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Abstract

High-potential students from underresourced rural schools face barriers that reduce options for academic advancement,
which widens the excellence gap between them and their more affluent, but similar ability peers. The goal of this study
was to investigate the effectiveness of an expanded above-level testing model to identify high-potential rural students for
an extracurricular math and science enrichment program. Results from our analyses indicated that a more inclusive talent
pool differentiated among high achievers to find greater percentages (13%) of talented students compared with most gifted
programs (3% to 5%) or Talent Search programs (5%). Overall, students’ math and science scores were related to a 75% and
50%, respectively, greater odds in being identified for the extracurricular program. Regardless of program participation, all
talent pool students increased their math and science achievement; however, there were some significant gender differences.
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Rural schools face unique challenges preparing students for
STEM (science, technology, engineering, and mathematics)
careers and postsecondary education compared with schools
in urban and suburban areas (Schafft & Jackson, 2011). Rural
students contend with issues of geographic isolation and insuf-
ficient bandwidth to support online access and full adoption of
technological advances (Spencer, 2017), limited access to
advanced coursework in mathematics and science (National
Science Board, 2014), and economic barriers that inhibit
future employment and educational opportunities (Lapan,
Aoyagi, & Kayson, 2007). Gifted rural students, in particular,
represent a culturally unique, underidentified, and underserved
population (Howley, Rhodes, & Beall, 2009; Stambaugh &
Wood, 2015). In part, this may be due to the technological and
economic barriers presenting difficulties for gifted rural stu-
dents in reaching advanced levels of academic achievement
necessary to pursue STEM academic and career success at the
highest levels (Kittleson & Morgan, 2012). This lack of access
(Planty & Provasnik, 2007), which may lead to reduced
engagement in advanced coursework (VanTassel-Baska &
Hubbard, 2015, 2016) compared with similar ability students
from high-income families (Plucker, Giancola, Healey, Arndt,
& Wang, 2015; Plucker & Harris, 2015), reflects the excel-
lence gap (Plucker, Burroughs, & Song, 2010). Documented
as early as elementary school and persisting through high
school (Plucker & Harris, 2015), the excellence gap represents
a growing crisis requiring programmatic intervention.

Preparation for and access to advanced coursework and
curricula are crucial for establishing effective pathways to
successful postsecondary education. Advanced Placement
(AP) coursework offers one metric with which to compare
schools and the barriers facing high-potential rural students
as they pursue math and science at the highest levels
(Assouline, Flanary, & Foley-Nicpon, 2015). As reported by
Planty and Provasnik (2007), the smaller the enrollment in a
school, the lower the likelihood of opportunities for AP
coursework. Only 40% of small schools with enrollment less
than 500 students offer AP courses, whereas 82% of medium-
sized schools with enrollments between 500 and 1,119 stu-
dents offer AP courses. Similar limitations exist for advanced
math courses. For example, students in small, rural schools
are less likely than their suburban counterparts to take alge-
bra in Grade 8 (Spielhagen, 2006), or calculus in high school
(Cogan, Schmidt, & Wiley, 2001; Kena et al., 2016).

This is relevant because high school enrollment in calcu-
lus serves as a strong predictor of bachelor’s degree attain-
ment (Adelman, 2006). Yet students can enroll in calculus
only if there is the appropriate curriculum sequence that
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includes pre-algebra prior to eighth grade and algebra in
eighth grade. In other words, the consequences of being edu-
cated in an underresourced school system appear well before
high school and can be profound for bright students with col-
lege potential in the STEM disciplines. Rural students attend
college at percentages (29.3%) that are substantially less
than their urban (47.7%) or suburban (42.3%) counterparts
(National Center for Education Statistics, 2015).

One approach to addressing these fundamental differ-
ences of access to advanced coursework at the high school
level, which contributes to an excellence gap, is to offer
extracurricular programming at the middle school level.
Extracurricular programs have several advantages for high-
potential students, especially those from underresourced
schools (Plucker & Harris, 2015). The out-of-school hours
have the potential to promote positive peer group interac-
tions, socialization, and the development of social as well as
academic competencies for high-potential middle school stu-
dents (Eccles, Barber, Stone, & Hunt, 2003; Olszewski-
Kubilius & Lee, 2004). Gira (2007) documented the positive
effects of out-of-school activities on the educational success
of students at risk due to poverty, including students from
rural schools. Lee, Matthews, and Olszewski-Kubilius
(2008) posit that extracurricular programming offers oppor-
tunities for in-depth study and enriched learning environ-
ments. Furthermore, extracurricular programming for at-risk,
high-potential, middle school students may serve as an impe-
tus, both psychologically and academically, for seeking
advanced coursework in high school (Plucker & Harris,
2015). Developing STEM learning opportunities that are
nontraditional and responsive to the local needs of rural stu-
dents can enable multiple pathways to STEM degrees and
careers (National Science Board, 2014).

The goal to improve high-potential rural students’ STEM
achievement through extracurricular programming must also
consider the inclusivity of identification models for such
programming. Namely, is the model inclusive enough to gen-
erate a broad talent pool of high-achieving students from
which a cohort of rural, high-potential students who are
ready for talent development opportunities can be identified?
There is little research on the effective identification of rural,
high-achieving students, and no research on effective
domain-specific identification of rural students with talent in
math and science (Stambaugh, 2015). Therefore, investiga-
tors surmised guidelines for identification and talent devel-
opment from trends in the research on talent identification,
rural education, and gifted education. Three recommenda-
tions summarized by Stambaugh (2015) include (a) match
identification methods to the program structure and goals,
(b) use subtest scores rather than composite scores, and (c)
implement team-based decisions grounded in the results
from multiple measures.

The talent identification process and out-of-school pro-
gramming that are the focus of this study incorporated these
identification guidelines. The talent search model (Assouline

& Lupkowski-Shoplik, 2012; Stanley, 2005), which varies
significantly from typical gifted program models in identifi-
cation format and programming goals (Callahan, Moon, &
Oh, 2014), uses above-level tests in specific domains (e.g.,
math and science) to identify high-achieving students with
domain-specific high potential. The purpose of this study
was to examine the effectiveness of an expanded talent
search model as the identification component of a STEM
extracurricular talent development program aimed at devel-
oping high-potential rural students in the domains of math
and science.

An Extracurricular Talent
Development Program for Rural Middle
School Students: STEM Excellence and
Leadership

Concerns about the excellence gap for rural students, cou-
pled with the previously stated propositions, formed the
rationale for the development of an advanced math and sci-
ence extracurricular program, STEM Excellence and
Leadership, for high-potential students in Grades 6 to 8 in
underresourced, rural schools. STEM Excellence and
Leadership was designed to prepare high-potential, low-
income middle school students living in rural areas for
advanced STEM coursework in high school.

The first stage of programming involved forming a rela-
tively broad and inclusive talent pool of high-achieving mid-
dle school students who could potentially benefit from
accelerated extracurricular STEM programming. High-
achieving second semester fifth graders (rising sixth graders)
formed the talent pool from which the project investigators
identified high-potential students for the 3-year program.
The STEM Excellence and Leadership program was imple-
mented during Grades 6 through 8, with 96 hours of chal-
lenging extracurricular math and science content, delivered
over a 24-week period throughout each academic year, out-
side the regular school day. The teachers who implemented
the program received professional development in math, sci-
ence, and gifted education prior to the start of the program.
Additional information about the participants appears below.

Identification of High-Potential Students for
STEM Excellence and Leadership

Assouline and Lupkowski-Shoplik (2012) detailed the ide-
ological differences between gifted education programs
and talent search programs, including differences in phi-
losophy, focus, program setting, and method of identifica-
tion. Gifted education programs at the elementary level are
predominately enrichment-oriented and the focus is on
identifying and selecting approximately the top 3% to 5%
of students ready for an enrichment curriculum (Callahan
et al., 2014). In contrast, the talent search model is a
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psychometric model in which elementary and middle
school students with high-potential (e.g., 95th percentile
on a grade-level achievement test; Lupkowski-Shoplik &
Swiatek, 1999) in a domain-specific area are discovered
through above-level testing; programming then focuses on
development of the talent areas revealed through the
above-level testing. The identification process for gifted
education programs typically relies on general ability mea-
sures and/or composite scores on grade-level achievement
measures. In contrast, the talent search model typically
uses above-level testing in specific content areas, such as
math and science.

When considering the general barriers that rural schools
and their students face, including the concern about underi-
dentification for gifted programs (Stambaugh, 2015), inves-
tigators adapted the talent search model by lowering the
guidelines recommended for participation. Whereas the gen-
eral guideline is the 95th percentile on at least one subtest of
a grade-level standardized test (Lupkowski-Shoplik &
Swiatek, 1999; Swiatek, 2007), the investigators adjusted the
guideline to the 85th percentile on at least one subtest of a
grade-level standardized test. Investigators selected the 85th
percentile because it represents one standard deviation above
the mean on a standardized test and includes students with
above average or higher achievement; thus, creating a rela-
tively broad talent pool of high-achieving students recom-
mended for above-level testing.

The content of the above-level test was just more than
two grade levels above that of the grade level of students
taking the test; therefore, we assumed that the experience
would be appropriately challenging but not frustrating
despite the fact that the talent pool was more inclusive.
This identification method ensured alignment between the
identification process and program goals, while objec-
tively forming an inclusive talent pool of high-achieving
middle school students. The ultimate goal is for the above-
level test results to differentiate among the high-achieving
students in the talent pool to discover students with high
potential in specific talent domains for participation in
STEM extracurricular programming.

The Role of Gender in Talent Identification. The talent search
model also offered a robust method for documenting the per-
formance of high-achieving students. In particular, the model
has been especially effective at documenting the differences
between boys and girls on above-level test performance. A
watershed study by Olszewski-Kubilius and Lee (2011)
looked at the above-level scores of more than a quarter mil-
lion participants in a talent search program between 2000
and 2008. In brief, Olszewski-Kubilius and Lee found differ-
ences in performance among annual household income lev-
els with students living in households with higher levels of
income outperforming those from households with lower
income. Equally relevant to the current study, Olszewski-
Kubilius and Lee (2011) replicated early findings of gender

differences in performance among talent search students
(Benbow, 1988; Benbow, Lubinski, Shea, & Eftekhari-San-
jani, 2000). Regardless of age, on above-level tests boys out-
performed girls in math and science and girls outperformed
boys in reading and language arts. The current study investi-
gated both the performance of high-achieving students from
lower income, rural communities and the gender differences
in performance.

The Role of Psychosocial Factors in Talent Identification. A sem-
inal study by Csikszentmihalyi, Rathunde, and Whalen
(1993) revealed the critical role of psychosocial factors in
the academic engagement and success of high-potential
adolescents. More recently, Casillas and colleagues (Casil-
las et al., 2011, Casillas et al., 2012) determined that psy-
chosocial factors measured by a student self-report survey,
ACT Engage (ACT, 2016a), explained 33% of the variance
in long-term success among students compared with stan-
dardized measures of achievement, which explained 27%
of the variance. The robustness of psychosocial outcomes
for high-potential students has been confirmed in the
research on gifted students, writ large (e.g., Kim, 2016;
Kroesbergen, van Hooijdonk, Van Viersen, Middel-Lalle-
man, & Reijnders, 2016); however, psychosocial factors
are often analyzed as outcomes of enrichment programs.
Recognizing the importance of psychosocial factors for
high-potential students’ future success, the STEM Excel-
lence and Leadership extracurricular program integrated a
psychosocial self-report measure into the identification
process to provide additional information about students’
psychosocial characteristics, including motivation, self-
regulation, and student engagement.

The Current Study

The central aim of this study was to investigate the effective-
ness of an expanded talent search model (Assouline &
Lupkowski-Shoplik, 2012; Olszewski-Kubilius, 2015) as a
way to address underidentification of rural students for gifted
programming (Stambaugh, 2015). The talent search model
uses above-level tests in specific domains (e.g., math and sci-
ence). To address the underidentification of high-potential
students in rural schools, we modified the talent search model
in two ways. First, teachers were encouraged to identify a
broader group of high-achieving students to form the talent
pool. Second, the expanded process included the administra-
tion of a self-report survey measuring psychosocial skills.

The overarching question that guided our investigation
centered on: the likelihood that an expanded above-level
testing model would effectively differentiate among high-
achieving students from underresourced rural schools who
were part of a broad, inclusive talent pool. Secondary to the
overarching question were questions concerning gender dif-
ferences and program participants’subsequent math and sci-
ence achievement.



Assouline et al.

253

We examined the following research questions:

Research Question 1: What is the relationship between
talent pool students’ above-level test scores and psycho-
social indicators?

Research Question 2: What are the gender differences
among talent pool students’ above-level scores and psy-
chosocial indicators?

Research Question 3: Do students’ psychosocial indica-
tors contribute to the identification process, after account-
ing for their performance on the four subtests of the
above-level test?

Research Question 4: How do students’ math and sci-
ence above-level scores differ based on identification,
gender, and subsequent program participation?

Method

Sample and Procedures

The study population draws from schools in the state of
Iowa, a predominantly rural, Midwestern state. The investi-
gators posted a general announcement describing the goals
of the STEM Excellence and Leadership program, which
specified the focus on rural schools. Then, the investigators
used NCES locale codes to identify rural schools with stu-
dents in Grades 5 to 9 (V= 180 schools). All 180 schools
received an announcement inviting them to submit an appli-
cation to participate in the project. Twelve districts applied
and 11 were selected based on their: (a) demonstrated com-
mitment to the program through the application process,
which required a signed commitment of program-support
from each school’s central administration, (b) location
(NCES-definition of rurality and distribution throughout the
state), and (c) the district’s free or reduced-cost lunch (FRL)
status. Approximately 48% of the students in the aggregate
of the 11 schools qualified for FRL (range was 23% to 70%).
Because of confidentiality constraints, individual informa-
tion about FRL was not available.

Teachers in each of the selected schools then notified all
high-achieving students who earned scores at or above the
85th percentile on one or more of the tests on the lowa
Assessments, a grade-level achievement test. This group of
students was drawn from the total population of rising sixth-
grade students across the 11 schools (N = 1,146). These stu-
dents were not required to participate in their district’s gifted
and talented program. Across the 11 schools, 219 of the stu-
dents were notified based on their achievement test scores
(108 males and 111 females) and completed both the above-
level test and psychosocial self-report questionnaire at Time
1. These students (N = 219) comprise the talent pool sample
(students with above-average or higher achievement on a
grade-level test; approximately 19% of the population).
Using locally determined benchmarks and recommended
guidelines on the above-level tests and psychosocial

questionnaires, a subsample of 151 students (n = 79 males
and n = 72 females; 13% of the total population and 69% of
the talent pool sample) was recommended by their teachers
for the STEM Excellence and Leadership program and
elected to participate.

The following year (Time 2), all students in the original tal-
ent pool sample (N = 219) were invited to retake the above-
level test and psychosocial questionnaire. The initial talent pool
was composed of students who completed either assessment at
Time 1; however, there was a substantial attrition rate (30%)
between Time 1 and Time 2. Taking into consideration the attri-
tion rate, the analytic sample (n = 123; 58 males and 65
females) was composed of the talent pool sample of students
who had complete data at both test administration time points.

Multivariate analyses on the original talent pool sample
with complete data (V=219; 108 males and 111 females) were
conducted to examine Research Questions 1 to 3. Longitudinal
analyses on the analytic sample (n = 123; 58 males and 65
females) were conducted to examine Research Question 4.

Measures

The measures were administered during the spring to high-
achieving fifth graders (rising sixth-grade students) in the
talent pool (N =219; 108 males and 111 females). Tests were
administered under standardized conditions. The results
were shared with teachers during specialized summer profes-
sional development, which was a component of the program.
At the beginning of the school year, teachers used the results
from both above-level testing and the psychosocial self-
report survey to recommend participation in the year-long
24-week extracurricular math and science program.

Above-Level Testing. ACT Explore (ACT, 2013), which
includes tests in English, math, reading, and science, is com-
posed of content developed for the average eighth grader and
was administered as an above-level test to high-achieving ris-
ing sixth graders. The English test has 40 items, the math and
reading tests have 30 items each, and the science test has 28
items. The format is multiple-choice and students’ responses
were recorded on a machine-scored answer sheet. All tests
and answer sheets were returned to the researchers and sent to
ACT for scoring. ACT (2013) reports that ACT Explore reli-
ability coefficients and average standard of errors of measure-
ment are weighted frequency distributions. Kuder—Richardson
20 (KR-20) internal consistency reliability coefficients for
Form A, Grade 8 ACT Explore scale scores are English, 1.66;
math, 1.71; reading, 1.44; and science, 1.53. Raw scores are
converted to a scale score; scale score ranges are 1 to 25. Our
analyses used students’ scale scores.

Psychosocial Measures. Students completed ACT Engage
(ACT, 2016a), an online self-report survey. ACT Engage is
available for students in Grades 6 to 9, high school, and col-
lege. For this investigation, we used the survey developed for
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sixth—ninth graders. ACT Engage has 10 subtests designed to
measure three broad areas: motivation, self-regulation, and
student engagement. Although score reports for all 10 sub-
scales are reported as percentiles (ACT, 2016a; Casillas
et al., 2011), scale scores were used for our analyses. ACT
Engage scale scores at, or as close as possible to, the 50th
percentile for sixth graders are as follows (ACT, 2016b):
Academic Discipline, 51; Commitment to School, 58.5;
Optimism, 49.5; Managing Feelings, 43; Orderly Conduct,
48.5; Thinking before Acting, 40; Family Attitude toward
Education, 58; Family Involvement, 50; Relationships with
School Personnel, 40.5; School Safety Climate, 43.5. All the
10 ACT Engage scales are “relatively short (range = 9 to 12
items) and have good to excellent internal consistency reli-
abilities (Cronbach coefficient alpha range = .82 to .91;
median = .87)” (ACT, 2016b, p. 16).

Analytic Approach

The purpose of this study was to evaluate the effectiveness of
a modified and expanded identification process to identify
high-potential rural students for an extracurricular STEM
program. The process included teachers notifying high-
achieving students, based on grade-level achievement, about
the opportunity to take (a) an above-level test to determine
aptitude (high potential) in math and science, as well as (b) a
self-report survey that measured broad psychosocial attri-
butes of students’ motivation and engagement. To address
Research Question 1, the association between students’ apti-
tude and psychosocial measures, we first ran descriptive sta-
tistics on students’ above-level test scores and psychosocial
scores to determine the distribution of scores in the talent
pool. We then ran Pearson correlations among the 4 ACT
Explore and 10 ACT Engage scale scores to provide a
description of the association between the above-level scores
and psychosocial measures in the talent pool.

To address Research Question 2, gender differences in the
above-level scores and psychosocial measures in the talent
pool, we used one-way multivariate analysis of variance
(MANOVA) tests. Before performing the multivariate tests,
we evaluated the data with respect to assumptions of normal-
ity, linearity, outliers, homogeneity of variance, and multi-
collinearity. The data violated the assumption of normality
and there were multiple outliers, thus we used Pillai’s trace
instead of Wilks’s Lambda in the MANOVAs.

To address Research Question 3, the contribution of psy-
chosocial scores on the likelihood of identification, we esti-
mated logistic regression models to examine the multivariate
associations among students’ psychosocial measures and
above-level scores on the likelihood they were identified for
the program. We included gender as a covariate. Logistic
regressions are used when the dependent variable is categori-
cal in nature. In this study, the dependent variable is dichoto-
mous and represents whether, / = student participated in
program (N = 135) or 0 = student did not participate in

program (N = 84). The specific logistic regression equation is
as follows:

ln[ P
I-p

The equation describes the association between students’
ACT Explore and ACT Engage scale scores and the log-odds
of being a participant in the program, while also accounting
for gender. The log-odds ratio (OR) reflects the probability
of participation compared with the reference category (i.e.,
students who did not participate in the program).

To address Research Question 4, the differences in math
and science achievement, based on program identification
and participation, we used a repeated-measures ANOVA
with two between-subjects effects (identification and gen-
der) and one within-subject effect (time) to test for main
effects of identification, time, gender, and interaction effects
among the three variables on students’ math and science
ACT Explore standard scores. All analyses were performed
in PASW Version 23.

J =By +B, (ACT Explore) +B, (ACT Engage)

+B; (Gender)

Results

Research Question |: Association Between Above-
Level Test and Psychosocial Measure

Descriptive analyses of the entire talent pool sample (N =
219) demonstrated that student performance on the above-
level test, ACT Explore, approximated a normal distribution.
The average ACT Explore scores for the talent pool students
were found to be statistically significantly lower than the
national average scale scores for eighth graders.

The distribution of 10 subscales for the psychosocial sur-
vey, ACT Engage, were all positively skewed. Table 1 pres-
ents measures of central tendency and normality for the ACT
Explore and ACT Engage measures.

Bivariate correlations among the four ACT Explore scale
scores and 10 ACT Engage scale scores at Time | are pre-
sented in Table 2. The four ACT Explore scores were all
positively, moderately correlated; correlations ranged from r
= .40 to .58. Among the 10 ACT Engage scores, the psycho-
social measures were all positively correlated with the excep-
tion of commitment to school and family attitude toward
school with orderly conduct; correlations ranged from »=.19
to .70. Between the ACT Explore and ACT Engage scores,
there were more positive correlations with the psychosocial
measures with English and reading compared with math and
science scores.

Research Question 2: Gender Differences

The means and standard deviations for ACT Explore and ACT
Engage scale scores for males and females are presented in
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Table 1. Descriptive Statistics for ACT Explore and ACT Engage Scores With the Talent Pool.

Total (N =219) Male (N = 108) Female (N=111)
Mean SD Min Max Skew Kurtosis Mean SD Mean SD

ACT Explore, Time |

(scale scores)
English 14.64 3.18 9.00 24.00 0.58 -0.01 14.10 293 15.22 3.27
Math 14.29 2.52 4.00 24.00 -0.30 2.13 14.76 2.66 13.92 2.4|
Reading 14.11 2.69 6.00 25.00 0.57 1.21 14.00 2.78 14.08 2.37
Science 16.45 2.28 6.00 24.00 -0.01 24| 16.27 2.55 16.60 1.99

ACT Explore, Time 2°

(scale scores)
English 15.82 5.34 0.00 25.00 -1.41 2.73 14.81 5.36 16.75 5.18
Math 17.14 2.84 8.00 25.00 0.31 0.65 17.66 3.06 16.65 2.54
Reading 15.90 3.14 10.00 25.00 0.72 0.22 1591 3.38 15.90 2.92
Science 17.73 2.90 8.00 25.00 0.03 1.47 17.62 3.43 17.82 2.33

ACT Engage, Time |

(scale scores)
Academic Discipline 54.44 5.83 26.00 60.00 -1.86 4.53 53.40 5.88 55.39 5.72
Commitment to School 57.47 4.79 22.00 60.00 -3.90 2043 56.94 433 57.89 523
Family Attitude 56.96 3.50 43.00 60.00 -1.39 1.89 56.56 3.69 57.27 3.31
Family Involvement 50.74 7.90 20.00 60.00 -1.03 1.26 49.20 8.72 52.18 6.72
Managing Feelings 47.44 9.56 14.00 60.00 -0.90 0.34 45.18 9.55 49.42 9.22
Optimism 51.78 6.93 24.00 60.00 -1.20 1.50 51.33 6.98 52.07 6.92
Orderly Conduct 51.38 9.72 16.00 60.00 -1.30 1.18 47.93 10.08 54.54 8.29
Relationships with 45.32 9.89 12.00 60.00 -1.09 1.18 43.40 10.31 46.90 9.23
School Personnel
School Safety Climate 48.26 9.03 14.00 60.00 -1.36 1.63 47.99 9.16 48.27 8.99
Thinking before Acting 43.77 8.57 16.00 60.00 -0.55 0.30 42.64 855 44.76 8.63

*Sample size for post—-ACT Explore scores is n = 154 (74 males, 80 females; 30% attrition rate).

Table 2. Bivariate Correlations Between Time | ACT Explore and ACT Engage scores (N = 219).

Variable I 2 3 4 5 6 7 8 9 10 I 12 13 14
I. English —  A40rF 58k 47FF  |5¥  3I¥ (|5¥  |4%¥  |9¥ 05 12 .08 .06 11
2. Math — 49 50%F  I18% .06 -.00 .07 .08 .05 .0l .05 4% 13
3. Reading —  58FE 23k 7R 4% (]2 A7% 0 e*  21% 12 A8k 20%*
4. Science — .I8F 18 .08 .0l 12 .10 13 .06 .10 .18%*
5. Academic Discipline —  ATFE 4P 43Pk KRk ShRR 4wk 4wk Q7RE 44k
6. Commitment to School — AgFE - 35%E gk 38R 02 290 15% 6%
7. Family Attitude — S52Fk 7R 38%F 02 25% 06 12
8. Family Involvement — 35 49k |8FF 44k gk 37w
9. Managing Feelings — 49 62¥F BOFF 39Fk 67

10. Optimism — 27 SRR 3TRE 488

I'l. Orderly Conduct — 33 I8F 60*F

12. Relationships with —  L66FF 43FE

School Personnel
13. School Safety Climate — 32
14. Thinking before Acting —

*p <.05. *p < .01.

Table 1. A series of MANOVA tests were performed to deter-
mine whether there were significant differences in Time 1
ACT Explore and ACT Engage scores by gender. Attending
first to ACT Explore scale scores, the multivariate result was
significant for gender, Pillai’s trace = 0.11, F(4,213)=6.44, p
<.001, Cohen’s d = .63. Based on a Bonferroni-adjusted alpha

level of .0125 (adjusting for the four ACT Explore tests), there
were significant gender differences for English scores, F(1,
216) =7.04, p <.01; females have higher English scores than
males. The effect size (Cohen’s d =.35) was considered small.

For ACT Engage scores, the multivariate result was also
significant, Pillai’s trace = 0.11, F(10, 208) = 4.67, p <.001,
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Table 3. Logistic Regression Analysis for Time | Above-Level Test Scores and Psychosocial Measures Predicting Program Identification

(N =219).
Model | Model 2 Model 3
Odds ratio Odds ratio Odds ratio
B (SE) (") B (SE) G B (SE) (")
ACT Explore Time |
Math 0.56 (0.11) |.76%F* 0.58 (0.12) | .78%k*
Reading -0.06 (0.10) 0.94 -0.01 (0.11) 0.99
Science 0.40 (0.13) |.49%* 0.43 (0.13) | .53%*
English 0.06 (0.08) 1.06 0.06 (0.08) 1.07
ACT Engage, Time |
Academic Discipline 0.08 (0.04) 1.08 0.05 (0.05) 1.05
Commitment to School 0.01 (0.04) 1.01 -0.07 (0.05) 0.94
Family Attitude -0.01 (0.06) 0.99 -0.04 (0.07) 0.96
Family Involvement 0.00 (0.02) 1.00 0.01 (0.03) 1.01
Managing Feelings 0.02 (0.02) 1.02 0.02 (0.03) 1.02
Optimism -0.05 (0.03) 0.96 —-0.02 (0.04) 0.98
Orderly Conduct -0.03 (0.02) 0.97 —0.05 (0.03) 0.95
Relationships with -0.02 (0.02) 0.98 0.00 (0.03) 1.00
School Personnel
School Safety Climate 0.01 (0.02) 1.01 -0.04 (0.03) 0.96
Thinking before Acting 0.02 (0.03) 1.02 0.00 (0.03) 1.00
Gender 0.06 (0.31) 1.06 -0.12 (0.38) 0.89 —0.37 (0.44) 0.69
Constant —0.60 (2.64) -13.77 (2.10) -7.60 (3.81)
2, prob > x* 9.34 93,967+ 103.26%#*
Pseudo-R? .04 35 38

Note. *p < .05. *¥*p < .0]. **p < .001.

Cohen’s d = .94. Using a Bonferroni-adjusted a level of .005
(adjusting for the 10 ACT Engage subscales), statistically
significant differences between male and female students
included Managing Feelings, F(1, 217) = 11.16, p = .001,
and Orderly Conduct, F(1,217)=28.20, p <.001. An inspec-
tion of mean scale scores indicated that females reported
greater levels of the aforementioned ACT Engage scales
compared with males. The effect sizes for the gender differ-
ence (Cohen’s d = .46 to .70) was considered medium.

Research Question 3: Contribution of Psychosocial
Scores on Identification

We further examined the association between above-level
tests and psychosocial measures on the likelihood of identifi-
cation, by using logistic regression analysis. We ran three
models to examine: (a) main effects of the psychosocial mea-
sures, (b) main effects of the above-level test scores, and (c)
joint effects of the psychosocial and above-level test scores.
For each of these models, we include gender as a covariate.
Table 3 reports the regression coefficients and ORs Ca)
yielded from the logistic regression models.

The ORs are interpreted as the change in odds for being a
program participant given changes in the values of the inde-
pendent variables. In Model 1, none of the psychosocial

measures demonstrated a significant effect on predicting the
likelihood of identification. In Model 2, math and science
scores significantly predicted the likelihood of identification.
Holding all the other variables at a fixed value, there was a
76% increase in the odds (OR = 1.76) of being a participant
for one-unit increase in math scores. There was a 49%
increase in the odds (OR = 1.49) of being a participant for
one-unit increase in science scores. In Model 3, when looking
at the joint effects, the effect of math and science on the odds
of being a participant increased by 2% for math (OR = 1.78)
and 4% for science (OR = 1.53). Across the models, gender
had no significant effect on the likelihood of identification.

Research Question 4: Differences in Math
and Science Achievement Based on Program
Identification and Participation

We used repeated-measures ANOVA to examine the impact
of program identification and participation on students’ math
and science achievement. Results are presented in Table 4.
For math, there was a significant linear main effect of time;
all students in the talent pool saw increases in their math
achievement from Time 1 (M = 14.17, SE = 0.23) to Time 2
(M =16.85, SE = 0.31). There were main effects for the two
between-subjects factors, identification and gender. The
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Table 4. Repeated-Measures Analysis of Variance Results for Math and Science Achievement by Identification and Gender (n = 123).

Math Science
F(I, 119) d F(1, 119) d

Within-subjects effect

Time 93.09%F* 1.77 13.89%** .70
Between-subjects effect

Identification 30.2 %%k 1.00 21.60%+* .84

Gender 6.31* 0.46 1.23 .20
Interactions

Time * Identification 2.70 0.28 0.00 .00

Time * Gender 0.49 0.00 0.95 .20

Identification * Gender

Time * Identification * Gender 0.34 0.00 4.23* .35
Note. *p < .05. ¥p < .01. *¥p < .001.
estimated marginal mean of math scores for students who
participated in STEM Excellence (M =16.77, SE = 0.22) was Tz 1736 s 1812 g 1872

higher than students who did not participate (M = 14.17, SE
= 0.42); these mean scores collapse across Time 1 and Time
2. The estimated marginal mean of math scores for male stu-
dents, regardless of participation and time, was higher (M =
16.10, SE = 0.34) than females (M = 14.93, SE = 0.32). There
were no significant interaction effects among time, identifi-
cation, and gender for math.

For science, there was also a significant linear main effect
of time; all students in the talent pool saw increases in their
science achievement from Time 1 (M = 16.56, SE = 0.21) to
Time 2 (M = 17.38, SE = 0.29). Identification was the only
significant between-subject effect for science. The estimated
marginal mean of science scores for students who partici-
pated in STEM Excellence (M = 18.01, SE = 0.21) was
higher than students who did not participate (M = 15.93, SE
= 0.40); these mean scores collapse across Time 1 and Time
2. There was also a significant three-way interaction between
time, identification, and gender for science. A comparison of
the estimated marginal means (see Figure 1), shows that for
females, nonparticipants, experienced greater increases in
science achievement, whereas for males, participants experi-
enced greater increases in science achievement.

Discussion

The purpose of this investigation was to examine the
effectiveness of implementing an expanded talent search
model (Assouline & Lupkowski-Shoplik, 2012) to differ-
entiate among a broad and inclusive STEM talent pool of
high-achieving fifth graders in rural schools. One of the
major differences between the typical gifted program
identification processes and the talent search model is the
use of above-level subtests to discover students who are
talented in specific content areas (Assouline & Lupkowski-
Shoplik, 2012; Lee, Matthews, & Olszewski-Kubilius,
2008; Olszewski-Kubilius, 2015). A broader pool was

N A

Science Scale Score
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Non-Participant Participant

Figure 1. A comparison of science scale scores at Time | and
Time 2 by gender and program participation.

desired to make the identification process and subsequent
STEM extracurricular enrichment programming more
accessible (Stambaugh & Wood, 2015) to rural students
who typically may not be involved in either university-
based above-level testing or gifted programming. Students
in the talent pool of high achievers took an above-level
test and a psychosocial survey to determine readiness for
an accelerated STEM extracurricular program for rural
middle school students.

Four research questions guided the evaluation of our
assumptions about the expanded talent search model used in
this study. First, the study examined the relationship between
talent pool students’ above-level test scores, psychosocial
indicators, and gender (Research Questions 1 and 2).
Research Question 3 looked at the contribution of psychoso-
cial indicators to the identification process after accounting
for performance on the four ACT Explore subtests. Finally,
Research Question 4 aimed to determine differences in
above-level test scores based on identification, gender, and
subsequent program participation.
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Results supported the use of the expanded talent search
model with a broadly defined sample of high-achieving stu-
dents. We operationalized high achieving by recommending
to teachers that they generate a more inclusive talent pool by
notifying students who earned scores on any subtest of a
grade-level test at the 85th percentile or higher. The 85th per-
centile corresponds to one standard deviation above the
mean on a standardized test, in other words, above average.
Rather than the exclusive percentages of 3% to 5%, which is
the case in many gifted programs (Callahan et al., 2014),
19% of the total population of rising sixth graders across the
11 schools, formed the talent pool sample and 13% of the
total population (69% of the talent pool sample) formed the
sample of participants. Moreover, these above-average stu-
dents were challenged by the above-level test, but did not
appear to be unnecessarily frustrated by the experience of
taking a test with above-grade-level content.

Students’ Time 1 performance on the above-level test
approximated a normal distribution and supported our
hypothesis that ACT Explore, which was developed for
eighth graders and was used in this investigation as an above-
level test, can effectively differentiate among the talent pool
participants when used with fifth graders who scored > 85th
percentile on a grade-level achievement test. Not surpris-
ingly, students with higher Explore scores on the math and
science tests were recommended for participation in the pro-
gram. In other words, the above-level test differentiated
among the talent pool of high-achievers and provided objec-
tive information about potential in specific domains. Even
though the talent pool students earned scores that were lower
than the eighth-grade average (eighth grade is the normative
group for whom ACT Explore was developed), the scores
were within the average range for eighth graders. The only
statistically significant gender difference was for ACT
Explore English scores among talent pool students at Time 1,
with females earning higher scores.

The expanded talent identification process also included
administration of a psychosocial self-report survey, ACT
Engage (ACT, 2016a). The performance of the entire talent
pool on all 10 ACT Engage tests was skewed positively sug-
gesting already-strong skills in the 10 areas measured for all
talent pool students. However, talent pool females had higher
scores than males on the ACT Engage scales for Managing
Feelings and Orderly Conduct. We interpreted this finding as
an indicator that the high-achieving fifth-grade girls in this
study, relative to the high-achieving fifth-grade boys, have
comparatively stronger skills in managing their feelings and
exhibiting orderly conduct, which suggests that girls fit well
within traditional school norms. These results also suggest
that high-achieving males might be at a relative risk for under
identification in more typical gifted programs with selection
criteria weighted toward behavioral compliance in schools.

All three models of the logistic regression analysis of the
association between above-level tests and psychosocial mea-
sures on the likelihood of identification found that the

psychosocial measures and gender had no significant effect
on the likelihood of identification. One interpretation is that
teachers were more likely to use the academic test scores
(e.g., both the grade-level test for nomination to the talent
pool and the subsequent above-level test results for recom-
mendation into the program. An additional interpretation is
that teachers used the ACT Engage data to be more inclusive
in their selection process and selected students who demon-
strated high academic potential regardless of their levels of
motivation, self-regulation, or student engagement.
Therefore, among this sample of high-achieving (above-
average or higher) students, a broadened talent-search model
may have served to limit gender bias in the identification
process for a STEM extracurricular program.

When looking at the impact of program identification and
participation, the results of the repeated measures ANOVA
revealed a significant main effect for time in both math and
science achievement. On average, students in the talent
pool—regardless of program participation—improved their
performance in the talent domains of math and science, as
measured by the above-level test. This result was expected
because all students experienced a year’s worth of academic
instruction. However, program participation affected the tal-
ent domains of math and science, albeit somewhat differ-
ently, especially with respect to boys and girls.

As mentioned, the mean growth in math was greater than
the growth in science. Perhaps this is because students had
more room to grow in mathematics. The main effect of iden-
tification showed that students who participated in the pro-
gram had higher math scores at Time 1 and Time 2, compared
with students who did not participate in the program. We
interpreted these results as an indicator that the talent identi-
fication process effectively contributed to the identification
of students with high math potential and subsequent program
participation may have affected the development of that
potential. The main effect of gender demonstrated that
females in our sample started with a statistically significantly
lower math score compared with males. This finding is
meaningful because males maintained that advantage, espe-
cially those who participated in the program. Furthermore,
our findings mirrored the Olszewski-Kubilius and Lee (2011)
findings regarding stronger performance by talent search
males on the ACT Explore math test.

There was a significant main effect for time in science,
where students in the talent pool increased their science
scores between Time 1 and Time 2. There also was a signifi-
cant main effect for participation in the program. Similar to
math, students who participated in the program had higher
science scores at Time 1 and Time 2, compared with students
who did not participate in the program. These results indicate
that the talent identification process effectively aided in the
identification of students with high science potential and the
subsequent program participation developed that potential.

Unlike math, there was no gender main effect for science,
but there was a significant three-way interaction between
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time, identification, and gender. Figure 1 reveals that the
nonparticipant females had greater gains than the partici-
pants did, although both groups had gains in the expected
direction. For boys, the gains for participation were in the
expected direction; interestingly, the male nonparticipants
had very slight improvement from Time 1 to Time 2. These
results warrant further investigation on the possible gen-
dered effects of participation in an extracurricular STEM
program.

Regarding the growth of all talent pool students, regard-
less of participation, investigators noted that the extracurric-
ular program instructors were typically the same teachers
that students had during the day. We did not investigate the
impact of professional development on the teachers’ instruc-
tion during the traditional school day. However, because on
average, regardless of program participation, students dem-
onstrated growth, we assumed that this might have been—at
least in part—due to improved instructional practices for
high-ability students. Only an investigation with an experi-
mental design would provide relevant data about the impact
of professional development on student growth.

Limitations and Insights for Future Research

The investigation was limited to one state, lowa, although
the school districts were located across the state. This state is
also homogenous in terms of ethnic and cultural diversity,
which limits the generalizability of the findings for other
rural populations. However, the students were in schools that
were, on average, in communities with high percentages of
students who qualify for FRL. Furthermore, information on
students’ FRL status was not available because of confiden-
tiality; this is unfortunate because it would have been helpful
to know if the talent pool students were representative of the
district’s FRL percentages.

The numbers of students were not evenly distributed
across the 11 schools, which may minimize potential school
effects in the identification process. For example, although
the above-level and psychosocial tests were administered
under standardized conditions, there may have been school-
level effects related to the specific timing of the administra-
tion (morning vs. afternoon), or the educator proctoring the
administration (a teacher, school counselor, or gifted educa-
tion coordinator).

Expanding the talent search model to a broader group of
high achievers (i.e., the top 13% rather than the top 5%),
effectively found more students with high potential in STEM.
Another aspect of expansion could include other types of
measures to capture high-potential in broader domains such
as inventiveness or computer science. One example could be
the inclusion of a spatial ability test (Lubinski, 2010).
Although the psychosocial measures in the current investiga-
tion yielded only a few statistically significant results
relative to a contribution to the identification process, we
recommend that future research attend to the varied ways in

which students’ psychosocial characteristics may contribute
to achievement outcomes, such as in increased numbers tak-
ing high-level courses in high school.

This program included a professional development com-
ponent, which incorporated information on giftedness and
the interpretation of the test results. Future research might
include the investigation of rural educators’ understanding of
gifted education concepts such as the talent search model,
their attitudes toward working with high-potential students,
as well as the impact of professional development related to
enhanced pedagogical content knowledge. Providing curric-
ular and pedagogical support to teachers is crucial to the suc-
cess of the program and students. Professional development
should also prepare teachers to use effectively the data from
the assessment instruments so that they can establish an
inclusive talent pool. By incorporating additional tests, offer-
ing professional development, and paying attention to under-
resourced schools, an expanded talent identification process
can contribute to reducing the excellence gap by presenting
new or alternative pathways to support the development of
high-potential rural students and their teachers.

Summary

Students in underresourced rural schools are less likely to
reach advanced levels of academic achievement compared
with their urban peers, even when they demonstrate high
potential (Kittleson & Morgan, 2012). High-potential rural
students face barriers that reduce options for academic
acceleration, putting them at-risk of becoming part of the
“persistent talent underclass” (Plucker et al., 2015, p. 1).
Plucker et al.’s report Mind the (Other) Gap (2010) identi-
fies large gaps in academic achievement; they report that
low-income, minority students are less likely to reach
advanced proficiency on state and national assessments and
that the gaps between the highest performing disadvantaged
students and White, more affluent students, are significant.
This discrepancy in the proportion of lower income students
achieving the highest levels of academic performance is
referred to as the excellence gap (Plucker et al., 2010).
Economically disadvantaged high-potential students are
less likely than economically secure students to retain high-
achieving status throughout their schooling (Wyner,
Bridgeland, & Dilulio, 2007). The excellence gap makes
salient the consequences of allowing the talents of high-
ability students to languish in underresourced schools.
These encouraging results suggest that there are viable
options for effectively identifying a broad talent pool of
rural students in underresourced schools with STEM talents.
If we aim to close the excellence gap, practices surrounding
identification, curriculum, and instruction must be adjusted
and evaluated so that policy can be developed or revised.
Effective and early identification of high-potential and
advanced programming in content-specific domains is a
means to equalize opportunities for STEM education and
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career success, especially among economically disadvan-
taged, high-potential, rural students (Gira, 2007; Plucker
etal., 2010).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article:
STEM Excellence and Leadership was funded by a Talent
Development Award from the Jack Kent Cooke Foundation
(JKCF), a large scholarship-granting organization “dedicated to
advancing the education of exceptionally promising students who
have financial need” (Retrieved from http://www.jkcf.org/about-
us/guiding-principles/).

References

ACT. (2013). ACT Explore [Assessment instrument]. lowa City,
IA: Author.

ACT. (2016a). Understanding your ACT Engage results
[Assessment supplement]. lowa City, IA: Author.

ACT. (2016b). Development and validation of ACT Engage techni-
cal manual. Towa City, IA: Author.

Adelman, C. (2006). The toolbox revisited: Paths to degree comple-
tion from high school through college. Washington, DC: U.S.
Department of Education.

Assouline, S. G., Flanary, K., & Foley-Nicpon, M. (2015).
Challenges and solutions for serving rural gifted students:
Accelerative strategies. In T. Stambaugh & S. Wood (Eds.),
Serving gifted students in rural settings: A framework for
bridging gifted education and rural classrooms (pp. 135-154).
Waco, TX: Prufrock.

Assouline, S. G., & Lupkowski-Shoplik, A. (2012). The talent search
model of gifted identification. Journal of Psychoeducational
Assessment, 30, 45-59. doi:10.1177/0734282911433946

Benbow, C. P. (1988). Sex differences in mathematical reasoning
ability in intellectually talented preadolescents: Their nature,
effects, and possible causes. Behavioral and Brain Sciences,
11, 169-183. doi:10.1017/S0140525X00049244

Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani,
H. (2000). Sex differences in mathematical reasoning: Their
status 20 years later. Psychological Science, 11, 474-480.
doi:10.1111/1467-9280.00291

Callahan, C. M., Moon, T. R., & Oh, S. (2014). Status of elementary
gifted programs. Charlottesville: National Research Center on
Gifted and Talented, University of Virginia, Curry School of
Education.

Casillas, A., Allen, J., Kuo, Y., Pappas, S., Hanson, M. A., &
Robbins, S. (2011). Development and validation of Engage
Grades 6-9: ACT research report series (2011-1). lowa City,
IA: ACT.

Casillas, A., Robbins, S., Allen, J., Kuo, Y.-L., Hanson, M. A., &
Schmeiser, C. (2012). Predicting early academic failure in high
school from prior academic achievement, psychosocial char-
acteristics, and behavior. Journal of Educational Psychology,
104, 407-420. doi:10.1037/a0027180

Cogan, L. S., Schmidt, W. H., & Wiley, D. E. (2001). Who takes
what math and in which track? Using TIMSS to characterize
U.S. students’ eighth-grade mathematics learning opportuni-
ties. Educational Evaluation and Policy Analysis, 23, 323-341.

Csikszentmihalyi, M., Rathunde, K., & Whalen, S. (1993). Talented
teenagers: The roots of success and failure. New York, NY:
Cambridge University Press.

Eccles, J. S., Barber, B. L., Stone, M., & Hunt, J. (2003).
Extracurricular activities and adolescent development.
Journal of Social Issues, 59, 865-889. doi:10.1046/j.0022-
4537.2003.00095.x

Gira, R. (2007). The challenge: Preparing promising low-income
students for college. In J. VanTassel-Baska &  Stambaugh
(Eds.), Overlooked gems: A national perspective on low-
income promising learners: Conference proceedings from
the national leadership conference on low-income promising
learners (pp. 69-74). Washington, DC: National Association
for Gifted Children.

Howley, A., Rhodes, M., & Beall, J. (2009). Challenges facing
rural schools: Implications for gifted students. Journal for the
Education of the Gifted, 32, 515-536.

Kena, G., Hussar, W., McFarland, J., de Brey, C., Musu-Gillette,
L., Wang, X., . . . Barmer, A. (2016). The condition of edu-
cation 2016 (NCES 2016-144). Washington, DC: National
Center for Education Statistics.

Kim, M. (2016). A meta-analysis of the effects of enrichment pro-
grams on gifted students. Gifted Child Quarterly, 60, 102-116.
doi:10.1177/0016986216630607

Kittleson, T., & Morgan, J. T. (2012). Schools in balance:
Comparing lowa physics teachers and teaching in large and
small schools. lowa Science Teachers Journal, 39(1), 8-12.

Kroesbergen, E. H., van Hoojidonk, M., Van Viersen, S., Middel-
Lalleman, M. M. N., & Reijnders, J. W. (2016). The psycho-
logical well-being of early identified gifted children. Gifted
Child Quarterly, 60, 16-30. doi:10.1177/0016986215609113

Lapan, R., Aoyagi, M., & Kayson, M. (2007). Helping rural ado-
lescents make successful postsecondary transitions: A longi-
tudinal study. Professional School Counseling, 10, 266-272.
doi:10.5330/prsc.10.3.u6j3j64h48p27w25

Lee, S. Y., Matthews, M. S., & Olszewski-Kubilius, P. (2008).
A national picture of talent search and talent search edu-
cational programs. Gifted Child Quarterly, 52, 55-69.
doi:10.1177/0016986207311152

Lubinski, D. (2010). Spatial ability and STEM: A sleeping
giant for talent identification and development. Personality
and Individual Differences, 49, 344-351. doi:10.1016/j.
paid.2010.03.022

Lupkowski-Shoplik, A., & Swiatek, M. A. (1999). Elementary stu-
dent talent searches: Establishing appropriate guidelines for
qualifying test scores. Gifted Child Quarterly, 43, 265-272.

National Center for Education Statistics. (2015). Percentage of per-
sons ages 18-29 enrolled in colleges or universities, by age
group, 4-category local, and sex [data file]. Retrieved from
https://nces.ed.gov/surveys/ruraled/tables/b.3.b.-1.asp

National Science Board. (2014, February). Science and engineering
indicators 2014 (NAB 14-01). Arlington, VA: Author.

Olszewski-Kubilius, P. (2015). Talent searches and acceler-
ated programming for gifted students. In S. G. Assouline, N.
Colangelo, J. Van Tassel-Baska, & A. Lupkowski-Shoplik
(Eds.), 4 nation empowered: Evidence trumps the excuses


http://www.jkcf.org/about-us/guiding-principles/
http://www.jkcf.org/about-us/guiding-principles/
https://nces.ed.gov/surveys/ruraled/tables/b.3.b.-1.asp

Assouline et al.

261

holding back America’s brightest students (pp. 111-121). Iowa
City, IA: Belin-Blank Center for Gifted Education and Talent
Development.

Olszewski-Kubilius, P., & Lee, S. Y. (2004). The role of participa-
tion in in-school and outside-of-school activities in the talent
development of gifted students. Journal of Secondary Gifted
Education, 15, 107-123. doi:10.4219/jsge-2004-454

Olszewski-Kubilius, P., & Lee, S. Y. (2011). Gender and other
group differences in performance on off-level tests: Changes
in the 21st century. Gifted Child Quarterly, 55, 54-73.
doi:10.1177/0016986210382574

Planty, M., & Provasnik, S. (2007). High school course taking:
Findings from the Condition of Education 2007. Washington,
DC: U.S. Department of Education, National Center for
Education Statistics.

Plucker, J. A., Burroughs, N., & Song, R. (2010, February 4). Mind
the (other) gap! The growing excellence gap in K-12 educa-
tion. Retrieved from https://eric.ed.gov/?id=ED531840

Plucker, J., Giancola, J., Healey, G., Arndt, D., & Wang, C. (2015).
Equal talents, unequal opportunities: A report card on state
support for academically talented low-income students.
Lansdowne, VA: Jack Kent Cooke Foundation.

Plucker, J., & Harris, B. (2015). Acceleration and economi-
cally vulnerable children. In S. G. Assouline, N. Colangelo,
J. Van Tassel-Baska, & A. Lupkowski-Shoplik (Eds.), 4
nation empowered: Evidence trumps the excuses holding
back America’s brightest students (pp. 181-188). lowa City,
IA: Belin-Blank Center for Gifted Education and Talent
Development.

Schafft, K. A., & Jackson, A. Y. (Eds.). (2011). Rural education
for the twenty-first century: Identity, place, and community
in a globalizing world. University Park: Pennsylvania State
University.

Spencer, K. (2017, January 22). Not all towns are created equal,
digitally: How a Colorado school district struggles to give
its students a technology boost (The Hechinger Report).
New York, NY: Teachers College at Columbia University.
Retrieved from http://hechingerreport.org/not-all-towns-are-
created-equal-digitally/

Spielhagen, F. R. (2006). Closing the achievement gap in math:
Considering eighth grade algebra for all students. American
Secondary Education, 34(3), 29-41.

Stambaugh, T. (2015). Celebrating talent: Identification of rural
gifted students. In T. Stambaugh & S. Wood (Eds.), Serving
gifted students in rural settings: A framework for bridging

gifted education and rural classrooms (pp. 97-110). Waco,
TX: Prufrock Press.

Stambaugh, T., & Wood, S. (Eds.). (2015). Serving gifted students
in rural settings: A framework for bridging gifted education
and rural classrooms. Waco, TX: Prufrock Press.

Stanley, J. C. (2005). A quiet revolution: Finding boys and girls who
reason exceptionally well and/or verbally and helping them get
the supplemental educational opportunities they need. High
Ability Studies, 16, 5-14. doi:10.1080/13598130500115114

Swiatek, M. A. (2007). The talent search model: Past, present, and
future. Gifted Child Quarterly, 51, 320-329.

VanTassel-Baska, J., & Hubbard, G. F. (2015). Serving the rural
gifted child through advanced curriculum. In T. Stambaugh &
S. M. Wood (Eds.), Serving gifted students in rural settings: A
framework for bridging gifted education and rural classrooms
(pp- 155-178). Waco, TX: Prufrock Press.

VanTassel-Baska, J., & Hubbard, G. F. (2016). Classroom-based
strategies for advanced learners in rural settings. Journal of
Advanced Academics. doi:10.1177/1932202X16656896

Wyner, J. S., Bridgeland, J. M., & Dilulio, J. J., Jr. (2007).
Achievementrap: How America is failing millions of high-
achieving students from lower-income families. Retrieved from
https://eric.ed.gov/?1d=ED503359

Author Biographies

Susan G. Assouline is the director of the Belin-Blank Center, holds
the Myron and Jacqueline N. Blank Endowed Chair in Gifted
Education, and is a professor of school psychology. She is espe-
cially interested in identification of academic talent in elementary
students. In 2015, she coedited with Nicholas Colangelo, Joyce
VanTassel-Baska, and Ann Lupkowski-Shoplik, A4 Nation
Empowered: Evidence Trumps the Excuses Holding Back America’s
Brightest Students.

Lori M. TIhrig is the supervisor for Curriculum and Instruction at
the Belin-Blank Center for Gifted Education and Talent
Development. She received her PhD in Curriculum and Instruction
from Iowa State University. Her research examines STEM talent
development in high-ability students and their teachers.

Duhita Mahatmya is an assistant research scientist in the College
of Education at the University of lowa. She received her PhD in
human development and family studies from lowa State University.
Her broad research interests examine the interplay of individual,
family, and school factors on the social and academic resilience of
adolescents and their families.


https://eric.ed.gov/?id=ED531840
http://hechingerreport.org/not-all-towns-are-created-equal-digitally/
http://hechingerreport.org/not-all-towns-are-created-equal-digitally/
https://eric.ed.gov/?id=ED503359

