PHYSICAL REVIEW B 106, 235144 (2022)

Flat bands arising from spin-orbit assisted orbital frustration
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We present general design principles for engineering and discovering periodic systems with flat bands. Our
paradigm exploits spin-orbit assisted orbital frustration on a lattice to produce band structures that contain
multiplets of narrowly dispersing bands whose bandwidth is smaller than all other energy scales of the problem
including the band gap surrounding the flat bands. We present a series of models in one dimension and two
dimensions on various lattices with different intracellular spin-orbit like potentials that hybridize the degrees of
freedom in the unit cell. As an alternative to machine learning based exhaustive searches, these design principles
and models can be used to search for flat-band systems in a variety of physical settings and can be used to
investigate the role of weakly dispersing highly orbitally frustrated degrees of freedom in systems where the
interactions dominate over the kinetic energy scales of the system.
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I. INTRODUCTION

Quantum materials continue to surprise us with fundamen-
tally new emergent phases. Some of the most exciting recent
developments include moiré materials with flat bands, often
topological, where correlations are necessarily strong.

Usually the tunneling strength ¢ of electrons in materials
leads to bands that naturally disperse with a bandwidth of
order W ~ ¢. Flat-band systems are those for which the band-
width is suppressed relative to the systems excitation gaps A;
such systems are rare. Examples of flat bands can be found in
the quantum Hall effect in a two-dimensional electron gas in
a magnetic field, quantum anomalous Hall systems, periodic
moiré structures by twisting layers in van der Waals coupled
materials, and a few highly fine-tuned tight-binding models on
the lattice that are designed to lead to a subset of bands with
exactly no dispersion, such as the Lieb lattice.

Though the number of known completely dispersion-less
systems are few (neglecting the trivial localized atomic insula-
tors), the presence of flat bands has manifested in a multitude
of exotic states of matter where interactions dominate and
new topological phases emerge [1-7]. Most theoretical con-
structions of flat-band systems have restricted the analysis to
systems with a subset of completely flat bands in which the
dispersion is completely absent [8—15]. However, in almost
all materials only the ratio of the bandwidth W to all other
energy scales of the system (including the systems band gaps)
need be small in order to reveal the phenomena reliant on the
existence of the flat bands, thereby expanding the scope of
possible materials. A recent machine learning based study of
flat-band systems has used density function theory and the
Inorganic Crystal Structure Database to catalog over 2000
such material candidates [16—18]. As such, here we relax
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the condition of designing completely dispersionless bands
and present general design principles for achieving flat-band
systems with a subset of bands whose bandwidths are much
smaller than all other energy scales of the system.

Frustration has typically been used to indicate the inability
to satisfy magnetic interactions locally because of competing
interactions between local moments. Here we extend the con-
cept of frustration to the band picture where the ability of
electrons to tunnel on the lattice is hindered. We emphasize
that this hindrance is not a consequence of an effectively large
lattice constant as in the moiré lattices, but arises due to inter-
ference between equivalent tunneling pathways. Specifically,
the mechanism by which frustration arises here does not rely
on large multisite unit cells or on external fields, but instead
relies solely on engineered orbital frustration that exploits
multiorbital spin-orbit assisted mixing on the lattice we dub
spin-orbit assisted orbital frustration.

Spin-orbit assisted orbital frustration occurs when a large
intracellular potential, A, splits the degrees of freedom in a
unit cell into multidegenerate multiplets that are orthogonal to
the kinetic processes that couple degrees of freedom between
unit cells. This orthogonality frustrates the kinetic processes ¢
on the lattice such that a degenerate multiplet is broken into
a set of bands that disperse with bandwidth Wy ~ 12 /A, that
for large intracellular potential is small compared to bands
in the absence of frustration that disperse canonically with
bandwidths W ~ ¢.

In systems where interactions dominate over kinetic cou-
plings, the associated noninteracting theory at a particular
energy has a large density of states and a large number of
modes with small group velocities such that the kinetic energy
is minimal. Importantly the systems of interest should host
multiplets of flat bands with bandwidths W much smaller than
the band gap A surrounding a particular multiplet leading
to small flatness ratios & = W/A. Small F can lead to a
fractionalization of a system’s quanta in the presence of inter-
actions, leading to emergent topological ordered phases that
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FIG. 1. Various mechanisms leading to flat bands. (a) In the quantum Hall effect a strong magnetic field forces the electron into quantized
cyclotron orbits that leads to a Landau level spectrum of completely flat bands separated by an energy gap A = fiw, proportional to the
cyclotron frequency w. = eB/cm,. (b) For special angles of rotational misalignment in a stack of two graphene sheets a particular interlayer
moiré potential develops of characteristic length |[RY| much larger than the intralayer graphene lattice constant a. The potential quenches the
kinetic energy of electrons in both layers and leads to flat bands in the Brillouin zone with flatness ratios F < 0.5. (¢) Spin-orbit assisted
orbital frustrated systems exploit the intrasite potential, A, that couples orbital degrees of freedom in each unit cell to engineer flat bands by
allowing intersite processes, ¢, that couple states in the different band multiplets of A, while forbidding kinetic processes that couple states in
the same band multiplets. These systems exhibit orbital frustration that leads to frustrated flat-band multiplets separated by energy gaps A ~ A

with bandwidths Wy ~ 2/ and flatness ratios F ~ (t/A)%.

can show fractionalization of charge, fractionalization of spin,
and quantized anomalous and topological Hall effects. For
example, in the fractional quantum Hall effect a strong mag-
netic field forces the electrons into quantized circular orbits
that describe dispersionless flat Landau levels [see Fig. 1(a)]
[19-22]. Likewise, strongly correlated superconducting and
Mott insulating phases have recently been observed in twisted
bilayer graphene where flat bands emerge from the presence
of a large multiorbital moiré potential whose characteris-
tic size is much larger than the lattice constant of a single
graphene sheet [see Fig. 1(b)] [23-25]. The flat bands of
spin-orbit assisted orbital frustration circumvents the need for
large unit cells or strong external perturbing fields to generate
flat bands by relying on deconstructive orbital mixing on
the lattice to suppress bandwidths and lead to an enhanced
flattness ratio F ~ (t/1)* [see Fig. 1(c)].

Beyond the dispersion of bands in the Brillouin zone an-
other distinguishing and important characteristic of a band
structure is the evolution of the Bloch eigenstates of the
Hamiltonian with respect to their crystal momentum. The
Berry curvature and the quantum metric describe this geo-
metric structure of the Bloch bundle, both of which lead to
unique transport properties of the electron in the presence of
external fields [26-31]. For example, in the presence of a ho-
mogeneous electric field the electron acquires an anomalous
velocity transverse to its momentum, while in the presence
of heterogeneous electric fields a system’s linear response
couples directly to the quantum metric along the Fermi sur-
face [32]. Spin-orbit assisted orbital frustration relies on the
presence of interorbital intercell kinetic couplings that tends
to mix the degrees of freedom in the unit cell. In momentum
space this twisting can result in exotic Berry curvature dis-
tributions in the Brillouin zone when either time-reversal or

inversion symmetries are broken [33]. Furthermore in systems
that contain an orbitally frustrated multidegenerate multiplet,
small time-reversal breaking perturbations that could arise
in the presence of small interactions can lead to anomalous
topological states endowed from the orbital mixing in the
frustrated lattice. The importance of these topological con-
siderations in flat-band systems have been studied in many
perfectly dispersionless systems and in particular for magic
angle twisted bilayer graphene [34-39].

Spin-orbit assisted orbital frustrated flat-band systems can
be engineered in arbitrary lattice structures in any dimension
as long as the degrees of freedom in the unit cell is larger
than one. Below we detail examples of orbital frustration and
emergent flat bands on the bipartite one-dimensional (1D)
chain, square, triangular, and honeycomb lattices. These mod-
els provide a pathway to engineer flat bands in a variety of
periodic systems with diverse intrasite and interorbital cou-
plings. Apart from electronic systems other highly tunable
platforms, such as cold atom systems and photonic crystals,
also provide a framework to study systems where this type of
orbital frustration could be present resulting in flat bands and
therefore dominant intermultiplet interactions.

II. PERIODIC SYSTEMS AND BAND STRUCTURES

Periodic systems admit a discrete translation symmetry
whereby the system is left invariant under translation by its
set of lattice vectors. In quantum mechanics the commutator
of the Hamiltonian with the operators describing these trans-
lations vanish such that the eigenstates of the Hamiltonian are
Bloch modes: Simultaneous eigenstates of these translation
operators and indexed by a crystal momenta, k, that describe
the irreducible representations of the translation group of the
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system. The band structure of a system describes the map-
ping from k to the energy eigenvalues of the Hamiltonian.
In classical mechanics any periodic system whose dynamics
are described by a linear differential operator can be written
in terms of Bloch modes with momentum k taking values in
the first Brillouin zone. Fourier transform of the operator with
respect to time leads to a generalized eigenvalue equation for
the dispersion relations w, (k). In both contexts the full eigen-
spectrum of the system is determined by the band energies and
associated Bloch eigenvectors.

Here we describe our systems in a tight-binding framework
whereby the degrees of freedom of the problem can be incor-
porated through local creation and annihilation operators &,
and ¢;, that create and annihilate quanta in unit cell i of orbital
character « at position R; + 7,,. These operators span the state
space or Hilbert space of the system and as such the single
body noninteracting Hamiltonian can be written entirely in
terms of these operators:

aﬁATA
H=) 188 M

ij,ap

For periodic systems tlf'{ﬁ =1**(R;, — R ;) and the eigen-
states of the Hamiltonian are Bloch modes

W, () = fZ U (IR, 7o) )

that can be indexed by a band number »n and crystal momen-
tum k taking values in the first Brillouin zone and that satisfy
H|W,(k)) = &,(k)|V,(k)). Here the state vectors |R;, 7o) de-
scribe the occupation of quanta of orbital character « at
position R; + t4: 6L|0) = |R;, T,), with |0) being the vac-
uum state. The eigenstates and eigenvalues are determined
by finding the periodic part of the Bloch eigenstates u (k) =
(a|uy, (k)) that satisfy

H () uy (k) = &,(k)|un (k). 3)
where the Bloch Hamiltonian A (k) is determined from knowl-
edge of the tight-binding coefficients 1*# (§):

(@lHK)|B) =) e "l h it (g). )
$

In general, systems that permit a band structure are de-
scribed by a linear differential operator @(a,,., d;) whose
action on the system’s state vector v(r, t) lead to a generalized
eigenvalue equation for the Bloch modes

O(0,, + iki, w,)vu(r. k) = 0 ©)

whose solutions w, — w,(k) determine the band energy
eigenvalues of the system [40—42]. These models have
been used to analyze flat bands in optical lattices and su-
perconducting circuits [43-45]. For example, the study of
electromagnetic waves in linear dielectric materials leads to a
generalized eigenvalue equation for the electric and magnetic
field. The harmonic transverse magnetic modes of a simple
two-dimensional (2D) linear dielectric material are governed

by the equations

2
%VxVxE(r a))——E(r w) =0,

H o)+ ——V x E(r.w) = 0. (6)
How

where connection with Eq. (5) is made by expanding the
electromagnetic fields in Bloch modes with momenta k.
In practice and for numeric calculation these equations are
usually discretized and can be recast into a framework si-
miliar to the tight-binding description used above [46,47].
For these reasons and the natural applicability to describe
quantum-mechanical processes we will adopt the tight-
binding framework for the rest of this paper.

In the absence of intercell tight-binding coefficients,
t*#(8) =0 for §+#0, the eigenvalues of the Bloch
Hamiltonian are momentum independent: &,(k) — &,. This
can be seen by making a momentum-dependent unitary gauge
transformation on the Bloch Hamiltonian.

UK)H(#)U" (k) = H' (k) 7
with («|U (k)| ) = e ™ 8qp- Using Eq. (4) we find
A'(k) =" e ™% (8)|ar) (B] ®)
S,ap

which in the limit of purely intracell tight-binding coeffi-
cients is a momentum-independent operator with momentum-
independent eigenvalues, &,.

Dispersion in the band structure then arises from the
strength and character of the intercell hopping elements cou-
pling degrees of freedom between the unit cells of a lattice. To
study the dispersion of bands we can decompose our original
HamiltoniAan into terms describing intracell I-?imm and intercell
hopping Hiyter:

H = Hintra + Hinterv

Hinwa = Z Aaﬁ ,IO, lﬂv

i,af
Ane = Y Tilele, ©)
ij,ap

with F“ﬁ = 0. Due to the translation symmetry of the crys-
tal Aaﬂ A%F independent of the unit cell R; and F“ﬂ
r*A(R; —R;). Slmllarly, for the Bloch Hamiltonian we have

A (k) = Hintra (k) + Hinier (). (10)

Here we are interested in the energy eigenvalues of H (k)
and thus for simplicity we instead focus on diagonalizing

H (k) 1ntra + Hl/mer (k)
mtra - U (k )I_Ilmra (k)U (k)
Ao (k) = U (k) Hinier 1)U (k). (11)

In the orbital basis this takes the form

1ntra|13 Aaﬂ ?

(ar| mter(k)lﬂ)=Ze*"‘*"‘F°‘ﬂ(6). (12)
8
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By investigating the relationship between eigenfunctions
of Hipra (k) and Hipeer(k) we can determine whether a system
exhibits spin-orbit assisted orbital frustration and whether a
system will possess narrowly dispersing frustrated band mul-
tiplets.

III. INTRACELL MULTIPLET STRUCTURES

We begin by analyzing the flat bands that can arise in
the absence of intercell hopping. In electronic systems the
predominant intracell contribution to the Hamiltonian derives
from the local crystal field potential and spin-orbit interactions
that split a number of orbital degrees of freedom in each
unit cell into a multiplet structure of degenerate manifolds of
Bloch states. Upon the inclusion of intercell processes in H
these degenerate states hybridize renormalizing the flat bands
leading to dispersion across the Brillouin zone. For example,
in an octahedral environment atomic d orbitals split into a
threefold degenerate 5, multiplet of d,y, d,;, and d,, orbital
states and a twofold degenerate e, multiplet of d,._,» and
d.», whereas in a square planar environment atomic orbitals
split into a twofold degenerate multiplet of d,, and d,, orbitals
and three singly degenerate multiplets of d2, d,y, and d,>_
orbitals. With the inclusion of spin-orbit interaction these
multiplets get further split. For example, for d orbitals in the
octahedral environment the threefold degenerate #,, multiplet
gets split into a twofold degenerate effective J = 1/2 man-
ifold of states and a fourfold degenerate effective J = 3/2
manifold of states.

Each degenerate multiplet is spanned by the eigenstates of
Hmtra or H . The eigenstates of the latter are described by

ntra*
the vectors

mtra Zyn |a (13)

For example, for the d orbitals of the #,, multiplet the two
degenerate states of the J = 1/2 sector are spanned by the
vectors

_ 1
w =% = —7|dyz, 1)

ldyz, I} +

i 1
+ _|dzxv T) + |dxya \L)’

3 V3
i 1

dzx» +_dxv, . 14
f ﬁ' % ﬁ' v 1 (14

While for the d orbitals of the #,, multiplet the four degen-
erate states of the j3,, sector are spanned by the vectors

47 =

_ 1
u{_3/2> = —l|dy. 1) +

1
dXVs E)
\/— ldxy, )

T
47 =

ldyz, 1) + —=lduy, 1),

f f
3 .
|MJ 3/2) [|dvz’ )+ \/;|dzx, )+ ﬁldxy, 1,

2
|MJ 3/2) f' s N+ \/;ldzxv ™M+ \/—| Xys ). (15)

These states can be determined by diagonalizing the effec-
tive on-site spin-orbit interaction for the f,, manifold

AP = polalL - SIB), (16)

where A, is the energy scale for intracellular spin-orbit inter-
actions such that § = & and such that the eigenvalues of A are
—2Xso With multiplicity two and Ay, with multiplicity four.

In general, in the absence of intercell hopping, the intracell
potentials described by I-Alimm lead to a multiplet structure of M
sets of N-fold degenerate bands whose energy eigenvalues and
eigenvectors we denote as €,,; and |u)") withm =1,..., M
and i =1,...,N, separated by an energy, A, the order of
the intracell hopping potentials A. Each set in M spans an
N-dimensional subspace of the Hilbert space such that the
total number of bands M x N equals the number of degrees
of freedom in the system’s unit cell.

IV. ORBITAL FRUSTRATION

Orbital frustration is the suppression of the bandwidths of
multiplets of bands in a system’s band structure deriving from
the absence or limitation of specific hopping matrix elements
in Hier- In a general Hamiltonian and in the absence of orbital
frustration the bandwidth of any given band in a band structure
can be expected to be of the order of the intercell hopping
strength 7. In the presence of strong intracell potentials A >> ¢
the set of bands splits into the multiplet structures described
in Sec. III and for general intercell hopping the bandwidths
of these multiplets will too be of the order of the intercell
hopping strengths ¢. This is most easily understood in the
context of perturbation theory.

The ratio of X to ¢ is a small parameter by which a pertur-
bative expansion of the energy eigenvalues in [ = ¢/ of H (k)
can be computed. In a system with M different multiplets, at
zeroth order in /, the eigenvalues of H (k) are given by the
momentum-independent eigenvalues of I-Zmra which we Write
as &, withm =1, ..., M. In the basis of eigenstates of 4, .,
|u"‘"a) the intracell Hamlltoman takes a block-diagonal form
of M, N x N diagonal matrices.

The first-order correction to the energy eigenvalues &,

eM.(k), is found by orthogonalizing the eigenstates of a given

m i
multiplet [i") with respect to m[er(k) The first-order correc-

tion is determined by the eigenvalues of the matrix
Wi (k) = (1" | A Ge) 7). (17

The eigenvalues are of the order of the intercell hopping
potentials 8(1)(k) ~ t and in general will lead to a hybridiza-
tion of bands in a given multiplet breaking their degeneracy
and leading to bandwidths W ~ ¢.

In frustrated systems the first-order correction to the multi-
plet structure of Hinra vanishes, W}}l (k) =0, for some m € M.
These multiplets exhibit a reduction in bandwidth whose size
is given by the next leading-order correction to the eigenvalues
of ﬁinlra:

(| H (B | Yut | H (B )

e (k ’ A Sy 18
Eni(k) = ; - (18)

These bands disperse with 8(2)(k) ~ [t leading to a sup-
pression of the bandwidth W /¢ of order /.

Given a set of on-site potentials Hipa, Orbital frustration
is found by separating the allowed intercell kinetic hopping
elements Hl/mer(k) into intermultiplet and intramultiplet con-
tributions. The intercell intermultiplet contributions I-?,ﬁnM (k)
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FIG. 2. (a) Spin-orbit assisted orbital frustration relies on the presence of a large intrasite potential, Hia ~ A, that couples the orbital
degrees of freedom in the unit cell to produce a multiplet structure of degenerate bands separated by an energy gap A ~ A. Here we show
a unit cell of five degrees of freedom (DOF), split by an intrasite potential into two band multiplets: A multiplet (M = 1) containing three
degenerate eigenstates (green) of Hipo and a multiplet (M = 2) containing two degenerate eigenstates (maroon) of Hiira. (b) Orbital frustration

requires the absence of intersite intramultiplet kinetic processes HHSM (k) =

0. In Model 1 intersite intramultipelt processes are forbidden, and

only kinetic couplings between sites that couple states in different band multiplets are allowed leading to orbital frustrated flat bands with
bandwidths Wy ~ ¢2/A. In Model 2 intersite processes that couple states in the same band multiplet are allowed spoiling orbital frustration and

leading to bandwidths W ~ .

describe the kinetic hopping between different multiplets,
while the intercell intramultiplet contribution H3M (k) de-
scribes the kinetic hopping between the same multiplet.

DO AMK) + Y AN (k

n#m

Ao (k) = (19)

First we define the projection operator onto a single multi-

plet

where i = 1,..., N, where N is the number of state in the
multiplet n. The intercell intramultiplet and intermultiplet
contribution can then be written as

1nter (k )P” ’
P I-Il/nter (k )Pm .

(20)

HSM (k)

A (k) = (2D

For systems in which ﬂ,fM (k) vanishes, Wi”j(k) =0 and
orbital frustration forces the nth multiplet to disperse with
bandwidth W ~ 2/A.

It is useful to note that a momentum-dependent projection
of elements of a Bloch Hamiltonian, in principle, may lead
to long-ranged hopping processes. However, in the construc-
tion proposed here the projection operators are momentum
independent such that the lattice harmonic structure contained
in B3 (k) and A”M (k) are unchanged. This is because the
geometric character of the degrees of freedom in the unit cell
remain independent of the lattice harmonic functions appear-
ing in H. (k). Hence the constraint Wi (k) = 0 generically

mter

can be engineered in the absence of detailed knowledge of

dependence of A/ _ (k) on the Bloch momenta.

V. MODELS

Here we present some simple toy models that demonstrate
spin-orbit assisted orbital frustration (Fig. 2). We focus on
unit cells with two, four, and six degrees of freedom coupled
by intracellular potentials that lead to the multiplet structures
described in Sec. III. We then determine the allowed and
forbidden terms in Hiper that lead to the presence or absence
of spin-orbit assisted orbital frustration.

A. Two degrees of freedom per site

Consider a system with two degrees of freedom per site.
The general on-site Hamiltonian can be written as

Hl/ntra =Xil+Ar-0 (22)

where 6 = (6y, 6,, 6;) are the two-dimensional Pauli matri-

ces. The eigenvalues are £ = =£|A| and the eigenvectors can

be written as

lu™) = (sin(8/2)e™"?, — cos(6/2)),

lut) = (cos(0/2)e™?, sin(6/2)), (23)

where A = |A|(sin(0)cos(¢), sin(0) sin(¢), cos(f)). The
most general intercell hopping Hamiltonian can be written as

Ho. (k) = to(k)L +t(k) - & 24)
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FIG. 3. (a) Simple example of intrasite potential for a system with two degrees of freedom, (|1), |{)), per unit cell parametrized by orbital
interaction A.. (b) Intrasite multiplet structure for intrasite potential (a). States in the upper manifold (green) are eigenstates of &, with positive
eigenvalue and states in the lower manifold (brown) are eigenstates of &, with negative eigenvalue. Intersite processes can couple states within
a given multiplet (c) or between multiplets (d). In the absence of the former frustration will be present and lead to flat bands. (e) General
intrasite potential parametrized by A. (f) Intrasite multiplet structure consists of two band multiplets. States in the upper and lower multiplet
are eigenstates of I-Z,m with eigenvalues %|A|. (g) Unitary rotation, U (rg, 2), of the Hamiltonian can transform the general intrasite potential
in (e) to the simpler potential described in (a). Knowledge of U (nq, 2) determines the allowed and forbidden terms in Her (k) that can lead

to the presence or absence of orbital frustration.

We can now construct W (k) in terms of A and d (k).
WE(k) = =+t,(k) cos(8) =+ sin(0)(t, (k) cos(¢)
+ t,(k) sin(¢)) + to(k)

= i% (k) + to(k). (25)
Orbital frustration and band flattening will occur when either
W™ (k) or W~ (k) vanishes.

Take the simple example of A = (0, 0, ;) and #, = 0. Then
W= (k) = =t.(k) and orbital frustration occurs in the absence
of intercell hopping terms in the Hamiltonian proportional to
6,. This is simply understood by looking at the eigenstates
of the intracell Hamiltonian for this specific on-site potential.
The eigenstates of Hipira are eigenstates of 6,, [ut) = (1,0)
and |u~) = (0, 1). In order to induce hopping between the
manifolds spanned by the |u™) states, an intercell hop must
flip the spinor index such that ﬁi’nwr(k)lui) ~ |uT). The oper-
ators that allow for such a spinor flip are proportional to &, and
6y. Thus in the absence of 6, orbital frustration will develop.

For arbitrary on-site potential the presence of orbital frus-
tration occurs when ¢ (k) is orthogonal to A and 7y(k) = 0. This
can be understood in a similar manner as the above simple
example by performing a rotation of the coordinate system
such that A = RA = 0,0, ):Z). This is achieved by making a
unitary transformation on the Hamiltonian such that

Ung, QH,.U'(ng, Q) = Ung, QA - 60 (ng, Q)

= A.6;, (26)
where
Ung, Q) = e ™29/2 — co5(Q/2) — ing - 6 sin(2/2)
(27

is the unitary transformation parametrized in terms of an axis
of rotation ng = A/|A| x (0,0, 1) of unit norm and an angle
Q = arccos(A;/|A|) such that Eq. (26) is satisfied. One can
then determine the necessary operators for orbital frustration
by making the corresponding unitary transformation of the
Pauli operators that determine the presence of or absence of
orbital frustration. It follows that the allowed and forbidden

terms in A, . (k) to achieve orbital frustration are

Allowed = {U (nq, Q)6,U (nq, ), U’ (ng, 2)6,0
x (ng, Q)},
Forbidden = {U " (nq, 2)6.0 (ng, )}. (28)

We see that in this model for general A and #y(k) = 0, or-
bital frustration occurs in the presence of terms in the intercell
Hamiltonian of the form [¢(k) x A] - 6 for arbitrary ¢ (k) and in
the absence of terms in the intercell Hamiltonian proportional
to A - 6 (see Fig. 3).

B. Two s = 1/2 degrees of freedom

Here we consider a model with two effective s = 1/2
degrees of freedom per unit cell interacting with an on-site
potential of the form

3
(@l H}palB) = 20 Y (01 ® 01)ap (29)

i=1

where ® denotes the Kronecker productand o, 8 =1, ..., 4.
The eigenstates of this on-site potential can be indexed by
total angular momentum quantum numbers |J, m;). They
split into two multiplets of states. The triplet states with
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J=1:
1, 1) = [11),
1
1,0) = — ,
[1,0) ﬁ(IN) +H)

1, =1) =[{{) (30)
and eigenvalues &;_; = —3X, and the singlet state with J =
0:

1
0,0) = — — 31
0, 0) ﬁ(ITM 1) (31

and eigenvalue &,y = Ap. We can now decompose the in-
tercell Hamiltonian into terms described by the Kronecker
product of two Pauli matrices:

3 3
Ol|H1ntrd|18 Z Z ttj(k)(ai ® Uj)otﬂ» (32)

i=0 j=0

where oy = 1. The existence or absence of orbital frustration
can be determined by constructing the matrices WIJ] (k). For
J = 0 we find

3
W=l = ) ta(k) (33)

such that the allowed/forbidden terms in the intercell
Hamiltonian that will lead to the presence/absence of orbital
frustration are

Allowed =, {0y ® 01, 09 ® 02, 09 03, 0y ® 0, Oy
® o0y, 0x &®
® 09, 0; ® 0y, 0; ® Uy}v

Forbidden = {0y ® 09, 0 ® 0y, 0y ® 0y, 0, ® 0.} (34)

0, 0y 0y, 0y Oy, 0y Q 0,0,

In the absence of fine-tuned linear combinations of f;;(k),
the matrix W/=! for the triplet multiplet vanishes only when
t;j(k) = 0. However, for terms in the intercell Hamiltonian
proportional to any of the allowed operators in Eq. (34), W/=!
contains a single vanishing eigenvalue.

Win (k) =3 (™" @) 31,k ® 014"
ap i#j
= Det[WJZI(k)] == 0 (35)

For this choice of intercell Hamiltonian the three degen-
erate triplet states will hybridize such that the bandwidths of
two of the three bands will be of order ¢, while the bandwidth
of one of the three bands will be of order 2/A. While one
band will exhibit orbital frustration, in general the other two
bands will be in the neighborhood of the flat band such that its
flatness ratio is large.

In order to engineer terms in H. lnter(k) such that orbital
frustration in both multiplets would be preserved, we begin
by writing AP (k) in terms of the eigenstates of the J = 1
and J = 0 multiplet and arbitrary functions #;(k).

3
> i) u/ =)= + Hee. (36)

i=1

HDM(k) —

To make a connection with the decomposition in Eq. (32)
we separate t;(k) into its real 7;(k) and imaginary #;(k) parts
such that

3
AP () =Y @S + 700D, 37)
i=1
where S; and d; can be written as
S = /=) =" + =" (] =0,
(=)= = =" {u!=0)). (38)

‘We may write these operators in terms of the Pauli matrices
as

S
[

A 1 1

S = —=(00 = 0;) ® 0, — —=0, ® (0 — 02),
1 2\/5 0 z 2\/5 0 <

A 1

S = 5(00 ® o, — 0, ® 0p),

8 L (G0 +0)® 0+ ——0, ® (00 + 02)
= — O a. Oy Ox o UZ’
3 2\/5 0 z 2«/5 0

. 1 1

D, = —2\/5(00 —O'z)®a)' - 2ﬁ0Y®(60 — 02,

N 1

02 = E(O'x ®Oy - U)r ® Ux)v

. 1 1

D5 = m(ﬁo +o)®oy+ m"y ® (00 +07). (39

Any kinetic hopping proportional to any linear combina-
tion of the operators S; and D; will lead to orbital frustration in
both multiplets as they are operators that induce intermultiplet
hopping for the on-site potential described in Eq. (29) and will
lead to spin-orbit assisted orbital frustration in both the / = 0
and J = 1 multiplets.

C. One! =1 and s = 1/2 degree of freedom

Consider a system with unit cells containing six degrees
of freedom: An effective s = 1/2 degree of freedom and an
effective [ = 1 orbital degree of freedom. As described in
Sec. III on-site spin-orbit interaction will split these degrees of
freedom into a twofold degenerate effective J/ = 1/2 multiplet
and a fourfold degenerate effective J = 3/2 multiplet whose
eigenstate structure takes a similiar form to that in Eqs. (14)
and (15).

We can determine the allowed intercell kinetic hopping
coefficients that preserve orbital frustration in the presence
of a spin-orbit potential of the form A*? = Ay (oz|I: -8 |B) by
first decomposing H. (k) as

8

> Zt,j(k)()» ®0j)ep,  (40)

i=0 J=0

mter

(@ Ao ()1 B) =

where A; and o; are the Gell-Mann and Pauli matrices with
o9 = 14> and A9 = 1343. We can then decompose mter(k)
into its intermultiplet and intramultiplet contributions to deter-
mine which terms #;; (k) could lead to orbital frustration. In the
J = 3/2 sector all terms t;;(k) lead to WiJjZS/ 2 # 0 and orbital
frustration can only occur if a fine-tuned linear combination
of #;;(k) is engineered. However, in the J = 1/2 sector there
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are many allowed terms that would still lead to the presence
of orbital frustration:

Allowed ={A; ® 00, 21 ® 0, 12 ® 0y, 22 @ 0y, A3 @ 0p, A3
® 0, Ay ® 00, Ay ® 0y, ks @ 0y, As @ 02, Ag
® a9, )"6 ® Oy, )\.7 ® O'y, )"7 ® oz, )\'8 ® 00}' (41)

In the presence of these terms WZJ =2 —0 regardless of

the functions #;;(k). Most of these terms describe an interor-
bital process by which the / = 1 orbital degree of freedom
is changed upon hopping between sites. The exceptions are
the terms A3 ® 0p, A3 ® 0,, and Ag ® oy that all describe a
particular combination of intraorbital hopping by which the
orbital and spin degrees of freedom are unchanged upon hop-
ping between sites, but pick up a phase such that the processes

destructively interfere and lead to Wijj:” 2 =0.

VI. LATTICE CONSIDERATIONS

Up to this point we have determined the absence or
existence of orbital frustration from a local perspective by an-
alyzing various different intracell potentials, their multiplets,
and the intercell hopping between these multiplets without
any consideration of the crystal momentum-dependent func-
tions in A/ _ (k) that contain information about the allowed
lattice harmonic functions that can exist on a particular lattice.
Here we consider some simple lattice examples and calculate
the band dispersion to analytically show the absence or exis-
tence of orbital frustration.

A. Bipartite lattices

The examples in Sec. V have demonstrated the impor-
tance of particular interorbital kinetic structures that give
rise to orbital frustration. Usually interorbital coupling can
be dominant in multipartite lattices where nearest-neighbor
orbitals on the lattice are inequivalent. When the Hamiltonian
is expressed in terms of a local orbital structure the hopping
functions t*?(R; — R ;) usually are exponentially localized:

laﬂ(R,' — RJ) ~ e_S‘Rj_Rj‘y 42)

for some 4, y > 0. In these cases the largest contribution to
I-?i’mer(k) is determined by any lattice site’s nearest-neighbor
geometry.

Take as an example the bipartite 1D chain shown in Fig. 4.
The nature of the different molecular or orbital structures on
the A and B sublattices can naturally induce an on-site poten-
tial difference that can be described in the Bloch Hamiltonian
by an intracellular term I-7i’mm ~ &,. The kinetic dynamics
will be dominated by the nearest-neighbor interactions that
describe a hopping process that takes quanta localized on the
A sublattice to the B sublattice and vice versa. The full Bloch
Hamiltonian with real hopping processes can be written as

S A t(1 + e~ike)
H(k) - <t(1 +eika) —A )

= (k)+ 1) -6, (43)

lattice constant and f(k) = (t +
and A =1(0,0,1). The band

where a is the
t cos(ka), t sin(ka), 0))

(@ 1D Bipartite Chain ®)  Parameters
" .“ ." "‘ ." “' ." “' H intra ﬁ i’nter(k )
L GO U R P
‘....-." "n.u" "o, O ‘0" .: +)\ t = %ep
(© Band Structure
B W~
= % N — 2/A>>1
< 0 --= t2/]A~t
“ _osf
___________ t2
SO Wg ~ —
______ F A

FIG. 4. (a) Tight-binding model on a 1D bipartite chain. (b) Unit
cell contains two orbitals (red and blue) with on-site potentials .
Nearest-neighbor ¢ and next nearest-neighbor 7 interactions are de-
picted by double-headed arrows. (c¢) Band structure in the presence
(t =0.1A, 7 = 0, green) and absence (¢t = 0.1, f = 10¢?/A, dashed
line) of orbital frustration. In the presence of orbital frustration
t2/% > f and both bands have bandwidths Wy ~ ¢2/X, while in the
absence of orbital frustration ¢?>/A ~ 7 and both bands have band-
widths W ~ 7.

eigenvalues are

ex(k) = j:\/ A2 + 412 cos?(ka/2). (44)

Due to the orthogonality of the vectors (k) and A we see
that W*(k) = 0 [see Eq. (25)] and both bands should exhibit
orbital frustration. This can be seen by expanding Eq. (44) in
powers of ¢ /A:

212 1?

ex(k) ~ £|A| £ m cos(ka/2) + O(ﬁ)’ (45)
and noting that the order ¢ contribution to ¢4 (k) is zero. The
bandwidths are of order Wp ~ 2 /A, which in the limit of
A <t is much smaller than the expected bandwidth of order
t that would occur in the absence of orbital frustration. In the
presence of next nearest-neighbor hopping, 7, the Hamiltonian
will contain processes that take quanta from an A (B) site
in one unit cell to an A (B) in another unit cell. In general
these processes will be proportional to 1 and 6, and will spoil
orbital frustration if the magnitudes of 7 are comparable to
t?/. With the inclusion of next nearest-neighbor couplings
proportional to &, the Hamiltonian can be written as

o (A 2F cos(ka) t(1 + eka)
Hk) = < (14eka)  —p— 2fcos(ka)> “46)

and the band eigenvalues are

s (k) = i\/ [A + 27 cos(ka)]? + 412 cos®(ka/2).  (47)

Here W¥ (k) = 27 cos(ka) and is nonvanishing. For t ~
orbital frustration is destroyed and the bandwidths of e (k)
are of order W ~ 7 ~ t. As described above in most systems
the hopping integrals t*#(R; — R ;) are exponentially decaying
functions of R; — R; such that nearest-neighbor interactions
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are usually the most dominant kinetic coupling in H. We
see that in the limit of 7 < t?/A orbital frustration persists
(Wp ~ t2/)) as the dominant contribution to the bandwidth
derives from the frustrated processes that lead to the vanishing
of W*(k) in the absence of 7. Figure 4(c) shows the band
structure of the 1D bipartite chain in the presence (f < t2/1)
and absence (7 = t*/) of orbital frustration.

Similarly, in two dimensions, on the honeycomb lattice, a
strong sublattice symmetry-breaking potential A and nearest-
neighbor interaction ¢ will lead to orbital frustration. The full
Bloch Hamiltonian is

o (P e
H(k)_<tf;§(k) 3) (48)

with fy(k) = (1 + e *® 4 ¢~*R) where R, and R, are the
primitive honeycomb lattice vectors R; = a(1/2, +/3/2) and
Ry =a(—1/2, \/§/2). The eigenvalues to leading order in ¢
are

2
ex(k) ~ LAl £ ﬁlfH(k)lz- (49)
The order ¢ contribution for both band eigenvalues e (k)
vanish, and as a result, Wt (k) = 0 and both bands are or-
bitally frustrated leading to bandwidths of order Wy ~ t2/A.
Again the inclusion of longer range hopping processes will not
destroy the frustration as long as the dominant kinetic hopping
is still from the nearest-neighbor interaction ¢. This model
has been studied in the A >> ¢ limit in the presence of strong
electron-electron interactions where it has been shown that
pairing between electrons can be induced by multiparticle tun-
neling processes between the two polarized electronic states
each localized on one of the sublattice sites of the honeycomb
and as a result the superconducting transition temperature 7,
shows strong dependence on the ratio #/A in this strongly
orbitally frustrated system [48].

B. The Lieb lattice

Here we present a special example of spin-orbit assisted
orbital frustration whereby the kinetic hopping elements are
completely frustrated in a sector of the Hilbert space resulting
in a band structure consisting of a perfectly flat band with
e(k) =0.

The Lieb lattice model describes a tight-binding
Hamiltonian of nearest-neighbor interactions on the square
lattice with three atoms per unit cell. The Bloch Hamiltonian
takes the form

0 A4 te iR ) 4 ek
Hk) = | 1 + teit 0 0 (50)
A+ el 0 0

whose eigenvalues are

go(k) =0,

eok) = £2,/12 + 12 + tAlcos(k,) + cos(ky)]. (51

Here A denotes the hopping within the unit cell and ¢ the
hopping between unit cells. The flat band &¢(k) can be un-
derstood in the terms of spin-orbit assisted orbital frustration
as follows.

The Hamiltonian can be written as

I:}(k) = ﬂi/nlra + I—?i/nter(k)’

0O 1 X
Hi/ntra = A 0 0 ’
A 0 O
Q e*iakx e*iak)
H . (k)= ef”k-' 0 0o 1. (52)
etk 0 0
The eigenstates of A, . are
1
|MO> = ﬁ(oﬂ _17 1)9
1
lus) = ﬁ&ﬁ, 1,1). (53)

Here the multiplet of interest is singly degenerate such that the
first-order correction to the eigenvalues is simply given by

WO k) = (uo|H},or (k) utg) = 0. (54)

The vanishing of WO (k) signifies orbital frustration as this
Lieb lattice model only allows kinetic processes that connect
eigenstates in different multiplets.

It turns out that higher-order corrections to the energy
eigenvalues in the Lieb lattice also vanish. At second order
in A this can be seen by computing 8(()2)(16) using Eq. (18). A
general proof of the existence of a flat band for all values of
A, t can be determined using the S-matrix techniques devel-
oped in Refs. [18,49].

C. Larger degrees of freedom per unit cell

Next we examine orbital frustration in a model of four
degrees of freedom per site on a primitive square lattice. We
take the on-site potential to be the spin-spin like interaction
described in Eq. (29) with Ao > 0. Any terms in the intercell
Hamiltonian proportional to the allowed terms of Eq. (34) lead
to orbital frustration in the J = 0 multiplet of states. As an
example, here we take the nearest-neighbor intercell hopping

(| H e ()| B) = t (k) (0y ® 02 )aps (55)

where fs(k) = 2t[cos(k.a) + cos(kya)]. The eigenvalues to
lowest order in ¢ are

2
£7_0(k) ~ —3hg — Af—)m[fs(k)]z,

e)_ (k) ~ ro —t fs(k),

2
2 k)~ A +t— 0P,
e7_1(k) ~ o 4A0[fs( )l

e3_ (k) ~ rg +tfs(k). (56)

We see orbital frustration in the J = 0 multiplet marked by
the vanishing of the order ¢ correction to the band energies
of H/  and the vanishing of Eq. (33). While in the J =1

intra
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Lattice L?n (iFCI:II Intra-site Potential Band Structures 7! or (k)
b (c) d r M X r (e)
@ square | ) 3 @ Allowed:
Two Effective |Hintra = Ao Z 0; Q05 1 ]' W~t . R
S| =R | ZELE
J=1 = Forbidden:
SARE" S A orwidien
@@ a-u | e
=0 | =" T Ve~ .06,
r M X r
(h) i '
)Triangular © . 0 r K M r (J)A"Owed:
EffectiveS = 1/2 I:I — )\ 13 . S, — R
and intra — “\so . )\1 X a'z
EffectiveL =1 — “
3 )\5 ®F
N=6=3x2 J=3/2(= ¢ A~ )\ ’
= ~ Aso
A =3, w ! \ Forbidden:
B A
J=1/2| AT We~so| Awe,
r K M r

FIG. 5. Examples of orbital frustration in two multiorbital two-dimensional models. (a)-(e) Square lattice model (a) with two effective
spin-1/2 degrees of freedom per unit cell (b) with intrasite potential splitting the orbitals into J/ =1 and J = 0 multiplets (c). (d) Band
structure in the presence and absence of orbital frustration for intercell kinetic couplings shown in (e) with r = 0.1X,. (d) In the presence of
allowed terms (solid lines) the J = O multiplet is frustrated and has a bandwidth Wy ~ t2 /Ao, while in the presence of the forbidden terms in
(e) orbital frustration is spoiled in both multiplets leading to bandwidths W ~ ¢. (f)—(j) Triangular lattice model with effective L = 1 orbital
and effective S = 1/2 spin degrees of freedom per unit cell (g) coupled by an intrasite potential splitting the degrees of freedom into aJ = 3/2
and J = 1/2 multiplet structure (h). (i) Band structure in the presence and absence of orbital frustration with # = 0.1A,. In the presence of
allowed terms in (j) the J = 1/2 multiplet is frustrated and has bandwidth Wy ~ 2 /A, [solid lines in (i)], while in the presence of forbbiden
terms in (j) orbital frustration is spoiled in both multiplets [dashed lines in (i)] leading to bandwidths W ~ t.

multiplet
0 —i/vV2 0
W= = fstoifv2 0 iV2 (57)
0 —i/v2 0

whose eigenvalues are +1 and 0. The zero eigenvalue marks
the existence of orbital frustration in &7_, (k), while the eigen-
values 1 determine the absence of orbital frustration in
&)_,(k) and &3_, (k) [see Figs. 5(a)-5(¢e)].

As shown in Sec. V B to achieve orbital frustration in both
the J/ = 1 and J = 0 multiplets the intercell kinetic hopping
needs to be proportional to some linear combination of the
matrices in Eq. (39). As an example, consider

H, . (k) =t fs(k)(S1 + S3)
- %fs(k)(ﬁx ®6. — 6. ®6,).

The eigenvalues to leading order in ¢ are

(58)

2
gj=0 & —3ko — ﬁ[fs(k)]z,
5}:1 = Ao,

2
8]:2 = )\'09
2

€3~ Ao+ ;—k[fs(k)]z. (59)

In this special case the matrix W{;’" (u?|l§i’mer|u?’) has
two zero eigenvalues whose eigenvectors are linear combina-
tions of states in the J/ = 1 multiplet. This is true for any linear
combination of §; and D; and will lead to complete orbital
frustration where two bands in the multiplet are completely
unperturbed by ﬁi;ler(k) and as such remain completely flat
across the Brillouin zone in the presence of ﬁi’mer(k).

Lastly we consider a triangular lattice with an effective
spin-1/2 and effective spin-1 degree of freedom coupled by
the on-site spin-orbit potential described in Eq. (16) (see
Fig. 5). For simplicity we take an intercell potential of the
form

1 (60)

H o) B) = frk)(tizh ® 6, + 15145 ® 6, )up
with

X

fr(k) = 2cos(kya) + 4 cos (?kﬂ) cos <k7a)’ (61)

where we have chosen two particular kinetic couplings from
Eq. (41). As such, W/=1/2 = 0 and W/=3/2 + 0 and there will
be orbital frustration in the J = 1/2 multiplet of bands, but
not the J = 3/2 multiplet. This is reflected in the eigenvalues
of the full Bloch Hamiltonian. For example, if we take #;3 =
ts1/2 =1t/3 and Ay, > O the eigenvalues to leading order in ¢
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are

2 2
3}=1/2(k) ~ —2hso — L[fT(k)]z,

1412

2
T < U@l

53:1/2(") N —2hso —
5}:3/2("7) R Aso — ffT(k)

83:3/2("7) ~ )Vso - fT(k)

53:3/2("7) R Aso +

f
ffr(k)

&3/ (k) ~ dgo + —=fr (k).

ﬁ

The leading-order contribution to the eigenvalues of the
J = 1/2 multiplet are of order #>/A marking the presence of
orbital frustration, while in the J = 3/2 multiplet the leading
order in ¢ is linear for all eigenvalues. Figure 5(i) shows the
band structure in the limit of r > X along the high-symmetry
lines of the Brillouin zone in the presence and absence of
spin-orbit assisted orbital frustration.

VII. SYMMETRY CONSIDERATIONS

The symmetry of the system further constrains the allowed
intercellular hopping terms that can appear in H. lmer(k) Here
we present a model of nearest-neighbor interacting spin-1/2
p orbitals on a square lattice whose degrees of freedom in
a unit cell are coupled by a large intracellular spin-orbit in-
teraction Hl’ntra = AsoL - S. As described in Sec. III the strong
intracellular potential will split the degrees of freedom into a
twofold degenerate effective / = 1/2 multiplet and a fourfold
degenerate effective J = 3/2 multiplet.

In Sec. VC we showed the allowed matrix structure in

lmer(k) that would lead to an orbital frustrated J = 1/2
multiplet; however, the square lattice contains additional sym-
metries that if preserved put restrictions on A . (k). Each
site has four nearest neighbors: two that form bonds in the
X direction and two that form bonds in the y direction. The
symmetries O of interest leave the bond vector from site R; to
R;, R; — R;, invariant [O(R; — R;) = (R; — R;)]. This puts
constraints on the values tf‘.ﬁ via

2 (Ot =

Y

12,0,5) = 0. (62)

For the x bonds these symmetries are mirror z, M, about
the material plane containing the bond vectors and mirror y,
M,, about the plane intersecting the bond. In the local orbital
basis spanned by the indices «, B the symmetry operators in
Eq. (62) can be written as

(M) = (I3 + (1 — v/328)/3]1 ® —i0y )ag,
(Map = (1 ++3h8) ® —i0)up. (63)

We note that twofold rotations along the bond axes C,
satisfy Cp, = M, M. The allowed hopping in the y direction
can be determined by a fourfold rotation about the z axis. We
further constrain the Hamiltonian by assuming time-reversal

symmetry T =

operator.
This leads to six independent hopping parameters

(ts1, ts2, ts3, ts4, Ip1, Ip2 ) Whose Bloch Hamiltonian in the ba-

sis (1px, M), 1Py, 1) P2 1)y 1Pxs 4)5 IPxs 4D |Pxs 1)) we write
as

lUy , where K is the complex conjugation

Hp (k)> (64)

! HS (k )
H . (k)= ,
ner () <[HD W1 H; k)
where the S and D denote couplings between same and differ-

ent spin characters. Here

F(s1,ts2)  iG(tsa) 0
Hg(k) = | —iG(ts4)  F(ts2,151) 0 (65)
0 0 G(ts3)
and
0 0 F(tp1,tp2)
Hp(k) = 0 0 iF (tp2, tp1)
—F(tp1,tp2) —iF (tp2, tp1) 0
(66)
with
F(t1, 1) = 2[t; cos(ky) + 12 cos(ky)],
G(t) = 2t[cos(ky) + cos(ky)]. (67)

To derive the constraint for orbital frustration in the J =
1/2 multiplet we construct WJ 172 using the eigenfunctions

of H .. = oL - S which take the same form as those given

in Eq. (14). We find that Wijj:'/ % vanishes when the following
condition is satisfied:

2(tpt +tpa +1tsa) — (ts1 + 152 +153) = 0. (68)

If Eq. (68) is satisfied the degrees of freedom of the ef-
fective J = 1/2 multiplet will exhibit orbital frustration and
disperse with a narrow bandwidth of order 12 /,.

Figure 6 shows the band structure for a system in the
absence and presence of spin-orbit assisted orbital frustration.
The solid lines correspond to a system where Eq. (68) is
satisfied and for which the degrees of freedom in the effective
J = 1/2 multiplet are frustrated leading to narrowly dispers-
ing bands of bandwidth ¢?/A,. The dashed lines correspond
to a system in the absence of spin-orbit assisted orbital frus-
tration for which the constraint in Eq. (68) is not satisfied and
for which both the effective J = 1/2 and J = 3/2 multiplets
disperse with bandwidth W ~ t.

VIII. CONCLUSION

Spin-orbit assisted orbital frustration is a new route to en-
gineer and search for flat-band systems in a variety of physical
settings. Here we have presented some simple flat-band mod-
els on 1D and 2D lattices with a varying number of degrees
of freedom per unit cell and with different types of intracell
potentials that mix and hybridize these degrees of freedom.
Recent work has used density functional theory to search
and catalog over 2000 candidate flat-band materials [18]. It
is to be seen whether or not some of the proposed materials
exhibit spin-orbit assisted orbital frustration. We propose that
by engineering flat bands via the inspired design principle
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FIG. 6. Spin-orbit assisted orbital frustration in a model of
nearest-neighbor interacting spin-1/2 p orbitals on a square lattice
whose degrees of freedom in a unit cell are coupled by a large
intracellular spin-orbit interaction Hiwa = ML - S. Band structure in
the presence of orbital frustration (t5; = 55 = 53 = 0.1, ts4 = 0,
tp1 = tpa = 0.075X,, solid lines) where the degrees of freedom of
the effective J = 1/2 multiplet (orange) are frustrated. Dashed lines
correspond to a system with g =t = 53 = 0.1X, ts4 = 0, and
tp1 = —tpp = 0.15),, where spin-orbit assisted orbital frustration is
absent and both the effective / = 1/2 and J = 3 /2 multiplet disperse
with bandwidths W ~ . Note that due to Kramers degeneracy en-
dowed by time-reversal and inversion symmetries all bands shown
are twofold degenerate.

laid out above one can exploit the nature of how these flat
bands arise to minimize bandwidths and flatness ratios in a

highly controlled manner and to circumvent the difficulties of
exploring the innumerably large phase space of stable material
compounds.

Highly tunable platforms, such as ultracold atoms, pho-
tonic crystals, and quantum circuits could provide a platform
to realize the models presented above. Due to the narrow
band behavior of these system’s multiplets, interactions and
nonlinearities could play a fundamental role in determining
the nature of the ground and excited states of these systems.
It has been shown in a model of d orbitals on a honeycomb
lattice that spin-orbit assisted orbital frustrated bands give rise
to a purely Kitaev spin liquid in the presence of interactions
[33]. These models can serve as a platform for determining
the nature of other strongly interacting states of matter that
could arise in these highly frustrated flat-band systems in the
presence of interactions. In doing so the study of spin-orbit
assisted orbital frustration can be used to understand the rela-
tionship between orbitally frustrated flat bands, interactions,
and exotic strongly correlated states of matter.
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