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There is growing interest in using multiterminal Josephson junctions (MTJJs) as a platform to artificially
emulate topological phases and to investigate superconducting mechanisms such as multiplet Cooper pairings.
Current experimental signatures in MTJJs have led to conflicting interpretations of the salient features. In this
work, we report a collaborative experimental and theoretical investigation of graphene-based four-terminal
Josephson junctions. We observe resonant features in the differential resistance maps that resemble those as-
cribed to multiplet Cooper pairings. To understand these features, we model our junctions using a circuit network
of resistively and capacitively shunted junctions (RCSJs). We find that the RCSJ model successfully reproduces
the observed multiplet features. Therefore, our study suggests that differential resistance measurements alone are
insufficient to conclusively distinguish resonant Andreev reflection processes from semiclassical circuit-network

effects.
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The Josephson effect is a centerpiece of many quan-
tum device applications, including superconducting quantum
interference devices (SQUIDs) and superconducting qubits
[1,2]. Increasing the number of superconducting terminals
beyond the typical two terminals in Josephson junctions
(JJs) leads to nonlocal coupling of superconducting order
parameters through a common scattering region. This non-
local coupling has been predicted to lead to quartet Cooper
pairings [3] and macroscopic multichannel effects such as
voltage-induced Shapiro steps, phase drag, and magnetic flux
transfer [4—7]. More recently, multiterminal Josephson junc-
tions (MTJJs) have been proposed as a platform to emulate
topological phases in artificial dimensions [8-21]. In MTJJs
with n superconducting terminals, the energy of the Andreev
bound states is a function of (n — 1) independent phases. In
this context, the phase differences between superconducting
terminals are treated as quasimomenta of a crystal forming
a Brillouin zone in (n — 1) dimensions. The resultant band
structure is predicted to display topological properties such
as Weyl singularities [10,11]. While providing strong moti-
vation for studying the multiterminal Josephson effect, the
exploration of MTJJs as a platform for engineering artificial
topological systems is still nascent.

MTIJs have been experimentally explored in vari-
ous materials platforms including graphene/MoRe [22,23],
graphene/Al [24], and InAs/Al [25-29]. These experiments
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focused on the gate and magnetic field dependence of the
supercurrent flow between adjacent and nonadjacent super-
conducting terminals [27]. Additionally, these experiments
studied the nontrivial geometric response of the critical cur-
rent contour (CCC), a generic characteristic defining the
region in which all the superconducting terminals are at zero
voltage [26]. Recent studies have also reported signatures
of quartet pairings [24,25,30], arising from crossed An-
dreev reflection processes. However, studies of three-terminal
Josephson junctions [23] and a network of tunnel junctions
[31] argue that the multiplet features may also arise from
circuit-network effects.

In this paper, we use a coordinated experimental and
theoretical approach to critically understand the current-
voltage characteristics of four-terminal JJs fabricated in
hBN-encapsulated graphene heterostructures. We model our
junctions using a circuit network of coupled resistively and
capacitively shunted junctions (RCSJs). We show that the
semiclassical RCSJ model reproduces the observed multiplet
features, which are similar in nature to those predicted for
multiplet Cooper pairings [24,25,30]. To elucidate the under-
lying mechanisms giving rise to these features, we calculate
the contribution of the quasiparticle current which reveals the
pair current contribution to the total current. We further con-
sider materials-specific properties such as the Fermi surface
geometry of the normal material and junction transparency
by incorporating the relevant current-phase relation (CPR)
into the RCSJ model. We find theoretically that the shape of
the CCC depends on the the specific form of the CPR [26].
Finally, our study demonstrates that circuit-network effects,
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FIG. 1. (a) The atomic force microscope (AFM) image of device
A. Inset shows the AFM image of device B. The Josephson junctions
are made of hBN-graphene-hBN (outlined by white dashed line)
edge contacted with superconducting Al terminals. Arrows show the
directions of bias currents. (b) and (c) Color map of the differen-
tial resistance dVi3/dI; (b), and dVy,/dL (c) versus I} = —I; and
I, = —I; of device A at V, = 50 V and T = 12 mK. The differential
resistances are measured using lock-in amplifiers. Arrows and black
circles mark resonant branches along local minima of dVi3/dI, and
near-zero differential resistance, respectively. Dashed white contours
outline the critical current contour corresponding to V = 0 V for all
superconducting terminals. (d) dVi3/d1, vs I, along horizontal black
dashed lines in panel (b). The local minima and near-zero differential
resistance are marked with arrows and circles as in (b). Curves are
shifted vertically by 0.7 k<2 for clarity.

predicted by the RCSJ model, lead to macroscopic signatures
in differential resistance maps that are identical to those as-
cribed to multiplet pairings.

The results presented in the main text are based on two
devices: device A and B [Fig. 1(a)]. The channel length of
device A is 0.8 um and 3 um along current /;3 and Ip4 direc-
tions, respectively. Device B has a circular geometry with a
diameter of 1.3 wum. We mark the current directions used for
the transport measurements in Fig. 1(a). We set I} = —I5 and
I, = —I4 in our experiments. We perform all of the measure-
ments using a lock-in amplifier technique with an excitation
current of 1 nA at T = 12 mK, if not otherwise specified.

Figures 1(b) and 1(c) plot differential resistances dV3/dI,
and dV»4/dl, versus I} and I, at V, = 50 V, respectively. The
critical current contour (CCC) is indicated with white dashed
contours on these maps. Consistent with previous reports
in MTJJs [22-29], we observe differential resistance min-
ima corresponding to the superconducting coupling between
the terminal pairs as well as multiple Andreev reflections
(MARSs). These features are discussed in more details in the
Supplemental Material [32] (see also Refs. [33-36] therein).
In the remainder of this Letter, we focus primarily on the local
minima in differential resistance maps that are attributed to
the multiplet pairings [red arrows in Figs. 1(b) and 1(c)]. To

-
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FIG. 2. (a) Schematic of the circuit-network of coupled RCSJs
utilized to simulate a four-terminal JJ in which the third termi-
nal is grounded. The links between terminals, e.g., j and k, are
characterized by the sinusoidal CPR 1/ ksin ¢ ik (1), a shunted conduc-
tance G i, and capacitance Cj. (b) Calculated quasiparticle current
I;’ as a function of the input currents obtained from the coupled
RCSJ model. The boundary of the region where IJ‘? = 0 determines
the CCC.

better highlight these minima, Fig. 1(d) depicts cuts along the
dashed horizontal lines in Fig. 1(b).

To elucidate the underlying origin of the observed multi-
plet features, we consider a circuit-network model of coupled
RCSJs [Fig. 2(a)]. The RCSJ model represents the individual
junctions by a two-fluid system in which the total junction
current is the sum of a dissipative quasiparticle current i?k ()

and a pair current ifk(t) [37]. The quasiparticle current is
due to a finite voltage Vj(¢) across the junction that exceeds
the superconducting gap, i;’.k(t) = G Vjr(t), where Gj; is a
constant phenomenological conductance tensor. The pair cur-
rent is given by the diffusive CPR ij.’k(t) = sin(¢ (1)),

where chk is the critical current and ¢ (1) = ¢;(t) — (1)
is the gauge-invariant phase difference satisfying the Joseph-
son equation d¢j(t)/dt = (2e/h)V;i(t). Here, we assume a
diffusive CPR for the junctions. However, we note that the
CPR for ballistic, diffusive, or ¢y junctions do not change our
overall conclusions. Subsequently, we assume that the junc-
tions are characterized by the presence of a shunt capacitance
Cji, which is the characteristic of circuits involving Joseph-
son junctions in a wide family of weak links [38]. For the
numerical analysis that follows below, we start by choosing
experimentally relevant values for the modeling parameters
(e.g., resistance and critical current). We then fine tune the pa-
rameters through inspection to numerically obtain differential
resistance maps which are similar to the experimental ones.
Imposing current conservation (Kirchhoff’s current law) at the
terminal j yields

dvjko)) 0

=% (ij.’k + i+ Cp—r
k

Equation (1) results in three coupled differential equa-
tions that may be solved for the relevant junction phases
(¢2(t), d1(1), ¢pa(t)), assuming that one of the terminals is
grounded, i.e., ¢3(r) =0 as shown in Fig. 2(a). The d.c.
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FIG. 3. Theoretical simulation of differential resistance dV3/d 1,
(a), and dV,4/d1, (b) versus I, and I, = —I, obtained from the cou-
pled RCSJ model. The white dashed contours show the CCC, which
encloses the region in which 719 = 0. (c) Z/. n;V; as a function of
I, for a line cut at I, = 80 nA, along the horizontal dashed line in
panel (a). (d) Y jnjVjasa function of I, for a line cut at I} = —40
nA, along the vertical dashed line in panel (a). Each branch that
is crossed by the black dashed line in panel (a) corresponds to a
unique triplet (2, ny, ng) satisfying Z.i n;V; = 0. Only the narrow
branches, indicated with the small arrows, correspond to higher-order
harmonics.

voltages, relative to the grounded terminal, are obtained by
taking the time average as (V;3(1)) = (fi/2e){d¢;(t)/dt) =
V.

’ To separate out the contributions of quasiparticle and pair
currents to the total current flowing between different terminal
pairs, we take the time average of Eq. (1). We note that any
nonzero voltage between terminals j and & results in a nonzero
quasiparticle current: I;’k = Gj(V; — Vi). We define the CCC
as the region wherein the current is solely carried by the pair
contribution and, accordingly, the quasiparticle contribution
is zero. Figure 2(b) shows I;’ =(>, (I;’k)z)l/2 as a function of
the input currents. In the central region, the dark blue area in
Fig. 2(b), IJ‘? = 0 and all the terminals are at zero voltage.

Figure 3 depicts the calculated differential resistance
d(V; — Vy)/dl; = dVj/dl; as a function of the input currents,
I; and I,. We observe that the RCSJ model successfully re-
produces all the major branches including those marked by
arrows in Fig. 1(b). However, as expected, it does not cap-
ture the phase-coherent processes such as multiple Andreev
Reflections (MARs) (see the Supplemental Material [32] for
more details). We further note that the multiplet branches
[marked by arrows in Fig. 3(a)] in the dV/dI maps exhibit
a radial inversion symmetry. These branches can be identified
by a unique triplet (n,, ny, ny) satisfying

> v =0, )
J

where n,, np, and ny are integers. Figures 3(c) and 3(d) high-
light such triplets for branches crossing the black dashed lines
in Fig. 3(a).

To provide an analytical picture for our four-terminal JJ, we
consider all the terminals are at zero voltage and I; = 0. We
note that these assumptions are made to simplify the following
analytical derivations and will not affect our overall conclu-

sions (see Supplemental Material [32] for more details). The
energy F' of the system is given by

h .
F = —2—6(11051 + by + Zlc]k COS(ij), ¢3=0. (3)

Jj<k
We obtain ¢, by minimizing F' with respect to ¢4 for fixed
(¢2, ¢1) as

D ia 1 sin gy
Zk;ézl ¥ cos ¢y’

We can express the current flowing from terminal 4 to ground
as

¢4 = arctan ¢; = 0. (@)

iy = I sin . (5)

Generically, since ¢4 is a 2m-periodic odd function of
(02, b1), iff3 can be expanded as a Fourier series [31]:

iy =Y iy, sin(mags + mgr), (6)

na,ny

where (n, ny) are integers and I,, ,, is the amplitude of the
(ny, ny) harmonic. We note that in a general case of I # 0, a
triplet (np, n, n4) may emerge [see Figs. 3(c) and 3(d)].

According to Eq. (6), a dc pair current flows if 7, ,,
is non-zero and ny¢, + ny¢; is constant [31,39]. Inside the
CCC, the pair current is non-zero because the phases are
time-independent, leading to a zero voltage on each terminal
(V < d¢/dt). We note that outside of the CCC, voltages are
nonzero and Eq. (3) is no longer valid. However, in a nonequi-
librium case in which both quasiparticle and pair currents may
flow, one may utilize the nonequilibrium Green’s functions
method [40] to recover an analogous CPR to Eq. (6). Our
numerical analysis suggests that outside CCC, a pair current
may still emerge on the resonant branches where pairwise
combinations of (ny, ny) satisfies nyg,(t) + ny¢;(t) = const.

We point out that starting from a semiclassical RCSJ
model, in which terminals are pairwise coupled, the circuit-
network model may result in a nonlocal transfer of Cooper
pairs between two terminals. For example, Eq. (6) suggests
that n; and n, Cooper pairs are respectively transferred from
ground to terminals 1 and 2 through terminal 4 [41]. There-
fore, it is challenging to separate nonlocal phase-coherent
Andreev reflection processes from the semiclassical circuit-
network effects as both processes may result in similar
macroscopic transport observables. More sophisticated mea-
surements, such as correlated noise spectroscopy [25,42],
provide additional information required to distinguish these
processes. We finally note that the RCSJ model does not re-
produce the near-zero differential resistance, marked by black
dashed circles in Figs. 1(b) and 1(d), that re-emerges at a
nonzero voltage bias (see the Supplemental Material [32] for
more details). Understanding the origin of this phenomenon is
a subject of future studies.

We now focus on device B, wherein the graphene region
has a symmetric circular shape with a diameter of ~1.3 um
as shown in the inset of Fig. 1(a). Figures 4(a)-4(c) show the
dVy3/dI; maps versus I} and I, at three different gate voltages
Ve =20V, 40V, and 60 V, respectively. Figure 4(d) depicts
the dVy3/dI; map calculated from the RCSJ model, where the
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FIG. 4. (a)~(c) Color maps of the differential resistance
(dVy3/dly) versus I} = —I; and I, = —1,; of device B at three dif-
ferent gate voltages V, =20 V (a), 40 V (b), and 60 V (c). The
differential resistance is measured using a lock-in amplifier. All the
measurements are performed at 7 = 12 mK. (d) Theoretical simula-
tion of the differential resistance (dV3/dI;) for a symmetric RCSJ
configuration, i.e., IJ" =5nA,and Gy, = 1/115 QL

same parameters are used for all the junctions. We observe
that while the theoretical map captures the main features of
the experimental data, it does not reproduce the repeating
branches of local minima (see the Supplemental Material
[32] for more details). Furthermore, we do not observe any
signature of multiplet pairings [arrows in Fig. 1(b)] in our ex-
perimental results for device B even at V, = 60 V. We note that
the induced superconductivity is weaker in device B compared
to device A, likely due to a lower contact transparency resulted
from the fabrication process. This is supported by the fact
that a lower critical current /. is observed between terminals
2 and 4 in device B (/. 5 ~ 10 nA) at V, = 60 V compared
to device A (I, 4 ~ 20 nA) at V, = 50 V. Moreover, we find
that the multiplet branch in device A [red arrow in Fig. 1(c)]
disappears at V, = —50 V, where the induced superconductiv-
ity is weaker compared to V, = 50 V (see the Supplemental
Material [32] for more details). Finally, we observe that by
decreasing V, from 60 V to 20 V in the electron-doped regime
(note the Dirac point is at V, = —11.25 V), the area of the
CCC monotonically decreases. In contrast to a previous report
in InAs MTIJJs [26], we observe that the gate only influences
the size of the CCC; we do not see any obvious change in
the geometry of the CCC (see the Supplemental Material [32]
for the magnetic field dependence of the CCC in device A).
This discrepancy may be related to the symmetric nature of
the Fermi surface and lack of spin-orbit coupling in graphene
compared to InAs. In general, the shape of the CCC in our
devices is determined by an effective CPR which depends on
the measurement configuration and current biases [43,44].

So far we have only considered diffusive transport in the
RCSJ model. However, in graphene, it is important to consider
ballistic limit to understand the evolution of the differen-

Ty 5= 0.80

FIG. 5. (a) and (b) Theoretical simulation of differential resis-
tance dVi3/dl, versus I, and I, = —I; obtained from the coupled
RCSJ model for a different junction transparency (a) Tj j = 0.80,
and (b) 7; jx = 0.99. (c) and (d) Theoretical simulation of differential
resistance dVy3/dl, versus I, and I, = —I, obtained from the coupled
RCSJ model for ¢j-junctions with a CPR between terminals j and
k as i;’k = I’*sin(¢;i — ¢o). Panel (c) is for ¢y = 7, and (d) is for
wo =1 /6.

tial resistance and resonant features. Here, we consider that
transport is mainly facilitated by the Andreev bound states
localized in the junction region. As a result, the energy of the
Andreev bound states for the junction between terminals j and
k is given by &, jx = A1 — T, ji sin*(¢jr/2), where T, j is
the transmission eigenvalue of the transport channel n. This
results in the following CPR:

_ 2e dé‘nyjk
Jjk = 7 . d¢j .

(N

‘We note that with a strong elastic scattering at the junction
region, i.e., T, jx < 1, the sinusoidal CPR can be recovered.
Therefore, we only focus on the clean regime 7, jx ~ 1 where
the CPR deviates from the usual sinusoidal profile by devel-
oping a skewness. Figures 5(a) and 5(b) show the simulated
differential resistance dVy3/dl; versus I} and I, for Ti j =
0.8 and T; j; = 0.99, respectively. We observe that the dif-
ferential resistance maps are qualitatively similar to the one
shown in Fig. 3(a). This indicates that in the RCSJ model, the
multiplet features are robust to the variation of the junction
transparency. However, we experimentally observe that con-
tact transparency may play a role in the observation of the
multiplet signatures (see Fig. 4 and the Supplemental Mate-
rial [32]). We note that a reduced contact transparency, e.g.,
due to an insulating barrier between graphene and aluminum,
may result in an increased capacitance, which, in turn, may
affect the width of the multiplet branches in the differential
resistance maps obtained from the RCSJ model [23]. This is
seen in our theoretical results in Fig. 4(d), where multiplet
signatures are less visible because of the large capacitance
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values in the RCSJ model (see Table 2 in the Supplemental
Material [32] for more details).

To better understand the impact of the CPR on the resonant
features, we also consider a junction with Rashba spin-orbit
coupling and magnetic order in the normal region. In this
case, the CPR may take a sinusoidal form with a phase offset,
sin(¢ — ¢o) [45]. We incorporate this modified CPR into our
RCSJ model as ifk = Iéjk sin(¢jx — ¢o). Figures 5(c) and 5(d)
show the differential resistance dV)3/dI; maps versus /; and
I, = —I, obtained from this RCSJ model for ¢y =7 and
7 /6, respectively. We observe that the CCC is significantly
modified by ¢y, whereas the resonant features outside of the
CCC remain mainly independent of ¢y and are qualitatively
similar to those in Fig. 3(a). We note that in general, the phase
shift g9 may originate from various microscopic mechanisms
such as broken inversion and time-reversal symmetries that
affect the details of the Fermi surface in the normal region.

In this work, we performed differential resistance mea-
surements of symmetric and asymmetric four-terminal JJs. In
addition to zero-resistance branches corresponding to super-
current flow between pairs of superconducting terminals, we
observed resonant features resembling multiplet Cooper pair-
ings in the differential resistance maps. We observed that the
size of the CCC monotonically increased with the increasing
gate voltage due to the symmetric Fermi surface of graphene.

We modeled our junctions using a network of coupled RCSJs
to elucidate the experimental results. We theoretically inves-
tigated the contributions of quasiparticle and pair currents
to the total current. Crucially, we found resonant features
arising from circuit-network effects that mimic signatures of
multiplet pairings. For fixed values of shunt resistance and
capacitance, our calculations demonstrated that the multiplet
features are insensitive to diffusive, ballistic, or ¢y-shifted
CPRs. Our joint experimental and theoretical study paves the
way toward using MTJJs as a materials-agnostic platform for
engineering complex superconducting mechanisms involving
multiple Cooper pairs.

The experimental data supporting the conclusions of this
letter is available on Zenodo [46].

We acknowledge funding from the National Science Foun-
dation (NSF) Innovation and Technology Ecosystems (Grant
No. 2040667). FZ. and N.S. acknowledge support from the
University of Chicago. G.J.C. acknowledges support from the
ARAP program of the Office of the Secretary of Defense.
M.J.G. and M.T.A. acknowledge funding from US ARO Grant
No. WO11NF-20-2-0151 and the NSF through the University
of Illinois at Urbana-Champaign Materials Research Science
and Engineering Center DMR-1720633.

[1] M. Kjaergaard, M. E. Schwartz, J. Braumiiller, P. Krantz,
J.1.-J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting
qubits: Current state of play, Annu. Rev. Condens. Matter Phys.
11, 369 (2020).

[2] N. P. de Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E.
Northup, H. Paik, B. Palmer, N. Samarth, S. Sangtawesin, and
D. Steuerman, Materials challenges and opportunities for quan-
tum computing hardware, Science 372, eabb2823 (2021).

[3] A. Freyn, B. Doucot, D. Feinberg, and R. Mélin, Production
of Nonlocal Quartets and Phase-Sensitive Entanglement in a
Superconducting Beam Splitter, Phys. Rev. Lett. 106, 257005
(2011).

[4] R. de Bruyn Ouboter and A. Omelyanchouk, Multi-terminal
squid controlled by the transport current, Phys. B: Condens.
Matter 205, 153 (1995).

[5] M. Amin, A. Omelyanchouk, and A. Zagoskin, Mesoscopic
multiterminal josephson structures. I. Effects of nonlocal weak
coupling, Low Temp. Phys. 27, 616 (2001).

[6] M. Amin, A. Omelyanchouk, and A. Zagoskin, Dc squid based
on the mesoscopic multiterminal josephson junction, Physica
C: Superconductivity 372-376, 178 (2002).

[7] J. C. Cuevas and H. Pothier, Voltage-induced Shapiro steps in
a superconducting multiterminal structure, Phys. Rev. B 75,
174513 (2007).

[8] B. van Heck, S. Mi, and A. R. Akhmerov, Single fermion
manipulation via superconducting phase differences in mul-
titerminal Josephson junctions, Phys. Rev. B 90, 155450
(2014).

[9] T. Yokoyama and Y. V. Nazarov, Singularities in the Andreev
spectrum of a multiterminal Josephson junction, Phys. Rev. B
92, 155437 (2015).

[10] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter, Nat.
Commun. 7, 11167 (2016).

[11] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V.
Nazarov, Topological transconductance quantization in a four-
terminal Josephson junction, Phys. Rev. B 95, 075417 (2017).

[12] J. S. Meyer and M. Houzet, Nontrivial Chern Numbers in
Three-Terminal Josephson Junctions, Phys. Rev. Lett. 119,
136807 (2017).

[13] H.-Y. Xie, M. G. Vavilov, and A. Levchenko, Weyl nodes in
andreev spectra of multiterminal Josephson junctions: Chern
numbers, conductances, and supercurrents, Phys. Rev. B 97,
035443 (2018).

[14] H.-Y. Xie, M. G. Vavilov, and A. Levchenko, Topological An-
dreev bands in three-terminal Josephson junctions, Phys. Rev.
B 96, 161406 (2017).

[15] H.-Y. Xie, J. Hasan, and A. Levchenko, Non-abelian monopoles
in the multiterminal Josephson effect, Phys. Rev. B 105,
1241404 (2022).

[16] L. P. Gavensky, G. Usaj, and C. A. Balseiro, Topological phase
diagram of a three-terminal Josephson junction: From the con-
ventional to the Majorana regime, Phys. Rev. B 100, 014514
(2019).

[17] H.-Y. Xie and A. Levchenko, Topological supercurrents inter-
action and fluctuations in the multiterminal Josephson effect,
Phys. Rev. B 99, 094519 (2019).

[18] J. Erdmanis, A. Lukdcs, and Y. V. Nazarov, Weyl disks: Theo-
retical prediction, Phys. Rev. B 98, 241105 (2018).

[19] E. V. Repin, Y. Chen, and Y. V. Nazarov, Topological properties
of multiterminal superconducting nanostructures: Effect of a
continuous spectrum, Phys. Rev. B 99, 165414 (2019).

L140503-5



FAN ZHANG et al.

PHYSICAL REVIEW B 107, L140503 (2023)

[20] X.-L. Huang and Y. V. Nazarov, Topology protection—
unprotection transition: Example from multiterminal supercon-
ducting nanostructures, Phys. Rev. B 100, 085408 (2019).

[21] E. Strambini, S. D’Ambrosio, F. Vischi, F. Bergeret, Y. V.
Nazarov, and F. Giazotto, The w-squipt as a tool to phase-
engineer Josephson topological materials, Nat. Nanotechnol.
11, 1055 (2016).

[22] A. W. Draelos, M.-T. Wei, A. Seredinski, H. Li, Y. Mehta,
K. Watanabe, T. Taniguchi, I. V. Borzenets, F. Amet, and
G. Finkelstein, Supercurrent flow in multiterminal graphene
Josephson junctions, Nano Lett. 19, 1039 (2019).

[23] E. G. Arnault, S. Idris, A. McConnell, L. Zhao, T. F. Larson,
K. Watanabe, T. Taniguchi, G. Finkelstein, and F. Amet, Dy-
namical stabilization of multiplet supercurrents in multiterminal
Josephson junctions, Nano Lett. 22, 7073 (2022).

[24] K.-F. Huang, Y. Ronen, R. Mélin, D. Feinberg, K. Watanabe,
T. Taniguchi, and P. Kim, Evidence for 4e charge of cooper
quartets in a biased multi-terminal graphene-based Josephson
junction, Nat. Commun. 13, 3032 (2022).

[25] Y. Cohen, Y. Ronen, J.-H. Kang, M. Heiblum, D. Feinberg, R.
Mélin, and H. Shtrikman, Nonlocal supercurrent of quartets in
a three-terminal Josephson junction, Proc. Natl. Acad. Sci. 115,
6991 (2018).

[26] N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe,
W. Mayer, J. Yuan, M. G. Vavilov, J. Shabani, and V. E.
Manucharyan, Multiterminal Josephson Effect, Phys. Rev. X
10, 031051 (2020).

[27] G. V. Graziano, M. Gupta, M. Pendharkar, J. T. Dong, C. P.
Dempsey, C. Palmstrgm, and V. S. Pribiag, Selective control of
conductance modes in multi-terminal Josephson junctions, Nat.
Commun. 13, 5933 (2022).

[28] G. V. Graziano, J. S. Lee, M. Pendharkar, C. J. Palmstrgm, and
V. S. Pribiag, Transport studies in a gate-tunable three-terminal
Josephson junction, Phys. Rev. B 101, 054510 (2020).

[29] M. Gupta, G. V. Graziano, M. Pendharkar, J. T. Dong,
C. P. Dempsey, C. Palmstrgm, and V. S. Pribiag, Supercon-
ducting diode effect in a three-terminal Josephson device,
arXiv:2206.08471.

[30] A. H. Pfeffer, J. E. Duvauchelle, H. Courtois, R. Mélin, D.
Feinberg, and F. Lefloch, Subgap structure in the conductance
of a three-terminal Josephson junction, Phys. Rev. B 90, 075401
(2014).

[31] A. Melo, V. Fatemi, and A. Akhmerov, Multiplet supercurrent
in Josephson tunneling circuits, SciPost Physics 12, 017 (2022).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107..140503 for additional transport data
and RCSJ model parameters.

[33] J. Xiang, A. Vidan, M. Tinkham, R. M. Westervelt, and C. M.
Lieber, Ge/Si nanowire mesoscopic Josephson junctions, Nat.
Nanotechnol. 1, 208 (2006).

[34] L. A. Jauregui, M. Kayyalha, A. Kazakov, I. Miotkowski, L. P.
Rokhinson, and Y. P. Chen, Gate-tunable supercurrent and mul-

tiple Andreev reflections in a superconductor-topological in-
sulator nanoribbon-superconductor hybrid device, Appl. Phys.
Lett. 112, 093105 (2018).

[35] 1. V. Borzenets, F. Amet, C. T. Ke, A. W. Draelos,
M. T. Wei, A. Seredinski, K. Watanabe, T. Taniguchi, Y.
Bomze, M. Yamamoto, S. Tarucha, and G. Finkelstein,
Ballistic Graphene Josephson Junctions from the Short to
the Long Junction Regimes, Phys. Rev. Lett. 117, 237002
(2016).

[36] F. Bergeret and J. Cuevas, The vortex state and Josephson criti-
cal current of a diffusive SNS junction, J. Low Temp. Phys. 153,
304 (2008).

[37] D. McCumber, Effect of ac impedance on dc voltage-current
characteristics of superconductor weak-link junctions, J. Appl.
Phys. 39, 3113 (1968).

[38] D. McCumber, Tunneling and weak-link superconductor phe-
nomena having potential device applications, J. Appl. Phys. 39,
2503 (1968).

[39] R. Jacquet, A. Popoff, K.-I. Imura, J. Rech, T. Jonckheere,
L. Raymond, A. Zazunov, and T. Martin, Theory of nonequi-
librium noise in general multiterminal superconducting hybrid
devices: Application to multiple cooper pair resonances, Phys.
Rev. B 102, 064510 (2020).

[40] T. Jonckheere, J. Rech, T. Martin, B. Doucot, D. Feinberg,
and R. Meélin, Multipair dc Josephson resonances in a bi-
ased all-superconducting bijunction, Phys. Rev. B 87, 214501
(2013).

[41] R. Mélin, D. Feinberg, H. Courtois, C. Padurariu, A. Pfeffer,
J. E. Duvauchelle, F. Lefloch, T. Jonckheere, J. Rech, T. Martin,
and B. Doucot, D.c. Josephson transport by quartets and other
Andreev resonances in superconducting bijunctions, J. Phys.:
Conf. Ser. 568, 052006 (2014).

[42] R. Mélin, M. Sotto, D. Feinberg, J.-G. Caputo, and B. Dougot,
Gate-tunable zero-frequency current cross correlations of the
quartet state in a voltage-biased three-terminal Josephson junc-
tion, Phys. Rev. B 93, 115436 (2016).

[43] M. Alidoust, G. Sewell, and J. Linder, Superconducting phase
transistor in diffusive four-terminal ferromagnetic Josephson
junctions, Phys. Rev. B 85, 144520 (2012).

[44] F. Zhang, M. T. Ahari, A. S. Rashid, G. J. de Coster, T.
Taniguchi, K. Watanabe, M. J. Gilbert, N. Samarth, and
M. Kayyalha, Reconfigurable magnetic-field-free supercon-
ducting diode effect in multi-terminal Josephson junctions,
arXiv:2301.05081.

[45] A.Buzdin, Direct Coupling Between Magnetism and Supercon-
ducting Current in the Josephson ¢, Junction, Phys. Rev. Lett.
101, 107005 (2008).

[46] F. Zhang, A. S. Rashid, M. T. Ahari, W. Zhang, K. M.
Ananthanarayanan, R. Xiao, G. J. de Coster, M. J. Gilbert, N.
Samarth, M. Kayyalha, dataset for “Andreev processes in meso-
scopic multi-terminal graphene Josephson junctions”, 2023,
Zenodo, https://doi.org/10.5281/zenodo.7768765.

L140503-6



