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ABSTRACT
Time-domain thermoreflectance and frequency-domain thermoreflectance (FDTR) have been widely used for non-contact measurement of
anisotropic thermal conductivity of materials with high spatial resolution. However, the requirement of a high thermoreflectance coefficient
restricts the choice of metal coating and laser wavelength. The accuracy of the measurement is often limited by the high sensitivity to the radii
of the laser beams.We describe an alternative frequency-domain pump-probe technique based on probe beam deflection. The beam deflection
is primarily caused by thermoelastic deformation of the sample surface, with a magnitude determined by the thermal expansion coefficient of
the bulk material to measure. We derive an analytical solution to the coupled elasticity and heat diffusion equations for periodic heating of
a multilayer sample with anisotropic elastic constants, thermal conductivity, and thermal expansion coefficients. In most cases, a simplified
model can reliably describe the frequency dependence of the beam deflection signal without knowledge of the elastic constants and thermal
expansion coefficients of the material. The magnitude of the probe beam deflection signal is larger than the maximum magnitude achievable
by thermoreflectance detection of surface temperatures if the thermal expansion coefficient is greater than 5 × 10−6 K−1. The uncertainty
propagated from laser beam radii is smaller than that in FDTR when using a large beam offset. We find a nearly perfect matching of the
measured signal and model prediction, and measure thermal conductivities within 6% of accepted values for materials spanning the range of
polymers to gold, 0.1–300 W/(m K).
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0126717

I. INTRODUCTION

Pump-probe optical techniques based on time-domain ther-
moreflectance (TDTR)1–4 and frequency-domain thermoreflectance
(FDTR)5 have been developed for non-contact measurement of
thermal conductivity of thin film and bulk materials. TDTR
and FDTR are widely used for the measurement of anisotropic
thermal conductivity6–12 and thermal conductivity mapping with
micrometer-scale spatial resolution.13–19 In these techniques, a metal
coating serves as the thermometer by generating a thermoreflectance
signal; i.e., the signal derives from the change of reflectivity R with
temperature T. Combinations of the metal and laser wavelength
that give large thermoreflectance coefficient 1

R
dR
dT and thus the large

magnitude of the signal are typically used to maximize the signal-
to-noise ratio; common examples are Au at a laser wavelength of
532 nm and Al at a laser wavelength of 785 nm.20 However, for

accurate measurements of in-plane thermal conductivity or high
spatial resolution measurements of materials with low thermal
conductivity, a metal with low thermal conductivity is needed to
suppress lateral heat spreading in the metal coating.21,22

The accuracy of TDTR and FDTR is often limited by the sys-
tematic error propagated from the uncertainties in the pump and
probe beam radii.23 This problem is compounded when working
at high spatial resolution because of the small depth of focus and
the difficulty in accurately determining the intensity profile on small
length scales. In a thermal conductivity mapping experiment, a drift
in the position of the sample surface relative to the focal point
of the laser beams propagates into systematic errors in thermal
conductivity as a function of position.

In a TDTR or FDTR measurement scheme, the deflection (i.e.,
a small change in direction) of the probe beam that is offset with
respect to the pump beam is an alternative signal for detecting the
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change of temperature. The beam deflection is created by thermoe-
lastic deformation of the sample surface. Utilizing the probe beam
deflection signal, Opsal et al. developed a technique for measuring
the thickness of both transparent and opaque thin films with high
spatial resolution.24

We have previously used a frequency-domain probe beam
deflection (FD-PBD) method to measure the thermal diffusivity of
transparent polymers attached to an Al-coated silica substrate. With
the laser beams passing through the polymer,25,26 the probe beam
deflection signal is generated by the temperature dependence of
the index of refraction n. This approach is limited to transparent
materials and materials with small elastic constants so that the ther-
moelastic stresses in the material do not significantly deform the
silica substrate.

In this paper, we describe a new FD-PBD method for mea-
surement of thermal conductivity of bulk materials, which removes
these limitations. Basically, the probe beam deflection signal is gen-
erated by the thermoelastic deformation of the bulk material to be
measured. Metallic materials can be measured directly; other mate-
rials are first coated with a metal film. The signal is measured as a
function of the modulation frequency of the pump beam, and the
data are fitted to a model to extract the thermal conductivity of the
material.

The rest of the paper is structured as follows: In Sec. II, the
model is derived in detail. In Sec. III, the experimental measure-
ment of probe beam deflection is explained. In Sec. IV, analysis
of the magnitude of the signal, discussion of simplification of the
model, sensitivity and uncertainty analysis, and fitting results of the
experimental data are presented.We highlight several features of this
method as compared with FDTR, including a larger magnitude of
signal, flexible choices of the metal coating and laser wavelength,
and smaller uncertainty propagated from the laser beam radii. We
validate this work by demonstrating a nearly perfect matching of the
model with themeasured data and an overall agreement of measured
thermal conductivities within 6% of accepted values in the range of
0.1–300 W/(m K).

II. MODEL OF PROBE BEAM DEFLECTION
A. Isotropic free thermal expansion model

This simplified model neglects all mechanisms of probe beam
deflection except the deformation of the surface of the bulk material
due to free thermal expansion, i.e., without mechanical constraint
by the metal coating. The material is assumed to be a linearly elastic
semi-infinite solid with isotropic elastic and thermal expansion
properties. The heating is due to the absorption of a Gaussian pump
beam by the metal coating. The solution of probe beam deflection
for this situation has been reported in our previous work on probe
beam deflection,27,28 which is based on a solution of surface displace-
ment derived with the non-Fourier law of heat conduction equation
that involves a relaxation time.29 Here, we obtain the temperature
field with Fourier law of heat conduction equation instead, while
the derivation of probe beam deflection given the temperature field
essentially follows previous work27–29 and is elaborated here to fill in
some intermediate steps in the derivation that are not included in
the original paper.29

Since heating by the pump beam has cylindrical symmetry, the
temperature field T and displacement field u also have cylindrical

symmetry. The calculation can thus be greatly accelerated by select-
ing a cylindrical coordinate system and making use of Hankel
transforms. As shown in Fig. 1(a), we choose r = 0 at the center of
the pump beam, z = 0 at the surface of the bulkmaterial, and ẑ point-
ing toward the interior of the sample. Via Helmholtz’s theorem, the
displacement field u = ur r̂ + uz ẑ can be written as

u = ∇φ +∇ × ψ, (1a)

where φ is a scalar dilatational potential, ψ = ψr r̂ + ψθθ̂ + ψz ẑ a
vector potential, giving

ur = ∂φ
∂r
+ ∂2ψ
∂z∂r

, uz = ∂φ
∂z
− 1
r
∂

∂r
(r∂ψ

∂r
), (1b)

where ψ is defined by ψθ = − 1
r
∂ψ
∂r . The governing equations of

elasticity are given by29

∇2φ − φ̈/v2L = γT, v2L = (λ + 2 μ)/ρ, (2a)

∇2ψ − ψ̈/v2T = 0, v2T = μ/ρ, (2b)

where γ = αT(3λ + 2 μ)/(λ + 2 μ), λ and μ the Lamé parameters,
and αT the linear coefficient of thermal expansion. With the
mechanical constraint by the metal coating neglected, Eq. (2) is
subjected to the stress-free condition at the interface between the
metal coating and the bulk material,

σzr ∣z=0 = 0, σzz ∣z=0 = 0. (3)

Via Hooke’s law, the strain-displacement relation30 and Eq. (1), σzr
and σzz in Eq. (3) can be expressed by φ and ψ, giving

2∂φ
∂z
+ ∂2ψ

∂z2
− 1
r
∂

∂r
(r∂ψ

∂r
) = 0, (4a)

∂2φ
∂z2
− 2v2T/v2L − 1

r
∂

∂r
(r∂φ

∂r
)

− 2v2T/v2L
r

∂

∂r
(r ∂2ψ

∂r∂z
) − γT = 0. (4b)

After Hankel transform [g(r) to g(k)] and Fourier transform
[h(t) to h̃(ω)], the governing equations Eq. (2) become

∂2φ̃
∂z2
= α2φ̃ + γT̃, α = (k2 − ω2/v2L)1/2, (5a)

∂2ψ̃
∂z2
= β2ψ̃, β = (k2 − ω2/v2T)1/2, (5b)

while the boundary conditions Eq. (4) become

2∂φ̃
∂z
∣z=0 + ∂2ψ̃

∂z2
∣z=0 + k2ψ̃∣z=0 = 0, (6a)
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FIG. 1. Illustration of frequency-domain probe beam deflection (FD-PBD) system: (a) Sample geometry, (b) Optics. The pump beam (in red) and probe beam (in blue)
are CW lasers at wavelength of 660 and 640 nm, respectively. The pump and probe beams have an offset along the vertical direction. The pump beam is modulated at
frequency f while the probe beam is typically unmodulated. A quadrant-cell photoreceiver is used with a lock-in amplifier to measure the probe beam deflection along the
vertical direction at frequency f . If f is above the upper limit of measurement of the quadrant-cell photoreceiver, the probe beam is modulated at frequency f + fdec to
measure the signal at the difference frequency fdec .

∂2φ̃
∂z2
∣
z=0
+ k2(2v2T/v2L − 1)φ̃∣

z=0
,

+ 2k2v2T/v2L ∂ψ̃
∂z
∣z=0 − γT̃∣z=0 = 0. (6b)

The temperature field T̃ is governed by the Fourier law of heat
conduction after Hankel and Fourier transform,31

∂2T̃
∂z2
= ζ2T̃, ζ = (Λr

Λz
k2 + iωC

Λz
)1/2, (7)

where Λz and Λr are the cross-plane and in-plane thermal conduc-
tivity, respectively, and C = ρcp the volumetric heat capacity, giving
the temperature field in the bulk material,

T̃ = Tbse−ζz , z > 0, (8)

where the surface temperature Tbs ≡ T̃∣z=0 is solved by transfer
matrix approach for heat conduction in semi-infinite air/metal
coating/semi-infinite material system as detailed in the literature.2,31
Basically, Eq. (7) applies to each layer given the thermal conduc-
tivity and volumetric heat capacity. Adiabatic boundary condition
applies at z → ±∞, while heat flux boundary condition applies at the
air/metal interface with the heat flux equals

P̃ = P0e−w2
0k

2/8, (9)

where P0 is the amplitude of the fundamental harmonic of the
absorbed power of modulated pump laser, w0 the 1/e2 radii of the
pump beam.

With the temperature field given by Eq. (8), the general solution
of the governing equations Eq. (5) is

φ̃ = γTbs(aφe−αz + e−ζz

ζ2 − α2 ), z > 0, (10)

ψ̃ = γTbsaψe−βz , z > 0, (11)

where the constants aφ and aψ are uniquely determined by the
boundary conditions Eq. (6) to be

aφ = − ζ
α(ζ2 − α2) + β2 + k2

2α
aψ ,

aψ = 2v2L(α2 + k2(2v2T/v2L − 1))
v2T(ζ + α)((β2 + k2)2 − 4k2αβ) .

The surface displacement of this “isotropic free thermal
expansion” model, Z̃iso−free(k,ω) ≡ −ũz ∣z=0 (the minus sign makes
displacement outward positive) is given by

Z̃iso−free(k,ω) = β2 − k2
2

γTbsaψ. (12)

The “low frequency approximation” is applicable is most cases,

ω2/v2T ≪ k2, ω2/v2L ≪ k2. (13)

To see this, given a radii of pump beam w0 ∼ 10 μm, consider
a relatively extreme case of frequency as high as f = ω/2π ∼ 1 MHz
and speed of sound as low as vT , vL ∼ 1000 m/s, then ω2/v2T ,ω2/v2L∼ (2π/1000 μm)2 ≪ (2π/w0)2 ∼ k2. Note that the frequency of inter-
est is typically smaller than 1 MHz because the frequency of interest
shifts to smaller values with decreasing thermal diffusivity (as shown
later) and 1 MHz is for a high thermal diffusivity material such
as gold.
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Making use of Eq. (13), Eq. (12) reduces to

Z̃iso−free(k,ω) = αT(3λ + 2 μ)/(λ + 2 μ)
1 − v2T/v2L

T̃bs
k + ζ = 2(1 + ν)αT Tbs

k + ζ ,
(14)

where the second equality is via the conversion formulas between
elastic properties and ν is the Poisson’s ratio. In this low fre-
quency approximation, the frequency dependence of the surface
deformation on elastic properties is eliminated, which is desirable
for frequency-domain measurement of thermal conductivity, heat
capacity, and coefficient of thermal expansion.

An inverse Hankel transform is then applied to obtain the
surface displacement in real space,

Z̃iso−free(r,ω) = 1
2π∫

+∞

0
Z̃iso−free(k,ω)J0(kr)kdk. (15)

The surface slope is thus

∂

∂r
Z̃iso−free(r,ω) = 1

2π∫
+∞

0
Z̃iso−free(k,ω)(−J1(kr))k2dk. (16)

If the surface slope is nearly constant in the range of r covered
by the probe beam, the probe beam deflection angle would simply be
twice the surface slope. This condition is not well satisfied for a typ-
ical experiment because the radii of the probe beam are comparable
to the radii of the pump beam. Nevertheless, we previously showed
that the following convolution of the probe intensity with the sur-
face slope gives a good description of the probe beam deflection
angle,32

θ̃iso−free(r0,ω) = Cprobe

π ∫ +∞

0
Z̃iso−free(k,ω)e−w2

0k
2/8(−J1(kr0))k2dk,

(17)
where Cprobe is a material-independent constant on the order of
unity, w0 the 1/e2 radii of the pump and probe beam, r0 the offset
distance between the pump and probe beam.

Note that it is assumed that the probe beam deflection at mod-
ulation frequency f is not influenced by the steady-state surface
deformation due to heating by the probe beam and dc component
of the power of the pump beam, i.e., the linear superposition prin-
ciple applies to surface deformations. This is valid if the product of
the coefficient of thermal expansion and temperature excursion is
small enough so that the radius of curvature of the sample surface
is large compared with the focal length of the objective lens, which is
typically true in our method.

B. The full model
The deformation of the surface of the sample (metal coat-

ing/bulk material) can be different from the prediction of the
isotropic free thermal expansion model due to two issues. The first
issue is the effects of the metal coating on the deformation of the
sample surface, including the thermal expansion of the metal coat-
ing, the elastic deformation of the bulk material created by the
thermal expansion stress of the metal coating, and the constraint
of the thermal expansion strain of the bulk material by the stiffness
of the metal coating. The second issue is the anisotropy of elastic

constants and thermal expansion coefficients of the metal coat-
ing and the bulk material. Furthermore, the isotropic free thermal
expansion of the model neglects probe beam deflection created by
mechanisms other than surface deformation.

To address these drawbacks of the isotropic free thermal expan-
sion model, we present here “the full model” of probe beam deflec-
tion for metal-coated bulk material measured in air. The sample
surface deformation is calculated for a finite thickness metal coating
on a semi-infinite bulk material, where both the metal coating and
the bulk material have the anisotropic thermal expansion, thermal
conductivity, and elastic constants; i.e., thermal expansion and ther-
mal conductivity are described by second rank tensors and the elastic
constants are described by fourth rank tensors. We also include the
probe beam deflection contributed by the changes of optical path
length in air and changes in the phase of the reflection coefficient
due to the temperature dependence of the refractive index of air and
metal coating.

The Cartesian coordinate system is set up with x = y = 0 at the
center of the pump beam, z = 0 at the surface of the bulk material,
and ẑ pointing toward the interior of the sample. The governing
equations of elasticity as expressed by the displacement u = ux x̂+ uyŷ + uz ẑ are given by30

∂σxx
∂x
+ ∂σxy

∂y
+ ∂σzx

∂z
= ρüx, (18a)

∂σxy
∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
= ρüy, (18b)

∂σzx
∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
= ρüz , (18c)

where the stresses are written in terms of displacements by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx
σyy
σzz
σzy
σzx
σxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C′11 C′12 C′13 C′14 C′15 C′16
C′12 C′22 C′23 C′24 C′25 C′26
C′13 C′23 C′33 C′34 C′45 C′36
C′14 C′24 C′34 C′44 C′45 C′46
C′15 C′25 C′45 C′45 C′55 C′56
C′16 C′26 C′36 C′46 C′56 C′66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ux
∂x
− αxT

∂uy
∂y
− αyT

∂uz
∂z
− αzT

∂uy
∂z
+ ∂uz

∂y
∂ux
∂z
+ ∂uz

∂x
∂ux
∂y
+ ∂uy

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

via the inverted Duhamel-Neumann law and strain-displacement
relation,30 where αx, αy, and αz are the linear coefficient of thermal
expansion along x̂, ŷ, and ẑ, respectively (assuming all off-diagonal
components in the thermal expansion tensor being zero), the elastic
constants C′mn are a component of the forth-rank tensor of stiffness
under the current coordinate system (the single number m, n = 1–6
is the abbreviated subscripts of the pairs 11, 22, 33, 23, 31, and 12).
Since elastic constants are typically known under the coordinate sys-
tem of crystal axes, the transformation of the tensor of stiffness needs
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to be performed considering the orientation of the crystal axes with
respect to the current coordinate system33.

The governing equations Eq. (18) are subjected to stress-free
conditions at the surface of the metal coating and continuity condi-
tions at the interface between themetal coating and the bulkmaterial
as follows:30

σzx∣z=−L = 0, σzy∣z=−L = 0, σzz ∣z=−L = 0, (20a)

σzx∣z=0− = σzx∣z=0+ , σzz ∣z=0− = σzz ∣z=0+ ,
σzz ∣z=0− = σzz ∣z=0+ , (20b)

ux∣z=0− = ux∣z=0+ , uy∣z=0− = uy∣z=0+ , uz ∣z=0− = uz ∣z=0+ , (20c)

where L is the thickness of the metal coating.

With the approximation of the heating by the laser entering
from the sample surface, and assuming all off-diagonal components
in the thermal conductivity tensor being zero, the temperature field
T is governed by

C
∙
T = Λx

∂2T
∂x2
+Λy

∂2T
∂y2
+Λz

∂2T
∂z2

, (21)

After Fourier transforms [h(x, y, t) to ĥ(η, ξ,ω)], the governing
equations Eq. (18) and third, fourth, and fifth rows of Eq. (19) are
rearranged to the following form,34

AdS
dz
= BS +DT̂, S = [û xû yû z σ̂ zxσ̂ zyσ̂ zz]T, (22)

where the matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iC′15η + iC′56ξ iC′14η + iC′46ξ iC′13η + iC′36ξ 1 0 0

iC′56η + iC′25ξ iC′46η + iC′24ξ iC′36η + iC′23ξ 0 1 0

0 0 0 0 0 1

C′55 C′45 C′35 0 0 0

C′45 C′44 C′34 0 0 0

C′35 C′34 C′33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρω2 + C′11η2 + 2C′16ηξ + C′66ξ2 C′16η2 + (C′12 + C′66)ηξ + C′26ξ2 η2C′15 + (C′14 + C′56)ηξ + C′46ξ2 0 0 0

C′16η2 + (C′12 + C′66)ηξ + C′26ξ2 −ρω2 + C′66η2 + 2C′16ηξ + C′22ξ2 C′56η2 + (C′46 + C′25)ηξ + C′24ξ2 0 0 0

0 0 −ρω2 −iη −iξ 0

−iC′15η − iC′56ξ −iC′56η − iC′25ξ −iC′55η − iC′45ξ 1 0 0

−iC′14η − iC′46ξ −iC′46η − iC′24ξ −iC′45η − iC′44ξ 0 1 0

−iC′13η − iC′36ξ −iC′36η − iC′23ξ −iC′35η − iC′34ξ 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(iC′11η + iC′16ξ)αx + (iC′12η + iC′26ξ)αy + (iC′13η + iC′36ξ)αz
(iC′16η + iC′12ξ)αx + (iC′26η + iC′22ξ)αy + (iC′36η + iC′23ξ)αz

0

C′15αx + C′25αy + C′35αz
C′14αx + C′24αy + C′34αz
C′13αx + C′23αy + C′33αz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

The boundary conditions Eq. (20) after Fourier transforms are
given by

S(3)∣z=−L = 0, S(4)∣z=−L = 0, S(5)∣z=−L = 0, S∣z=0− = S∣z=0+.
(26)

The governing equation of temperature field Eq. (21) after
Fourier transforms is given by

∂2T̂
∂z2
= ζ2T̂, ζ = (Λx

Λz
η2 + Λy

Λz
ξ2 + iωC

Λz
)1/2, (27)
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which yields the following solution

T̂ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T̂seζ1(z+L), z < −L
a−eζ2z + a+e−ζ2z , −L < z < 0,
T̂bse−ζ3z , z > 0

a− = (1 +Λz,3ζ3/G)T̂bs − T̂se−ζ2L

eζ2L − e−ζ2L , a+ = T̂s − a−, (28)

where the subscript ofΛx,Λz , C, and ζ being 1, 2, and 3 indicat-
ing air, the metal coating, and the bulk material, respectively, G the
thermal boundary conductance of the interface of the metal coat-
ing and the bulk material, T̂bs ≡ T̂∣z=0 and T̂s ≡ T̂∣z=−L are solved
by transfer matrix approach for heat conduction in semi-infinite
air/metal coating/semi-infinite material system as detailed in the
literature.2,30

With the temperature field given by Eq. (28), the general
solution of the governing equation Eq. (22) is given by

−L < z < 0 : S(m) = 6∑
n=1

Q2(m,n)eλ2(n)(z+L)J2(n) + 6∑
n=1

Q2(m,n)
×U2(n)( a−eζ2(z+L)ζ2 − λ2(n) −

a+e−ζ2(z+L)

ζ2 + λ2(n) ), (29a)

z > 0 : S(m) = 3∑
n=1

Q3(m,n)eλ3(n)(z+L)J3(n)
− 6∑

n=1
Q3(m,n)U3(n) T̂bse−ζ3z

ζ3 + λ3(n) , (29b)

where m = 1–6, the vector J is composed of constants to be deter-
mined by boundary condition; each column of the six-by-six matrix
Q is an eigenvector of A−1B, with the corresponding component of
the vector λ being the eigenvalue to which the eigenvector belongs;
the vector U = Q−1AD. The subscript of Q, λ, U , and J being 2 and
3 indicating the metal coating and the bulk material, respectively.
Note that Q3 and λ3 are arranged such that the real part of the first
three components of λ3 are negative, representing wave propaga-
tion along the positive z direction. To make the determination of the
sign of components of λ3 free from influence of numerical error, we
adopt the strategy of including a small imaginary part in the elastic
constants, e.g., by multiplying (1 + i × 10−4).

To find the sample surface displacement Ẑani(η, ξ,ω)≡ −ûz ∣z=−L = −S(3)∣z=−L, the constants J2 are determined by solving
the linear equations resulting from substitution of the general
solution Eq. (29) for S in the boundary conditions Eq. (26). The
sample surface displacement is given by

Ẑani(η, ξ,ω) = − 6∑
n=1

Q2(3,n)J2(n)
− 6∑

n=1
Q2(3,n)U2(n)( a−

ζ2 − λ2(n) −
a+

ζ2 + λ2(n)).
(30)

The probe beam deflection due to changes in optical path
length with temperature can be regarded as resulting from an effec-
tive surface displacement.27 The effective surface displacement due

to changes of optical path length in the air with temperature is
given by27

Ẑair(η, ξ,ω) = −dnairdT
T̂s

ζ1
, (31)

where dnair
dT is the temperature derivative of the refractive index of

air nair . In addition, at the air/metal coating interface, changes in the
phase of the Fresnel reflection coefficient ϕr with temperature give
the effective surface displacement,27

Ẑr(η, ξ,ω) = − λ14π dϕr
dT

T̂s, (32)

where λ1 is the wavelength of the probe beam, dϕr
dT the temperature

derivative of the phase of the Fresnel reflection coefficient, a constant
determined by

ϕr = π + tan−1( κmetal
nair − nmetal

) − tan−1( κmetal
nair + nmetal

), (33)

where nmetal and κmetal are the real part and imaginary part of the
refractive index of the metal coating, respectively. Equation (33)
assumes that themetal coating is optically semi-infinite for the probe
beam.

The probe beam deflection contributed due to each surface
displacement Ẑi(η, ξ,ω) (where i refers to ani, air, or r) is then
calculated in a similar way as described for the isotropic free expan-
sion model. Inverse Fourier transforms are applied to obtain the
surface displacement in real space,

Z̃i(x, y,ω) = 1
(2π)2∫

+∞

0
∫ +∞

0
Ẑi(η, ξ,ω)ei(ηx+ξy)dξdη, (34)

By making the transforms of variables

x = r cos(φ), y = r sin(φ), (35a)

η = k cos(ψ), ξ = k sin(ψ), (35b)

the surface slope is found to be

∂

∂r
Z̃i(r,φ,ω) = 1

(2π)2∫
+∞

0
k2dk

×∫ 2π

0
Ẑi(k,ψ,ω)i cos(ψ − φ)eikr cos(ψ−φ)dψ.

(36)
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Following the approximation of convolution of the probe
intensity with the surface slope, the probe beam deflection angle is
given by

θ̃i(r0,φ0,ω) = Cprobe

2π2

×∫ +∞

0
e−w

2
0k

2/8k2dk∫ 2π

0
Ẑi(k,ψ,ω)i cos(ψ − φ)eikr cos(ψ−φ)dψ,

(37)

where Cprobe is a material-independent constant on the order of
unity, w0 the 1/e2 radii of the probe beam, r0 the offset distance
between the pump and probe beam, and φ0 the angle of the vec-
tor from the center of the pump beam to that of the probe beam
in the current coordinate system. The MATLAB codes for the
implementation of the above models are available for download at:
https://zenodo.org/badge/latestdoi/529379931.

III. MEASUREMENT OF PROBE BEAM DEFLECTION
The optics of the frequency-domain probe-beam-deflection

(FD-PBD) system are shown in Fig. 1(b). The only significant differ-
ence between our FD-PBD system and a typical FDTRmeasurement
system is our use of a quadrant-cell photoreceiver for detecting
modulations in beam displacement in place of the single photodi-
ode or balanced photoreceiver for detecting modulation of beam
intensity. Two free-space diode lasers at a wavelength of 660 and
640 nm are used as the pump beam and probe beam, respectively.
The two laser beams are focused by the objective lens and incident
on the Al coated bulk material at normal incidence with a beam
offset along the vertical direction. With the pump beam modulated
at frequency f , the heating due to absorption by the Al coating
creates elastic deformation of the sample surface and consequently
an angular deflection of the probe beam along the vertical direc-
tion synchronous with the modulation frequency. After the reflected
probe beam passes back through the objective lens, this angular
deflection is converted to a transverse displacement along the ver-
tical direction, which is measured by the difference signal (between
the upper cells and lower cells) of the quadrant-cell photoreceiver,
which has been aligned with the probe beam. With this signal as the
input and the modulation signal of the pump beam as the reference,
a lock-in amplifier yields the in-phase signal X and out-of-phase
signal Y at frequency f .

Due to the finite bandwidth of the quadrant-cell photoreceiver,
the frequency dependence of the measured signal contains signif-
icant contributions from the quadrant-cell photoreceiver at high
frequencies, >1 kHz for the Newport™ 2901 quadrant-cell photore-
ceiver. To extract the true PBD signal, we divide the complex signal
X + iY at each f by the response of the quadrant-cell photoreceiver
measured at the same f . We obtain the response of the photoreceiver
as follows: First, we block the probe laser and remove short-pass
optical filter to detect the modulated pump laser using the quadrant-
cell photoreceiver. Second, we collect the complex signal from the
lock-in amplifier with the signal from quadrant-cell photoreceiver
as the input and the modulation signal of the pump beam as the
reference. Finally, the frequency response of the photoreceiver is
obtained by normalizing this complex signal by its value in the low
frequency limit.

To extend the measurements to frequencies f above the upper
limit (100 kHz) of the quadrant-cell photoreceiver, we implement
heterodyne detection and modulate the pump at frequency f , mod-
ulate the probe beam at frequency f + fdec, and detect the signal at
the difference frequency fdec. We typically set fdec = 5 kHz. The refer-
ence signal for the lock-in amplifier is generated by inputting the two
modulation signals into a frequency mixer (Mini-Circuit® ZAD-6+)
and extracting the difference signal at frequency fdec with a lowpass
filter (Thorlabs EF114).

The procedure of the experiment is as follows: First, we focus
the pump and probe beams on the surface of the sample by mov-
ing the sample on the translation stage and focusing the optical
system on defects or dusts on the sample surface using the video
camera. Second, we align the quadrant-cell photoreceiver with the
probe beam by adjusting the transverse position of the photoreceiver
until the sum signal of all cells is a maximum and the difference
signal between the upper cells and lower cells is zero. Third, we
align the pump beam with the probe beam by rotating the beam-
splitter near the objective lens until the two beam spots overlap
as seen from the video camera and the lock-in amplifier yields
zero signal. Fourth, we set the beam offset by rotating the beam-
splitter using a differential micrometer. The proportionality factor
between the beam offset distance and the position of the microme-
ter has been measured before the experiment. For a 10×microscope
objective (focal length of 20 mm) and the Newport SL8A gimbal
mount, beam offset is 4.9 per 10 μm movement of the micrometer
in the vertical direction. Finally, we collect the in-phase and out-of-
phase signals at a series of modulation frequencies using the lock-in
amplifier.

IV. RESULTS AND DISCUSSION
A. Analysis of calculated PBD signal

As shown in Fig. 2, the probe beam deflection angles (PBD)
are calculated using the full model [Eq. (37) with Cprobe = 1] for
four representative samples (polystyrene, SrTiO3, MoS2, and Au)
measured in air. The real part and imaginary part of the calcu-
lated complex number θ̃i are the in-phase and out-of-phase PBD
(in unit of μrad), respectively. Three sources of PBD are present,
i.e., surface deformation (in red), changes of optical path length in
air (in blue), and changes of the phase of the reflection coefficient
(in green). Figure 2(a) shows PBD for polystyrene, an amorphous
polymer with a low thermal conductivity of 0.156 W/(m K). Due
to the high coefficient of thermal expansion αT = 73 × 10−6 K−1,
the PBD due to surface deformation completely dominates the total
PBD. Figure 2(b) shows PBD for cubic SrTiO3 (100), an oxide crys-
tal with a thermal conductivity of 11.0W/(m K). Due to the in-plane
anisotropy of elastic constants, the PBD due to surface deforma-
tion is dependent on the in-plane orientation of beam offset. It is
assumed here that the beam offset is along [010]. With αT = 10.4× 10−6 K−1, the PBD due to surface deformation still dominates
the total PBD. Figure 2(c) is for bulk hexagonal MoS2, a material
with highly anisotropic thermal expansion, thermal conductivity,
and elastic constants. Due to the low coefficient of thermal expan-
sion along the radial direction (5.8 × 10−6 K−1), PBD due to surface
deformation is no longer large enough to dominate the total PBD,
with the PBD due to air also playing an important role. Figure 2(d)
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FIG. 2. Calculated in-phase and out-of-
phase PBD in the air: (a) 32 nm Al coated
polystyrene, (b) 32 nm Al coated SrTiO3
(100) with beam offset along [010], (c)
32 nm Al coated MoS2 (001), and (d)
bare Au (100) with beam offset along
[010]. Pump and probe beam 1/e2 radii
w0 = 8.3 μm, beam offset r0 = 19.6 μm.
The heating power is chosen for each
sample such that the maximum ac tem-
perature excursion equals 3 K.

shows PBD for bare Au, a cubic crystal metal with a high thermal
conductivity of 315 W/(m K). As exemplified by Au, metals can
be measured without metal coating, since they are reflective and
absorptive with the optical absorption depth much smaller than the
laser beam radii. Calculation of PBD for bare metal can be done
using the same formalism as that described above with the metal
coating set to the same material as the bulk sample.

To gain insight on the dependence of the PBD signal on
materials parameters, the frequency and value of the peak of the
out-of-phase PBD are listed in Table I, together with the thermal

diffusivity and coefficient of thermal expansion. The peak frequency
of the PBD due to surface deformation scales, to a good approxi-
mation, with the in-plane thermal diffusivity of the bulk material.
This makes it possible to measure the thermal conductivity with-
out knowing the experimental parameters that only influence the
magnitude of the signal, for example, the incident laser power and
coefficient of optical absorption. In addition, as expected, the peak
value of PBD due to air and reflection coefficient does not vary sig-
nificantly with the type of material under investigation, while PBD
due to surface deformation scales with the coefficient of thermal

TABLE I. The frequency and value of the peak of out-of-phase PBD in Fig. 2 and materials parameters (w0 = 8.3 μm, r0 = 19.6 μm).

Polystyrene SrTiO3 MoS2 Au

f (kHz) PBD (μrad) f (kHz) PBD (μrad) f (kHz) PBD (μrad) f (kHz) PBD (μrad)

Surface deformation 0.23 56.79 6.7 7.57 60 2.69 212 13.02
Reflection coefficient 2.36 −0.09 10.8 −0.12 108 −0.12 302 −0.01
Air 1.63 0.41 9.6 0.53 37 0.56 51 0.54
Total 0.23 57.06 6.7 7.97 53 3.12 212 13.34
D = Λ/C (×10−6 m2/s) 0.12a 4.0b In/through-plane 42/2.5c 127d

αT (10−6/K) 73e 10.4f In/through-plane 5.8/11.3g 14.2
aReference 36.
bReference 37.
cReference 14.
dReference 40.
eReference 35.
fReference 38.
gReference 39.
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expansion. This observation motivates the following estimate of the
order of magnitude of the PBD angle due to surface deformation,

θ ≈ αTΔT, (38)

where ΔT is ac temperature excursion (i.e., the amplitude of surface
temperature rise at modulation frequency).

To check Eq. (38), we fix ΔT = 3 K in the low frequency limit
(for each sample, the heating power has been chosen such that the
amplitude of surface temperature oscillation in the low frequency
limit is equal to 3 K), and therefore, Eq. (38) gives an estimate
of 220, 31, 23, and 43 μrad for polystyrene, SrTiO3, MoS2 (with
αT = 2

3αT,in + 1
3αT,through), and Au, respectively. These estimates

compare well in terms of order of magnitude with the calculations
of the full model of 174, 18, 6, and 31 μrad shown in Fig. 2 except
for the highly anisotropic MoS2. Note that the isotropic free thermal
expansion model gives 177, 20, 5, and 27 μrad, respectively, nearly
identical to the results of the full model.

To compare the magnitude of the signals measured by the
FD-PBD system with that of FDTR, we convert the probe beam
deflection θ to the PBD lock-in-amplifier signal normalized by
the sum signal of the photoreceiver. After the objective lens, the
transverse displacement of the unfocused probe beam is

d = θf0, (39)

where f0 is the focal length of the objective. The intensity profile of
the unfocused Gaussian probe beam is

I(r) = I1e−2r2/w2
, I1 = 2P1

πw2 , w = λ1f0
πw0

, (40)

where P1 is the total power, I1 the peak intensity, w and w0 the 1/e2
radii of the unfocused and focused probe beam, respectively. With
d≪ w, the ratio of interest, i.e., the difference of power (between the
upper cells and lower cells) over the total power is given by

( 8
π
)1/2 d

w
= (8π)1/2w0

λ1
θ = 65.0θ, (41)

with λ1 = 640 nm and w0 = 8.3 μm.
Using Eq. (38), this ratio, i.e., the normalized PBD signal, is

estimated to be 65αTΔT. For most materials, αT is larger than 5× 10−6 K−1, which gives a normalized PBD signal >3 × 10−4 K−1ΔT.
For comparison, the corresponding value in an FDTR measurement
is given by 1

R
dR
dTΔT. Among the common combination of metal coat-

ing andwavelength of the laser, Au at the wavelength of 532 nm gives
the maximum value of 1

R
dR
dTΔT = 3 × 10−4 K−1ΔT.20 Thus, the mag-

nitude of the PBD signal is generally larger than that of FDTR, and
more importantly, independent of the choice of metal coating and
laser wavelength.

B. Applicability of the isotropic free thermal
expansion model

For extracting thermal conductivity by fitting to the measured
PBD data, the isotropic free thermal expansion model is preferred
compared with the full model, as the elastic constants and thermal
expansion coefficient of the bulk material are not needed. This can

be seen from Eqs. (14) and (17), where the Poisson ratio and coef-
ficient of thermal expansion coefficient only enter the results as
prefactors. To have a sense of the applicability of the isotropic free
thermal expansion model, its error is evaluated by fitting it to the
PBD data generated by the full model and then monitoring the error
of the fitted thermal conductivity (Fig. 3). Due to the symmetry
of the crystal structure, the PBD and consequently the fitted ther-
mal conductivity of c-plane sapphire, MoS2 (001), and Bi2Se3 (001)
are independent of the in-plane orientation of beam offset. This is
not the case for cubic crystals, for which a bar is used to indicate
the range of fitted thermal conductivity with a circle indicating the
average of these fitted values.

In this analysis, the materials are assumed to be measured in
a vacuum to avoid the contribution coming from the PBD signal
generated by the temperature field in the air above the sample.
Otherwise, the fact that the simplified model neglects the PBD con-
tribution from the air would have caused a noticeable error for
materials with relatively small αT such as borosilicate glass and
MoS2. Furthermore, we set the Al coating thickness to 32 nm to
reduce the effects of the metal coating on the deformation of the
sample surface while ensuring that less than 1% of the pump laser
power enters the bulk material.

The error inherent in the simplified model is less than ∼6%
for this selection of materials and measurement conditions. A wide
range of applicability of the simplified model is also suggested by

FIG. 3. Calculated error of thermal conductivity fitted using the isotropic free ther-
mal expansion model. The full model is used to generate the PBD data for fitting.
The sapphire has c-plane (0001) surface orientation, hexagonal crystal (MoS2)
and trigonal crystal (Bi2Se3) have (001) orientation. Cubic crystals (YSZ, SrTiO3,
CaF2, KTaO3, MgO, Si, Al, and Au) have (100) orientation, for which the bars
indicate the range of fitted thermal conductivity for all possible in-plane orienta-
tions of beam offset while the circles indicate the average of the fitted values.
w0 = 8.3 μm, r0 = 19.6 μm.

Rev. Sci. Instrum. 94, 014903 (2023); doi: 10.1063/5.0126717 94, 014903-9

Published under an exclusive license by AIP Publishing



Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

the calculation of its the errors as a function of material properties.
Figure S1 shows that the error due to neglecting the PBD con-
tribution from the air is within 2% for most polymeric materials
(αT > 50 × 10−6 K−1),35 and within 6% for most non-polymeric
materials (D > 0.5 mm2/s) if αT > 6 × 10−6 K−1. Note that this error
can be readily removed by performing experiments with the sample
in a vacuum chamber. Figure S2 shows that the error due to neglect-
ing effects of the Al coating on surface deformation is within 7%
for most polymeric materials (αT > 50 × 10−6 K−1) if E > 100 MPa,
and within 6% for most non-polymeric materials (E > 10 GPa) if
αT > 5 × 10−6 K−1. A further consequence of this error analysis is
that when using the full model, uncertainties in the elastic constants
and thermal expansion coefficient have only a small effect on the
accuracy of the fitted thermal conductivity.

C. Sensitivity and uncertainty
To quantify the sensitivity of the PBD angle to the parameters

in the model, we calculate the sensitivity of in-phase PBD angle,
Re(θ̃iso−free), and out-of-phase PBD angle, Im(θ̃iso−free), to a para-
meter x in the isotropic free thermal expansion model [Eq. (17)] as
defined by

Sin = dRe(θ̃iso−free)/Inmax

dx/x , (42a)

Sout = d Im(θ̃iso−free)/Outmax

dx/x , (42b)

where Inmax and Outmax are the in-phase PBD angle and out-of-
phase PBD angle with maximum magnitude in the frequency range
studied. For an Al coated SrTiO3 sample, as shown in Fig. 4, Sin
and Sout are calculated for parameter x as follows: in-plane thermal

conductivity Λr , through-plane thermal conductivity Λz , volumetric
heat capacity C of SrTiO3; thickness LAl, thermal conductivity ΛAl,
and volumetric heat capacity CAl of Al; thermal boundary conduc-
tance of Al/SrTiO3 interface G; pump and probe beam radii w0; and
the beam offset r0. By comparison of the first row [Figs. 4(a) and
4(b)] with w0 = 8.3 μm, r0 = 19.6 μm and the second row [Figs. 4(c)
and 4(d)] with w0 = 8.3 μm, r0 = 9.8 μm, it is seen that with higher
ratio of r0/w0, sensitivity to w0 is lower while sensitivity to r0 is
higher. Since beam offset r0 can be measured at a higher accuracy
than the beam radii w0, w0 = 8.3 μm, r0 = 19.6 μm should reduce
the total uncertainty due to the uncertainty of parameters. For com-
parison, the sensitivity of the FDTR signal of the same material
under typical measurement conditions is shown in Fig. S3. Compar-
ison with Figs. 4(a) and 4(b) shows that with a relatively large ratio
of beam offset and beam radii, FD-PBD significantly improves the
sensitivity to thermal conductivity as compared with sensitivity to
beam radii.

Note that for SrTiO3, Λr = Λz , but the sensitivity to Λr is sig-
nificantly larger than the sensitivity to Λz at most frequencies. The
reason is that PBD is primarily dependent on the radial derivative of
temperature and is thus primarily sensitivity to the in-plane thermal
diffusion. Partly due to the same reason, sensitivity to the thermal
boundary conductance G is nearly zero. The reason for the low sen-
sitivity to G is the large thermal penetration depth ∼ dp = √D/πf
(14 μm at out-of-phase peak frequency f = 6.7 kHz).

To quantify the uncertainty of thermal conductivity due to the
parameters, uncertainty due to each parameter x is calculated as
follows: The PBD data are first calculated using the isotropic free
thermal expansion model with the value of x increased by its uncer-
tainty. The thermal conductivity is then extracted from this PBD
data by fitting using the same model with the normal value of x.
The uncertainty of thermal conductivity due to the uncertainty of

FIG. 4. Calculated sensitivity and PBD of
32 nm Al coated SrTiO3 (100) in vacuum
using the isotropic free thermal expan-
sion model: (a) and (b) with w0 = 8.3 μm,
r0 = 19.6 μm; (c) and (d) with
w0 = 8.3 μm, r0 = 9.8 μm.
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TABLE II. Parameters and uncertainties for uncertainty analysis.

C ΛAl CAl LAl w0 r0 G

2 165 2.42 32 8.3 19.6 40
MJ/(m3 K) W/(m K) MJ/(m3 K) nm μm μm MW/(m2 K)
3% 5% 3% 5% 8% 2% 50%

x is evaluated as the error of the fitted thermal conductivity. With
the values and uncertainties of parameters in Table II, the calcu-
lated uncertainties of thermal conductivity are shown in Fig. 5. A
large uncertainty is assumed for thermal boundary conductance G,
considering its significant variation with surface preparation.

Three different ways of fitting are considered, i.e., fitting to
both in-phase and out-of-phase PBD (lines), only in-phase PBD
(open circles), and only out-of-phase PBD (filled circles). The total
uncertainty (in black) is the square root of the sum of the square of
uncertainties of all parameters. Fitting to both in-phase and out-of-
phase PBD gives a total uncertainty roughly constant at 5% when
thermal conductivity varies within 0.1–300 W/(m K). The uncer-
tainty of the beam offset r0 is identified as the dominant source of
the total uncertainty, due to the highest sensitivity to r0 (when using
w0 = 8.3 μm, r0 = 19.6 μm). If using w0 = 8.3 μm, r0 = 9.8 μm
instead, the uncertainty of w0 will become the dominant source of
total uncertainty and result in a larger total uncertainty due to the

FIG. 5. Calculated uncertainty of thermal conductivity due to the uncertainty of
input parameters using the isotropic free thermal expansion model. Lines, open
circles, and filled circles represent fitting to both in-phase and out-of-phase, only
in-phase, and only out-of-phase PBD. Each color indicates uncertainty due to one
source while the black indicates the total uncertainty. Uncertainties due to CAl and
G are negligible and omitted from the plot. Values of input parameters and their
uncertainties are listed in Table II.

higher uncertainty of w0 than r0 (see Table II). We highlight the
feature of FD-PBD in terms of reducing the uncertainty due to beam
radii by comparing with FDTR, as shown in Fig. S4. Comparison
with the solid blue curve in Fig. 5 shows that with a relatively large
ratio of beam offset and beam radii (w0 = 8.3 μm, r0 = 19.6 μm),
FD-PBD reduces the uncertainty due to beam radii by an order of
magnitude.

D. Fitting to measured PBD signal
To provide a real-world example, we plot as Fig. 6(a) the best

fit of the measured PBD signal of Al coated SrTiO3 to the isotropic
free thermal expansion model with the thermal conductivity as the
only fitting parameter (during the fitting, in-phase and out-of-phase
PBD signal are first divided by their respective maximum magni-
tude in the frequency range). In total, 50 data points are collected
over a frequency range of a factor of 100, from a frequency ten times
smaller than the peak in the out-of-phase signal to the frequency ten
times larger than the peak. The parameters used in the fitting include
Λair = 0.028 W/(m K), Cair = 1192 J/(m3 K) of air; LAl = 85 nm,
ΛAl = 165 W/(m K), CAl = 2.42 MJ/(m3 K); pump and probe beam
1/e2 radii w0 = 8.3 μm, beam offset r0 = 9.8 μm; G = 40 MW/(m2 K),
C = 2.74 MJ/(m3 K) for SrTiO3. Nearly perfect agreement between
the fitting curve and the measured signal is found, yielding the ther-
mal conductivity of SrTiO3 Λ = 10.4 W/(m K), only 5% smaller than
the accepted value of 11.0 W/(m K).

The normalized PBD signal given by Eq. (41) is equal to the
ratio of the amplitude of the PBD signal, V , over the sum signal
of all cells of the quadrant-cell photoreceiver, SUM, thus giving the
relation,

V/SUM = 65.0θ, (43)

The experimental data in Fig. 6(a) are measured with SUM= 0.842 V. Therefore, a typical magnitude of PBD signal ∼100 μV
in Fig. 6(a) corresponds to a PBD angle θ ∼ 2 μrad. This signal is
accompanied by a steady state temperature rise due to pump laser∼1.0 K and ac temperature excursion of ΔT ∼ 0.8 K at the lower end
of the frequency range (as calculated using the measured absorbed
power of pump laser P0 = 0.36 mW). With the time constant of the
lock-in amplifier set to 1 s, data collection takes 5 s at each frequency
and 250 s in total, while at f > 4 kHz, the noise of in-phase and out-
of-phase signal (as measured by the standard deviation) is ∼0.1 μV,
i.e., ∼2 nrad according to Eq. (43). This noise is equal to that mea-
sured at the limit of the power of probe beam approaching zero, and
is supposed to originate from the electronic noise of the quadrant-
cell photoreceiver and the lock-in amplifier. At f < 1 kHz, the noise
scales as 1/ f and increases with the power of the probe beam. We
conclude that the PBD signal has an excellent signal-to-noise ratio
and is suitable for high throughput measurement.

In Fig. 6(b), we compare thermal conductivities measured by
FD-PBD with accepted values for selected materials that span a
factor of 3000 in thermal conductivity Measured thermal conduc-
tivities agree well with the accepted values except for borosilicate
glass. Therefore, the full model is used to fit the same set of measured
PBD data for borosilicate glass, and the accuracy of the measure-
ment is greatly improved as shown by the triangle for borosilicate.
We attribute the relatively large error of the isotropic free thermal
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FIG. 6. (a) PBD signal of 85 nm Al
coated SrTiO3 measured in air and the
best fitting using the isotropic free ther-
mal expansion model with the thermal
conductivity as the free parameter; (b)
Comparison of the measured thermal
conductivity using the isotropic free ther-
mal expansion model (circles) and the
full model (triangles, only for polystyrene
and borosilicate glass) with accepted val-
ues for selected materials. All materi-
als are measured in air with ∼85 nm
Al coating (except Al and Au, which
have no metal coating), w0 = 8.3 μm,
r0 = 9.8 μm.

expansion model for the borosilicate glass sample to the combina-
tion of the small thermal expansion coefficient, the contribution of
air to the PBD signal, and the significant effects of the relatively thick
Al film (87 nm) on the surface deformation.We also checked the full
model for fitting the data for polystyrene. The full model gives essen-
tially the same value of thermal conductivity as the isotropic free
thermal expansion model. As an indicator of the overall accuracy
of the measurement, the root means square of the relative deviation
of the measured values from the accepted values is 5.7%.

V. CONCLUSION
In summary, we developed a frequency-domain probe beam

deflection (FD-PBD) method for the measurement of the thermal
conductivity of bulk materials. We derived a simplified model for
probe beam deflection, the isotropic free thermal expansion model,
which allows measurement of thermal conductivity without know-
ing the elastic and thermal expansion properties of the material. This
simplified model is shown to be widely applicable with small errors
for measurement with relatively thin metal coating in a vacuum.
We also derived the full model that incorporates the anisotropic
elastic constants and thermal expansion coefficient of the material
that is under investigation. We established two unique features of
this method as compared with FDTR: (1) a larger signal indepen-
dent of the type of metal coating and laser wavelength; (2) reduced
uncertainty propagated from pump and probe beam radii if using
a relatively large beam offset. Finally, we validated this method by
matching the measured signal and model prediction and evaluat-
ing the agreement of measured thermal conductivities with accepted
values in the range of 0.1–300 W/(m K).

SUPPLEMENTARY MATERIAL

See the supplementary material for calculations and discussion
are included concerning: error of isotropic free thermal expansion
model as a function of materials properties; sensitivity and uncer-
tainty analysis of FDTR; comparison with previous FD-PBDmethod
in terms of sensitivity; and simultaneous extraction of two thermal
properties by combining FDTR.
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