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ARTICLE INFO ABSTRACT

Keywords: Cytoplasmic microtubule arrays play important and diverse roles within fungal cells, including serving as mo-
Appressoria lecular highways for motor-driven organelle motility. While the dynamic plus ends of cytoplasmic microtubules
Blast are free to explore the cytoplasm through their stochastic growth and shrinkage, their minus ends are nucleated
Microtubules . . . . . . is

EB1 at discrete organizing centers, composed of large multi-subunit protein complexes. The location and composition
Mitosis of these microtubule organizing centers varies depending on genus, cell type, and in some instances cell-cycle

stage. Despite their obvious importance, our understanding of the nature, diversity, and regulation of microtu-
bule organizing centers in fungi remains incomplete. Here, using three-color fluorescence microscopy based live-
cell imaging, we investigate the organization and dynamic behavior of the microtubule cytoskeleton within
infection-related cell types of the filamentous fungus, Magnaporthe oryzae, a highly destructive pathogen of rice
and wheat. We provide data to support the idea that cytoplasmic microtubules are nucleated at septa, rather than
at nuclear spindle pole bodies, within the three-celled blast conidium, and provide new insight into remodeling
of the microtubule cytoskeleton during nuclear division and inheritance. Lastly, we provide a more complete
picture of the architecture and subcellular organization of the prototypical blast appressorium, a specialized
pressure-generating cell type used to invade host tissue. Taken together, our study provides new insight into

microtubule nucleation, organization, and dynamics in specialized and differentiated fungal cell types.

1. Introduction

The filamentous fungus Magnporthe oryzae (synonym Pyricularia
oryzae) causes a destructive disease of cultivated rice and wheat, called
blast, which threatens food security around the world. Blast infections
begin when an asexual spore, called a conidium, lands on the leaf surface
following its dispersal from nearby infected tissue. M. oryzae conidia are
pyriform in shape and composed of three discrete cells (referred to here
as apical, middle, and terminal) interconnected via two septal pores
(Money and Howard, 1996), and each cell of the conidium contains a
single nucleus (Veneault-Fourrey et al., 2006). In the presence of free
water, and in the absence of external nutrients, within a couple of hours
the conidium produces a narrow germ tube which can emerge from any
one of the three cells of the conidium, although most often this is from
the apical cell. The polarized germ tube extends a short distance across
the cuticle, where it perceives various host-derived chemical and
physical cues which influence the commitment to terminal differentia-
tion (Anjago et al., 2018). Under conducive conditions, a complex
morphogenetic program is initiated, leading to the differentiation of a
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specialized dome-shaped infection cell called an appressorium, at the
apex of the germ tube (Ryder et al., 2022). The M. oryzae appressorium
is a remarkable cell type in that it can generate enormous turgor pres-
sure, and, owing to its specialized subcellular architecture (Dagdas et al.,
2012), use this pressure to force a narrow hyphal protrusion, emerging
from its base, through the tough leaf cuticle. As it matures, the appres-
sorium generates increasing hydrostatic pressure through the intracel-
lular accumulation of glycerol, and other osmolytes, mobilized from the
conidium, which causes water to enter the infection cell by osmosis (de
Jong et al.,, 1997). Recent data suggests that the production, and
detection, of sufficient turgor pressure within the appressorium, moni-
tored by a resident histidine-aspartate sensor kinase (Ryder et al., 2019),
triggers the F-actin and microtubule-dependent remodeling of a septin
disc within the base of the appressorium into a ring-like structure that is
essential for appressorium functionality (Dagdas et al., 2012; Dulal
etal., 2021, 2020). The regulated production of reactive oxygen species
by one of three NADPH oxidase enzymes encoded by the M. oryzae
genome, Nox2, is also essential for remodeling of the septin cytoskel-
eton, likely through the oxidative modification of an F-actin regulatory
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protein (Egan et al., 2007; Ryder et al., 2013).

Importantly, appressorium development is tightly coupled to cell-
cycle progression, and monitored by a canonical DNA damage
response pathway (Osés-Ruiz et al., 2017; Saunders et al., 2010a). While
two cells within the three-celled spore are arrested in interphase, the
third, from which the germ tube emerges, undergoes a single round of
nuclear division. The ability of the three interconnected cells of the
conidium to maintain mitotic autonomy, suggests that septal pore
opening and closing may be cell cycle-regulated during appressorium
morphogenesis (Shen et al., 2014). Following nuclear division, one of
the daughter nuclei is inherited by the, still immature, appressorium,
while the other remains in the conidium (Eseola et al., 2021; Osés-Ruiz
et al., 2017; Saunders et al., 2010a). To form a penetration-competent
appressorium, each of the three cells of the conidium must then un-
dergo regulated cell death, involving both autophagy (Veneault-Fourrey
et al., 2006) and ferroptosis (Shen et al., 2020; Shen and Naqvi, 2021),
and their contents be recycled and mobilized to meet the metabolic
demands of the developing appressorium. While the programmed
degradation of the conidium and its contents have been intensively
studied (He et al., 2012; Kershaw and Talbot, 2009; Rogers and Egan,
2020; Veneault-Fourrey et al., 2006), less is understood about how a
portion of each type of organelle evades destruction and is instead
inherited into the developing appressorium, and how this process is
spatially and temporally controlled across the three cells of the
conidium.

In filamentous fungi, unlike in budding yeast, cytoplasmic microtu-
bules serve as highways for the long-distance bidirectional transport of
organelles, mRNA, and other subcellular cargos by, molecular motor
proteins (Abenza et al., 2009; Baumann et al., 2014; Egan et al., 2012).
Importantly, these microtubule highways are themselves highly dy-
namic, undergoing periods of stochastic growth and shrinkage from
their plus ends (Mitchison and Kirschner, 1984), likely contributing to
the capture and transport of diverse organellar cargos (Lomakin et al.,
2009). In contrast, the slow-growing minus ends of microtubules are
nucleated by large, y-tubulin-containing complexes, called microtubule-
organizing centers. In fungi, the spindle pole body represents the major
microtubule organizing center, and is functionally equivalent to the
centrosome in higher eukaryotes. In budding yeast, spindle pole bodies
are permanently embedded in the nuclear envelope and are the sole sites
of nucleation of both cytoplasmic and mitotic microtubules. In fission
yeast, however, numerous cell-cycle dependent sites of microtubule
nucleation exist (Sawin and Tran, 2006), including equatorial
microtubule-organizing centers, which nucleate post-anaphase arrays at
the cell-division site during cytokinesis, and interphase microtubule
organizing centers which localize along microtubule bundles, on the
nuclear envelope and in the cytoplasm (Janson et al., 2005). Impor-
tantly, cytoplasmic microtubule nucleation in Schizosaccharomyces
pombe requires the proteins Mtol and Mto2 which form a complex
promoting the recruitment of the y-tubulin complex to microtubule
organizing sites (Lynch et al., 2013). Cytoplasmic microtubule orga-
nizing centers are also present in the yeast-like sporidia of the dimorphic
fungus Ustilago maydis, where they organize anti-parallel microtubule
arrays (Straube et al., 2003). In the model filamentous fungus Aspergillus
nidulans (Pinheiro et al., 2022), where y-tubulin itself was first discov-
ered (Oakley and Oakley, 1989), cytoplasmic microtubules are nucle-
ated at both spindle pole bodies and at septa (Gao et al., 2021; Konzack
et al., 2005; Xiong and Oakley, 2009; Zhang et al., 2017). Furthermore,
A. nidulans orthologs of the S. pombe proteins, Mtol and Mto2, termed
ApsB and Spal8, respectively, are essential for the recruitment of
y-tubulin ring complex proteins to septal microtubule organizing cen-
ters, but not spindle pole bodies (Zhang et al., 2017). Strikingly, septal
microtubule organizing centers are also evident in the vegetative hyphae
and specialized ring-like adhesive traps of the nematode-trapping fun-
gus, Duddingtonia flagrans (Wernet et al., 2021).

Microtubules also form the bipolar mitotic spindle which drives
chromosome capture and segregation (Xiang, 2018), a prerequisite for
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appressorium differentiation by M. oryzae (Saunders et al., 2010a). To
date, the organization and dynamic behavior of the microtubule cyto-
skeleton within specialized infective cell types of the blast fungus remain
incompletely described (Dulal et al., 2021; Park et al., 2004; Saunders
et al., 2010b), yet may have important implications for the under-
standing of appressorium differentiation, and may inspire new lines of
investigation. Here, we use a multicolor fluorescence microscopy-based
live-cell imaging approach to describe the organization of cytoplasmic
microtubule arrays within infective conidia, provide new insight into
the spatial and temporal dynamics of nuclear division and inheritance
during appressorium differentiation, and offer a more complete picture
of cytoskeletal and nuclear organization in the penetration-primed
infection cell.

2. Results and discussion

We generated M. oryzae strains co-expressing fluorescent fusion
proteins that allowed us to simultaneously image nuclei (Histone H1-
tagBFP), microtubules (p-tubulin-GFP), and their dynamic plus-ends
(EB1-RFP), within live cells. We isolated conidia, inoculated them into
imaging chambers, and generated three-color fluorescence time-lapse
sequences to investigate the organization and dynamics of cytoplasmic
microtubules within M. oryzae cells. Strikingly, we found that cyto-
plasmic microtubule arrays are organized with their slow growing
minus-ends located within the two septa which separate the three cells
of the conidium, rather than from spindle pole bodies embedded in the
nuclear envelopes (Supplementary Video 1). The emergence of micro-
tubules from septa is similarly apparent in time series acquired during
appressorium development, where septin-based structures localized to,
what are likely, septal pores (Fig. 1A, dashed box). EB1-labelled
microtubule plus-ends grew from both sides of the septa and extended
into the cytoplasm (Fig. 1A and C and Supplementary Video 1). Micro-
tubules grew at an average rate of 0.2 pm/s + 0.1 (SD), consistent with
measurements in other eukaryotic cell types (Zwetsloot et al., 2018),
and shrank at a faster rate of 0.6 pm/s + 0.1 (SD) (Fig. 1D). Microtubule
shrinkage was most conspicuous after the plus-end reached the cortex
(Supplementary Video 1). In the blast fungus, germ tubes most often
emerge from the apical cell of the conidium. Based on our data, we
speculate that this is likely a consequence of conidium geometry, which
promotes the cortex-mediated guidance of polymerizing microtubule
plus-ends into the extreme conidium apex (Fig. 1C and Supplementary
Video 1), leading to the deposition and accumulation of polarity de-
terminants at this site (Browning et al., 2003) (Fig. 1C and Supple-
mentary Video 1). Consistent with this idea, genetic loss of the cell-end
marker Tea4, leads to the emergence of multiple germ tubes from un-
usual positions on the conidium (Patkar et al., 2010). Kymographs
generated from two-color time lapse sequences revealed, as expected,
that EB1, a central regulator of microtubule plus-end dynamics
(Vaughan, 2005), tracked the tips of growing but not shrinking micro-
tubules in M. oryzae cells (Fig. 1D and E) (Bieling et al., 2007). Septum-
associated microtubule organizing centers, anchored by intrinsically
disordered proteins, have previously been described in the A. nidulans
(Shukla et al., 2017; Zhang et al., 2017), where they occur alongside
canonical spindle pole body-associated microtubule organizing centers
within hyphae. Interestingly, the M. oryzae genome encodes for likely
orthologs of major components of septal microtubule organizing centers
in A. nidulans, including ApsB (MGG_10857), Spal0 (MGG_07027), and
Spal8 (MGG_05218). In Neurospora crassa, orthologs of these three
proteins also localize to septal pores, however, rather than functioning
in the nucleation of microtubule minus ends, they appear to be involved
in the anchorage of microtubule plus ends at septal pores (Ramirez-Cota
et al., 2022). Thus, the nature and molecular composition of putative
septal microtubule organizing centers with M. oryzae conidia requires
further careful analysis. We hypothesize that microtubule organization
within the blast conidium might be optimized for the efficient capture
and trafficking of cargos through basal, middle and apical cells during
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Fig. 1. A. Fluorescence time series highlighting the localization of the microtubule (GFP-B-tubulin) and septin (Sep5-RFP) cytoskeletons, and nuclei (Histone H1-
tagBFP), during appressorium development in vitro. Dashed box highlights the emergence of cytoplasmic microtubules from a region close to the septal pore,
which is labelled by Sep5-RFP. Scale bar = 10 pm. B. Fluorescence micrographs highlighting the organization of the microtubule (f-tubulin-GFP) and septin cy-
toskeletons (Sep5-RFP), and positioning of the nucleus (Histone H1-tagBFP), in mature penetration-competent appressoria (~16 h.p.i). Scale bar = 10 pm. C.
Fluorescence micrograph of a conidia co-expressing EB1-RFP, Histone H1-tagBFP and p-tubulin-GFP (upper panel), and temporally color-coded projections of EB1-
RFP comets from Supplementary Video 1. Images were acquired every 1 s, in a single focal plane, for a total of 3 min. Colored lines therefore represent the trajectories
of the EB1 comets through time, according to the scale (lower panel). Gamma adjustments were made to panels. Note that RFP persists in the vacuoles resulting in
non-specific signal unrelated to EB1 localization. D. Kymographs generated from fluorescence time lapse sequences highlighting the trajectories of EB1-RFP comets
(top and bottom panels) which decorate the plus-ends of growing (but not shrinking) cytoplasmic microtubules (middle and bottom panels). Dashed arrows highlight
conspicuous growth (towards the hyphal tip) and shrinkage (away from the hyphal tip) events. E. Plot highlighting the rate of microtubule growth (magenta) and
shrinkage events (green) in hyphal cells determined from kymographs generated from fluorescence time lapse sequences. Error bars represent standard deviation.
*¥kp < 0.0001 (Mann Whitney test). F. Fluorescence micrographs highlighting the organization of the septin cytoskeleton (Sep5-RFP), positioning of the nucleus
(Histone H1-tagBFP), and localization of microtubule plus-ends (EB1-RFP) in mature penetration-competent appressoria (~16 h.p.i). Scale bar = 2 pm. G. Fluo-
rescence time series, extracted from Supplementary Video 2, highlighting nuclear division during appressorium development in vitro. Microtubules are labeled with
B-tubulin-GFP, nuclei with Histone H1-tagBFP and microtubule plus-ends with EB1-RFP. Panels are labeled with frame numbers, which were acquired at 30 s in-
tervals. Note non-specific RFP fluorescence in vacuoles and autofluorescence of the incipient appressorium cell wall. Scale bar = 5 pm. Panels A, B and F represent
maximum intensity projections of Z-series acquired at 0.2 pm intervals throughout the entire depth of the cell type, while panels C and G represent single Z planes.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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appressorium differentiation (Mogre et al., 2021). Importantly, the
orientation and organization of microtubules within cellular and
multicellular systems dictates the class of motors used to navigate them
(Schuster et al., 2011), with cytoplasmic dynein 1 (dynein) moving
cargos towards the minus-end, and kinesins moving them towards the
plus-end (Egan et al., 2012). In filamentous fungi, and other eukaryotes,
dynein accumulates at the microtubule plus-end (Moughamian et al.,
2013; Xiang et al., 2000), which serve as a motor-cargo loading zone for
some types of organelles (Lenz et al., 2006). It is possible that the mi-
crotubules extending into the basal and middle cells of the conidium
(Supplementary Video 1), are engaged in the plus-end-mediated “search
and capture” of organellar cargos (Lomakin et al., 2009), for their intra-
and intercellular transport. However, while various organelles,
including peroxisomes and mitochondria, have been shown to migrate
into the appressorium during its development (Zhong et al., 2016), it
remains unclear whether these are inherited only from the germinating
cell, or whether they are transported intercellularly through both septal
pores of the conidium. Furthermore, while some classes of organelle
have been shown to undergo microtubule-dependent motility during
appressorium differentiation, including late endosomes (Ramanujam
et al., 2013) and nuclei (Osés-Ruiz et al., 2017; Saunders et al., 2010b),
for other classes of organelle, it is not known whether their movement is
microtubule-based, or a consequence of bulk cytoplasmic flow (Ramos-
Garcia et al., 2009). Interestingly, in both A. nidulans, and the corn smut
fungus Ustilago maydis, some classes of organelle achieve motility by
“hitchhiking” on motor-driven early endosomes (Guimaraes et al., 2015;
Salogiannis et al., 2016), a process likely requiring cargo specific linkers
(Salogiannis et al., 2021; Salogiannis and Reck-Peterson, 2017).
Importantly, improved insight into the spatiotemporal dynamics and
cellular fate of organelles during appressorium differentiation may
inform new strategies to specifically perturb infectious development by
the blast fungus. Furthermore, M. oryzae may serve as a compelling
model system to dissect the mechanism of organelle inheritance in
asymmetrically-dividing cells with drastically different fates (Ouellet
and Barral, 2012).

Next, we sought to exploit our same fluorescently-tagged strains to
gain improved insight into the dynamic reorganization of the microtu-
bule cytoskeleton during nuclear division and inheritance, a pre-
requisite for appressorium maturation (Saunders et al., 2010a). We
imaged germinating conidia, approximately 3 h post inoculation, every
30 s for a period of 3 h in a single focal plane. Prior to the onset of
mitosis, cytoplasmic microtubules extended from the basal cell of the
conidium, with their EB1-RFP-labelled plus-ends probing the appresso-
rium cortex (Supplementary Video 2, time stamp up to 00.36.00). Soon
after, the mitotic spindle emerged as cytoplasmic microtubules within
the basal cell of the conidium, and incipient appressorium, rapidly dis-
assembled. The bipolar anaphase spindle migrated towards the incipient
appressorium and then re-positioned across the appressorium-germ tube
neck (Supplementary Video 2, timestamp 00:47:30), at which point the
EB1-RFP-labelled plus-ends of astral microtubules contacted the
appressorium cortex (Supplementary Video 2, timestamp 00:48:30).
One of the daughter nuclei was then pulled into the appressorium, as
cytoplasmic microtubules began to reemerge in the basal cell of the
conidium (Supplementary Video 2, timestamp 01.10.00). The nuclei
within both the middle and basal cell then disappeared as they likely
underwent autophagy (He et al., 2012; Veneault-Fourrey et al., 2006)
(Supplementary Video 2, timestamp 01.30.00 onwards). Note that the
daughter nucleus within the appressorium migrated out of the focal
plane. Panels extracted from Supplementary Video 2 can be seen in
Fig. 1G. In budding yeast, positioning of the bipolar anaphase spindle is
driven by dynein, which is offloaded to the cell cortex through inter-
action with its receptor Num1 (Xiang, 2018). Cortically anchored dynein
then pulls on astral microtubules, sliding them across the cell cortex, and
drawing the connected spindle into the mother bud-neck. Interestingly,
the Numl ortholog in A. nidulans, ApsA, was originally identified
following a screen for mutants defective in nuclear migration during
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hyphal growth and conidiation (Clutterbuck, 1994), and thus conserved
machinery likely control nuclear positioning in filamentous fungi
(Fischer and Timberlake, 1995). Based on our live-cell imaging data
(Supplementary Video 2), and previous studies (Pfeifer and Khang,
2020; Saunders et al., 2010a), it seems likely that dynein-dependent
forces applied to astral microtubules drive both the migration of one
daughter nucleus into the incipient appressorium and the return of the
other to the conidium for non-selective autophagic degradation (He
et al., 2012; Veneault-Fourrey et al., 2006). Consistent with this idea,
deletion of the M. oryzae Numl ortholog perturbs the spatial and tem-
poral control of nuclear division resulting in the formation of non-
functional appressoria (Jeon et al., 2014). Interestingly, in budding
yeast, Num1 interactions with both mitochondria and the endoplasmic
reticulum at the cell cortex are thought to facilitate dynein-mediated
spindle positioning (Kraft and Lackner, 2017; Omer et al., 2018).
Thus, organelle inheritance is mechanistically coupled to dynein-
mediated spindle positioning in some systems. It will be interesting to
determine whether organelle localization similarly influences nuclear
division, and therefore appressorium differentiation in the blast fungus.
Interestingly, following appressorium-mediated cuticle penetration, and
during invasive cell-to-cell movement, daughter nuclei must migrate
through extremely narrow apertures (Pfeifer and Khang, 2018), leading
to unusual spindle geometries (Pfeifer et al., 2019). Continued investi-
gation into the mechanisms of nuclear migration and motility in con-
strained environments, potentially through the exploitation of
microfabricated devices (Bedekovic and Brand, 2022; Hopke et al.,
2021), may inform novel control measures.

Lastly, we sought to gain some new perspective on the subcellular
organization and architecture of the mature, penetration-poised
appressorium through multi-color three-dimensional fluorescence im-
aging of cytoplasmic microtubules (and their plus-ends), septin-based
structures, and post-mitotic nuclei. We inoculated conidia into imaging
chambers and incubated them at room temperature for approximately
16 h, by which point they had formed mature appressoria. As expected,
the septin cytoskeleton was organized into a higher-order toroidal ring-
like structure at the base of the appressorium (Dagdas et al., 2012; Dulal
et al,, 2021, 2020; Ryder et al., 2013), while a single nucleus was
positioned directly above the central pore (Fig. 1B and F). Microtubules
were organized in vertical arrays within the appressorium, with their
plus-ends orientated towards the septin ring, as previously described
(Dulal et al., 2021). While these microtubules did not appear to emerge
from the spindle pole body associated with the nucleus (Fig. 1B), careful
cell biological analysis of strains expressing additional fluorescent fusion
proteins, including those associated with microtubule nucleation
(Oakley et al., 1990), will be necessary to better understand cytoskeletal
organization in this highly specialized cell type. Critically, high-
resolution imaging of appressorium-mediated penetration of yielding
surfaces, either synthetic or plant derived, will be essential to under-
stand how these cells are dynamically remodeled to support invasive
hyphal growth and further mitotic divisions (Pfeifer and Khang, 2018).

3. Methods
3.1. Fungal maintenance and culture

M. oryzae cultures were maintained on complete media at 25 °C with
a 12:12 photoperiod for 10-12 days. Strains were stored as desiccated
filter stocks at —20 °C and used to regenerate cultures following three
subcultures. All other storage, culture, and media preparation proced-
ures were performed following standard protocol (Molinari and Talbot,
2022).

3.2. Plasmid construction

The histone H1-tagBFP construct was created by modifying an
existing histone Hl-tdTomato construct (Saunders et al., 2010a),
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through replacement of the tdTomato-encoding gene with one encoding
for tagBFP (Tan et al., 2014), and transfer of the fusion construct into
plasmid pCB1004 (Carroll et al., 1994), containing a hygromycin
resistance cassette, by In-Fusion cloning (Takara Bio). The EB1-RFP
fusion construct was described previously (Dulal et al., 2021). Cloning
strategies, and PCR primers, were designed in Snapgene (version 6.1.1;
GSL Biotech).

3.3. Strain construction

Plasmids containing fluorescent fusion protein cassettes were inte-
grated ectopically into the M. oryzae genome following polythene
glycol-mediated protoplast transformation using established protocols.
Transformants containing genomically-integrated constructs were
selected based on resistance to sulfonylurea (f-tubulin-GFP), hygrom-
ycin (histone H1-BFP), phosphinothricin (Sep5-RFP) or bleomycin (EB1-
RFP), conferred by resistance cassettes within backbones pCB1532,
pCB1004, pCB1530 (Carroll et al., 1994; Sweigard et al., 1997) and
pYP1, respectively. Transformants were passed through two rounds of
selection before screening by fluorescence microscopy. Strains were
subjected to a single spore isolation before generating filter stocks and
storage to ensure homogenous expression of all fluorescently-tagged
fusion proteins.

3.4. Live cell imaging and image analysis

Imaging of M. oryzae cells was performed as previously described
(Rogers et al., 2021).

Fluorescence images of M. oryzae cells were acquired on a Nikon Ti-E
Eclipse inverted microscope, equipped with a motorized Piezo stage, a
Perfect Focus System (Nikon) and, using a 100x 1.49 N.A. oil immersion
Apo TIRF Nikon objective. TagBFP, eGFP and RFP were excited using an
AURA II triggered illuminator with 405 nm, 485 nm and 560 nm light-
emitting diodes, respectively, and fluorescence detected using a Zyla 4.2
sCMOS camera (Andor Technology). All hardware was controlled by
NIS-Elements Advanced Research (version 4.60). Live-cell imaging was
performed at room temperature (21-23 °C). Three-color time lapse data
sets were deconvolved, with spherical aberration correction and back-
ground subtraction, using the “Automatic” 3D (or 2D) deconvolution
option in NIS-Elements Advanced Research. Maximum intensity pro-
jection of three-color Z-series shown in Fig. 1A and B were generated in
Imaris 9.5.1 (Bitplane), and exported as TIFs using the “Snapshot”
function. All data were plotted in Prism 8 (version 8.2.1; Graphpad).
Kymographs were generated in Fiji/ImageJ2 (version:2.3.0/1.53f)
(Rueden et al., 2017) by drawing a segmented line over the trajectory of
an EB1 comet in a maximum intensity projection of a two-color fluo-
rescence time lapse sequence, and using the Image > Stacks > Reslice
function. Microtubule growth and shrinkage rates measured using the
kymograph plugin. Videos were created and annotated in Fiji/ImageJ2
(version:2.3.0/1.53f).
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