormal basis of the space .7 (cyef), spanned by the
snapshots in the reference medium with known wave speed cpef(). This basis can be computed
by solving the wave equation to get the nm dimensional row vector U (x;cef), the reference
mass matrix M (cyef), and its block Cholesky square root R(cyef). Then, we have

(3.30) V(@ Cref) = U(QZ; Cref)R(cref)_la
and we estimate (3.29) by

J
(3.31) U (7,5 crer) = [V (@5 cren) Rej], = Y [Vg(®; crer) Ry ],
q=0

for j=0,....n—1land s=1,...,m.
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Why is this estimate of the internal wave a good choice? The next proposition states that
it fits the data {D; }3162 Thus, it must be a better approximation of the internal wave than
the reference wave used by the standard iterative algorithms, which does not fit the data. In
our context, this reference wave is given by

(3.32) u) (G, 25 Crer) = [V (@5 o) R(Crer)€j],s 5=0,...,n—1, s=1,...,m.

Proposition 3.3. 1. The internal wave evaluated att = j7, i.e., the snapshot (3.29), satisfies
the data fit relations

(3.33) D, - /Q dzul (@ (z), 0.

We also have

(3.34) Djiy1+Dp1_j=2 /Q drul | (z)u;(z), j=0,...,n—1.

2. The estimate (3.31) of the internal wave also satisfies the data fit relations

(3.35) D; :/deﬂép(m;cref)ﬁj(m;cref),

(3.36) Dy 1+Dy g j=2 /Q de L 1 (2; Cref) Wi (X5 o), §=0,...,n— 1.

Here we denote, similar to the row vector field notation in (3.7),
Uj(; Crep) = (@ (7, @3 Cres), - U™ (T, T3 0ret)), G =0,...,m— 1.

Before we give the proof, let us describe in more detail what the proposition says. Recall
from (2.18), (3.1), and (3.6) that the entries of the m x m data matrices D; are
(3.37) Dj(-r’s) =W (7, ) = §(t) *x u' (¢, Ty )| jrs r,s=1,...,m.
The first point of the proposition is that these entries can be written as inner products of the
components of the snapshots w;(x), for j > 0. This can be seen from the calculation of the
mass and stiffness matrices in (3.25)—(3.26). We can also deduce directly from (2.16), (2.19),
(3.3)—(3.4) and the definition of f as the square root of F' that

~

DJ(@S) =W (jr,x,) = /Q dx 0z, () cos [T/ A(c) |F[\/ A(c) |0z, (x)

~

/def[ A(€) 102, () cos [jTv/A(e) | TV/A(C)]bz, ()
(3.38) _ /Q dzu (@ (@), 0.
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The third equality in this equation is because A(c) is self-adjoint and functions of A(c) com-
mute.

The second point of the proposition is that when replacing u(()r) (x) and ugs) (x) by ﬂér) (; Cref)
and 17§S) (; crer) in (3.38), we match the data for j = 0,...,n — 1. Note that thanks to the
causal definition of the orthonormal bases in V(x) and V (x;cef) and the assumption that

c(x) = cref(x) = € within a distance of order ¢tp from the array, we have
(3.39) Vo(; crer) = vo(T),

and therefore

(3.40) U0 (Z; Cref) = uo(T) = vo(x) Ro 0.

At time instants j7 > tp the estimated internal wave is different from the true one

(3.41) i) (@; er) 2  (@) = cos [7v/A(e) | uf (@),

and yet, when using it in (3.38), we get an exact data match for j <n —1.

The proposition also shows that the data matrices D,,, ..., Ds,_2 can be written as the
difference of two terms: The first is an inner product of the components of u;(x), for j =
0,...,m— 1, and the second is given by the data matrices at the first n time instants. Both
these terms are matched by the estimated internal wave. Therefore, we have an exact data
match at instants j7, for j =0,...,2n — 2.

Proof of Proposition 3.3. Equation (3.33) is just (3.38) written in block form. If we restrict
it to j=0,...,n—1, we also get it from (3.25) evaluated at i =0 and j =0,...,n—1. In order
to prove (3.34) we take i=n—1 and j=0,...,n— 1 in (3.25) and get, in block form,

Djipn1+Dyp1-j=2My ;= 2/ dz ), (z)u;(z).
Q

To complete the proof of the proposition we note that the estimate (3.31) satisfies

/Qdac 'Eg(m; Crof)W; (T; Cref) = eqTRT /Q dx VT (x; crep) V (; cref) Rej
= e:qFRTRej =e,Me;
=e, / dzUT (z)U(x)e;
Q

- [ dwu] @)

for j,¢q=0,...,n — 1. The statement of the proposition follows. |

The calculation above shows that it is the factor R in the estimate (3.31) that ensures
the data fit. By equations (3.22) and (3.24), R stores the first n ROM snapshots. The vector
field V' (; cref) is used to map these snapshots from the algebraic ROM space to the physical

space. As long as there is a difference between the data {D; ?iaz and the computed one in
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the reference medium {D;(cpef) }5™5 2, this is reflected in R and its reference analogue R(cyef),

j:(] )
SO

a(s) (jT7 Z; Cref) = [V(IE, Cref)Rej]S # u(s) (jT, Z; Cref) = [V(:c, Cref)R(Cref)ej]S .

Numerical evidence and explicit analysis carried out in layered media and also in wave-
guides [8, Appendix A] show that V (x;c.f) is largely insensitive to the rough part of cpef(),
i.e., the reflectivity, but it does depend on the smooth part of c.ef(x), i.e., the kinematics. The
implication is that the estimate (3.31) may display the correct scattering events, but these
can be misplaced in ) due to the travel times given by the incorrect kinematics.

Our inversion algorithm (see next section) recalculates V' (x;cef) as we update the guess
wave speed cref(). As long as the initial guess of the kinematics is not too far from the truth,
it succeeds in giving a better estimate of c(x) than the traditional iterative algorithms that
estimate the internal wave by u(®) (JT, @5 Cref)-

4. The inversion. Let us begin with a reformulation of Proposition 2.2 that is better
suited for computations.

Proposition 4.1. The forward map c(x) — p(x) — D(t) defined in Proposition 2.2 for a
given cpee(x) can be rewritten as

t
(4.1) DTS () — DTS (t; erep) = /0 dt’ /Q dz p(z)u®) (', 2)0,u) (', 2; Cres)

forr,s=1,...,m and t>0.

The proof is in Appendix D and the main advantage of (4.1) over (2.25) is that we do
not have to deal with the Green’s function G(t,x,x,;crf), which is difficult to compute.
The convolution term f/(¢) that appears in the expression (3.5) is now included in the factor
yu") (t, x; ¢yef), which can be easily computed.

We estimate first the function p(x) by the minimizer of (2.28), and then the wave speed
c(x), using (2.29). The search space is

(42) R =span{f;(2),j = 1,..., Ny},
where {,Bj(as)};\;pl are user defined basis functions, so the search field is
NP
(4.3) pr(@) = n;Bi()
j=1
with the unknown coefficients gathered in the column vector n = (1, ... ,an)T. The linear

map N — p, — L[p.](t;crer) that enters the expression of the objective function (2.28) is
computed as

N,

(4'4) L[pn}(tmref) = anAq(t;cref)a
q=1
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where A, (t; cref) are m x m matrices with components

t
(4.5) A (1 cef) = / dt’ / d Bq (@) (', 2; cre) Oy ul™ (¢, 3 Crer),
0 €

in

and ©%) (t, x; cref) given by the interpolation of the estimated snapshots (3.31).

The regularization term in the objective function (2.28) can be chosen based on the prior
information on ¢(x). For the simulations described in the next section we use either the TV
norm of the wave speed or the squared Euclidean norm of 7, i.e., Tikhonov regularization.
We refer to Appendix E for the details on the regularization.

4.1. Regularization of the estimation of the internal wave. The computation of the
estimated internal wave snapshots (3.31) involves the block Cholesky factor R of the data
driven Galerkin mass matrix, so we need to ensure that M is symmetric and positive definite.

In the absence of noise, M is symmetric by reciprocity, but it may not be positive definite,
especially if we over discretize in time, i.e., 7 is too small, or if the separation between the
sensors is much smaller than the central wavelength.

If data are noisy, let M sy be the mass matrix given by (3.25), and then set

M = (Mnoisy+MT )7

noisy

N

to ensure the symmetry. In either case, if M is not positive definite, we regularize it by adding
a small multiple of the block M g to the block diagonal. Since M o = Dy is computed in the
known medium near the sensors, it is not affected by noise. Note that we use this particular
regularization, as opposed to, say, spectral truncation, to ensure that we maintain the block
Hankel plus Toeplitz algebraic structure of M seen from (3.25).

4.2. The inversion algorithm. The ROM and therefore the approximation of the internal
wave are causal, so it is possible to carry out the inversion in a layer peeling fashion, by
choosing a progressively larger end time T'. Then, the inversion scheme would consist of two
kinds of iterations: The outer iterations, which consider a progressively larger end time 7,
and the inner iterations that minimize the objective function for a given 7. We describe next
how we carry out the inner iterations. In our numerical simulations we used a single outer
iteration, i.e., a fixed T.

There are two ways to carry out the inner iterations, called henceforth “approach 1” and
“approach 2.” The first approach updates w(t,x;c.f) while keeping dyu(t,x; cref) and the
definition of p(x) fixed, as given in the following algorithm.

(Inner iterations for approach 1)
Input: D; for j =0,...,n—1, the Cholesky square root R of the mass matrix, and the initial
guess co(x) of the wave speed.

For £>1 do
1. Set ¢ref() = cx—1(x) and compute V (x; cref).
2. Compute ©®) (t, x; ¢,ef) using linear interpolation of [V (z; Cret) Rejls, for time t €

(0,...,(n—=1)7), index j=0,...,n—1and s=1,...,m.
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3. Compute the m x m matrices {Ag(t; Cref)}é\zl defined componentwise by

A tCref /dt’/ dx By(x (t T Cref)alu( )(t’,m;co)

for r,s=1,...,m and time ¢ in the set {0,7,...,(n —1)7}.
4. Determine the vector n = (11, ... ,an)T as the minimizer of the objective function

n—1 N,
2
E THDj —Dj(co) — g nqu(jT;Cref)HF + regularization.
7=0 q=1

5. Compute p(x anﬁq ) and estimate the wave speed as
co(x) T~
(46) exlw) = ) [ota) + VI 7 (@)

6. Check for convergence and decide to continue or stop.
Output: The estimated wave speed.

In the second approach we change all the fields at each iteration. The algorithm is like
the one above, with the following three exceptions:

1. At step 3, the matrices {A(t; Cref)} 1 have the entries

A(’"S (t; Cret) /dt’/ dx By(x (t T; cref)c?/u( )(t’,:c;cref).

2. At step 4, the objective function uses the recomputed data D;(cref) at the current
guess of the wave speed, instead of D;(cp).
3. At step b, the wave speed is estimated by

(4.7) cn(x) = Cref;m) [ﬁ(w) /A [)‘2(51:)} .

Here is the motivation for both approaches: If in the definition of {A,(t; Cref)}évzpl we had
the true internal wave w(t,x) instead of w(t,x;cef), then not counting the regularization,
the problem would be a linear least squares problem that can be solved in one iteration. As
explained in section 3.2, the snapshots of the true wave differ from our estimates only because
we replace the unknown V() by the computable V (x; c,er). The idea of the first approach is
to correct V' (x; cref) as we iterate, hoping that it gets closer to V(x). The other fields remain
equal to their initial values.

The second approach is basically the Gauss—Newton method for minimizing the objec-
tive function. Since all the fields are updated at each iteration, it may look like it involves
more computations. However, since both approaches need the orthonormal basis stored in
V (z; cre), whose computation involves the calculation of the reference snapshots, there is no
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extra computational cost. Moreover, this second approach performs better in the numerical
simulations, as shown in the next section.

We end the section with a brief comparison of the computational cost per iteration of
our algorithms and of FWI. They all require the solution of the forward problem. In FWI,
the Jacobian of the objective function is typically computed using an adjoint method [27].
Its cost is comparable to that of computing the matrices {Aq(t;cref)}(];f:"1 at step 3 of our
algorithms. The overhead in our algorithms is due to the block Cholesky factorization of the
mass matrix. This is O(m3n?), and it is small compared to the computation of the Jacobian
of the objective functions. Note that V' (x; cyer) does not need to fit in computational memory.
One can partition the imaging domain into sections and compute it for each section separately.

5. Numerical results. In this section we present numerical results in a two dimensional
rectangular domain €2, with one side close and parallel to the array, modeled as the sound
hard boundary 9. The other three sides are modeled as the sound soft boundary 9Qp.
Two of them are perpendicular to the array and are close enough to affect the waves over the
duration 2(n — 1)7 of the data gather. The remaining side is far away from the array and
plays no role. The sketch in Figure 2.1 illustrates the setup.

The probing pulse is the Gaussian

2,42
(5.1) fit)= 7 exp (—B; ) cos(wet),
modulated with the cosine at central frequency w./(27) and with bandwidth determined by
B =w./4. After the “pulse compression” we get

F(t) = F(-t)= £(t)= T exp (—Bff) [cosw) +exp (—}‘f)}
(5.2) ~ ”Zz exp <—B22> cos(wel).

This does not have finite support, but it is negligible for |t| > 2v/3/B, so the theory applies
with tr =2v/3/B.

We refer to Appendix E for the details on the calculation of the objective function and its
minimization. Here we give the numerical results obtained with the two approaches described
above and also with the traditional FWI method, which differs from approach 2 by the ap-
proximation of the internal wave. Instead of the estimate (3.31), FWI uses the wave in the
reference medium.

In all the figures, we scale the wave speed by the constant value ¢ near the array, and the
lengths by the central wavelength \. = 27w¢/w.. Following the typical terminology in array
imaging, we mean by “range” the direction orthogonal to the array and by “cross-range” the
direction along the array. The time sampling step 7, the number n of time instants, the
number m of sensors, and the separation between them vary among the experiments and are
specified in the two sections below.

5.1. Test case 1. The first set of results is for the medium shown in Figure 5.1. The
array consists of m = 40 sensors, spaced at distance A\./4 apart. The time sampling step is
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Figure 5.1. The wave speed in the first test medium. The colorbar shows the variations of c¢(x)/¢. The 40
sensors in the array are shown with the triangles at the top of the domain. The boundary of the rectangular
snversion domain Qin 18 shown with the black line.
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Figure 5.2. The 20" column of the data matrices, displayed as a function of the receiver index in the
abscissa and time index in the ordinate. The magnitude of the entries is given in the colorbar.

T =m/(3w.) and n = 75. The mass matrix M is regularized as explained in section 4.1, by
adding the 0.01 multiple of M to the block diagonal.

We display in the left plot of Figure 5.2 one column of the data matrix D(t), corresponding
to the central source excitation, indexed by s =20. Its analogue {D(T’QO) (t;¢0) ;%‘;1, computed
with the initial guess co(a) = ¢ of the wave speed, is shown in the middle plot. It contains just
the echoes from the side boundaries. The echoes from the unknown inclusions are prominent
in the right plot, which displays the difference {D™20)(t) — D("20)(t; ¢5)}40 .

As explained in the previous section, the essential difference between the ROM based
inversion and FWI is the estimation of the internal wave. Figure 5.3 shows the estimates for
the point @ indicated with a black cross in the top plot. The true internal wave u;(x) =
V(x)Re;j, which cannot be computed from the data set and requires knowing ¢(x), is shown
in the left plot in the middle line. The initial FWI estimate w;(x;co) = V (x;c0)R(co)e; is
shown in the right plot in the middle line, and the ROM estimate w;(x;co) = V(x;¢o) Re; is
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Figure 5.3. Top: The medium and the point & at which we estimate the internal solution, indicated with a

cross. Middle left: The true internal wave w;(x) = {u'® (j7,®)}22,. Middle right: The initial FWI estimate

w;(x;c0) = {u(s)(jr,a:;co) 20, of the internal wave. Bottom left: The initial ROM estimate u;(x;co) =

{9 (1, 2;¢0) Y22, of the internal wave. Bottom right: The final ROM estimate of the internal wave.

shown in the bottom left plot. To compare the FWI and ROM initial estimates, we identify
in the true internal wave three arrival events: The first is the direct arrival, indicated by the
arrow a, which is the wave that travels from the array to x, through the top fast inclusion.
The dashed line marks the travel time from the closest source to . The other two events,
indicated by the arrows b and c, are waves scattered multiple times between the inclusions
and the top boundary. Note that both the ROM and FWI estimates contain the direct arrival,
although it lies behind the dashed line by about 27, due to the incorrect kinematics given by
co(x). The FWI estimate does not account for the multiply scattered arrival events, as it uses
no information about the true medium. The ROM estimate is superior, because it contains
these events, although they are slightly displaced, due to the wrong kinematics. The ROM
based inversion corrects the kinematics as we iterate, and the final estimate of the internal
wave, shown in the bottom right plot, is very close to the uncomputable true internal wave.
The inversion results are shown in Figure 5.4. They are obtained with the parametrization

(4.3), using the “hat basis” {f; (:L')}jvzpl, defined on a uniform mesh in Qi,, with spacing 3A./16
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Figure 5.4. Inversion results for the setup shown in Figure 5.1. We display the results in the subdomain
Qin. The left column shows the results for Tikhonov reqularization and the right column for TV reqularization.
From top to bottom, the first row is for approach 1, the second row is for approach 2, and the third row is for
FWI. The last row shows the ideal inversion results, obtained with the true internal wave. The colorbar is kept
the same as in Figure 5.1.

in range and A./4 in cross-range. Each function (;(x) is piecewise linear on the mesh, equal
to one at the jth mesh point, and zero at all other points. We use the two regularization
methods mentioned in the previous section: Tikhonov, which penalizes the squared Euclidean
norm of the vector n of coefficients in (4.3) (left plots), and TV, which penalizes the L'(y,)
norm of the gradient of the wave speed (right plots). The details of the regularization, and
the regularization parameters, are given in Appendix E.

To assess the quality of the inversion, we display in the bottom row of Figure 5.4 the
ideal result, obtained with the true internal wave wu(¢,x), which cannot be computed without
knowing the medium. Were it not for the regularization, this ideal result could be obtained in
a single step. However, since we penalize the changes of p(x) and therefore of ¢(x), we need a
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Figure 5.5. Two cross-sections of the inversion results, indicated in the top plot by the solid and dotted
vertical lines.

few steps to reach convergence. The ROM approach 2 gives a result that is close to the ideal
one, as seen from the plots shown in the second line. The ROM approach 1 result, shown in
the first line, is not as good. In particular, the bottom inclusion is not correctly identified and
the values of the wave speed in the other inclusions are not as close as those given by approach
2. The FWI results are shown in the third line. They are better for Tikhonov regularization,
but the bottom inclusion is misplaced due to the wrong kinematics of the inclusions above
it. For the TV regularization, the FWI method gets stuck in a local minimum, and thus it
cannot identify the bottom two inclusions.

Figure 5.5 shows two cross-sections of the images, where the misplacement of the bottom
inclusions by FWI and approach 1 are more evident. We also show in Figure 5.6 the relative

1
data misfit: {k(zﬁgl 1D, — Dy(e) %) /(22! ||Dj||%)] * where cy() is the estimated wave
speed at the kth iteration. This misfit cannot be zero even in the ideal inversion, because the
unknown ¢(x) cannot be represented exactly in the hat basis and because we use regularization.
Note that approach 2 achieves the ideal fit, while the other methods give a worse fit. This is

consistent with the results in Figure 5.4.
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Figure 5.6. Data fit of the inversion methods.
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Figure 5.7. The stability of the inversion algorithm with respect to changes of the basis in the parametriza-
tion of p(x). Both results are obtained with TV regularization. The left plot is for the Gaussian basis and the
right plot is for the pizel basis.

We now focus attention on the better approach 2, and illustrate in Figure 5.7 its stability
to the change of basis {Bj(m)}jy:pl of the search space R: The left plot uses a Gaussian basis,
where f;(x) peaks at the jth mesh point, and has the standard deviation 0.0796\. in range
and 0.11). in cross-range. The mesh is the same as for the basis of hat functions and the
standard deviations are chosen so that the Gaussian functions have the same full width at half
maximum as the hat functions [1]. The right plot is for a pixel basis defined on a uniform,
square mesh with spacing A./8, where 3;(x) equals one in the jth grid cell and zero elsewhere.
Both results are obtained with TV regularization. It may appear natural to use the pixel basis
in conjunction with TV regularization to recover a piecewise constant wave speed. However,
the jump discontinuities introduced by this basis cause spurious scattering events, because
the unknown inclusions are misaligned with the inversion mesh. Consequently, the image is
slightly worse and, in particular, the bottom small inclusion is barely seen. The continuous
basis functions, like the hats and the Gaussians, are not so sensitive to the mesh misalignment
and give a better result.

The robustness of approach 2 to 10% additive noise is illustrated in Figure 5.8. To mitigate
the noise, we regularized the mass matrix as explained in section 4.1, by adding the multiple
0.87 of My to the block diagonal. We display the inversion results obtained with Tikhonov
regularization (left plot) and TV regularization (right plot). We use the same basis of hat
functions as in Figure 5.4, and the noise model is as follows: For j =1,...,2n—1, we add to D;
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Figure 5.8. Inversion results using data contaminated with 10% noise. Left plot: Tikhonov regularization.
Right plot: TV regularization.
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Figure 5.9. The wave speed in the second test medium, with thin, fracture like, slow inhomogeneities. The
colorbar shows the variations of c(x)/¢. The 50 sensors in the array are shown with the triangles at the top of
the domain.

the matrix IM;, with m? entries (‘ﬁ(r’s))m that are independent and identically distributed

r,s=1

: - - - 0.12 \~2n—1 119 (|2
Gaussian random variables, with mean zero and variance 5755 > 500" | Dj||%-

5.2. Test case 2. The second set of results is for the medium shown in Figure 5.9, with
four thin and slow inhomogeneities, which model fractures. The array has m = 50 sensors, at
distance 0.35). apart, the time step is 7 =m/(3w,.), and n = 118.

The main difference between this test case and the one considered in the previous section is
that co(x) = ¢ gives a good approximation of the kinematics, which is only slightly perturbed
by the thin inhomogeneities. This is why our initial estimate u(t,x;co) of the internal wave is
close to the true wave u(t,x), as illustrated in Figure 5.10, for the point & marked with the
red cross in the left plot. Note how the estimate contains the marked 4 arrivals in the middle
plot. The arrival marked by d is for the wave scattered once at the bottom inhomogeneity.
The events marked with ¢ and b are surface multiples, which scattered at the sound hard
boundary and the top inhomogeneity. The later arrival marked a is also correctly identified.

In Figure 5.11 we compare the inversion results given by the ROM approach 2 and FWI.
We parametrize p(x) with the hat basis, on a grid with steps 3A\./16 in range and 5\./16 in
cross-range. We use TV regularization, with the regularization parameter given in Appendix
E. Since the initial estimate of the internal wave is so accurate, the ROM approach 2 identifies
the four thin inhomogeneities at the first step. The remaining four iterations sharpen slightly
the image. FWI gives a spurious feature at the first iteration, because it uses the inaccurate
estimate u(t, x;cg) of the internal wave. This spurious feature disappears at the 5th iteration,
but the lower inhomogeneities are not reconstructed. The optimization is stuck in a local
minimum and the result does not improve if we iterate more.
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Figure 5.10. The internal wave at the point & marked with the red cross in the left plot. Middle plot displays
the true internal wave. The right plot is our initial estimate of this wave.
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Figure 5.11. Inversion results: Top row shows the first iteration. Bottom row shows the fifth iteration. The
left column is for the ROM approach 2 and the right column is for FWI.

6. Summary. We introduced a novel waveform inversion methodology that estimates the
wave speed in the acoustic wave equation from the time resolved response matrix gathered by
an array of sensors that emit probing pulses and measure the generated wave. The algorithm
uses a least squares data fit formulation of the problem, where the forward map from the
wave speed to the data is defined using the Lippmann—Schwinger integral equation for the
scattered wave field. This map is nonlinear and, typically, the least squares objective function
has multiple local minima that are far from the true wave speed. This behavior is known to
be caused by the following factors: (1) the data acquisition geometry, i.e., the array measures
the backscattered waves but not the waves transmitted through the unknown medium; (2)
the multiple scattering of the waves on the rough part of the medium, called the reflectivity,
and modeled, for example, by the jump discontinuities of the wave speed; and (3) the cycle
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skipping phenomenon, caused by kinematic errors that exceed half a period of the probing
waves. Kinematics refers to the smooth part of the wave speed, which determines the travel
times of the waves, and cycle skipping is especially problematic for high frequency waves.

The novelty of our methodology is that these effects can be mitigated partially using a
data driven estimate of the internal wave, i.e., the wave field at points inside the inaccessible
medium. Full knowledge of this wave would linearize the forward map and thus turn the
problem into an easier, linear least squares minimization. Our estimate is an approximation
of the internal wave that is more accurate than the usual ones used in iterative optimization
methods. In particular, we prove that it satisfies automatically the measured data.

Our estimate of the internal wave is rooted in a data driven ROM of the wave propagator
operator, which controls the evolution of the wave field at discrete time instants separated
by an appropriately chosen interval. The computation of the estimate of the internal wave
is cost effective and it is robust to additive noise. The accuracy of the estimate depends
mostly on the guess kinematics and not the reflectivity, and it can be improved iteratively.
We introduced an inversion algorithm based on the estimated internal wave and assessed its
performance with numerical simulations.

Appendix A. Derivation of the expression (2.19). This derivation can also be found in
[8]. We repeat it here for the convenience of the reader. We begin by writing the solution of
(2.7)-(2.8) as

(A1) PO (t,a) = F(t) % G(t,z, x),

where G(t,x,xy) is the causal Green’s function, satisfying

(A.2) [a,? + A(0)] G(t, @, x5) =8 ()0, (), teR, zeQ,
(A.3) G(t,x,xs) =0, t<0, x€,
(A.4) loa, (x) + loa, ()0, G(t, z, xs) =0, teR, =0

This problem can be solved using separation of variables: Expanding G(t,x,x;) in the or-
thonormal basis given by the eigenfunctions {y;(x)};>1 of A(c), and imposing the jump con-
ditions at t =0, due to the derivative of the Dirac §(¢) in (A.2), we get

(A.5) G(t, @, x;) = H(t) cos [tr/A(c)| 0z, (x) Zcos /07 )y (x)y; (zs),

where H(t) is the Heaviside step function, equal to 1 at ¢ > 0 and 0 otherwise. Therefore,
(A.1) becomes?

PO (t,2) = Zcos (t\/0; )y (x)y;(xs)
(A.6) = Z {F(t) ) cos(t4/0;) ] yi()y;(xs).

Jj=1

3Because the series (A.5) converges pointwise in ¢, and the partial sums are dominated by an integrable
function in ¢, we could move the time convolution inside the series using the dominated convergence theorem.
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We can evaluate the convolution in (A.6) using the Fourier transform formula

/_ZdtH(t)cos(t\/Hj)eM:g[ \/> +4( w+f} m
and obtain
F(t) % H(t)cos(t\/0;) = { \/G»j)e*"t\/eif—i-ﬁ(—\/@»j)e”\/@]
+ /_ ;L: (Z;]i(;u?))e_m’

where the first term simplifies because by the definition of F(¢) and the fact that the probing
pulse is real valued, we have F(w) = F(—w), for all w € R. Therefore,

> dw iwF(w)

F(t) % H(t)cos(t\/0;) = %ﬁ(\/@) cos(t~/0;) + /_ o We—iwt’

and substituting in (A.6) and recalling the definition (2.11) of the even wave, we get

o

w) (t,x) Z ) cos( t\/> /OO d: W] yi(@)y;(xs)-

The integral vanlshes, because the integrand is odd, and the result becomes
w) (t,x) ZF )cos(t\/0;t)y;(x)y;(xs)
= cos [t\/A(c) |F[\/A(c) 6, ().

This is (2.19), by definition (2.16). That W(S) (t,x) solves the initial boundary value problem
(2.12)—(2.15) is obvious from this expression.

Appendix B. Proof of Proposition 2.2. Let us undo the similarity transformation in
(2.6) and work for the moment with the causal wave

(B.1) w® (t, @) = H(t)e(x) W (t, ),

defined for ¢t € R. We deduce from (2.12)—(2.14) that this satisfies

(B.2) (07 — 2 (2)A] wl¥ (t, ) = 8’ (t)ep'™ (), teR, x e,
(B.3) w® (t,x) =0, t<0, zeq,
(B.4) [loa, (&) + 1o, ()8, w' (t,2) =0, teR, xed,

where we used the jump conditions for the derivative of the Dirac §(¢), which give

75 (8) — (s) N €) Fa — p(3)
2o (@) = lim |0(e, @) — w0 (2, 2)| = w0+, 2),

0= ;1\1‘1% [&gw(s) (e,x) — Bw'® (—e, m)] = 0w (0+, ).
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Similarly, we define the reference wave
(B.5) W (t, 25 Cref) = H () ro(@) W (8, 25 o),

which solves the analogue of (B.2)—(B.4), with ¢(x) replaced by cef(x). Then, the “scattered
wave”

(B.6) (S) (t,x) = (s)(t, x)— w® (t,@; Crof)

satisfies the equation,

2 2
c(x) — 2 (x
B [ @] ud o) = S a0, R zen,
c
driven by the unknown variations of the wave speed, and can be written via the principle of
linear superposition in terms of the Green’s function G(t,x,’; c,ef) for the wave operator in
the reference medium. This is the solution of

(B.8) [21()8,52 — A] G(t,x,&; crer) = 0(t)0_s (), teR, xeQ,
CrefL *

(B.9) G(t,x,x';crer) =0, t<0, z€Q,

(B.10) [1oa, () + laa, (€)0n] G(t,, &'; cre) =0, teR, x e,

and it is related to the Green’s function G(¢,,x’; ¢;ef) in Proposition 2.2 by
(B.11) G (t, @, &; Cref) = Crot(T) Cret (') G (t, @, X' Crof) -

The principle of linear superposition gives

s > [62($/) — C?ef(m/)] 2,.(s
wéC) (t, x) N /oo 4 ~/Q da’ 62<w/)03ef<a:/) at/w( )(t/’ wl)g(t - t/7 T, wl; Cref),

and after one step of integration by parts in ¢/, we get

) — (@)
dt' dx’ ref\L o (s) Ay t—¢t /. of)-
/ / 02 )eip() >t 2")0yG( 1, &' Crof)
Substituting
DGt =t 2,2 Crep) = =G (t — 1, 2, &' Cref)
= _Cref(w)cref(ml)G(t - tla Z, $,§ Cref)

into this equation, using definitions (B.1) and (B.6), and recalling that G(t — t', @, &’; cref)
vanishes at t <t', we get
—c

( ) (s) (s / // / ?ef( /)] (8) (41 -t
— )W (t,x) — WY (t, @; cref) at’ | dx Cref( ,) AWt ')

,x, T Cref)

for t > 0. The result of the proposition follows from this equation evaluated at & = x,., because
c(xy) = cret(xy) = C. [ |
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Appendix C. Derivation of (3.1). Recall from section 2.2 the spectral decomposition
of the operator A(c), and the definition of functions of this operator. We have from (2.19),
definitions (3.2), (3.4), and the fact that functions of A(c) commute that

W) (¢, ) :/f\\/i Jcos| t\/i
(C.1) i ) cos ( t\F <y],u0 >yj(:n),
where < -,- > denotes the L?(£2) inner product. The definition of the Fourier transform gives
\f ) cos (t1/0;) / dt'§(t") cos (t'/0; ) cos (t/0;)
= 1/ dat' §(t) {cos[(t —")/0;] +cos[(t+t’)\/9>j]}
(C.2) / dt' §(t') cos [(t — t')/0;] = f(t) *¢ cos (t1/0; ),
where we used that f(¢) is even. Equation (3.1) follows once we substitute this result in (C.1)

and use the dominated convergence theorem, as in Appendix A, to take the time convolution
out of the series. We also need the observation that

(C.3) u(s)(t,w):cos[t\/A(c)]ués) Zcos (t\/0;) <y],u0 >y] (x).

Appendix D. Proof of Proposition 4.1. We get from (2.25) and (3.1) that

o0

t
dty ul® (tl,w)/ dt'§' (t' — 1)
0

X G<t - t/,.'B,.'IJT; Cref);

D(T’,S) (t) _ D(T’s) (t’ Cref) = / dx p(m)/
Qin

—0o0

where we used that supp(p) C Qin. Changing the variable of integration ¢’ =ts + ¢; and using
the notation

t—t1
(Dl) w(t7t1,w7$7~)=/ dt2 f/(tZ)G(t_tl —t27CC,CC7»;Cref),
—t1
we get
(D.2) DT (1) — D) (t; ¢rep) = / dx p(x) / dty u® (t, 2)Y (L, b1, z, @),
Qin — 00

so let us study (D.1).
First, we note that since {'(¢) is supported in (—tg,tr), the right hand side in (D.1)
vanishes when

(—t1,t —t1) N (—tp,tp) =0.
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Thus, ¥(t,t1,x,x,) is supported at t; € (—tp,t +tp), and (D.2) becomes, for ¢ > 0,

t+ir

(D.3) DTS () — DUS) (; ¢rep) = / dx p(x) / dty u'® (ty, )0 (t, b1, @, x,).

Qin —tp

Second, since the Green’s function is supported at positive time arguments, we can rewrite
the definition (D.1) as

Y(t,t, z, ;) =/ dta H(t1 +t2)f (t2)G(t — t1 — t2, @, Xy} Cref)
(D4) :/ dtgH(tg)f/(t;g —tl)G(t—tg,.’.l},CUr;Cref),

where we recall that H(t) is the Heaviside step function. This solves the equation (recall
Appendix A)

(D.5) (07 + Alerer)] (L, 1, 2, 220) = B [H(OF (= 1)) b, ()
for t € R and x € 2, with homogeneous initial condition and with boundary condition
Lo, (x) + 1oy ()0n] Y (t, t1,x,2,) =0, teR, eI

Since suppf' (- —t1) C (t1 —tp,t1 +tp), the Heaviside function plays no role in the right hand
side of (D.5) if t; >ty and we then get that (¢,x)— 9 (t,t1, 2, x,) is the solution to

(D.6) [8152 + A(cref)] Yt ty, ) =F'(t —t1)0g, (x)
with ¥(t,t1,x,x,) =0 for all ¢t <0. We can write
(D7) w(t,tl,a:,ch):C(T)(t—tl,w;cref),

where (") (t,x; cref) is the analogue of the wave (2.6), the solution of (2.7)(2.9), with c¢(z)
replaced by cpef(x) and F(t) replaced by §(¢). The even extension in time of this wave is
u(r) (t,x; crer) and, similar to (2.17), we have for t; >tp and t; <t —tp,

(DS) ¢(t,t17 €T, wr) = C(r) (t —t1,x; Cref) = atu(r) (t —t1,; Cref)-

In summary, the equation for computing the scattered wave at the receivers becomes

t+ir

D) (1) = DU (1 o) = / dz p(z) / it u®) (1, @) (L b, 2, )
Qin

—tp

0
:/ dwp(:l:)/ dty u'® (ty, 2)0(t, b1, 2, @,
Qin F
+/ dz p(x
Qin
(x

—t
(t—t)VO
)/ dty u'® (t1, 2)0u" (t — t1, 3 Crer)
0
t+tr
+/ dx p )/ dty u'® (ty, )0 (t, b1, @, @)

Q (t—tr)VO
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The first term in the right hand side vanishes because on the one hand the subdomain €,
is further than the distance O(¢tr) from the array, and on the other hand the hyperbolicity
of the wave equation and the finite wave speed give that the support of u(®) (t1,) is disjoint
from €, for |t1] < tp. Consequently, we have

t
D(T’S)(t)—D(’"’S)(t;cref):/ d‘”ﬂ(ﬁﬁ)/ dty u®) (t1,2)0pu ") (8 — t1, @5 Cref)
0

in

t
'f/ dwmm)/ dty ul® (t1, )0 (t — t1, 5 ref)
Qin (

/
Q

The last two terms in the right hand side vanish because the support of 8tu££g (t —t1,2) and
Y(t,t1, @, x,) is disjoint from Qyy, for |t — t1] < tp. Therefore, we have

tttp
dx p(x) / dt; ul® (t1,2)(t, t1, @, ).
(

t—tp)VO

in

(D.9) D“WQ—D“WQ%Q:/

t
dz p(x) / dty u'® (t1, @) 0pu) (t — t1, @; Cref).
Qill O

a

Appendix E. Details on our implementation of the inversion algorithm. The data
matrices (2.18) are generated by solving the initial boundary value problem (2.1)—(2.3) with
a time domain, second-order centered finite-difference scheme in space and time, on a square
mesh with size

e
4(we+ B)’

The time steps in this scheme are chosen to satisfy the Courant—Friedreichs—Lewy condition.

The data driven mass matrix M is computed as in (3.25) and its block Cholesky square
root R is obtained with [16, Algorithm 5.2]. We solve the wave equation in the reference
medium with wave speed cef() to compute the vector field U (x; cpef) of snapshots and the
reference data matrices D(t;cper), which then give M (cef) via (3.25). The block Cholesky
square 100t R(cpef) of M (cref) is computed with [16, Algorithm 5.2]. We use it to get
V(x; cret) = U(; crof) R(cror) ! and the estimated internal wave snapshots defined by (3.31).

The parametrization of the unknown p(x) is done as in (4.3). At the kth iteration we
have the estimate (%) of the vector of coefficients in the parametrization (4.3). This defines
the estimate of the wave speed, as explained in section 4. To emphasize the dependence of
this estimate on n(k), we change the notation in this appendix to E(a:;n(k)). Each iteration
seeks to update the vector of coefficients as

n* D =n® + on,
where 01 is the minimizer of

(E.1) IT(0®)om = b(n™) [ + Creg(n™® + om;aM).
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The first term in this expression comes from the data fit term in the objective function, where
the time and spatial integrals are approximated with the midpoint rule on the time grid
with step 7 and the spatial grid with step h. We arrange in lexicographical order the entries
inside the Frobenius norm, for snapshot indexes j =0,...,n — 1 and for source receiver pairs
s,r=1,...,m. Then, the 61 independent term gives the vector b(n*¥)) € R™*" and the matrix
that multiplies 7 is T'(n*)) € Rm™*nxN,

If we choose Tikhonov regularization,

(E.2) ﬁreg(rl(k) +4m; a(k)) = a(k)HdnH%.
If we choose TV regularization, then we approximate
(E.3) Orog (™ + 6m;a ™) = a®(|Ve(a; 0™ + 6n)| 11 q,,),

via linearization of the map 1 ¢(x;n) at n*). We have from definitions (4.3) and (4.6) or
(4.7) and the chain rule

N,
- - 1 p(x;nk) -
E.4 cx;n® +on)~ ;N 1+ = [1+ Sl on;Bi(x) ¢,
(E.4) (x;m ) (z;n'™) B 1+ 2 (= n®) ]Z:; n;B5(x)

where dn = (on1, ..., 5an)T. The TV norm of this function is approximated using a standard
approach (see, for example, [18]), and we obtain the following form of the regularization term,

(E5) o | ®)am + &™)

for a full rank matrix W(n®*)), vector £(n™*)), and redefined a(*).
For both choices of the regularization, the estimation of 1 can now be rewritten as a
linear least squares problem. For the Tikhonov regularization, the coefficient is chosen as

(E.6) oM =(yo)?,  o=|Tn™)],,

where o is obviously the largest singular value of I‘(n<k)) and -y is a user defined parameter.
For the TV regularization, the coefficient is chosen using the generalized SVD of the pencil

[T(n®), B (n*)],
™) =qQziw,  ¥(n®)=Q,=,W,

where Q2 are unitary matrices, 31 9 are rectangular, diagonal matrices, and W is a square
matrix that is nonsingular (because ¥ (1)) is supposed to be full rank). The matrix X has
diagonal coefficients 0 <op; <--- < orn, <1 (we assume N, < an) and the matrix X5 has
diagonal coefficients 1 > oy 1 >--- > oy n, >0 (we assume that the full rank matrix \Il(n("‘))
has more rows than columns). The diagonal coefficients satisfy

2 2
or;toy;=1
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for all j and the generalized singular values are the ratios or /oy ; for j =1,...,N,. Note
that the generalized singular values form an increasing sequence. We then choose
or
o™ = (y0)?, o= max —

with a user defined ~.

The numerical results shown in section 5.1 are obtained with v = 0.03 for the Tikhonov
regularization and v = 0.01 for the TV regularization. The numerical results shown in
section 5.2 are obtained with TV regularization for v = 0.02.
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