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Engineering grain boundary structure is a promising method for rational control of the microstructure and
mechanical properties of two-dimensional materials. In bulk materials, shear stresses can drive grain boundary
migration through the dislocations in grain boundaries. However, while shear coupling of grain boundaries has

Disconnections ) been studied in bulk materials like nanocrystalline copper, its translation to two-dimensional materials where
Out-of-plane deformations . . . . . . .
Graphene out-of-plane deformation can relieve in-plane shear is not yet established. We investigate how the low flexural

rigidity of graphene effects shear coupled grain boundary motion using atomic scale simulations of flat and
buckled grain boundaries. We define the coupling shear strain as the strain at which a grain boundary has
advanced by one Burgers vector and is at equilibrium and the critical shear strain as the strain at which migration
of the first dislocation in the grain boundary becomes thermodynamically favorable. We show that the out-of-
plane deformation does not influence the coupling shear strain and is governed only by the grain boundary
topology. While the critical shear strain is altered somewhat by the low flexural rigidity due to buckling induced
softening, it is also still dominated by the grain boundary topology. Our atomic scale results are synthesized into
two models that predict the coupling and critical shears.

1. Introduction

The enhanced mechanical properties of nanocrystalline materials
have spurred studies into their deformation behavior, many of which
find that their plasticity is governed by stress-induced grain boundary
migration [1-3]. Both experimental [1,4,5] and computational [6-8]
studies suggest that this plasticity is based on shear coupling, in which
shear strains promote the growth of one grain with respect to another, or
equivalently, grain boundary migration results in shear of one grain with
respect to the other. Many observed features of grain boundary motion,
such as sliding [3,9], rotation [10,11], and stress-assisted growth [1],
are compatible with the framework of shear coupling.

Shear coupling is based on the idea that the motion of a grain
boundary intrinsically contains both perpendicular and parallel com-
ponents [12]. The extent of coupling between shear strains and grain
boundary motion across low to high angle grain boundaries can be
described by the grain boundary’s total dislocation content. This un-
derstanding of coupling is consolidated through a theory of disconnec-
tions — dislocations of the grain boundary itself — which are line defects
lying within a grain boundary that can be characterized by a Burgers
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vector and step height [13]. The motion of disconnections itself has been
established as the elementary mechanism of shear coupling through
investigations by Rajabzadeh et al. on bicrystalline copper [14]. This
framework has been generalized to polycrystals by investigations of the
nucleation and motion of grain boundary kinks and triple junctions
[15-171.

The nanocrystalline grain structures exhibited by two-dimensional
materials [18], that often result from the synthesis process, have
prompted interest in understanding how grain boundaries migrate in
lower dimensional lattices [19,20]. Recently, the dislocation-dislocation
reaction mechanisms of grain boundary migration and their shear
coupling have been identified for polycrystalline h-BN using trans-
mission electron microscopy [11]. But no studies have yet addressed a
primary difference between two-dimensional materials and their bulk
counterparts. Two-dimensional materials have very low flexural rigidity
and can deform out of plane [21]. In particular, shear can cause gra-
phene sheets to exhibit out-of-plane wrinkling [22], and in graphene
local out-of-plane deformation has been shown to alter
dislocation-dislocation interaction energies by shielding long-range
strain fields [23]. Since shear coupled migration is based on the
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framework of disconnections, and disconnections themselves have
dislocation content, we expect that disconnection-disconnection inter-
action energies will be altered by out of plane deformation as well.
Previously, the disconnection mechanisms of graphene grain boundaries
were identified and a linear elastic theory was proposed to describe such
disconnection-disconnection interactions [24]. However, neither shear
coupling nor out-of-plane deformation was investigated as contributing
factors to the grain boundary migration, even though it is reasonable to
expect that shear coupled grain boundary motion may manifest differ-
ently in two-dimensional materials than in bulk materials. Here we will
use the terms buckling and out-of-plane deformation interchangeably, in
keeping with the terminology in the 2D materials literature.

While the effects of out-of-plane deformation, or buckling, on shear
coupling in all 2D materials are generally of interest, we restrict our-
selves to graphene as a prototypical 2D material whose mechanics and
grain boundaries have been well studied [25,26]. We explore shear
coupling in graphene in two separate regimes, one where the monolayer
is constrained to be flat and another where it is free to buckle
out-of-plane. These regimes represent two limiting extreme environ-
ments for graphene: either sandwiched between other constraining
layers (as in a layered stack of h-BN for isolation) [27] or freestanding
(as in a mechanical resonator) [28]. Studying grain boundary migration
in two-dimensional materials may help to generally better understand
their mechanical response, as well as to better learn how grain boundary
structure evolves in order to ultimately control it [29].

2. Computational methods

The shear coupling of grain boundaries in graphene is investigated
using atomic scale simulations as implemented in the software package
LAMMPS [30]. The energies of the graphene supercell configurations
are described by the reactive force field ReaxFF [31,32] as parameter-
ized by Srinivasan et al. for condensed phases of carbon [33]. ReaxFF
was chosen as it has been shown to capture energy variations arising
from curvature and can model bond breaking and formation during
dislocation movement [31,32]. Moreover, the potential energy land-
scape of ReaxFF is smooth during bond order changes, which allowed us
to investigate transition barriers and overcome spurious local minima
(see below) using the nudged elastic band (NEB) method [34,35].

Graphene supercells are constructed with two grain boundaries of
opposite orientation according to a Voronoi tesselation algorithm
developed by Shekhawat et al. [36,37]. A schematic of a supercell with
two anti-parallel grain boundaries is shown in Fig. 1, where the width W
is given by twice the grain boundary separation dg. The supercell is tiled
in space and is subject to periodic-boundary conditions in the xy plane
and free boundary conditions in the z-direction. The supercell height H
is a function of the grain boundary misorientation angle ¢ and the
number of times that the primitive cell — each containing one dislocation
per grain boundary - is repeated in the vertical direction. The number of
primitive cell repeats is reported by the dimensionless parameter H,
where the height H is normalized by the primitive supercell height as
defined by the grain boundary crystallography. We focus on zig-zag
grain boundaries [26] that have only a single dislocation per primitive
cell. The shear coupling is investigated for varying misorientation angles
and supercell heights, with grain boundary separation dg, large enough
that the intra-grain boundary disconnection energy dominates the
inter-grain boundary interaction. Following the scaling analysis in our
previous work [24], we choose a supercell width W of 200 Asuch that
there is no disconnection interaction between the two grain boundaries.

Using the constructed supercells, we migrate one grain boundary per
supercell by moving one dislocation at a time until the whole grain
boundary has shifted by one burgers vector. This gives all the interme-
diate configurations and energies for grain boundary migration. The
migration is shown for a small supercell with two dislocations (H= 2)
per grain boundary in Fig. 1. For supercells with two dislocations per
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Fig. 1. Schematic of a representative supercell for shear coupling simulations.
Three configurations (panels a, b, and c) show the stages of grain boundary
migration. For each configuration, the atomic scale configuration of the grain
boundary (inset in red) and a macroscale schematic of the supercell are given in
which the red dashed lines denote the location of the atomic scale image. Each
supercell contains two antisymmetric grain boundaries. In the panels, as the
upper grain boundary migrates, it moves between (a) straight to (b) kinked and
back to (c) straight. The migration occurs through 90° bond rotations of the
grain boundary dislocations, where the cyan bond rotates to transform (a) to (b)
and the magenta bond rotates to transform (b) to (c). The red and green arrows
in (b,c) show the step and dislocation content of dislocation migration. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

grain boundary, there are three states corresponding to a straight,
kinked, and straight grain boundary. The states are indexed using the
reaction coordinate RC of migration, which tracks the degree to which
the grain boundary has migrated. The reaction coordinate is determined
according to the ratio of dislocations migrated. The reaction coordinates
are RC: 0, RC: 0.5, and RC: 1 for the grain boundaries in Fig. 1(a,b,c)
respectively. Both RC: 0 and RC: 1 correspond to supercells with straight
grain boundaries, but for which the sizes of the grains differ. For a
rectangular (unsheared) supercell, this causes the energy of RC: 1 to be
slightly higher than that of RC: 0 due to the built-in shear from different
sized grains. Alternatively, if the supercell vectors were allowed to relax
they would develop a shear, and then the energy of RC: 1 would be equal
to the energy of RC: 0 with a rectangular supercell. This coupling shear
corresponds directly to the shear-coupled grain boundary motion that
will be investigated below.

The supercell construction and grain boundary migration procedure
described above results in graphene configurations that are flat. Iden-
tifying the lowest energy buckled configurations proved to be numeri-
cally challenging due to the large number of distinct but energetically
nearly degenerate buckled configurations corresponding to each inter-
mediate stage of grain boundary migration. For instance, relaxing the
same topology (same kinked grain boundary) from slightly different
initial out-of-plane perturbations often resulted in slightly different final
geometries and energies. We found that damped dynamics minimizers
like FIRE [38] do not find consistent local minima, so a different
approach was needed to identify the lowest energy configurations. We
adopted an iterative process where grain boundaries were first per-
turbed out-of-plane and relaxed and then NEB calculations of bond ro-
tations were used to explore nearby minima. This admittedly
unconventional use of NEB arose when, while investigating energy
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barriers (transition states) for dislocation migration, we realized that
NEB could simultaneously be used to effectively identify lowest energy
intermediate configurations of grain boundary migration.

To explain the NEB procedure we developed further, consider the
grain boundary migration shown in Fig. 1, for which the metastable
intermediate configurations are associated with RC: 0, RC: 0.5, and RC:
1. A transition pathway is present between RC: 0 — RC: 0.5, and another
between RC: 0.5 — RC: 1. Two NEB calculations should then be carried
out, one for each transition. These two transitions and their energy
profiles compose a “chain of NEB simulations” between successive in-
termediate configurations of grain boundary migration. For each indi-
vidual NEB simulation, the mechanism to migrate a dislocation is a 90°
rotation of the bond connecting two carbon atoms in the heptagon that
makes up the edge dislocation [39,40]. In the atomic scale schematics of
Fig. 1, the bonds that rotate are colored in teal and magenta. To obtain
the buckled transition pathways, each of the two NEB replicas is
initialized such that the bond rotates with an out-of-plane component. In
this way, the use of the successive chain of NEB calculations constrains
the explored configurations to those that would be passed through as a
grain boundary advances by one Burgers vector. However, we found
that the individual NEB simulations would often obtain intermediate
images with lower energy than the initial/final states. The iterative NEB
process consists of updating the initial/final configurations to nearby
lowest energy states identified by the previous iteration. The iterative
process concludes once smooth NEB trajectories between consistent
initial and final states, for complete migration of the grain boundary, is
achieved. Further details on the implementation of the iterative algo-
rithm and an example can be found in the SI.

We note that the original intended use of the NEB calculations was to
find the energy barriers associated with each dislocation migration.
However, in the following the NEB results are used only within the
iterative method to obtain robust intermediate configurations (the
transition state barriers themselves are not discussed further). For
completeness, these barriers are reported more thoroughly in the SI; we
find that they do not change/alter any of the subsequent analysis.

3. Results

Shear coupling is investigated by exploring the energy landscape of
each intermediate configuration by applying shear, and comparing the
relative energies. Shear is applied through a displacement boundary
condition parallel to the grain boundaries as depicted by the arrows to
the left and right of the supercells in Fig. 1. Shear coupling can be un-
derstood by considering the disconnections that are present in the grain
boundary (which themselves arise when different numbers of disloca-
tions have migrated). Disconnections have both a dislocation character
and a step height, and it is the dislocation content that gives rise to the
shear coupling [41]. Given a particular grain boundary there are many
different disconnection modes that can be activated. In the real world
this causes complex behaviors and even dependence on temperature
[42-44]. In our case, we limit our analysis to grain boundary migration
where the 5|7 dislocation migrates by one lattice vector. In graphene,
this limits the available disconnection modes to three, two climb modes
and one glide mode. We take the glide mode as the lowest energy mode
since it does not require diffusion of carbon atoms. The glide mode
corresponds to the above reported algorithm for dislocation migration
based on bond rotation so that only a single disconnection mode is
activated.

The activated disconnection has a dislocation content and step
height shown in Fig. 1(b,c) using red and green arrows respectively. The
grain boundary coupling factor f is defined by the ratio of these two
quantities according to
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where b is the disconnection Burgers vector and s is the disconnection
step height. The coupling factor highlights that as a grain boundary
migrates, it not only moves perpendicular to the line of the grain
boundary but also parallel. The parallel movement of a grain boundary —
the dislocation content of a disconnection — underpins shear coupled
grain boundary migration.

The coupling factor for graphene grain boundaries is determined by
the disconnection modes that are active. The coupling factor will be
measured later through the coupling shear. Here we start by defining the
coupling factor using crystallography. Since only a single mode is active,
we can define the coupling factor directly based on the single active
disconnection using the grain boundary misorientation angle 6. Rather
than expressing the coupling factor in terms of misorientation angle 6, it
is more straightforward to use the coincidence site lattice (CSL)
parameter X, which exhibits a one-to-one mapping to the misorientation
angle [45,46]. The coupling factor, in terms of %, is given by

VI

ﬂ:m . (2)

As we increase X (decrease 0) we reduce the coupling factor until we
reach the limit of an isolated dislocation that has zero shear coupling
normal to its Burgers vector.

We compare this predicted coupling factor to the measured coupling
shear by applying a shear (fixed displacement boundary condition) to
our supercells. Fig. 2 shows the variation of the energy with applied
shear for a @ = 21.8° (£7) grain boundary for the three states defined in
Fig. 1 with W = 200 A and H = 2 for a flat supercell. The energies and
strains are referenced to the unsheared supercell at RC: 0. The blue curve
shows the energy for RC: 0, which increases monotonically from zero at
zero applied shear. The green curve corresponds to RC: 1, which initially
decreases, reaches a minimum at an applied shear of 0.46%, and then
increases with additional shear. As shear is applied, the relative energies
of the states change since the applied strain compensates for the residual
strain of the moving grain boundary. Therefore, while RC: 0 has the
smallest energy initially, the energies of RC: 0 and RC: 1 are equal at a
strain of 0.23% from which point RC: 1 always has a lower energy,
implying that the fully migrated grain boundary is thermodynamically

Shear Displacement (4)
0.00 0.91 8.14

12 A
— RC: 0.0

—— RC: 0.5
— RC: 1.0
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Energy (eV)
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Fig. 2. The shear energies of the states for a flat supercell with H = 2 as defined
in Fig. 1. Labels RC: 0, 0.5, 1 correspond to the configurations shown in Figure 1
(a,b,c) respectively. The vertical gray dotted lines at shear strains of 0.46 and
4.07 respectively correspond to the coupling shear strain of the migrated
boundary (RC: 1) and the critical strain at which the energy of the partially
migrated boundary (RC: 0.5) and the initial configuration (RC: 0)
become equal.
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favorable. We refer to the shear at which the minimum appears for RC: 1
as ecoup, the coupling shear caused by migrating a grain boundary by one
Burgers vector. The coupling shear is directly related to the relative
displacement of the two grains as will be discussed more below. For this
supercell (9 = 21.8°, H = 2) the coupling shear is 0.46% shear strain.
For reference, we also include the absolute displacement in the figures as
a reference to compare the magnitude of the coupling Burgers vector.
For this supercell, we measure a coupling Burgers vector magnitude of
0.91 A.

In Fig. 2, the orange curve corresponds to RC: 0.5, the configuration
with a disconnection present. This curve decreases initially to its mini-
mum value at 0.23% before increasing. By comparison of RC: 0.5 and
RC: 1 at zero applied shear, the disconnection energy for RC: 0.5
(essentially, the energy to introduce two disconnections with opposite
Burgers vector) is much greater than the energy coming from the re-
sidual shear strain for RC: 1. As shear is applied, the energy of RC:
0 becomes equal to RC: 0.5 at a relatively large shear of 4.07%. Imag-
ining the migration of the grain boundary occurring in two steps from
RC: 0 - RC: 0.5 and then RC: 0.5 — RC: 1, the first transition becomes
favorable at a relatively large shear of 4.07%, after which the second
transition is already energetically favorable (0.23%). The critical value
of the shear at which this particular sequence for GB migration is ther-
modynamically favorable is therefore given by the limiting value of
4.07%, associated with the intermediate configuration.

For this example, since H = 2, RC: 0.5 is the only intermediate
configuration in our supercell between the original and migrated
boundary. For larger H, there would be additional intermediate steps as
each subsequent dislocation migrates, and each of these intermediate
configurations would be associated with a particular degree of shear at
which the intermediate configuration becomes favorable compared to
the previous one. Amongst all of these transitional shears, we label the
largest one as the critical shear ¢y, the shear at which all subsequent
intermediate configurations are equal or downhill in energy. Although
the complete migration of the straight grain boundary (RC: 1) is favor-
able at a modest shear, the intermediate states have higher energies and
require larger shears to become favorable. Curiously, it is always the first
intermediate state, the one that transforms the straight grain boundary
into one with disconnections, that determines the critical shear of
migration. The critical shear is therefore the strain at which the energy
of a grain boundary with one migrated dislocation, corresponding to the
smallest disconnection length possible (RC: 1/H), is equal to the energy
of sheared RC: 0 configuration. For the case of two dislocations (H = 2)
in Fig. 2, &4y corresponds to the case in which E(RC: 0) = E(RC: 0.5), but
for supercells with three dislocations (H = 3), to the case in which E(RC:
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0) = E(RC: 0.33). After the critical shear, subsequent intermediate states
all have lower energies and migration becomes thermodynamically
favorable for all intermediate stages up to the straight grain boundary
RC: 1. Together, &0y and e enable quantitative comparison of the
shear coupling of graphene grain boundaries across misorientation an-
gles and supercell heights and will be used to determine the role of out-
of-plane deformation.

3.1. Misorientation angle dependence of shear coupling

Fig. 3 shows the coupling shear and the critical shear, reported for
various X to highlight trends in shear coupling across misorientation
angles for both flat and buckled supercells. The four investigated
misorientation angles are = 21.8°,13.1°,9.43°, 4.83°, corresponding to
¥7, £19, 237, X127 respectively. In Fig. 3 each of the supercells have
W=200AandH = 2.

The coupling shears for both flat and buckled supercells are plotted
in Fig. 3(a). The flat and buckled configurations have identical coupling
shears, implying that this quantity is independent of out-of-plane
relaxation. This indicates that, like in bulk materials, shear coupling is
a topological quantity that is essentially governed by the nature of the
grain boundary. It is unaffected by local relaxations such as out-of-plane
buckling. This result can be understood with the definition of shear
coupling as the relative displacement that a grain boundary makes
parallel to its line direction, while out-of-plane deformation to relieve
the local strain around the dislocation core. Importantly, the out-of-
plane deformation does not change the dislocation content around any
of the dislocations. Therefore, while the out-of-plane deformation re-
lieves energy of the grain boundary, it does not change the parallel
motion of the grain boundaries and therefore does not change the shear
coupling. Accordingly, we propose a simple analytical model to describe
the dependence of the coupling shear on the grain boundary topology
according to

N
‘ b wup' _ e

Ecoup = = T =
W VEW

(3

where ?Cgup is the Burgers vector of the disconnection dislocation, W is
the grain boundary width, and ag is the lattice constant for graphene.
The model is compared against the coupling shear as calculated by
LAMMPS in Fig. 3(a) using a red line. The model reproduces the mini-
mum shear for the four supercells considered for both flat and buckled
configurations, further supporting the topological nature of shear
coupling. The agreement between our model (Eq. 3) and atomistic
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Fig. 3. The (a) coupling shear and (b) critical shear versus the grain boundary dislocation density X for both flat and buckled supercells. Model predictions are shown
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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simulation shows that the relative displacement of the grains is readily
predicted by crystallography, validating the coupling factor given in Eq.
1. In particular, the strain that was originally accommodated by
shearing the grains is completely relaxed when the disconnection Bur-
gers vector is the displacement boundary condition in our simulation.

By contrast, we find that the critical shear is somewhat altered by
out-of-plane relaxation. Fig. 3(b) shows the critical shear strain vs. X.
Although the buckled and flat curves no longer lie on top of each other,
the difference between the two curves remains fairly modest. Compared
to the flat supercells, the critical shears of the buckled supercells are
reduced by at most 0.3% strain, which is observed for the 6 = 21.8° (£7)
grain boundary. With increasing X, the difference in critical shear de-
creases, signifying that buckling has less and less total impact on the
critical shear for low angle (high X) grain boundaries.

To understand the difference of critical shear with respect to topol-
ogy and out-of-plane deformation, we introduce another analytical
model. In this case, the buckling dependence is directly included by
utilizing the energies at zero strain for the first intermediate configu-
ration relative to the straight grain boundary, Egc;. The critical shear
dependence is modeled according to

EgcaiVE
(RC\)agpH ’

Ecrip =

@

where (RC;) is the reaction coordinate of the first intermediate state, y is
graphene shear modulus, and H is the supercell height. A full derivation
of the model, based on setting the energies of RC: 0 and RC: (1/H) as a
function of shear equal to each other, is available in the SI. A key
assumption of this model is that the shear response of both the straight
and the kinked grain boundary follow linear elasticity, allowing the use
of the shear modulus to map the critical strain back to the zero strain
energy.

To clarify the application of the model in Eq. 4, the parameters that
appear on the right hand side are first determined and then used to
predict &.. The predicted &4 is then compared to the value obtained
from atomistic simulations. Amongst the parameters that appear on the
right hand side, all are geometric (set by the grain boundary topology)
except for shear modulus g and Erci. Egcr itself is obtained from
atomistic simulations. The shear modulus is obtained for each supercell
by fitting to energy vs. shear plots (e.g. Fig. 2). For flat, pristine graphene
(no grain boundaries) we find y = 2.65 eV/A2, similar to others reported
in the literature [40]. As discussed in the next section, in some instances
when the supercells deform out-of-plane, the value of 4 may vary; this
parameter therefore represents an effective shear modulus, accounting
for the effect of out-of-plane deformation on the energy required to shear
the material.

The model predictions are plotted in Fig. 3(b) for each grain
boundary in red. As opposed to the continuous prediction in Fig. 3(a),
those in Fig. 3(b) are discrete since we rely on the computed atomistic
value of the energy Egc; of the discrete grain boundaries (the dashed red
lines are shown as a guide). The comparison shows that the difference in
critical shears for flat and buckled cases is almost fully accounted for by
the out-of-plane relaxation, validating our model. Finally, we note that
although we use energies Egc1 from atomistic calculations, the energy
could also be obtained from a continuum dislocation model for dis-
connections that accounts for out-of-plane relaxation, allowing for faster
determination of the critical shear of migration [23].

3.2. Effect of finite supercells on shear coupling

The simulations presented here invoke periodic boundary condi-
tions, for which finite size effects and image interactions may be present.
In order to determine the effect of the finite supercells and to gain an
understanding of the shear coupling behavior for more realistic grain
boundaries, we consider the dependence of the critical shear on the
supercell height H. For this analysis, we limit ourselves to the higher
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angle grain boundaries of ¢ = 21.8" and 6 = 13.1° as the number of
atoms becomes large for the lower angle grain boundaries. In addition,
the dependence of the coupling shear is not further considered because it
depends only on the misorientation angle and is independent of the
supercell height.

The dependence of the critical shear versus normalized height is
plotted in Fig. 4(a). The critical shear is reported for H = 2, the smallest
possible supercell size that can form a disconnection, up to H = 10. The
atomistic results are plotted as circles/squares while the analytical
model for the critical shear from Eq. 4 is plotted as solid/dotted lines for
flat/buckled supercells. The results from atomic scale calculations
shown in Fig. 4(a) generally agree with the predictions of the critical
strain model from Eq. 4. While the model properly captures trends
across the full set of systems considered, there are some differences for
the buckled cases particularly for = 21.8".
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Fig. 4. Dependence of critical shear on supercell size. (a) Critical shear versus
reduced supercell height H for flat and buckled supercells containing 21.8° or
13.1° grain boundaries. The atomistic results are plotted as circles (squares) for
flat (buckled) configurations respectively, and the critical shear model is shown
by solid (dotted) lines for flat (buckled) configurations respectively. The iso-
lated contributions to the critical shear model from the disconnection energy
and the shear modulus are shown in (b,c) respectively. In (c), the shear moduli
of 21° flat, 13° flat, and 13" buckled are nearly identical, which is why only 13°
buckled is visible. In (b,c), the gray dotted lines are a guide to the eye for the
atomistic contributions.
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Starting with the flat supercells, the critical shear dependence for
both § = 21.8° and # = 13.1° on H shows a similar behavior in which it
initially increases and then reaches a plateau by H ~ 8. Moreover, the
previous analytical model in Eq. 4, shown via the solid lines, captures
the dependence for both grain boundaries. For reference, the model
inputs — the energy of the first intermediate state and the effective shear
modulus - are plotted in Fig. 4(b,c). For the flat cases, Erc; has a similar
trend to the critical shear in Fig. 4(a). In addition, we can see that y is
constant and equal to its value in pristine graphene (z = 2.65 eV/A2).

The dependence of the critical shear versus supercell height for the
buckled configurations is not as straightforward. For ¢ = 13.1°, the same
trends hold as for the flat case. The critical shear for buckled grain
boundaries with misorientation angles of § = 13.1° plateau at H ~ 6.
The constant offset between the buckled and flat cases for § =13.1°
arises from a fixed reduction in the disconnection energy, as out-of-plane
buckling reduces the energy of the disconnection core by a finite
amount. The value of the effective shear modulus remains y = 2.65 eV/
A2, However, the critical shear for buckled grain boundaries with 6 =
21.8° shows a more complex behavior. Instead, the atomistic results
show that the critical shear for buckled 6 = 21.8° (blue squares) crosses
and then becomes larger than the flat critical shear (blue circles). This
crossing occurs despite the disconnection energy being reduced by
buckling, as seen in Fig. 4(b), similar to § = 13.1°.

The different behavior for buckled 6 = 21.8° stems from shear soft-
ening, as shown by the effective shear modulus in Fig. 4(c). The shear
modulus is observed to slightly drop from u = 2.65 eV/A2 as the
supercell height increases. If the = 21.8° analytical model was plotted
with the same shear modulus as the flat case, the buckled model would
also show a plateau with a regular offset below the flat system just like
the offset for & =13.1°. According to Eq. 4, for the analytical model to be
able to reproduce the crossing behavior, it is necessary for the effective
shear modulus to change. The softening of the shear modulus effectively
accounts for the breakdown of linear elasticity due to the out-of-plane
deformation and the induced curvature. It is reasonable that the effec-
tive shear modulus decreases as wrinkles form, since linear elasticity no
longer holds and higher order terms like bending play a role. We suspect
that if we continue to increase the supercell size, the § = 21.8° buckled
shear moduli and therefore the critical shear would also plateau, albeit
at a higher critical shear than the flat case.

3.3. Misorientation angle dependence of shear softening

The difference in critical shears for the two buckled grain boundaries
stems from different buckling modes. As has been observed previously,
while the low angle straight grain boundaries are buckled, the high
angle 6 = 21.8° grain boundary of graphene remains flat even when
unconstrained [25]. This difference is reflected clearly in the atomic
scale structures shown in Fig. 5, which shows that for straight (RC: 0 and
RC: 1) grain boundaries, § = 13.1° show out of plane corrugation at
roughly a height of 2 A (Fig. 5(d,f)) while 6 = 21.8° show no corrugation
(Fig. 5(a,c)). Interestingly, however, when a disconnection is intro-
duced, both § = 21.8° and ¢ = 13.1° grain boundaries are buckled. The
change in the degree of buckling between the flat and disconnected
grain boundary is much more pronounced for & = 21.8°. The buckling
for = 21.8° at RC: 0.5 has a distinct sinuous character, with positive
and negative out of plane displacements. This is distinct from 6 =13.1°,
where the out-of-plane displacements all lie in the same direction.

We believe that this different buckling behavior is responsible for the
softening of the effective shear modulus for the buckled ¢ = 21.8°. The
sinuous character of the # = 21.8° grain boundary serves as a nucleation
point for ripples perpendicular to the grain boundary to form when the
supercell is sheared, whereas the single direction of the buckling in 6 =
13.1° stabilizes the supercell to ripples perpendicular to the grain
boundary. The structure therefore supports the softening that we see in
Fig. 4(c).
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6 = 21.8° (27)
a) d)

0 = 13.1°(£19)

RC: 0.5

c) f)

Fig. 5. The structures of buckled H = 2 supercells with (a-c) grain boundary
angles of 0 = 21.8° (£7), and (d-f) 6 = 13.1° (£19). The supercells are repeated
twice in the horizontal direction (i.e. 4 dislocations are shown). The out-of-
plane deformation is shown using the color bar on the bottom right. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).

We note that the local out-of-plane deformation is distinct from
previously reported wrinkling of pristine graphene that occurs under
shear [22]. We find that periodic supercells with grain boundaries also
produce such wrinkles. However, in the presence of disconnection
induced out-of-plane relaxation, the wrinkling behavior qualitatively
changes due to the wrinkle wavelength being pinned by the local
out-of-plane relaxation as shown in the SI Section 4. This matches our
intuition that the low flexural rigidity of graphene implies that the
wrinkle energy is much smaller than the disconnection energies
considered here.

4. Discussion and conclusions

The coupling and critical shear analytical models help to form the
foundation for conclusions about the mechanisms of shear coupling in
graphene. We compare the models directly to atomic scale calculations
of shear coupled grain boundary migration across misorientation angles
and supercell sizes to show their predictive power. The coupling shear
model depends only on the grain boundary topology, implying that the
low flexural rigidity of graphene, and likely other 2D materials, does not
impact the role that disconnections and shear coupling play as the
elementary mechanisms that undergird grain boundary migration.
However, as the model formulated for critical shear is sensitive to the
disconnection energy and shear modulus, out-of-plane deformation does
play a role in the thermodynamic barriers for the intermediate steps of
grain boundary migration and could therefore be quite different be-
tween different 2D materials, especially those with multiple components
(e.g. h-BN). As compared to shear-coupling in bulk materials, the
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disconnection cores of 2D materials deform out-of-plane to reduce the
shear energy and pin wrinkles.

Despite these differences, the influence of out-of-plane deformation
does not affect the principle trends of shear coupling. As seen in Figs. 3
and 4, the flat and buckled graphene sheets have very similar trends, and
the differences lie in the particular values of critical shear. Furthermore,
we can use the flat supercells as a proxy for the shear coupling of bulk
crystals. Since we constrain the supercells to be flat, they are under a
plane-strain load similar to that of a bulk crystal with periodic boundary
conditions in the z-direction. Therefore, although we show that grain
boundary migration in graphene will depend on its environment, out-of-
plane deformation seems to be a higher order effect and shear coupling
is largely equivalent in 2D and bulk materials.

The dependence of the critical shear on out-of-plane deformation
directly impacts the motion of grain boundaries in 2D materials. In
particular, our result influences the understanding of the recent obser-
vation of h-BN grain boundary sliding due to build-up of shear energy
from shear coupling [11]. Namely, the critical shear dependence of
out-of-plane deformation is a clear sign that the strain energy is sensitive
to the degree of confinement in the out of plane direction. This is of
particular importance for the often observed graphene 21° grain
boundary [36], for which we observed the most softening in the effec-
tive shear modulus. It remains of interest to study the effect of the shear
softening when grain boundary motion is activated with increasing
temperature. Although temperature will not affect the topological un-
derpinning of shear coupling, the changes in the potential energy surface
with confinement may prove insightful into understanding grain
boundary evolution and annealing during CVD synthesis.
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