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ABSTRACT

We introduce a novel approach to waveform inversion based
on a data-driven reduced order model (ROM) of the wave op-
erator. The presentation is for the acoustic wave equation, but
the approach can be extended to elastic or electromagnetic
waves. The data are time resolved measurements of the pressure
wave gathered by an acquisition system that probes the un-
known medium with pulses and measures the generated waves.
We propose to solve the inverse problem of velocity estimation
by minimizing the square misfit between the ROM computed
from the recorded data and the ROM computed from the mod-
eled data, at the current guess of the velocity. We give a step by
step computation of the ROM, which depends nonlinearly on
the data and yet can be obtained from them in a noniterative

fashion, using efficient methods from linear algebra. We also
explain how to make the ROM robust to data inaccuracy. The
ROM computation requires the full array response matrix gath-
ered with colocated sources and receivers. However, we find
that the computation can deal with an approximation of this ma-
trix, obtained from towed-streamer data using interpolation and
reciprocity on-the-fly. Although the full-waveform inversion
approach of nonlinear least-squares data fitting is challenging
without low-frequency information, due to multiple minima of
the data fit objective function, we find that the ROM misfit ob-
jective function has better behavior, even for a poor initial guess.
We also find by explicit computation of the objective functions
in a simple setting that the ROM misfit objective function has
convexity properties, whereas the least-squares data fit objective
function displays multiple local minima.

INTRODUCTION

We study the inverse problem of velocity estimation from reflec-
tion data gathered by an array ofNs colocated sources and receivers.
The methodology applies to any linear wave equation, for sound or
vectorial (electromagnetic or elastic) waves, but for simplicity, we
work with the acoustic wave equation in a medium with constant
density and unknown wave speed cðxÞ.
Let pðsÞðt; xÞ model the pressure wave generated by the sth

source, for s ¼ 1; : : : ; Ns. It satisfies the wave equation:

½∂2t − c2ðxÞΔ�pðsÞðt; xÞ ¼ f 0ðtÞδxsðxÞ; t ∈ R; (1)

pðsÞðt; xÞ ¼ 0; t < −tf ; (2)

for x ∈ Ω, a connected domain, with boundary ∂Ω. This domain can
arise from the mathematical truncation of the space because over the
finite duration T of the measurements, the waves are not affected by
the medium at distances exceeding TmaxxcðxÞ. Thus, we can im-
pose any homogeneous boundary conditions at ∂Ω, for example,
Dirichlet.
The right side in equation 1 models the point-like source at

location xs, where δxs ðxÞ denotes the Dirac δðx − xsÞ, fðtÞ is the
probing pulse, and the prime stands for the time derivative. It is
convenient for the analysis to assume that fðtÞ is an even function,
with support in the interval ð−tf ; tfÞ. This may not be the case, in
practice, but we explain later that data gathered with an arbitrary
pulse that is known or can be estimated, can be transformed by sim-
ple processing to data for an even pulse fðtÞ. Prior to the excitation,
the medium is quiescent, as stated in equation 2.
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The inverse problem is to find the velocity cðxÞ from the mea-
sured array response matrix MðtÞ, with entries

Mðr;sÞðtÞ ¼ pðsÞðt; xrÞ; 1 ≤ r; s ≤ Ns; t ∈ ð−tf ; T�: (3)

Note that knowing MðtÞ requires colocated sources and receivers.
This is typically not the case in geophysics applications, but the
formulation extends, for example, to the towed-streamer data ac-
quisition. The missing off-diagonal entries of MðtÞ are obtained
from towed-streamer data using source-receiver reciprocity on-the-
fly, and the diagonal entries can be approximated by interpolation.
Common velocity estimation approaches are traveltime tomogra-

phy (Dines and Lytle, 1979) and its more general version studied in
the mathematics community (Stefanov et al., 2019), linearized, also
known as the Born inversion (Clayton and Stolt, 1981), migration
velocity analysis (Symes and Carazzone, 1991; Sava and Biondi,
2004), and full-waveform inversion (FWI) (Tarantola, 1984; Vir-
ieux and Operto, 2009). The first three are based on assumptions
such as the velocity changes slowly on the scale of the wavelength
(for traveltime tomography) or the velocity variations are small (for
the Born inversion) or there is a separation of scales between the
smooth components of the velocity and the rough part that gives
the reflectivity of the medium (for migration). FWI circumvents
such assumptions. It is a partial differential equation constrained
optimization that fits the data with its model prediction, typically in
the L2 (least-squares) sense. The increase in computing power has
led to growing interest in FWI, but there is a fundamental impedi-
ment, which manifests especially for high-frequency data. The ob-
jective function is nonconvex even in the absence of noise (Gauthier
et al., 1986; Santosa and Symes, 1989) and displays numerous local
minima. This issue, which is due to nonlinear (multiple scattering)
effects and cycle skipping, makes any gradient-based, local optimi-
zation algorithm, unlikely to succeed in the absence of an accurate
starting guess (Virieux and Operto, 2009).
There are several approaches to mitigate cycle skipping. For in-

stance, multiscale methods pursue a good starting guess by inverting
first very low-frequency data (Bunks et al., 1995). However, such data
may not be available and there is no guarantee that what seems a rea-
sonable starting guess will not create cycle-skipping issues for high-
frequency data. Extended modeling approaches (Symes, 2008), such
as the differential semblance method (Symes and Carazzone, 1991;
Symes and Kern, 1994) and the source-receiver extension method
(Huang et al., 2017), introduce in a systematic way additional degrees
of freedom in the optimization and then use some objective function
to drive the extended model toward a velocity estimate. There also are
approaches that use a better alternative than the L2 norm for meas-
uring the data misfit (Guitton and Symes, 2003; Brossier et al., 2010;
Bozdağ et al., 2011). A prominent alternative is an optimal transport
(Wasserstein) metric proposed and analyzed for seismic inversion in
Engquist and Froese (2014) and Yang et al. (2018).
We introduce a different approach to velocity estimation, based

on a data-driven reduced order model (ROM) of the wave operator.
The mapping between the measurements defined in equation 3 and
the ROM is nonlinear and yet, it can be calculated efficiently with
methods from numerical linear algebra. The main point of the paper
is that the objective function given by the ROM misfit has better
behavior than the FWI objective function, so optimization methods
can converge for a poor initial guess.
There is an ever-growing list of data-driven ROM approaches to

operator inference and dynamical system identification (Brunton

et al., 2016; Peherstorfer and Willcox, 2016). However, they require
data that are not available in our inverse problem. They assume
knowledge of the state of the system, the wave pðsÞðt; xÞ in our case,
at a finite set of time instances and for all x ∈ Ω. In contrast, seismic
surveys only provide the measurements MðtÞ of the wave at the
receiver positions.
The first array of data-driven ROM for wave propagation was in-

troduced and used in Druskin et al. (2016) in one dimension and in
Borcea et al. (2018, 2019, 2020) in higher dimensions. The ROM in
these studies is not for the wave operator, but for the “propagator”
operator which maps the wavefield from one instance to the next one
and on a uniform time grid. The ROM propagator has proved useful
for imaging the reflectivity of a medium (Druskin et al., 2018; Borcea
et al., 2020, 2021). In this paper, we introduce another ROM, for the
wave operator, which is better suited for velocity estimation. In fact,
we demonstrate with explicit computations, carried out for a low-di-
mensional velocity model, that the wave operator ROM misfit objec-
tive function has convexity properties. This is not the case for the
FWImisfit objective function, computed for the same velocity model.
For high-dimensional models, where it is not possible to display the
objective function, we show via numerical simulations that the ROM-
based inversion converges to a good estimate of cðxÞ, even for a poor
initial guess, whereas FWI does not.

THEORY

We begin with a general description that motivates our ROM-
based approach to velocity estimation and gives the key ideas behind
the ROM construction. Then, we discuss the mathematical details
that establish the relationship between the ROM and the data and
we summarize the ROM construction in the form of an algorithm.
The methodology introduced in this section assumes noiseless data
and full knowledge of the array response matrix MðtÞ. This allows
us to describe the objective function for velocity estimation without
using a penalty regularization term. However, regularization is impor-
tant and must be done carefully, as explained later in the paper, when
dealing with noisy data and the approximation of MðtÞ from the
towed-streamer type of measurements.

Outline and motivation of the method

The FWI approach to velocity estimation seeks an approximate
inverse of the nonlinear forward map cðxÞ↦F MðtÞ using the data
misfit minimization:

min
v∈C

Z
T

−tf
dt kMðtÞ − F ½v�ðtÞk2F þ regularization; (4)

where v denotes the search velocity in the search space C and k · kF
is the matrix Frobenius norm. Our approach introduces an addi-
tional mapping fromMðtÞ to an approximation of the symmetrized
wave operator ∂2t þA. The symmetrization is carried out with a
similarity transformation of the usual wave operator ∂2t − c2ðxÞΔ.
It amounts to scaling pðsÞðt; xÞ by c−1ðxÞ and gives

A ¼ c−1ðxÞ½−c2ðxÞΔ�cðxÞ ¼ −cðxÞΔ½cðxÞ ·�: (5)

The approximation that we seek is the ROM wave operator
∂2t þAROM, where AROM is a symmetric and positive definite
matrix, a Galerkin approximation of the self-adjoint and positive
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definite operator A. Roughly speaking, we can think of the data to
ROM mapping R as a preconditioner of the forward mapping F

cðxÞ↦F MðtÞ↦RAROM; (6)

because the composition R ∘ F , which gives AROM ¼ RðF ½c�Þ, is
easier to “invert.”
The Galerkin method is a standard way of approximating an op-

erator, likeA, by a matrix. Typically, the approximation is in spaces
of piecewise polynomial functions with support over a few grid
cells (Brenner and Scott, 2008). If we gather these functions in a
row vector field ΨðxÞ, the matrix approximation of A is

AΨ ¼
Z
Ω
dxΨTðxÞAΨðxÞ: (7)

This matrix AΨ has a much simpler dependence on cðxÞ than
MðtÞ ¼ F ½c�ðtÞ because its entries depend quadratically on the co-
efficient cðxÞ integrated locally, in a few grid cells. It would be easy
to find cðxÞ fromAΨ, but this matrix cannot be computed from the
measurements MðtÞ.
Our ROM matrixAROM is a Galerkin approximation ofA on the

space spanned by the snapshots of the wavefield, at Nt discrete and
equidistant time instances. Such approximation spaces are common
in model order reduction (Hesthaven et al., 2016; Brunton and Kutz,
2019), where the idea is to use the history of the wavefield to
extrapolate or interpolate its behavior. Our projection ofA is carried
out using an orthonormal basis of the space of snapshots, gathered
in the row vector field VðxÞ,

AROM ¼
Z
Ω
dxVTðxÞAVðxÞ ∈ RNtNs×NtNs : (8)

Here, the important observations about VðxÞ are as follows:

1) The ROM matrix AROM can be obtained directly from the
measurementsMðtÞ, without knowing the snapshots VðxÞ or
the operator A. This is one of the most striking results of this
paper. We summarize the transform R from MðtÞ to AROM

in Algorithm 1 and we explain the relationship between the
ROM and the data that leads to Algorithm 1 in the next sub-
section.

2) The term VðxÞ cannot be computed from the measurements.
However, the analysis in Borcea et al. (2021, Appendix A)
and the numerical studies in Borcea et al. (2021, Section
6.3) suggest that VðxÞ is almost independent of the rough part
of cðxÞ, i.e., the reflectivity.

3) The basis functions in VðxÞ associated with the jth time in-
stance are peaked near the maximum depth reached by the
wavefield up to this instance.

4) The term VðxÞ is causal. With the first k < Nt snapshots, the
definition in equation 8 gives the principal kNs × kNs subma-
trix of AROM, obtained by removing its last ðNt − kÞNs rows
and columns.

Because VðxÞ depends on cðxÞ in a complicated way, we cannot
prove the convexity of the ROM misfit objective function
v ↦ kAROM −RðF ½v�Þk2F for a general medium. It is only in lay-
ered media that the result follows from the proof in Borcea et al.
(2021, Appendix A). Explicitly, it is proved there that in a layered

medium with variable wave speed and density, containing multiple
reflectors of arbitrary strength, the orthonormal basis written in trav-
eltime coordinates is almost the same as the one in a homogeneous
medium. This means that at least in the vicinity of the right kinemat-
ics, the dependence of AROM on cðxÞ is mainly through A, and the
objective function is locally convex.
In general media, we expect that, for a rich enough space of snap-

shots, which allows a good approximation of ΨðxÞ in equation 7 in
terms of VðxÞ, the ROM matrix AROM contains roughly the same
information as AΨ. The numerical study in Borcea et al. (2021,
Section 6.3) shows that “rich enough” means for sources/receivers
separated by roughly half a wavelength and for time sampling
satisfying the Nyquist criterium. The third attribute of VðxÞ listed
previously and equation 8 also show that the entries of AROM

depend mostly on the locally integrated cðxÞ, similar to AΨ. Thus,
we expect that the velocity estimation from the computable AROM

behaves similarly to that from the uncomputableAΨ, which is why
we propose using the minimization:

min
v∈C

kAROM −RðF ½v�Þk2F þ regularization: (9)

The minimization problem 9 can be solved with a Gauss-Newton
iterative method that is summarized in Algorithm 2. However, first,
we explain the relationship between the ROM and the data.

Relationship between the ROM and the data

We begin by transforming equation 1 to a homogeneous wave
equation for a new wave uðsÞðt; xÞ, with an initial state determined
by the source. This new wave is defined in the next section and the
transformation involves working with the even in time wave

pðsÞ
e ðt; xÞ ¼ ½pðsÞðt; xÞ þ pðsÞð−t; xÞ�; (10)

where pðsÞðt; xÞ solves equations 1 and 2. We can think of the trans-
formation as a Duhamel principle, although it is not in the usual
form (John, 1982) because at t ¼ 0 we obtain

uðsÞð0; xÞ ¼ uðsÞ0 ðxÞ; ∂tuðsÞð0; xÞ ¼ 0; x ∈ Ω; (11)

with uðsÞ0 ðxÞ determined by the source location xs and the probing
pulse fðtÞ.
Note that we do not lose any information by working with the

even wave in equation 10 and therefore the simple initial conditions
in equation 11, as long as we know the medium near the co-located
sources/receivers. Near means within the distance of travel over the
small time interval ð−tf ; tfÞ of support of fðtÞ. We assume hence-
forth that the medium near the colocated sources/receivers is known
and homogeneous, with velocity c̄. Due to the initial condition in
equation 2, we observe that

pðsÞ
e ðt; xrÞ ¼ pðsÞðt; xrÞ; for t ≥ tf ; s; r ¼ 1; : : : ; Ns:

(12)
The waves differ at t ∈ ½0; tfÞ, but because for such time the mea-
surements are insensitive to the unknown part of the medium, no
information is lost.
Note also that the measurements pðsÞ

e ðt; xrÞ are obtained easily from
those of pðsÞðt; xrÞ, if the latter are gathered at t ≥ −tf , for
s; r ¼ 1; : : : ; Ns, as assumed in equation 3. But even if the measure-
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ments are made at t ≥ tf only, we can still compute pðsÞ
e ðt; xrÞ at t ∈

½0; tfÞ by solving the wave equation with velocity c̄. Thus, in either
case, we can map the measuredMðtÞ to a new data matrixDðtÞ, with
entries at t ≥ 0 given by

Dðr;sÞðtÞ ¼ pðsÞðt; xrÞ þ pðsÞð−t; xrÞ
¼ Mðr;sÞðtÞ þMðr;sÞð−tÞ; 1 ≤ r; s ≤ Ns: (13)

To define our Galerkin approximation space, let us consider a
time discretization tj ¼ jτ; with uniform stepping τ, for j ≥ 0. We
gather the waves uðsÞðt; xÞ evaluated at tj, for all the Ns sources, in
the jth snapshot vector field:

ujðxÞ ¼ ðuð1Þðtj; xÞ; : : : ; uðNsÞðtj; xÞÞ; x ∈ Ω: (14)

We are interested only in the first Nt snapshots and organize them in
the NtNs-dimensional row vector field:

UðxÞ ¼ ðu0ðxÞ; : : : ; uNt−1ðxÞÞ; x ∈ Ω: (15)

The space spanned by the components of UðxÞ, denoted
rangeðUðxÞÞ, is our approximation space and the Galerkin approxi-
mation of the wavefield is

uGðt; xÞ ¼ ðuð1ÞG ðt; xÞ; : : : ; uðNsÞ
G ðt; xÞÞ ¼ UðxÞgðtÞ; (16)

with time-dependent coefficients gathered in the matrices
gðtÞ ∈ RNtNs×Ns . These coefficients are such that when substituting
equation 16 into the homogeneous wave equation, the residual is
orthogonal to the approximation space. This gives the following
system of second-order ordinary differential equations:Z

Ω
dxUTðxÞUðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

g00ðtÞþ
Z
Ω
dxUTðxÞAUðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

gðtÞ¼0; (17)

for t > 0, with the initial condition:

gð0Þ ¼ e0; g 0ð0Þ ¼ 0; (18)

where e0 is the first NtNs × Ns block of the NtNs × NtNs identity
matrix INtNs

. Equation 18 ensures that the Galerkin approximation
16 satisfies the initial conditions:

uGð0; xÞ ¼ UðxÞe0 ¼ u0ðxÞ; ∂tuGð0; xÞ ¼ 0: (19)

The Galerkin approximation described previously would be
straightforward if we knew UðxÞ, but we do not know it. Our
key observation is that the NtNs × N tNs Gramian matrix

M ¼
Z
Ω
dx UTðxÞUðxÞ ∈ RNtNs×NtNs ; (20)

called the “mass matrix” in Galerkin jargon, and the “stiffness
matrix”

S ¼
Z
Ω
dxUTðxÞAUðxÞ ∈ RNtNs×NtNs ; (21)

can be calculated directly from DðtÞ and the second derivative
D 0 0ðtÞ, evaluated at instances ftj ¼ jτg2Nt−2

j¼0 , as explained in the
next section (for the estimation of D 0 0ðtÞ, using a filtered Fourier
transform, see Appendix A). Thus, even though we do not know
the operator A and the vector field UðxÞ, we can compute the Ga-
lerkin coefficients gðtÞ for all t ≥ 0, by solving the system of equa-
tions 17 with the data-driven M and S, and the initial conditions
given in equation 18.
The final step of the ROM construction is to put equation 17 in an

algebraic form that describes the evolution of a causal wave
uROMðtÞ ∈ RNtNs×Ns . Each column of this wave corresponds to a
source index s, with 1 ≤ s ≤ Ns. Initially, the true wave is supported
near the sources, which is reflected in the algebraic structure of
uROMð0Þ, whose only nonzero entries are in the first Ns × Ns block.
At later times, there is block row fill-in in uROMðtÞ, which models
wave propagation further away from the sources.
The desired transformation of equation 17 is achieved using the

block Cholesky square root (Golub and Van Loan, 2013) of the
data-driven mass matrix

M ¼ RTR; (22)

where R is the block upper triangular (with blocks of size Ns × Ns).
The wave in the ROM space is defined by

uROMðtÞ ¼ RgðtÞ; (23)

and we note from equation 18 that at t ¼ 0 it satisfies

uROMð0Þ ¼ Re0 ¼

0
BBB@

R0;0

0
..
.

0

1
CCCA;

duROM

dt
ð0Þ ¼ 0; (24)

where R0;0 ∈ RNs×Ns . The wave equation in the ROM space is ob-
tained after multiplying equation 17 on the left by R−T ¼ ðR−1ÞT,

d2uROM

dt2
ðtÞ þAROMuROMðtÞ ¼ 0; t > 0; (25)

and the ROM approximation of A is the NtNs × NtNs matrix:

AROM ¼ R−TSR−1: (26)

Note that the same block upper triangular matrix R arises in the
Gram-Schmidt orthogonalization of the components of UðxÞ given
by

UðxÞ ¼ VðxÞR; (27)

where VðxÞ is an NtNs-dimensional row vector field, with ortho-
normal components, i.e., it satisfiesZ

Ω
dxVTðxÞVðxÞ ¼ INtNs

: (28)

The VðxÞ stores the orthonormal basis mentioned earlier in the sec-
tion. Its causality, in the sense that the jth (m-dimensional) compo-
nent of VðxÞ is determined by u0ðxÞ; : : : ; ujðxÞ, is built into the
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Gram-Schmidt orthogonalization procedure, and therefore in the
block upper triangular structure of R. Substituting equation 27 into
equation 20, and using equation 28, we observe that R in equa-
tion 27 is the same as in equation 22 because

M ¼ RT

Z
Ω
dxVTðxÞVðxÞR ¼ RTR: (29)

If we use the Gram-Schmidt equation 27 in equation 26 and recall
equation 21 for S, we obtain thatAROM satisfies equation 8. There-
fore, the data-driven AROM defined in equation 26, is in fact the
orthogonal projection of the operator A on the unknown space
rangeðUðxÞÞ, obtained with the unknown causal and orthonormal
basis in VðxÞ.
We can now add a fifth observation about VðxÞ. It has been

proved recently in Borcea et al. (2022, Proposition 3.2) that the
snapshots gathered in Uðx; vÞ ¼ Vðx; vÞR satisfy exactly the data
fDðjτÞg2n−2j¼0 . The difference between this field and the true one in
equation 27 is that the unknown VðxÞ is replaced by Vðx; vÞ, whose
components are the orthonormal basis functions computed with the
guess velocity vðxÞ. Any guess velocity works, even vðxÞ ¼ c̄. That
UðxÞ and Uðx; vÞ give an exact data fit, means that the data-driven
matrix R contains all the information. This is why, as shown in Bor-
cea et al. (2022), Uðx; vÞ contains all the arrival events present in
UðxÞ. The purpose of VðxÞ in equation 27 may be viewed as map-
ping the information in R, from the algebraic (ROM) space to the
physical space. When we have the incorrect kinematics (smooth
part of vðxÞ), Vðx; vÞ maps the arrivals to incorrect depths. How-
ever, if the kinematics is only slightly incorrect, the computable
Vðx; vÞ is very close to the uncomputable VðxÞ. This is another
way of explaining that at least close enough to the true velocity,
AROM defined in equation 8 depends on cðxÞ mostly through A
and the objective function of the ROM misfit is locally convex.

Technical details of ROM computation

The flow chart of the computation of AROM from the measure-
ments MðtÞ is shown in Figure 1. The first step computes the data
matrices

DðtÞ ¼ ðMðr;sÞðtÞ þMðr;sÞð−tÞÞNs

r;s¼1; (30)

and their second derivatives D 0 0ðtÞ at instances t ¼ jτ, for
0 ≤ j ≤ 2Nt − 2. Recall from the previous discussion that
Mðr;sÞð−tÞ contributes only at t ¼ jτ ∈ ½0; tfÞ and it may either
be measured or computed in the reference medium with velocity
c̄. The details on the computation of the second derivative D 0 0ðtÞ
are given in Appendix A. Consistent with our previous notation
convention, we denote henceforth

Dj ¼ DðjτÞ; D̈j ¼ D 0 0ðjτÞ: (31)

Before we explain the second step in the flow chart, let us give a
few technical details of the definition of the new wave uðsÞðt; xÞ and
the derivation of the inner product expression in equation 40 of the
data matrices. These details are not needed to compute AROM,
which is why they are not in the flow chart, but they allow us to
derive the expression of the mass and stiffness matrices in terms
of the data.

It is proved in Borcea et al. (2020, Appendix A) that

½pðsÞðt; xÞ þ pðsÞð−t; xÞ�
cðxÞ=c̄ ¼ cosðt

ffiffiffiffi
A

p
Þf̂ð

ffiffiffiffi
A

p
ÞδxsðxÞ

¼
X∞
j¼1

cosðt
ffiffiffiffi
λj

q
Þf̂ð

ffiffiffiffi
λj

q
ÞyjðxsÞyjðxÞ; (32)

where

f̂ðωÞ ¼
Z
R
fðtÞeiωtdt (33)

is the Fourier transform of the probing pulse and we define func-
tions of the self-adjoint and positive definite operator A using its
spectral decomposition. If A has the eigenvalues fλjgj≥1 and the
eigenfunctions fyjgj≥1, then cosðt ffiffiffiffi

A
p Þ is the operator with eigen-

values fcosðt ffiffiffiffiffi
λj

p Þgj≥1 and the same eigenfunctions. The operator
f̂ð ffiffiffiffi

A
p Þ is defined similarly. The derivation of equation 32 involves

the expansion of the wavefield in the basis fyjðxÞgj≥1 of eigenfunc-
tions of A and manipulations of series.
Next, we need the technical assumption that f̂ ≥ 0. This may not

be the case in general, but the assumption can be achieved with
simple processing as follows. Suppose that the probing pulse is ac-
tually some wavelet φðtÞ that is known or can be estimated (Pratt,
1999). Then, the measured wave convolved with φð−tÞ is the same
as the solution of equation 1 evaluated at the receivers, with

fðtÞ ¼ φðtÞ⋆tφð−tÞ: (34)

Such fðtÞ is obviously an even function, with Fourier transform
f̂ðωÞ ¼ jφ̂ðωÞj2 ≥ 0; that is analytic by the Paley-Wiener-Schwartz
theorem (Hörmander, 2003, Chapter VII).
Analytic functions ofA commute, as can be checked using power

series, so we can factor the right side in equation 32 as

cos

�
t

ffiffiffiffi
A

p �
f̂

� ffiffiffiffi
A

p �
δxsðxÞ ¼ f̂

1
2

� ffiffiffiffi
A

p �
uðsÞðt; xÞ; (35)

where

uðsÞðt; xÞ ¼ cos

�
t

ffiffiffiffi
A

p �
uðsÞ0 ðxÞ (36)

is our new wave, with the initial state

uðsÞ0 ðxÞ ¼ f̂
1
2

� ffiffiffiffi
A

p �
δxsðxÞ: (37)

Note that uðsÞðt; xÞ is just like the wave written in equation 32. The
only difference is that it corresponds to a different pulse, with Fou-
rier transform f̂1=2 instead of f̂.
There are two important consequences of working with uðsÞðt; xÞ.

The first is that by the definition of cosðt ffiffiffiffi
A

p Þ, we can use the trigo-
nometric identity

cosððtþΔtÞαÞ¼2cosðΔtαÞcosðtαÞ−cosððt−ΔtÞαÞ; (38)

for α ¼ ffiffiffiffiffi
λj

p
, with j ≥ 1, to evolve the wave defined in equation 36

over any interval Δt,
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uðsÞðtþ Δt; xÞ ¼ 2 cosðΔt
ffiffiffiffi
A

p
ÞuðsÞðt; xÞ − uðsÞðt − Δt; xÞ:

(39)

The second consequence is that the entries of DðtÞ, defined in equa-
tion 13, admit a useful symmetric inner product expression:

Dðr;sÞðtÞ ¼ pðsÞðt; xrÞ þ pðsÞð−t; xrÞ

¼
Z
Ω
dx δxrðxÞf̂

1
2

� ffiffiffiffi
A

p �
uðsÞðt; xÞ

¼
Z
Ω
dx

�
f̂

1
2

� ffiffiffiffi
A

p �
δxrðxÞ

�
uðsÞðt; xÞ

¼
Z
Ω
dx uðrÞ0 ðxÞuðsÞðt; xÞ

¼
Z
Ω
dx uðrÞ0 ðxÞ cos

�
t

ffiffiffiffi
A

p �
uðsÞ0 ðxÞ; (40)

for 1 ≤ r; s ≤ Ns. The second equality in this equation is from equa-
tion 32 and the assumption cðxrÞ ¼ c̄, the third equality is because
A and therefore f̂1=2ð ffiffiffiffi

A
p Þ are self-adjoint operators that commute,

and the last equalities follow from equations 36 and 37. We also
have

d2Dðr;sÞðtÞ
dt2

¼
Z
Ω
dx uðrÞ0 ðxÞ∂2t uðsÞðt; xÞ

¼ −
Z
Ω
dx uðrÞ0 ðxÞAuðsÞðt; xÞ; 1 ≤ r; s ≤ Ns: (41)

Now we can describe how we use equations 39–41 to complete
the second step in the flow chart of Figure 1. With the notation

hϕ;ψi ¼
Z
Ω
dxϕTðxÞψðxÞ; (42)

for the integral of the outer product of any two functions ϕðxÞ and
ψðxÞ with values in R1×Ns , and from the definition in equation 20,
we compute the Ns × Ns blocks of the mass matrix as

Mi;j¼hui;uji¼
�
cos

�
iτ

ffiffiffiffi
A

p �
u0;cos

�
jτ

ffiffiffiffi
A

p �
u0

	

¼
�
u0;cos

�
iτ

ffiffiffiffi
A

p �
cos

�
jτ

ffiffiffiffi
A

p �
u0

	

¼1

2

�
u0;

�
cos

�
ðiþjÞτ

ffiffiffiffi
A

p �
þcos

�
ji−jjτ

ffiffiffiffi
A

p ��
u0

	

¼1

2
ðDiþjþDji−jjÞ; 0≤ i;j≤Nt−1: (43)

The second line in this equation is because A and therefore
cosðiτ ffiffiffiffi

A
p Þ are self-adjoint operators that commute, the third line

is due to equation 39, evaluated at t ¼ iτ and Δt ¼ jτ, and the last
line is in equation 40. The blocks of the stiffness matrix defined in
equation 21 are

Si;j ¼ hui;Auji ¼
�
cos

�
iτ

ffiffiffiffi
A

p �
u0;A cos

�
jτ

ffiffiffiffi
A

p �
u0

	

¼
�
u0;A cos

�
iτ

ffiffiffiffi
A

p �
cos

�
jτ

ffiffiffiffi
A

p �
u0

	

¼ 1

2
hu0;Auiþj þAuji−jji

¼ −
1

2
ðD̈iþj þ D̈ji−jjÞ; 0 ≤ i; j ≤ Nt − 1; (44)

where we used again the self-adjointness of A, and equation 39
evaluated at t ¼ iτ and Δt ¼ jτ. The last equality is in equation 41.
The block structure of the matrices M and S is sketched in Figure 1
for the case Nt ¼ 5.
The remaining two steps in the flow chart in Figure 1 are self-

explanatory and have been motivated in the previous subsection. We
summarize the computation of AROM in the following algorithm.

ROM-based velocity estimation

We estimate cðxÞ by minimizing the misfit of the ROM, as shown
in equation 9. The computation of the termRðF ½v�Þ in that equation
involves two steps. The first step is to solve the wave equation 1
with cðxÞ replaced by the search velocity vðxÞ. The solution evalu-
ated at the receivers gives F ½v�ðtÞ. The second step is to apply Al-
gorithm 1 with input F ½v�ðtÞ. In an abuse of notation, we let
henceforth

AROMðvÞ ¼ RðF ½v�Þ: (45)

The search space C, where vðxÞ lies, is parameterized using some
appropriate basis functions fϕlðxÞgNl¼1

vðx; ηÞ ¼ coðxÞ þ
XN
l¼1

ηlϕlðxÞ; (46)

where coðxÞ is the initial guess. The optimization is then N dimen-
sional, for the vector η ¼ ðη1; : : : ; ηNÞT of coefficients in equation 46.
The causality of the ROM (Appendix B) allows us to carry out

the inversion in a layer stripping fashion, from the data at time
instances ftj ¼ jτg2k−2j¼0 , with k ≤ Nt. To do so, we replace

Figure 1. Flow chart for the computation of the ROM from the
measurements. There are four steps, each indicated with an arrow.
All of the matrices are of size NtNs × NtNs, with entries organized
in Ns × Ns blocks.

R180 Borcea et al.

D
ow

nl
oa

de
d 

05
/0

9/
23

 to
 1

30
.2

38
.7

.4
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
07

0.
1



AROMðvÞ and AROM in the objective function by the upper left
kNs × kNs blocks of these matrices, denoted by ½AROMðvÞ�k and
½AROM�k, respectively.
Because AROM and thus ½AROM�k are symmetric matrices, it is

enough to consider their block upper triangular part in the optimiza-
tion. As shown in Appendix C, the entries ofAROM decay away from
the diagonal. Thus, we can ease the computational burden by includ-
ing only the first few dNs diagonals in the objective function, where d
is an integer between 1 and k. For this purpose, we denote by

Restd;k∶RkNs×kNs ↦ RdNsðkNs−ðdNs−1Þ=2Þ; (47)

the mapping that takes a kNs × kNs matrix, keeps only its first dNs

upper diagonals, including the main one, and puts their entries into a
column vector, of length

XdNs−1

j¼0

ðkNs − jÞ ¼ dNs½kNs − ðdNs − 1Þ=2�:

(48)

The objective function that takes into account the
time windowing and the restriction of the ROM to
a few diagonals is denoted henceforth by

Od;kðvÞ¼kRestd;kð½AROMðvÞ−AROM�kÞk22;
(49)

where k · k2 is the vector Euclidean norm.
The details on our implementation of Algo-

rithm 2 and the regularization penalty are provided
in Appendix D.

Computational cost

Because our Algorithm 2 for ROM-based
velocity estimation uses a Gauss-Newton
iteration to minimize the objective function in
equation 50, we compare its cost to that of the
Gauss-Newton method for minimizing the FWI
objective function in equation 4. The same
parameterization of the search velocity is as-
sumed for both approaches.
The numerical examples considered next are

for 2D media Ω ⊂ R2 with a relatively modest
number Ns of colocated sources/receivers, not
exceeding 60. In such settings, the cost of each
Gauss-Newton step is dominated by the compu-
tation of the Jacobian of the objective function.
This computation requires solving the forward
problem for all Ns sources. The ROM-based ap-
proach requires, in addition, the computation of
AROM and its derivatives. We compare next the
cost of solving the forward problem with that of
computing the ROM with Algorithm 1.
We solve the forward problem (equations 1 and

2) in a rectangular domain Ω, with homogeneous
Dirichlet boundary conditions at ∂Ω, using
explicit time stepping, a three-point finite-differ-
ence approximation of ∂2t with step τf , and a

five-point finite-difference discretization of the Laplacian on a uni-
form mesh with Nf points. To write down the order of Nf , let λ̄
be the reference wavelength, calculated with the constant reference
speed c̄ and at the central frequency of the probing signal fðtÞ. An
accurate and stable forward solver requires a mesh size h that is a
small fraction of the wavelength and does not exceed c̄τf . The num-
ber of mesh points is therefore

Nf ¼
areaðΩÞ

h2
≫ NsNt; (51)

where the inequality is because the colocated sources/receivers are at
Oðλ̄Þ distance, the array length is Oðmλ̄Þ which is usually much
smaller than the width of Ω, and the time sample τ used in the ROM
construction is much larger than τf . Each time step requires multiply-
ing an Nf × Nf sparse matrix with a vector in RNf , at an OðNfÞ cost.

Algorithm 1. Data-driven ROM operator.

Input: The matrixMðtÞ of measurements given in equation 3, at time instances t ¼ jτ,
for j ¼ −Nf ; : : : ; 2Nt − 2, with Nf ¼ ½tf=τ�. We have MðjτÞ ¼ 0 for j < −Nf.

1) Compute

Dj ¼ MðjτÞ þMð−jτÞ; 0 ≤ j ≤ 2Nt − 2:

2) Compute fD̈jg2Nt−2
j¼0 using, e.g., the Fourier transform (see Appendix A).

3) Calculate M; S ∈ RNsNt×NsNt with the block entries

Mi;j ¼ ð1=2ÞðDiþj þ Dji−jjÞ ∈ RNs×Ns ;

Si;j ¼ −ð1=2ÞðD̈iþj þ D̈ji−jjÞ ∈ RNs×Ns ;

for 0 ≤ i; j ≤ Nt − 1.

4) Perform the block Cholesky factorization M ¼ RTR using (Druskin et al., 2018,
Algorithm 5.2).

Output: AROM ¼ R−TSR−1.

Algorithm 2. ROM-based velocity estimation.

Input: The data-driven AROM.

1) Set the number of layers for the layer stripping approach to l and the number of
iterations per layer to niter.

2) Choose l natural numbers fklgll¼1, satisfying

1 ≤ k1 ≤ k2 ≤ · · ·≤ kl ¼ Nt:

The data subset for the lth layer is fDj; D̈jg2kl−2j¼0 .

3) Starting with the initial vector ηð0Þ ¼ 0, proceed:

For l ¼ 1; 2; : : : ;l, and j ¼ 1; : : : ; niter, set the update index i ¼ ðl − 1Þniter þ j.
Compute ηðiÞ as a Gauss-Newton update for minimizing the functional

LiðηÞ ¼ Od;klðvð·; ηÞÞ þ Lreg
i ðηÞ; (50)

linearized about ηði−1Þ. The term Lreg
i ðηÞ introduces a user defined regularization penalty

in the optimization.

Output: The velocity estimate cestðxÞ ¼ vðx; ηðlniterÞÞ.
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Thus, the cost of solving the forward problem, for the Ns sources and
up to time T, is

costðF Þ ¼ OðNsnfNfÞ; (52)

where nf ¼ T=τf ≫ Nt. Recall that F denotes the forward map.
The computational cost of running Algorithm 1 lies mainly in the

block Cholesky factorization (see equation 22) and the operator
ROM computation from equation 26, where R−1 can be calculated
by a block-wise backward substitution. Therefore, the cost of com-
puting AROM is estimated at

costðAROMÞ ¼ OðN3
sN3

t Þ; (53)

and it is typically smaller than costðFÞ if the array is not too large
and we sample in time at about the Nyquist rate, as explained next,
after equation 54. The bulk of the computational cost of derivatives
of AROM is in the differentiation of the block Cholesky factor R.
This cost is essentially the same as that of the block Cholesky fac-
torization itself because the derivatives of R can be computed by a
similar factorization algorithm, as described in detail in Borcea et al.
(2014, Appendix A).
For 3D media Ω ⊂ R3 and settings with large Ns, the dominant

computational cost is not in the Jacobian calculation itself, but in
solving the regularized normal equations for the Gauss-Newton up-
date direction for the objective function in equation 50. Although
small-scale examples allow for direct computation of the update di-
rection using, e.g., equation D-5, large-scale settings call for iterative
approaches such as the conjugate gradient method. However, note
that in such settings the computational cost difference between the
conventional FWI and ROM-based velocity estimation virtually dis-
appears because the sizes of the Jacobians of both methods can be
made essentially identical by an appropriate choice of parameter d in
equation 49.

NUMERICAL ILLUSTRATION

In this section, we give two numerical illustrations of the benefits
of velocity estimation with the ROM operator versus FWI. We as-
sume, as in the “Theory” section, knowledge of the noiseless array
response matrixMðtÞ. Noisy measurements and the approximation

of MðtÞ from towed-streamer data are considered in the next
section.
The first illustration is for a two-parameter velocity model, where

we can plot the objective function over the search space. The second
illustration is for the “Camembert example” introduced in Gauthier
et al. (1986) to demonstrate the challenge of velocity estimation
with FWI. We also display components of UðxÞ and VðxÞ for
the Camembert example, to illustrate the properties of the projection
basis discussed in the “Theory” section.
All of the numerical results are for the source pulse

fðtÞ ¼ cosðωotÞ exp
�
−
ð2πBÞ2t2

2

�
; (54)

with central frequency ωo=ð2πÞ ¼ 6 Hz and bandwidth B ¼ 4 Hz.
For details on the numerically simulated data, see Appendix A. To
choose τ, we use ωo=ð2πÞ þ B ¼ 10 Hz as the Nyquist frequency.
Thus, for τ ¼ 1=ð2.3 · 10 HzÞ ¼ 0.0435 s, the data are sampled at
2.3 points per wavelength.
The array of Ns sensors is at 150 m below the top boundary. The

sensor spacing is 160.3 m for the two-parameter velocity model and
155.5 m for the Camembert example. For each simulation we
specify Ns, the size of the rectangular domain Ω, the data sampling
interval τ and the number N t of snapshots that define the approxi-
mation space.

Topography of the objective function

Consider the velocity model shown in Figure 2a, in the domain
Ω ¼ ½0; 5 km� × ½0; 3 km�. It consists of two homogeneous regions
separated by a slanted interface. The top region has the slower
velocity ct ¼ 1500 m=s, whereas the bottom region has the faster
velocity cb ¼ 3000 m=s. The purpose of this example is to visualize
the objective function, so we do not run Algorithm 2 and we do not
use a search velocity of the form given in equation 46. Instead, we
sweep a two-parameter search space: The first parameter is the in-
terface position in the search interval ½0.47 km; 1.95 km�, measured
as the depth of the leftmost point of the interface. The actual posi-
tion is 1.2 km. The second parameter is the contrast cb=ct in the
interval ½1; 3�. The actual contrast is two. The angle of the interface
is kept constant and equal to the actual angle.

Figure 2. Objective functions topography study: (a) velocity model used in objective topography study. The dashed middle line shows the
actual interface location, whereas the dashed top and bottom lines show the extent of the interface location parameter sweep. All Ns ¼ 30
colocated sources/receivers are shown as yellow ×. Velocity colorbar is in m/s. (b and c) Decimal logarithms of the objective functions 55 and
56 versus the interface position and velocity contrast. The actual position and contrast parameters are indicated by the magenta circle. These
true values are not included in the search space.
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In Figure 2b and 2c, we display the decimal logarithms of two
objective functions, calculated for Ns ¼ 30 colocated sources/
receivers and Nt ¼ 39 time samples at interval τ ¼ 0.0435 s.
The first objective function is for the FWI approach,

OFWIðvÞ ¼
X2Nt−1

k¼0

kTriuðDkðvÞ − DkÞk22; (55)

where DkðvÞ is the Ns × Ns data matrices for the search velocity
vðxÞ and Triu∶RNs×Ns ↦ RNsðNsþ1Þ=2 is the mapping that takes a
symmetric Ns × Ns matrix, extracts its upper triangular part, includ-
ing the main diagonal, and arranges its entries into a NsðNs þ 1Þ=2-
dimensional column vector. The second objective function mea-
sures the misfit of the ROM:

OROMðvÞ ¼ kTriuðAROMðvÞ −AROMÞk22: (56)

This corresponds to the particular case d ¼ k ¼ Nt of the objec-
tive function in equation 49.
We observe in Figure 2b that the FWI objective function displays

numerous local minima, at points in the search space that are far
from the true one, marked in the plots with the magenta circle.
There is no minimum at this circle because the exact values of the
interface position and contrast are not in our parameter grid search
space. The clearly visible horizontal stripes shown in Figure 2b are
manifestations of cycle skipping. The ROM operator misfit shown
in Figure 2c is smooth and has a single minimum, at the true inter-
face position and contrast.

The “Camembert” example

We follow (Yang et al., 2018) and model the
Camembert inclusion as a disk with a radius of
600 m, centered at point ð1 km; 1 kmÞ in the do-
main Ω ¼ ½0; 2 km� × ½0; 2.5 km�. The setup is
shown in Figure 3, where cðxÞ equals
4000 m=s in the inclusion and 3000 m=s outside.
The data sampling interval is τ ¼ 0.0435 s,
Ns ¼ 10, and Nt ¼ 16.
The search space C has dimension

N ¼ 20 × 20 ¼ 400, and the velocity is parame-
terized as shown in equation 46, with the con-
stant initial guess coðxÞ ¼ c̄ ¼ 3000 m=s and
the Gaussian basis functions,

ϕlðxÞ ¼
1

2πσϕσ
⊥
ϕ

exp

�
−
ðx⊥ − x⊥l Þ2
2ðσ⊥ϕÞ2

−
ðx − xlÞ2

2σ2ϕ

�
; (57)

with standard deviation σ⊥ϕ ¼ 55.5 m in the hori-
zontal (distance) direction and σϕ ¼ 69.4 m in
depth. Here, we use the system of coordinates
x ¼ ðx⊥; xÞ, with depth coordinate x and distance
coordinate x⊥ orthogonal to it. The centers of the
Gaussians are at the locations xl ¼ ðx⊥l ; xlÞ on a
uniform 20 × 20 grid that discretizes the imaging
domain Ωim¼½95m;1905m�× ½119m;2381m�

⊂Ω: Note that 2σϕ and 2σ⊥ϕ are smaller than half the wavelength
c̄=ð10 HzÞ ¼ 300 m corresponding to the essential Nyquist fre-
quency. Hence, the velocity is overparameterized and we stabilize
the inversion with the adaptive Tikhonov regularization described
in Appendix D.
We show in Figure 4a–4d the velocity estimates obtained with

Algorithm 2, implemented with l ¼ 9, the number of iterations per
layer niter ¼ 4, and with the restriction parameter d ¼ Nt. The plots
in Figure 4e–4h are the velocity estimates obtained with the FWI
approach, which minimizes the objective function,

LFWI
i ðηÞ ¼ OFWIðvð·; ηÞÞ þ μFWI

i kηk22; (58)

Figure 3. Camembert velocity model. All Ns ¼ 10 colocated
sources/receivers are shown as yellow ×. Velocity colorbar is in m/s.

Figure 4. Estimated velocity after 10–60 Gauss-Newton iterations: (a–d) ROM-based
velocity estimates and (e–h) FWI velocity estimates. The true inclusion boundary is
shown as a black circle. All Ns ¼ 10 colocated sources/receivers are shown as yellow
×. Velocity colorbars are in m/s and all plots share the same color scale.
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with the same time windowing of the data as in the ROM-based
estimation. The Tikhonov regularization parameter μFWI

i is com-
puted as explained in Appendix D.
The results show that the ROM approach gives a much better

estimate of cðxÞ. This estimate improves as we iterate, and by the
time we reach the 60th step, the circular inclusion is reconstructed
well. The FWI approach does not improve much after the 10th step,
indicating that the optimization is stuck in a local minimum.
Although the top and arguably the bottom of the inclusion are cor-
rectly located, FWI fails to fill in the inclusion with the correct
velocity, overestimating it in the upper half of the disk and under-
estimating it in the lower half.

Illustration of the orthonormal basis

We display in Figure 5a the snapshot uðsÞð4τ; xÞ in the medium
with the Camembert inclusion and in Figure 5c the snapshot com-
puted with the reference, constant velocity c̄ ¼ 3000 m=s. The
source is in the middle of the array, indicated in the plots by the
circle, and indexed by s ¼ 5. Obviously, the snapshot in the true
medium is different from the one in the reference medium. In the
reference medium, the wave is a spherical wave emitted by the point
source and reflected by the top surface modeled as a sound soft
boundary. In the true Camembert model medium, the wave is scat-
tered at the boundary and at the top of the inclusion, and it travels
further down for the same t ¼ 4τ, due to the fast inclusion.
The corresponding components of the orthonormal basis stored in

VðxÞ, called vð5Þð4τ; xÞ, are shown in Figure 5b and 5d. They illustrate
the second and third attributes of the orthonormal basis, stated in the
outline of our velocity estimation method. Indeed, the basis function in
the true and reference medium is very similar. They both have a local-
ized peak near the deepest point reached by the wave at the instance
t ¼ 4τ and they are oscillatory away from it. The scattering at the top
of the inclusion does not have a strong effect on the basis function, but
the kinematics makes a difference. As mentioned previously, the wave
penetration at t ¼ 4τ is deeper in the true medium, due to the fast
inclusion, so the localized peaks are in different locations.

VELOCITY ESTIMATION WITH NOISY AND
TOWED-STREAMER DATA

In this section, we present velocity estimation results with noisy
measurements and with the array response matrixMðtÞ assembled

from towed-streamer type measurements. In both cases, we have an
uncertainty of the data, which affects the computation of AROM.
There are two critical steps in Algorithm 1 that must be addressed,
and they both involve the mass matrixM computed at step 3, which
will likely be neither symmetric nor positive definite. These proper-
ties are needed for the computation of the Cholesky square root R at
step 4 and the inverse R−1 that gives the output of the algorithm. The
lack of symmetry is easy to fix, but to ensure the positive definite-
ness, we need a regularization procedure that involves a spectral
projection of M on the space of its leading eigenvectors, corre-
sponding to the significant eigenvalues. These eigenvectors and ei-
genvalues are least affected by the uncertainty. The regularization
procedure is not straightforward because we must preserve the
causality of AROM in order for the velocity estimation to succeed.
We explain it in detail in Appendix E.
To assemble the matrix MðtÞ from towed-streamer measure-

ments, we use source-receiver reciprocity on-the-fly to fill in the
missing off-diagonal entries in MðtÞ. To compute the diagonal
entries, corresponding to the source being also a receiver, we
use interpolation of the values at nearby measurement locations,
two on the left and two on the right. We use Lagrange polynomial
interpolation in the Fourier (frequency) domain, for

Z
R
dt eiωt½MðtÞ − F ½c̄�ðtÞ�: (59)

Then, we inverse the Fourier transform to obtain MðtÞ.

Numerical results

We do not show the Camembert estimation for uncertain mea-
surements because the information needed to get the good result
in Figure 4 requires accurate knowledge of MðtÞ. This is not
the fault of the inversion method. It is due to the fact that the bottom
part of the Camembert inclusion gives a very weak signal at the
array, which is accounted for in the small eigenvalues of the mass
matrix. Any uncertainty of the data will perturb significantly these
eigenvalues and the associated eigenvectors, so the ROM inversion
is not better than that with FWI.
We present instead velocity estimation results for a section of the

Marmousi model shown in Figure 6a, wherewe exclude the portion of
the water down to a depth of 266 m. The domain is Ω ¼ ½0; 5.25 km�
×½0; 3 km�. The data sampling for the ROM construction is

τ ¼ 0.0435 s and the number of snapshots that
span the approximation space is Nt ¼ 40. The co-
located sources/receivers are located underwater at
a depth of 150 m and they emit the same pulse
given in equation 54. We present results in two set-
tings. First, when working with noisy data, we use
an array of Ns ¼ 30 colocated sources/receivers,
separated by a distance of 166.66m. Second, when
working with data approximated from towed-
streamer type measurements, we use closely
spaced receivers, at 16.66 m apart, to carry out
the interpolation of the measurements and fill in
the missing zero offset data. Then, we subsample
the result before we input it in Algorithm 1, by
keeping Ns ¼ 40 sources/receivers separated by
a distance of 116.66 m.

Figure 5. Wavefield snapshots and orthonormal basis components at time instance
t ¼ 4τ, corresponding to the center left source, indexed by s ¼ 5, shown as a black
◯: (a and b) for the true velocity cðxÞ shown in Figure 3 and (c and d) for the reference
medium, with cðxÞ ≡ c̄ ¼ 3000 m=s. The Ns ¼ 10 colocated sources/receivers are
shown as black ×. All of the plots share the same color scale.
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Figure 6. The ROM-based velocity estimates for the Marmousi model with noisy data and towed-streamer measurements: (a) the section of the
Marmousi model, (b) velocity estimate from noisy data with Gaussian basis functions parameterization of v, (c) velocity estimate from noisy
data with hat basis functions parameterization of v, (d) initial guess model coðxÞ, (e) velocity estimate from towed-streamer measurements, and
(f) velocity estimate refinement from data gathered on dense array sensors and at a small time interval τ. All the sources/receivers, Ns ¼ 30 in
(a–d), Ns ¼ 40 in (e), and Ns ¼ 60 in (f), are shown as yellow ×. Velocity colorbars are in m/s. All plots share the same color scale.

Figure 7. Velocity estimates for the Marmousi model with noisy data after 6, 12, and 18 Gauss-Newton iterations: (a–c) ROM-based approach and
(d–f) FWI approach. The Ns ¼ 30 colocated sources/receivers are shown as yellow ×. Velocity colorbars are in m/s and all plots share the same color
scale.
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In Figure 7a–7c, we show the ROM-based inversion results obtained
from data contaminated with 1% additive noise described in Appen-
dix A. We used l ¼ 6 layers in Algorithm 2, with niter ¼ 3 iterations
per layer, and the restriction parameter d ¼ 10. The ROM operator is
regularized as explained in Appendix E with the spectral threshold
parameter set to r ¼ Nt − 9 ¼ 31. The velocity is parameterized as
given in equation 46, with the initial guess coðxÞ displayed in Fig-
ure 6d. We used N ¼ 50 × 30 ¼ 1500 Gaussian basis functions
defined as in equation 57, with standard deviations σ⊥ϕ ¼ 60 m

and σϕ ¼ 56.4 m. The peaks of the Gaussians are on a uniform 50 ×
30 grid discretizing the imaging domain Ωim ¼ ½103 m; 5147 m� ×
½97 m; 2903 m� contained in Ω. Figure 7d–7f shows the FWI results
computed for noiseless data. We use the same parameterization of
the search velocity and invert in l ¼ 6 layers with the same data
windowing as in the ROM-based inversion.
We observe in Figure 7 that the ROM-based velocity estimation

captures correctly many features of the Marmousi model and con-
tinues to improve with the iterations. The imaging near the bottom
boundary can be improved further by extending the duration of the
measurements and the depth of the domain Ω, so that the artificial
bottom boundary has no effect. We also note that the FWI approach
recovers the top features of the Marmousi model. However, the
velocity estimate does not improve much after the 12th iteration
and the result is far from the true model. Effectively, FWI is stuck
in a local minimum.
In Figure 6b and 6c, we compare the ROM-based estimates

obtained with two different choices of the basis functions in the
parameterization from expression 46 of the search velocity. The
Gaussian ones given in equation 57 and the commonly used piece-
wise linear hat functions, which interpolate between the values of
zero and one on the same 50 × 30 inversion grid. The estimate with
the Gaussian basis looks smoother, as expected, but the point of this
comparison is to illustrate that the inversion is very mildly sensitive
to the parameterization of the search velocity, once the inversion
grid is fixed.
We show in Figure 6f how the velocity estimation improves if

we double the number of colocated sources/receivers to Ns ¼ 60,
decrease the time sampling to τ ¼ 0.0333 s and increase Nt to 50,
while also setting r ¼ Nt − 17 ¼ 33. The inversion is carried out as
mentioned previously, except that the parameterization of the veloc-
ity is with N ¼ 75 × 38 ¼ 2850 Gaussian functions with
σ⊥ϕ ¼ 40.2 m and σϕ ¼ 44.8 m. We use the estimate from Figure 6b
as an initial guess. Because this initial velocity estimate is already

very good, it is sufficient to perform niter ¼ 4 Gauss-Newton iter-
ations for a single layer l ¼ 1 using all the available data, i.e.,
k1 ¼ r. We note that the resulting refined velocity estimate sharpens
the boundaries of the features and improves their contrast.
To illustrate better the quality of the refined ROM estimate in Fig-

ure 6f, we display in Figure 8 the true and refined estimated velocity
for three vertical slices, at distances of 1.4, 2.8, and 3.566 km. We
note again that the reconstruction is accurate away from the bottom
boundary, where the results can be improved by extending the depth
of the domain Ω and the recording time, as explained previously.
We end the section with the velocity estimate obtained with the

array response matrix estimated from towed-streamer type measure-
ments, which is shown in Figure 6e. We observe that this estimate is
practically the same as the one in Figure 6b.

CONCLUSION

We introduced a novel approach for velocity estimation based on a
ROM of the wave operator. The ROM is computed from the data
gathered by an array of colocated sources and receivers. Such data
can be approximated in geophysics applications from towed-streamer
type measurements. No prior information on the medium is used,
except for the assumption that the velocity is known in the immediate
vicinity of the sensors. Although the mapping from the data to the
ROM is nonlinear, we can compute it using efficient numerical linear
algebra algorithms. We explain that the ROM is an approximation of
the wave operator on a space defined by the snapshots of the wave-
field at uniformly spaced time steps. This space is not known and
neither is the wave operator. Yet, we can compute its approximation,
the ROM, from the data. We describe the properties of the ROM and
formulate a velocity estimation algorithm that minimizes the ROM
misfit. We also explain how to regularize the ROM to mitigate ad-
ditive noise. We demonstrate with numerical simulations that the
ROM misfit objective function is better than the nonlinear least-
squares data misfit used in FWI. In particular, for a low-dimensional
velocity model where we can plot the objective functions, we obtain
that the ROM misfit objective function has convexity properties,
whereas the FWI objective function displays multiple local minima.
We present velocity estimation results for two well known models
where FWI is known to fail in the absence of an excellent initial
guess: the Camembert model and the Marmousi model.
Our ROM construction uses that the data matrices have a sym-

metric inner-product mathematical expression. This requirement is

Figure 8. Vertical slices of the Marmousi model velocity (the red lines) and its refined ROM estimate (the blue lines) at distances shown as the
dashed lines in Figure 6f.
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the main impediment to having a straightforward extension of the
methodology to more general data acquisition setups, with sources
and receivers at very different locations. We hope to address this
open challenge in future research.
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APPENDIX A

NUMERICALLY SIMULATED DATA

The data for the numerical experiments are computed with a
time-domain wave equation solver for equations 1 and 2, with Lap-
lacian discretized on a uniform grid with a five-point finite-differ-
ence stencil. We use homogeneous Dirichlet boundary conditions at
∂Ω. The second time derivative is approximated by a three-point
finite-difference scheme, on a fine time grid with step τf ¼ τ=20.
Using equation 13, we obtain the finely sampled data Df

k, for
k ¼ 0; 1; : : : ; nf , where nf ¼ 20ð2Nt − 1Þ.
The noisy data are computed as follows. Define

β ¼ b
Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nf þ 1

p
�Xnf

k¼0

kDf
kk2F

�
1=2

; (A-1)

where b is the desired noise level, e.g., b ¼ 10−2 for 1% noise.
Then, the contaminated finely sampled data are obtained by adding
to Df

k a realization of an Ns × Ns random matrix with independent,
normally distributed entries with mean zero and standard deviation
β for each k ¼ 1; : : : ; nf . Because the data at time zero are com-
puted in the known medium near the colocated sources/receivers,
we exclude k ¼ 0. To simplify notation, hereafter we denote by
Df

k the noiseless and the noise contaminated, finely sampled data.
We now explain how we compute the second derivative data

matrices. We begin by extending the finely sampled data evenly
in discrete time to obtain Dfe

j , j ¼ −nf ; : : : ; nf , with Df
k ¼ Dfe

�k,
k ¼ 0; 1; : : : ; nf . Then, we take the discrete Fourier transform of
ðDfe

j Þnfj¼−nf and differentiate it in the Fourier domain after using a
sharp cutoff low-pass filter intended to stabilize the calculation.
The cutoff frequency is at ωo=ð2πÞ þ 4B ¼ 22 Hz. We take the in-
verse Fourier transform to obtain D̈fe

j , at j ¼ −nf ; : : : ; nf , the finely
sampled second derivative data. Finally, we subsample Dfe

j and D̈fe
j

to obtain

Dk ¼ Dfe
20k; D̈k ¼ D̈fe

20k; k ¼ 0; 1; : : : ; 2Nt − 1: (A-2)

APPENDIX B

CAUSAL CONSTRUCTION OF THE ROM

Here, we prove that the upper left kNs × kNs block of AROM,
denoted by ½AROM�k, is the ROMoperator computed by Algorithm 1
from the data subset fDj; D̈jg2k−2j¼0 , for any k ¼ 1; : : : ; Nt.

Let us begin by writing ½AROM�k from equation 26

½AROM�k ¼
�
IkNs

0
�
R−TSR−1

�
IkNs

0

�

¼
�
½R�−Tk 0

�
S

� ½R�−1k
0

�

¼ ½R�−Tk ½S�k½R�−1k ; (B-1)

where IkNs
is the kNs × kNs identity matrix and ½S�k and ½R�k are the

upper left kNs × kNs blocks of S and R, respectively. Here, we used
that R is block upper triangular and so is its inverse. Moreover, the
upper left kNs × kNs block of R−1 is the same as the inverse of ½R�k.
At step 3, Algorithm 1 computes from fDj; D̈jg2k−2j¼0 the upper left

kNs × kNs block of M, denoted by ½M�k, and also ½S�k. The Cho-
lesky factorization in equation 22 and the block upper triangular
structure of R give

½M�k ¼
�
IkNs

0
�
RTR

�
IkNs

0

�
¼ ½R�Tk ½R�k: (B-2)

This shows that ½R�k is the Cholesky square root of ½M�k, computed
in Algorithm 1. The result follows from equation B-1.

APPENDIX C

ALGEBRAIC STRUCTURE OF THE ROM

We explain here that the entries of the ROM operator AROM

decay away from the main diagonal, which is why we can use
the restriction mapping Restd;k defined in equation 47 to reduce
the computational cost of the inversion. Let us write

VðxÞ ¼ ðv0ðxÞ; : : : ; vNt−1ðxÞÞ; (C-1)

where vjðxÞ ∈ R1×Ns , for j ¼ 0; : : : ; Nt − 1: We obtain from equa-
tion 8 that the Ns × Ns blocks of AROM are

AROM
i;j ¼

Z
Ω
dxvTi ðxÞAvjðxÞ; i;j¼0; :::;Nt−1: (C-2)

Moreover, the Gram-Schmidt orthogonalization from equation 27
gives

ujðxÞ ¼
Xj

q¼0

vqðxÞRq;j; (C-3)

and conversely

vjðxÞ ¼
Xj

q¼0

uqðxÞΓq;j; (C-4)
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where

Γ ¼ R−1 ¼

0
B@

Γ0;0 Γ0;1 : : : Γ0;Nt−1
0 Γ1;1 : : : Γ1;Nt−1

..

. ..
. ..

.
ΓNt−1;Nt−1

1
CA (C-5)

is block upper triangular, like R.
Now let us substitute equation C-4 into equation C-2, to obtain

AROM
i;j ¼

Xj

q¼0

Z
Ω
dx vTi ðxÞAuqðxÞΓq;j

¼ −
Xj

q¼0

Z
Ω
dx vTi ðxÞ∂2t uðqτ; xÞΓq;j: (C-6)

We use next the Whittaker-Shannon interpolation formula, which
says that if τ satisfies the Nyquist criterion, then

uðt; xÞ ¼
X∞
s¼−∞

ujsjðxÞsinc
�
πðt − sτÞ

τ

�
: (C-7)

Differentiating twice and evaluating at t ¼ qτ, we obtain

τ2∂2t uðqτ; xÞ ¼
X∞

s¼−∞;s≠0

2ð−1Þsþ1

s2
ujq−sjðxÞ −

π2

3
uqðxÞ;

(C-8)
and substituting into equation C-6, we obtain

AROM
i;j ¼ 1

τ2
Xj

q¼0

Γq;j


Z
Ω
dx vTi ðxÞuqðxÞ

−
X∞

s¼−∞;s≠0

2ð−1Þsþ1

s2

Z
Ω
dx vTi ðxÞujq−sjðxÞ

�

¼ 1

τ2
Xj

q¼0

Γq;j



Ri;q −

X∞
s¼−∞;s≠0

2ð−1Þsþ1

s2
Ri;jq−sj

�
:

(C-9)

To avoid boundary terms, we have assumed in this formula a large
Nt so we can take Nt → ∞.
Because Γq;j ¼ 0 for q > j, and Ri;q ¼ 0 for i > q, the first term

on the right side of equation C-9 is zero for i > j. However, we are
interested only in the block upper triangular part of AROM

(i.e., i ≤ j), due to symmetry, so this first term contributes only to
the main block diagonal. The other block diagonals are due to the
series in equation C-9. Each term in this series adds an sth diagonal,
whose entries decay as 1=s2. Thus, only the first few block diag-
onals are large.

APPENDIX D

IMPLEMENTATION OF THE INVERSION

In principle, the optimization at step 3 of Algorithm 2 could have
a constraint on η to ensure that the search velocity in equation 46 is
positive. We did not need such a constraint in our numerical sim-

ulations, as the velocity has stayed positive throughout the iter-
ations.
There are many possible regularization penalties. For simplicity,

we use the adaptive Tikhonov regularization

Lreg
i ðηÞ ¼ μikηk22; (D-1)

where k · k2 is the Euclidean norm and μi is chosen adaptively with
the following procedure. Let

Eðη; d; klÞ ¼ Restd;klð½AROMðvð·; ηÞÞ −AROM�klÞ (D-2)

be the Nsdð2k − dþ 1Þ=2-dimensional residual vector, whose
Euclidean norm squared appears in equation 49. The Jacobian of
the objective function evaluated at η ¼ ηði−1Þ is the matrix

JðiÞ ¼ ∇ηEðηði−1Þ; d; klÞ ∈ RdNsðkNs−ðdNs−1Þ=2Þ×N: (D-3)

We always choose the parameterization of the velocity from equa-
tion 46 so that the Jacobian has more rows than columns. Let σðiÞ1 ≥
σðiÞ2 ≥ · · ·≥ σðiÞN be the singular values of JðiÞ. For a fixed parameter
γ ∈ ð0; 1Þ, with smaller values corresponding to stronger regulari-
zation, we set

μi ¼ ðσðiÞbγNcÞ2: (D-4)

The choice of γ depends on the parameterization in equation 46.
Because it is not clear what is the resolution of the inversion,
we choose to overparameterize the velocity, and stabilize the inver-
sion with a small γ, in the range ð0.2; 0.4Þ. For the results presented
in the paper, we used γ ¼ 0.25.
The Gauss-Newton update direction for the objective function in

equation 50, regularized with Lreg
i ðηÞ from equation D-1, is

dðiÞ ¼ −ððJðiÞÞTJðiÞ þ μiINÞ−1ðJðiÞÞTrðiÞ; (D-5)

where IN is the N × N identity matrix and rðiÞ is the residual vector
in equation D-2 evaluated at ηði−1Þ. Note that equation D-5 is the
same as the Levenberg-Marquardt update direction for equa-
tion D-2 with damping μi.
Given the update direction dðiÞ, we use a line search,

αðiÞ ¼ argmin
α∈ð0;αmaxÞ

Liðηði−1Þ þ αdðiÞÞ; (D-6)

to compute the step length αðiÞ, where we take αmax ¼ 3. Then, the
Gauss-Newton update is

ηðiÞ ¼ ηði−1Þ þ αðiÞdðiÞ: (D-7)

We use a similar regularization strategy for the FWI objective
function in equation 58: If we let EFWIðηÞ be the NtNsðNs þ 1Þ-di-
mensional residual vector, with entries

ðEFWI
j ðηÞÞðkþ1ÞNsðNsþ1Þ=2

j¼kNsðNsþ1Þ=2þ1
¼ TriuðDkðvÞ − DkÞ; (D-8)

for k ¼ 0; : : : ; 2Nt − 1, then its Jacobian evaluated at η ¼ ηði−1Þ is

JFWI;ðiÞ ¼ ∇ηRFWIðηði−1ÞÞ ∈ RNtNsðNsþ1Þ×N; (D-9)

R188 Borcea et al.

D
ow

nl
oa

de
d 

05
/0

9/
23

 to
 1

30
.2

38
.7

.4
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
07

0.
1



where we assume N ≤ NtNsðNs þ 1Þ. Furthermore, for the same
fixed parameter γ used in the ROM approach, we set μFWI

i ¼
ðσFWI;ðiÞ

bγNc Þ2, where fσFWI;ðiÞ
j gNj¼1 is the singular value of J

FWI;ðiÞ, sorted
in decreasing order.

APPENDIX E

REGULARIZATION OF THE ROM

Let us denote by fDN
j g2Nt−1

j¼0 the uncertain data matrices that are
either contaminated with noise (see Appendix A) or approximated
from the towed-streamer measurements. Source-receiver reciprocity
is built into the approximation for towed-streamer measurements,
but it does not hold for noisy array data. To ensure symmetry,
we transform DN

j into ð1=2ÞðDN
j þ ðDN

j ÞTÞ.
The mass and stiffness matrices computed at step 3 of

Algorithm 1 are denoted by MN and SN. In theory, they should
be positive definite matrices, but they will have several eigenvalues
that are negative or zero. This is critical in the case of MN because
we need the inverse of its block Cholesky square root to com-
pute AROM.
A natural way of regularizing MN is via projection on the space

spanned by the leading eigenvectors. Thus, let

MN ¼ ZNΛNðZNÞT (E-1)

be the eigendecomposition of MN, where ZN is the orthogonal ma-
trix of eigenvectors and ΛN ¼ diagðλN1 ; : : : ; λNNtNs

Þ is the diagonal
matrix of eigenvalues in descending order. We wish to keep the
eigenvalues that are larger than the noise contribution (see Appen-
dix F). Because we work with Ns × Ns blocks, we choose the
cut-off at index rNs, for integer r satisfying 1 ≤ r < Nt, and use
the first rNs eigenvectors, stored in

ZN;r ¼ ðZN
jlÞ1≤j≤NtNs;1≤l≤rNs

∈ RNtNs×rNs ; (E-2)

to define the projected mass matrix

ΛN;r ¼ ðZN;rÞTMNZN;r ¼ diagðλN1 ; : : : ; λNrNs
Þ: (E-3)

The resultingΛN;r is well conditioned, but it does not have the block
Hankel + Toeplitz structure deduced from the causal propagation of
the wave (recall equation 43). Thus, we need an additional trans-
formation to recover causality. The desired transformation cannot
be obtained by looking at the ROM operator construction alone be-
cause all we know about the algebraic structure of AROM is that its
entries decay away from the main diagonal. However, we can obtain
the transformation using another ROM, for the propagator operator
(Borcea et al., 2018, 2021),

P ¼ cos

�
τ

ffiffiffiffiffi
A

p �
: (E-4)

The ROM propagator is obtained from the Galerkin approxima-
tion of the time stepping equation:

ujþ1ðxÞ ¼ 2PujðxÞ − ujj−1jðxÞ; j ≥ 0; (E-5)

obtained from equation 39 evaluated at t ¼ jτ and Δt ¼ τ, for
j ≥ 0. The approximation space is the same as in the computation
ofAROM, i.e., rangeðUðxÞÞ. If we let ~uG;j ¼ UðxÞ ~gj be the Galerkin

approximation at instance t ¼ jτ, this satisfies the algebraic system
of equations Z

Ω
dxUTðxÞUðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

ð ~gjþ1 þ ~gjj−1jÞ

¼ 2

Z
Ω
dxUTðxÞPUðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~S

~gj; (E-6)

for j ≥ 0. Note how the same data-driven mass matrixM appears in
this equation. The propagator stiffness matrix ~S also is data driven,
with Ns × Ns blocks given by

~Si;j ¼
�
ui; cos

�
τ

ffiffiffiffi
A

p �
uj

	

¼ 1

2
hui; ujþ1 þ ujj−1ji

¼ 1

4
ðDiþjþ1 þ Dji−j−1j þ Djiþj−1j þ Dji−jþ1jÞ; (E-7)

where 0 ≤ i; j ≤ Nt − 1. Using the same block Cholesky factoriza-
tion ofM from equation 22 and multiplying the preceding Galerkin
equation by R−1, we obtain the time stepping scheme in the ROM
space

~uROMjþ1 ¼ 2PROM ~uROMj − ~uROMjj−1j ; (E-8)

the algebraic analog of equation E-5, where

~uROMj ¼ R ~gj; j ≥ 0; (E-9)

are the ROM snapshots and

PROM ¼ R−T ~SR−1 ¼
Z
Ω
dxVTðxÞPVðxÞ (E-10)

is the ROM propagator. In the last equality, we used the definition of
~S and the Gram-Schmidt orthogonalization equation 27.
We refer the interested reader to Borcea et al. (2020) for a long

and detailed analysis of PROM. For our purpose, it suffices to say
that it is useful to look at it because, as proved in Borcea et al. (2020,
Appendix C), unlike AROM, the matrix PROM is sparse, with a
block tridiagonal structure. Moreover, PROM is determined by
the same mass matrix as AROM. Thus, even though the regularized
matrix in equation E-3 is not in the right algebraic form, we can
bring it into the right form by imposing the block tridiagonal struc-
ture of the resulting ROM propagator. To do this, we use the block-
Lanczos algorithm (Golub and Van Loan, 2013, Chapter 10) that
takes any symmetric matrix inRNtNs×NtNs and computes an orthogo-
nal basis of RNtNs that puts the matrix in block tridiagonal form.
We can now describe the regularization procedure. First, we com-

pute the ROM propagator stiffness matrix ~SN, with blocks as given
previously, in terms of the uncertain data fDN

j g2Nt−1
j¼0 . Then, we

project this matrix onto the range of ZN;r, defined in equation E-2,

~SN;r ¼ ðZN;rÞT ~SNZN;r ∈ RrNs×rNs ; (E-11)
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and we compute

PN;r ¼ ðΛN;rÞ−1=2 ~SN;rðΛN;rÞ−1=2 ∈ RrNs×rNs : (E-12)

This is a symmetric positive definite matrix that we put in block
tridiagonal form using the block-Lanczos algorithm (Golub and
Van Loan, 2013, Chapter 10), with starting block ðΛN;rÞ−1=2
ðZN;rÞTe0 ∈ RrNs×Ns . This generates an orthogonal matrix
QN;r ∈ RrNs×rNs such that

PROM;r ¼ ðQN;rÞTPN;rQN;r ∈ RrNs×rNs (E-13)

is a block tridiagonal matrix with Ns × Ns blocks, which we call the
regularized ROM propagator.
The matrix PROM;r itself is irrelevant to our velocity estimation

approach. It is the orthogonal transformation given by QN;r that we
need, which restores the desired algebraic causality of the regular-
ized mass matrix. Using this transformation, we can obtain the regu-
larized ROM operator with the following procedure: Compute the
block Cholesky factorization of the transformed mass matrix

ðQN;rÞTΛN;rQN;r¼ðΠN;rÞTMNΠN;r¼ðRN;rÞTRN;r; (E-14)

where

ΠN;r ¼ ZN;rQN;r ∈ RNtNs×rNs ; (E-15)

and RN;r ∈ RrNs×rNs is block upper triangular and well conditioned,
due to the spectral truncation in equation E-3. Then, using the data-
driven stiffness matrix SN computed at step 3 of Algorithm 1, we
obtain the regularized operator ROM as

AROM;r ¼ ðRN;rÞ−TðΠN;rÞTSNΠN;rðRN;rÞ−1: (E-16)

Equation E-16 gives the regularization of the data-driven ROM
operator construction. For the inversion, we also need the ROM op-
erator for the search velocity vðx; ηÞ computed via the same chain of
transformations, using the same matrix from equation E-15: Let
MðvÞ and SðvÞ be the mass and stiffness matrices calculated in step
3 of Algorithm 1 from the data computed numerically in the
medium with velocity vðx; ηÞ. We compute the block Cholesky fac-
torization

ðΠN;rÞTMðvÞΠN;r¼RrðvÞTRrðvÞ; (E-17)

where r is an index (not a power). Then, the ROM operator at the
search velocity v is given by

AROM;rðvÞ¼RrðvÞ−TðΠN;rÞTSðvÞΠN;rRrðvÞ−1: (E-18)

The velocity inversion is carried out as in Algorithm 2, with AROM

andAROMðvÞ in equation 49 replaced by the regularizedAROM;r and
AROM;rðvÞ. Note that the matrix with orthogonal columns ΠN;r used
in equations E-17 and E-18 is computed once using the uncertain data
and does not change over the course of velocity estimation.
We observe that due to the block algebra, even if we do not use a

spectral truncation, i.e., set r ¼ N t, the ROM operator in equa-
tion E-17 is not identical to the one computed with Algorithm 1.
Nevertheless, they behave the same with respect to the inversion,
as shown in Figure E-1, where we plot the logarithm of the objective
function:

OROM;rðvÞ ¼ kTriuðAROM;rðvÞ −AROM;rÞk22; (E-19)

for the same experiment as shown in Figure 2, for the cases r ¼ Nt

and r ¼ Nt − 4. There is little difference between Figure 2c and
Figure E-1a and E-1b.

APPENDIX F

THE REGULARIZATION THRESHOLD

Here, we explain how we choose the regularization threshold r
for the ROM regularization procedure in equations E-2 and E-18.
The idea is that r can be determined from the part of the spectrum of
the mass matrixMN that is perturbed by the uncertainty. This can be
estimated using the mass matrixMNðcoÞ corresponding to the initial
guess velocity coðxÞ, and perturbed in a similar way.
For noisy sensor array measurements, the matrices

EN
j ¼ 1ffiffiffi

2
p ðDN

j − ðDN
j ÞTÞ; j ¼ 0; : : : ; 2Nt − 1; (F-1)

can be considered as realizations of the additive noise. This is
because the true wave signals are reciprocal (Dj are symmetric ma-
trices), whereas the additive noise is not. For towed-streamer data,

another noise estimation procedure is needed.
For example, the measurements at N 0

s ≫ Ns

locations, separated by a small distance with re-
spect to the wavelength, can be used to estimate
the noise at the Ns receivers used in the ROM
construction.
Consider the mass matrices MðcoÞ and

MNðcoÞ computed by Algorithm 1 from the
noiseless background data fDjðcoÞg2Nt−1

j¼0 and
the artificially generated contaminated back-
ground data fDjðcoÞ þ EN

j g2Nt−1
j¼0 , respectively.

Let fσojgNtNs

j¼1 be the singular values of MðcoÞ,
and fσNj gNtNs

j¼1 the singular values of MNðcoÞ,
sorted in decreasing order. Choose a small εσ ,
the largest relative deviation of singular values
past which we consider them contaminated by
noise. Let RN be the smallest among j such that

Figure E-1. Decimal logarithm of the objective function (equation E-19) versus the
interface position and velocity contrast. The true parameters (shown in Figure 2) are
indicated by the magenta circle.
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���� σ
N
j

σoj
− 1

���� ≥ εσ: (F-2)

Then, we can estimate r ¼ bRN=Nsc.
Note that the estimation can be adaptive. We can choose at iter-

ation ith in Algorithm 2 the value ri obtained as previously but with
Mðvð·; ηðiÞÞÞ instead of MðcoÞ. However, in our examples this was
not necessary because using MðcoÞ provided a robust if somewhat
conservative estimate, as shown in the numerical example
described.
In Figure F-1, we illustrate the choice of regularization threshold for

the Marmousi model in the setting outlined in the “Numerical results”
section (Ns ¼ 30, Nt ¼ 40, 1% additive noise). Figure F-1a shows
the singular values σoj and σNj for a range j ¼ 900; 901; : : : ; 1025,
while also comparing them to the singular values of M and MN. Set-
ting εσ ¼ 10−2, we obtain RN ¼ 944 from equation F-1, as shown in
Figure F-1b. This gives the value r ¼ b944=30c ¼ 31 used in the
numerical experiments. Note that this process estimates well the point
after which the singular values of MN diverge from those of M, as
shown in Figure F-1a.
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Figure F-1. Regularization threshold illustration: (a) Singular values of mass matrices
M (the solid red), MN (the dotted red), MðcoÞ (the solid blue), and MNðcoÞ (the dotted
blue). The circles correspond to j ¼ RN. (b) The left side of equation F-2 (the solid
blue) and εσ (the dashed red).
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