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Inaflat band superconductor, the charge carriers’ group velocity v is extremely slow.
Superconductivity thereinis particularly intriguing, being related to the long-standing
mysteries of high-temperature superconductors' and heavy-fermion systems?. Yet the
emergence of superconductivity in flat bands would appear paradoxical, as a small v;
inthe conventional Bardeen-Cooper-Schrieffer theory implies vanishing coherence
length, superfluid stiffness and critical current. Here, using twisted bilayer graphene’®”,
we explore the profound effect of vanishingly small velocity in a superconducting
Dirac flat band system® ™, Using Schwinger-limited non-linear transport studies'*,
we demonstrate an extremely slow normal state drift velocity v, 1,000 m s for filling
fraction vbetween-1/2 and -3/4 of the moiré superlattice. In the superconducting state,

the same velocity limit constitutes a new limiting mechanism for the critical current,
analogous to a relativistic superfluid®. Importantly, our measurement of superfluid
stiffness, which controls the superconductor’s electrodynamic response, shows
thatitis not dominated by the kinetic energy but instead by the interaction-driven
superconducting gap, consistent with recent theories on a quantum geometric
contribution®'2, We find evidence for small Cooper pairs, characteristic of the

Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover

719 with an

unprecedented ratio of the superconducting transition temperature to the Fermi
temperature exceeding unity and discuss how this arises for ultra-strong coupling
superconductivity in ultra-flat Dirac bands.

Figure 1a displays the zero-bias longitudinal resistance R versus gate
voltage V,,, (bottom axis) and filling fraction v (top axis) for twisted
bilayer graphene (tBLG) device D1 with twist angle 6=1.08 + 0.02° at
zeromagnetic field B= 0.Sharp peaks emerge at carrier densityn=0,
-1.4,-2.2and -2.8 x10*cm?, corresponding to v =0, -1/2, -3/4 and
-1, respectively, in agreement with previous works®?*?!, For
-5/8 <v<-1/2, superconductivity is observed. The device displays
one-sided Landau fans and resetting of the Hall resistance at v=-1/2
(Extended Data Fig. 1), which are signatures of the so-called ‘Dirac
revival®?°%, where the effective charge density 7 crosses zero, and the
Fermi level again aligns to a Dirac point. Hence, in the following i1 is
measured from v=-1/2, as confirmed by Hall density measurements
(Extended DataFig. 2). Alldata are taken at temperature 7=0.3 Kunless
otherwise specified.

Normal state: Nonlinear transport and low velocity

We first examine the device’s non-linear transportin the normal state,
obtained at B=0.2T. Figure 1b,c plot dV/d/ versus /i and bias cur-
rent density/, displaying a ‘bell’-like feature. The differential resist-
ance is low (less than or equal to 200 Q) and constant at small bias

(blue region), but increases dramatically to a pronounced peak ata
critical current/,, before settling to a high-resistance state (5-7 kQ,
green region). For -1/2 <v<-5/8, J., increases almost linearly with
increasing hole doping. Similar critical current-like behaviourindV/d/
has recently been observed in tBLG with 8=1.23°, in graphene/BN
superlattices, and in graphene constrictions'. The peaks arise from
the saturation of the charge carriers’ normal state drift velocity to
avelocity v, limited by the band structure; at larger current bias,
new charge carriers are generated by the Schwinger mechanism/
Zener-Klein tunnelling’?% facilitated by graphene’s gapless Dirac
spectrum, interband tunnelling creates electron-hole pairs and
produces a drop in dV/d/"**?2 In a perfectly linear dispersion with
energy E = hu:k, where kis the wavevector and i is the reduced Planck’s
constant, v, = v.. When the band flattens away from the Dirac point as
expected for tBLG at higher doping, v, is aweighted average of charge
carriers’ velocities and remains close to the Fermi velocity v, thereby
providing a characteristic measurement of the band velocity. Using
these Schwinger-induced features, we measured v, experimentally
foranumber of devices near charge neutrality, and plotted the values
together with previously measured v; in literature>*?*** versus 0
(Fig. 1e). Evidently, near the charge neutrality point, the measured
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Fig.1|Normalstate transport of tBLG with #=1.08°atB=0.2T and
T=0.3K (unless specified otherwise). a, Log plot of longitudinal resistance
Rversus V,,, (bottomaxis) and filling fraction v (top axis) at B=0. The shaded
regionistherange of density that we focus on.b-c¢,dV/d/ (J, 1) inkQ, and line
tracesatdifferent7i.d, Extracted v, versusi. e, Plot of Fermivelocity versus twist
angle, for various methods of measurement and from literature. Squares:
measured by Shubnikov de Haas (SdH) oscillations; upright triangles: quantum
Hall data; star: from chemical potential versus density; inverted triangle: from
capacitance;circles: from Schwinger mechanism. Coloursindicate datasource
fromvarious references. Red: ref. ?%; purple: ref. % orange: ref.?*; green: ref. ;
blue: datafrom presentstudy. Dashed lines are fits to datav=|a(6-6y,)|, where

v, values are consistent with other methods of vy measurement, con-
firming the results of ref. .

Having tested the non-linear transport technique for measuring the
characteristicband velocity, we apply it for-1/2 <v<-5/8indevice D1.
Strikingly, near half-filling, /., = 70-500 nA pm, more than two orders
of magnitude smaller than that reported previously, indicating that
Ois very close to the magic angle 6y,. Usingv,, =/ /fie, where eis elec-
tron charge, we obtain v, =~ 700-1,200 m s (Fig. 1d, left axis). This
extremely slow velocity is reduced from vy in monolayer graphene
by three orders of magnitude, indicating a small Fermi energy,
E;: = hv,k:~0.1 meV, at7=10"cm™, where k; is the Fermi wavevector
oftheelectrons, constituting the flattest minibands reported to date.
Thisis further confirmed by T-dependent measurements: when k; T'is
comparable to the bandwidth, where k; is the Boltzmann constant,
thermal excitation of electron-hole pairs smears the transition from
regular to Schwinger-dominated transport, suppressing the dV/d/
peaks™ (Fig. 1f and Extended Data Fig. 3). Our band structure calcula-
tions verify that v; ~1,000 m s is reached at mini-Dirac points in
devices with §=1.08° (Fig.1g,h).

The above estimate of E; is justified by v, being an average of the
band velocity over the relaxed Fermi surface in the moving frame of the
non-equilibrium current-carrying state, and confirmed by anin-depth
analysis of a realistic tBLG band structure that demonstrates at most
amodest (30%) deviation of v, from v (Extended Data Figs. 4 and 5).
Notably, the velocity near half-filling is characteristically much lower
than that near charge neutrality, consistent with previous works>**,
The astonishingly slow velocity observed is likely associated with 8
being extremely close to 6,,; in principle, even slower velocity (downto
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themoiré period a=4.6 x10° ms™ per degree (°) and the magic twist angle
6ya=1.15° showing the general agreement among the different measurement
techniques. The purpleinverted triangle is excluded fromthefitdueto the
reported sensitivity of the capacitance datato geometric capacitance, aswell as
itsclear positionas anoutlier.f,dV/d/(J, T) andline traces at /i=-1.75 x10" cm 2,
showingthe smearing of the peaks with temperature. Line traces (right axis) are
takenat7=0.34K,2K,3K,4K,5Kand 5.8 K, respectively. g-h, Computed band
structure of tBLG with #=1.08°and v, ~1,000 m s™ near the mini-Dirac points.
Only onespin-valley species is shown for simplicity. In h, the dashed line
correspondstov=0,andthered dots denote the mini-Dirac points.

vr = 0) canbereachedif @is exactly O,,,. While disorder such asangular
domains, impurities and strains might be present, the low normal state
resistivity indicates that such disorder does not dominate transport
and cannot possibly give rise to this extremely slow velocity (see Sup-
plementary Information).

Violation of BCS relations

After establishing the ultra-flat band, we now focus on transport data at
B=0.Superconductivity isobservedat-3.5< /i< 0.3 x 10" cm™, witha
characteristicdomeinthe 7-7iplane (Fig. 2a,b). Intwo dimensions (2D),
the superconducting transition is a Berezinskii-Kosterlitz-Thouless
transition, driven by vortex-anti-vortex pair proliferation above a criti-
cal temperature T.>?. Empirically we define T to be the temperature
at which R first exceeds 20% (50%) of the normal state resistance at
zero bias, which reaches approximately 2.2 K (3.0 K) at the top of the
dome, 7i=-1.8 x 10" cm, taken to be the optimal doping point. This
isamong the highest reported T for tBLG. Following the convention
of cuprates, we denote regions with charge density to the right (left)
of optimal doping as underdoped (overdoped).

Similarly, a superconducting dome is observed versus B and 7
(Fig.2c,d), where the upper critical magnetic field B, reaches as high as
around 0.1 Tatoptimal doping (Fig. 2e, left axis). Thus, the superconduct-

P9
21B¢)
ing, where @,is the flux quantum, and increases to hundreds of nmwhen
Aiapproaches half-filling or the von Hove singularity (Fig. 2e, right axis).
These values of T, B, and £are similar to those in prior reports*®202728,

ing coherencelength&= isapproximately 55 nm at optimal dop-
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Fig.2|Zero-biastransportdataatB=0.a-b,R(T, /i) inkQshowing the
superconducting dome (dark blue), and line traces R (T) at different /i
(in10" cm™).c-d, R (B, A) at T=0.3K, and line traces at different Ai. ¢, Critical
magnetic field B.and superconducting coherence length { versus 1.

Fromthese £and velocity measurements, several fundamental BCS
relations are clearly invalidated. For example, the pairing gapis given
by 4 = Avy/€. Using v, = v = 1,000 m s as a characteristic velocity and
&=55nm at optimal doping, 4/kgT. is found to be around 0.05, far
smaller than the ratio of 1.75in conventional superconductors. Sim-
ilarly, Pippard’s argument using the uncertainty principle to obtain
§=Ax= % yields £ = 2.6 nm at optimal doping, much smaller than
that measured from B, data, or the expected lower bound given by
the characteristic interparticle spacing. Another fundamental quan-
tity is the superfluid stiffness D, that determines the superconductor’s
electromagnetic response. Conventionally, D,(T) = e2n(T)/m* where
n,is the superfluid density and m*is the effective mass of carriers.
Using the simple approximation m*= hk./v,, where k.= /27 is the
Fermi wave vector (the factor of 2 arises from the twofold quasipar-
ticle degeneracy near v =-1/2 (refs.>***?)), and assuming n,(0) = Ai,
we find D,(0) = 10° H™ at optimal doping. Since D, yields an upper
bound of Berezinskii-Kosterlitz-Thouless transition through the
Nelson-Kosterlitz criterion?

r’D0) _ 8
kT, T

)]

our estimated D,(0) thusyields 7. < 0.05 K at optimal doping, far below
the observed T, =2.2 K. We emphasize that the arguments presented
above are based on order-magnitude estimates, and will not be affected
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evenif v, is reduced from v by a factor of 2, whereas our calculations
show that v, and vy agree within 30% over the relevant density range
(Extended DataFig. 5). Therefore, all these invalidated equations indi-
cate that the flat band superconductivity is markedly different from
the conventional (BCS-like) behaviour.

Superconducting state: critical current

We now focus on non-linear transport in the superconducting state.
Figure 3a plots dV/dl versus/and 7i. For |fi| > 4.0 x 10" cm 2, the dV/d/
peaks areidentical tothoseat B=0.2 T (Fig.3b). In the superconduct-
ing state, the same ‘bell-like’ features persist, with almost identical
outlines of critical current density as in Fig. 1b. However, two impor-
tant features differ in the superconducting and normal states. First,
throughout the underdopedregion, the high-bias peaks are extremely
sharp, and they are suppressed at asmall B. We therefore identify these
very sharp peaks as corresponding to the superconducting critical
current density /... Surprisingly and importantly, /., =/, for this under-
doped region—that is, the peak positions are almost identical in both
the superconducting and normal states (Fig. 3¢,d). Second, at higher
doping (71 < -2.0 x 10" cm™), the dV/d/ peak bifurcates—the outer peak
hasasimilarlocationand amplitude asthatinthe normalstate; theinner
peak occurs at smaller current density and disappears at asmall B, thus
itslocationisidentified as /., (Fig. 3e)./, decreases rapidly with increas-
ing doping in this overdoped region, vanishing at /i ~ -3.8 x 10" cm ™

Figure 3f plots/.and/,, as red circles and blue circles, respectively.
The bifurcation of /_, and J in the overdoped regime suggests that
two distinct mechanisms limit the superconducting critical current,
while their coincidence in the underdoped regime indicates that the
supercurrent is regulated by the same current-limiting mechanism
inthe normal state, namely the band velocity limit in a Dirac system.

Conventionally, /., is limited by the depairing condition**—a super-
current with uniform velocity v, shifts the energy of quasiparticle exci-
tations by fikzv,, and superconductivity is destroyed when this energy
shift exceeds 4, yielding

— A_ akBTc
jcs—nsehkF—nse ke 2)

where n, = fiatlow temperatures, and 4 = ak; T.. Assuming & = 2 across
the entire doping range, based on prior parallel field and scanning
tunnelling spectroscopy studies**"*2, we find that the depairing critical
current obtained from equation (2) (Fig. 3f, dotted black curve) is at
least an order of magnitude higher than the measured /...

Now we consider the new limiting mechanismto the supercurrent—
thatis, the vanishingly small band velocity. The depairing conditionin
aconventional superconductor implicitly assumes that (1) the energy
shift ~kzu;represents asmall perturbation of the Fermisea, and (2) the
band dispersion is quadratic, so that there is no saturation limit to v,
(Fig. 3g). However, neither of these assumptions applies in tBLG with
flat Dirac minibands. In a gapless Dirac spectrum, while the conden-
sate’smomentum and velocity are proportional at small momentum,
the velocity saturates to the band velocity v; at large momentum, as
illustrated in Fig. 3h-j. As Jincreases from zero, the order parameter
phase gradient V¢ continuously grows, while v, asymptotically
approaches v;. This is analogous to the acceleration of a particle in
special relativity, where the relativistic mass continuously increases
while its speed asymptotically approaches the speed of light. Once
Ve=1/§ superconductivity is destroyed, and v, = v Larger currents
are then enabled via the Schwinger mechanism.

Intheunderdoped regime, as k; =< vriis very small, such velocity satu-
rationis expected to occur before the depairing limit; in the overdoped
regime, however, 4 diminishes while k; increases, and the depairing
condition equation (2) becomes limiting. A full theoretical treatment
of/..isbeyond the scope of the work. Nevertheless, asitis determined
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Fig.3|Nonlinear transportdatainthesuperconductingregime.a,dV/d/(J, 1)
inkQ.Thedottedline outlines the superconducting region for/>0.b-e, dV/d/
(J)atB=0and B=0.2T,and different densities (/i labelled in units of 10 cm™),
respectively. f, Extracted critical current density in superconducting (blue)
and normal (red circles) states. The black dotted lineis calculated using the
depairing condition equation (2), and green dotted line using equation (3) by
takingboth depairingand velocity saturationinto account.g, Schematic of

by the smaller of these two limits, we phenomenologically write the
effective velocity as

-1
a4 3
vi=u; +[hkF] (3)

and calculate/ = fiev. The green dashed line in Fig. 3f shows the result-
ing curve, in reasonable agreement with the experimental data, thus
confirming the presence of both conventional and unconventional
limits to supercurrent density in magic angle tBLG.

Quantum geometry and superfluid stiffness

The observed/ also enables an estimation of D; in this flat band super-
conductor. Since conventional techniques of measuring D,cannot be
applied to mesoscopic devices, we extract D, from our databy relating
D,and the gauge invariant momentum, p = AV¢ - 2eA, to the supercur-
rent J= g—;p, where @ is the phase of the superconducting order para-
meter and A is the vector potential. The vortex core radius, which is
characteristically & is determined by the condition where the circulat-
ing current density reaches its critical value /> (Fig. 4a inset). Using
[Vpl=1/, we obtain

2T':jcs §
®,

D(0)= 4)

where @, = h/2eisthe flux quantum. The extracted D,(0) using experi-
mentally measured/.and £follows a dome-like behaviour with a maxi-
mum of about 5 x 10" H (solid red line in Fig. 4a), far larger than the
conventional estimate (black dotted line), while also exhibiting a maxi-
mum, where the conventional estimate is monotonic indensity. Putting
this value into equation (1) yields 7. = 0.6 K without free parameters.
Thoughlower than the measured 7.=2.2 Kat optimal doping, its agree-
ment within the same order of magnitude is reasonable, particularly
considering the model’s simplicity.
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Fermienergy shiftinaconventional superconductor with a quadratic
dispersionand A4 << Ei. h-j, Schematics of Fermienergy in a Dirac band with
smallvpin the limits of /= 0, small/and large/near velocity saturation,
respectively. Here 6kisthe changein the average momentum of the charge
carriersbetween zero andfinite/.Ing-icharges condense below the
superconducting gap 4. For simplicity of illustration, 4 and thermal smearing
ofthe charge distributionare not shown.

To understand the measured D, we turn to recent insights from mean
field theories® * and exact bounds'>** for D, in flat band systems. Here
the conventional D,contribution from band dispersionis absent, consist-
ent with the small experimental estimate presented above. Instead, the
diamagnetic response is determined by the wavefunctions’ quantum
geometry through the trace of the quantum metric or the non-trivial band
topology for tBLG**°, The scale of D, is set not by the kinetic energy but
by the interactions, thus it scales with 432*°, Absent a theory for the full
density dependence of superconductivity in tBLG thatincludesresets at
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Fig.4|Superfluid stiffness and characteristic temperatures of the flat
band. a, Inset, supercurrent density circulating around a vortex core with
radiusr=§.J~1/r(J-r)atlarger>>(atsmallr<<¢§), withapeak/.atr=¢.

Main panel, superfluid stiffness D, versus 7i. The red line is calculated from
equation (4) using experimentally measured/.and §. The black dotted line is
calculated using the conventizonal expression D(T) =e*n(T)/m* and the green
dotted line using D,(0, ) = be—zA(o, A)withb=0.33.b, kversusiiat T=0.3K.
¢, T.and T; (right axis) and thréir ratio (left axis) versus .
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half-filling, we use dimensional analysis to estimate p,(0, 7i) = b%A (0, 72),
where bisaconstant of order unity. Using 4(0,7) = 2k, T.(77) andb=0.33,
we obtain the green dotted curve in Fig. 4a, which has the same general
dome-shaped curve as that extracted experimentally. This qualitative
agreement thus provides strong evidence that D, in tBLG is dominated
by theinteraction-driven quantum geometric contribution, rather than
the conventional contribution with a scale set by band dispersion.

Strong-coupling superconductivity

Superconductivity in an ultra-flat band system, where interactions are
comparableto orexceed the bandwidth, is expected to be very strongly
coupled. Examining the ratio of pair size, estimated by comparing the
coherencelength {totheinterparticle distance 1/k; (Fig. 4b), we find very
smallvalues of k;{thatbetween1(underdoped) to 10 (overdoped), char-
acteristic of the strong coupling regime of the BCS to Bose-Einstein con-
densation crossover” ™, Thisis also consistent with recent observations
of a pseudogap in scanning tunnelling microscopy studies of tBLG**!,

We next plot T, the Fermi temperature 7 and their ratio versus /iin
Fig. 4c, where T, = hv, k/ks. Remarkably, T./T; exceeds 1for almost the
entire dome; in the underdoped regime T./T; >>1. The large T,/ T; arises
from the very small density /7, due to the reset at half-filling, combined
with the extremely small v,,, so that 7 = 0.24 K even at optimal doping.
Suchlarge values of T,/T; are unprecedented and different from all other
superconductors in the Uemura plot**? of T_ versus T Note that this Ty is
notthe ‘bare’valuerelated to the total density in the eight low-energy bands
of tBLG, but already renormalized by theinteractions thatlead tothereset.

To explain this large T./T; ratio, we note that 7. < T;/8 only for para-
bolicdispersion®, while the general bound on T_is in terms of the opti-
cal sumrule. In a gapless Dirac system, there is finite optical spectral
weight frominterband transitions in the limit of E; coinciding with the
Dirac nodes, thusthe T_is not limited by 7. Moreover, T is vanishingly
small for any flat band superconductor (Dirac or otherwise), butin a
superconducting Dirac system the quantum geometric contributions
to the low-energy optical spectral weight and D, are finite'>**, leading
to a finite T.. We thus understand why tBLG, a flat band Dirac system,
isinanunprecedented regime with 7,/T > 1.

In conclusion, tBLG requires us to face the challenge of ultra-strong
couplingsuperconductivity in flat band Dirac systems, where, naively,
there can be no transport or superconductivity. This work provides
experimental evidence that the superfluid stiffness in ultra-flat band
tBLG is dominated by quantum geometric contributions, calls for a
deeperunderstanding of how superconductivity arises in flat bands with
non-trivial topology****,and how well-known BCS relations are modified
when quantum geometric effects dominate, and points to a possible
new guiding principle for the search for high- T, superconductors.
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Methods

Device fabrication and measurements
Before the stacking process, a selected monolayer graphene flake is
cut with the tip of an atomic force microscope to minimize the intro-
duction of strain originating from flake tearing*®. A poly(bisphenol
A carbonate)/polydimethylsiloxane stamp mounted on a glass slide
is used to pick up, sequentially, the top BN, the first-layer graphene,
the second-layer graphene after a rotation of approximately 1.1-1.2
degrees and the bottom BN. The entire stack is deposited onto an
Si0O, (300 nm)/Si chip. Abubble-free regionis selected, and the device
geometry is defined by electron beam lithography and etching with
CHF,/0O,plasma. The tBLG deviceis coupled to contacts by depositing
Cr/Au (10 nm/90 nm) metal electrodes.

The devices are measured in an He® refrigerator or flowing He gas
cryostat using standard lock-in techniques. The a.c. excitation current
is SnAat17 Hz, with atime constant of 300 ms.

Landaufan over extended range

Extended Data Fig. 1 displays longitudinal resistance R,, over large
ranges of V,,and Bat T= 0.3 K. It displays several characteristics that
are in agreement with earlier works—peaks atv=0, -1/4, +1/2, -3/4
and £1, and one-sided Landau fans. We note that the peak at v=-1/4,
which has been previously attributed to an isospin Pomeranchuck
effect, onsets at a lower magnetic field than prior works***, sug-
gesting a smaller spin stiffness. This may arise from the very narrow
bandwidth and stronger electronicinteractionsin our device, which
favours spontaneous spin polarization, consistent with the Stoner
criterion. However, more work will be required to fully understand
the origin of this behaviour.

In addition to the peaks at quarter- and half-filling, the device also
displays a number of peaks at other fractions. Using the convention
that the full-filling of the minibands correspond to filling factor V = +4,
we identify a number of peaks at fractional fillings of ¥ =-0.5,1.5and
N+1/3, where Nis an integer. Similar peaks are observed in a recent
work from Massachusettes Institute of Technology and Harvard
groups*¢, and are attributed to charge density wave and Cherninsulator
states arising from quantum geometry. Also, the presence of fractional
correlatedinsulating states at N + 1/3filling factors in magic angle tBLG
have been predicted by a recent work®’.

Band structure calculation of tBLG

The moiré band structure of tBLG with a small twist angle is obtained
by using the 2011Bistritzer—-MacDonald model*. In the original model,
the AAand AB interlayer tunnelling amplitudes are ¢, = t,; =110 meV,
and the Fermivelocityisv; =1x10° ms™. Therefined parameter values®
t\,a=79.7 meV, ty; = 97.5meV and v, = 7.98 x 10° m s ' were used here
to take into account the corrugation effect due to lattice relaxation
and to better match the previous experimental observations. In our
model, the momentum cutoffis six times the moiré reciprocal lattice
vectors. Namely, the considered momentum-space area, centred at
the K point in the original Brillouin zone, is 108 times the area of the
first moiré Brillouin zone. Each moiré band is spin degenerate, since
the spin-orbit couplingis negligibly weak in tBLG. The moiré bands at
valley K’ of the original Brillouin zone (not shown) can be obtained by
using the time reversal symmetry.

Relating drift velocity and Fermi velocity

Consider areference frame moving at the drift velocity v, in the x direc-
tion. The Galilean transformation (v; < c) of space-time coordinates
and energy of a massless particle reads as follows: t’=t, E’=E-v, p,,
Yy’ =yandE’=E-v,p, (Fig.3h,i). By assuming thatin the moving frame
electrons have stationary Fermi distribution**—that is, at zero tem-
perature every state below the Fermi energy £{ is filled—the Fermi
surface in the lab frame is thus determined by £¢ =g [p} + p}, - v, p,

wherep,andp,arethexandy components of momentum p. It follows
that the Fermi surface in the lab frame is an ellipse described by
(b~ p)/a*+ pi/b2 =1,where p =, E/(v}-v}) istheellipse centre,
a=y’F/v; and b=YE}/v; are respectively the semi-major and
semi-minor axes, f=v,/vg andy=1/./1 —[32 (Fig. 3i). The area of the
ellipse measures the density of electrons in the conduction band:
n. =L“ipse (d*p)/h*. These yield the relation £/2= n,h°v¥/(ty%). As v,
increases, the momentum-space distribution of electronsis squeezed
along the velocity direction in the lab frame. When v, = v, the ellipse
crosses the Dirac point, and all the electrons in the conduction band
(if n-doped) are pushed to one side of the Dirac cone. (The p-doped
caseis similar). Toincrease the current further, it must involve excita-
tions coming fromthe valence band—thatis, the Schwinger mechanism
needs tobetriggered. Inserting E¢back to a and breveals the geomet-
ric deformation of the Fermi surface: a < y/?and b = y /2, leaving the
area and thus the density invariant. The ellipse is elongated and
becomes aline (eccentricity goes from1to 0) when v, = v¢ (Fig. 3j and
Extended Data Fig. 4). In this limit, all the electrons have p,= O in the
lab frame.

Further consider the realistic case in which the Fermi velocity v¢
decreases as the Fermienergy increases from the Dirac point (where
the crossing bands are perfectly linear) to the van Hove singularity
(where the two Dirac cones meet). In this case, the critical drift veloc-
ity v, (v, =vrintheideal case above) is afunction of the Fermi energy,
or in other words, the carrier density. Without loss of generality,
we model the non-linear energy-momentum dispersion by using
E=E, tanh(vpp. P2 +p§ /Eo), where vy, is the Fermi velocity at the
Dirac point, and £, is a saturation energy at the van Hove singularity.
Following ourbandstructure calculations, we choose vp, =1,000 ms™
and E, = 0.5 meV. Asimilar analysis shows that, as the electron den-
sity n. goes up, the Fermi velocity v; decreases, the effective mass
at Fermi energy m* = hk;/vrincreases and the corresponding critical
drift velocity v, decreases. These results are summarized in Extended
DataFig. 5. Importantly, both v and v, are still in the same order of
magnitude as vpp. In fact, the ratio v,/v; is close to 1 for small densi-
ties and larger than 0.6 for the largest reduced density (defined
fromthe resettled Dirac point at integer electron/hole fillings) rel-
evant to our experiments.

Schwinger mechanism

In high-energy physics, the Schwinger mechanism® describes how the
vacuum decays owing to a large electric field that breaks down the
gap between electrons and positrons. In condensed matter physics,
the massless feature of graphene is favourable for the realization of
the Schwinger mechanism'>***°, Moreover, the chemical potential
can be tuned above/below the Dirac point by charge doping, and a
critical currentis thus needed to deplete the carriers for the elec-
tron-hole pair creation to occur. In tBLG near the magic angle, the
Fermivelocity canbe about 10 times smaller than that of monolayer
graphene, making the Schwinger mechanism easier to observe. How-
ever, interaction may induce a mean-field gap m at the Dirac point,
which needs to be overcome. To assess these effects, weintroduce the
rate for electron-hole creation induced by an electric field E (ref. *?)

_ (gF)*? [ mm*v}
_nzha/zuyzcx gER |’

where ¢ is the electron charge and v; is the Fermi velocity. For a
finite sample of length L and width W, it leads to the following current
density:
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Moreover, the differential conductivity reads:

di q 3 32 1, mmPuiLg”? m2viL
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Form =0, thisyields an/-Vcurve with /= V*?and adifferential con-
ductivity map with dj/dV« 3.

Fermi velocity determined by non-linear transport measurements
and other methods

Tocompare theband velocity measurements obtained from non-linear
transport (vy,7) to those obtained from measuring the quantum Hall
gap atfilling factor 4 (vyy), we first measure vy, r near charge neutral-
ity from the slope of the Schwinger peak features, as shown in
Extended Data Fig. 6a for device D2. This is similar to the method
discussed in the main text. This yields vy =3.6 x10* m's™. We then
measure the temperature dependence of R,, in the filling factor v, = 4
quantum Hall state (Extended Data Fig. 6b). An activation plot of
R, inthev, =4 resistance minimum at density n.,,, = 0.4 x 10" cm™is
shown in the inset. This yields an energy gap of around 2.1 meV for
D2. The velocity is estimated from the nth Landau level energies
for a Dirac spectrum, E,=vg/2ehBn, yielding v, =2.9 x10*ms™
for D2.

Asimilaranalysisyields vy ;=2.7x10* ms™"and vg, =1.1x10*ms™*
for device D3 (Extended DataFig. 6¢,d). Note that while Extended Data
Fig. 6¢c shows mainly adominant upward sloping feature, a negative
sloping feature with aslope of similar magnitude is present (see inset),
though not prominent with respect to the background. Nevertheless,
despite the lower-quality datafrom this device, the measured velocity
isconsistent with the other data points obtained by the various meth-
ods shown in Fig. 1e. Moreover, the agreement of slope magnitudes
between the upward and downward sloping features in Extended
Data Figs. 6a,c and 7 indicate that the contact resistance is not large
enough to cause gate shift artefacts in the devices arising from the
voltage bias. The extracted values of vy, are plotted against vy, for
D2and D3 inExtended Data Fig. 6e. The red dashed line corresponds
to Uit = U, Showing the agreement between the two methods of
velocity measurement.

Figure 1le shows that velocities near the charge neutrality obtained
using the Schwinger mechanism are consistent with previous literature.
Ontheother hand, we note that the velocity measured near charge neu-
trality istypically significantly larger than that measured near half-filling.
Anexampleisshown for device D4 in Extended Data Fig. 7. The velocity
obtained near charge neutrality of 1.7 x 10* m s ' is nearly an order of
magnitude larger than that obtained near half-filling (2.3 x 10°m ™).
This is consistent with previous studies that also show that compared
to charge neutrality, at half-filling a larger mass>* and alower velocity™
are observed.

‘Residual’ resistance

The superconducting region in Figs. 2 and 3 has an apparent resist-
ance of about 20-30 Q, as shown in the left panel in Extended Data
Fig.8a. This, however, should not be taken as the true resistance value
of the superconducting state as these data are taken with a.c. lock-in
measurements optimized for a large dynamic range (up to around
50 kQ), and the 20-30 Q arises from an instrumental offset. A more
accurate measurement of the resistance in the superconducting state
canbeachieved by acquiring slow-sweep d.c. voltage-current charac-
teristics. An exampleis shown for suchacurveat/si=-1.65x10" cm™,
which displays an exceedingly flat segment for / < J; fitting a straight
line to the segment around zero bias yields a slope of 0.2 +1.4 Q,

indicating a zero resistance state within the measurement noise
(Extended Data Fig. 8b).

Non-linear transport at other filling fractions

Extended Data Figure 9 plots non-linear measurements of dV/d/ ver-
sus current density / and filling fraction v over the entire range of full
band filling. Peaks in dV/d/ are observed for filling fractions between
1/2 and 5/8 filling of the moiré superlattice on both hole-doped and
electron-doped regimes, though the dataare not entirely electron-hole
symmetric. Forv>1/2,itappears that the band’s group velocity is higher
than that of the valence band; however, the device characteristics are
too unstable over the said density range for definitive conclusions to
be drawn.

Role of disorder and twist angle domains

The twist angle is determined from the density values of the half-filling
and full-filling peaks, and the charge density is determined from the
capacitancebetweenthe device and the back gate, calculated fromthe
Landau fansand confirmed by geometric considerations. The estimated
error bar of twist angle is less than £0.02°.

Domains with slightly different twist angles are likely to be present
in tBLG devices. However, it is unlikely that the transport charac-
teristics of the device are significantly altered by such domains, for
the following reasons. First, the observed superconductivity of the
device rules out resistive (non-superconducting) regions that are
in series over the channel length. Second, the current limit is the
same in the normal and superconducting states in the underdoped
regime, which, unless the current is distributed over the entire sam-
ple width, is extremely unlikely and becoming nearly impossible to
occurover anextended density range. Third, theoretically, twist angle
domains are not expected to significantly affect transport®. Finally,
and more fundamentally, the resistance of a conductoris R > h/(N2é?),
where Nis the number of quantum channels, N = W/A, where Wis
the constriction width and 1 is the Fermi wavelength; the minimum
resistance corresponding to the ballistic limit. From our measured
normal state resistance of 500 Qatacarrier density of 3 x 10 m™, we
estimate W=1pum, which is the sample width. Any scattering would
only serve to increase the width estimate; therefore, the agreement
of the estimate with the physical width suggests ballistic transport
within the Hall bar.

The meanfree path /ofthe device can be estimated using the relation

2h
degeneracy*. For =560 Q (200 Q) at a carrier density of 1 x 10" m™
(4 x10" m™), /=980 nm (800 nm), respectively. Considering that the
channel length is around 1 um, these estimates also indicate that the
deviceisin the ballistic regime.

a/(ﬁl] = kgl, where gis the two-dimensional resistivity and g = 2is the
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Extended DataFig.2|Hallresistance andinferred charge densities. Left: Symmetrized R, versus density. Right: Measured Hall density compared to inferred
density from capacitance; theredline hasaunit slope to show the agreement between the two.
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-1.7x10" cm?, respectively. The dV/d/ peaks disappear at higher temperatures,
whichis consistent withan ultra-small Fermienergy of -1 meV.
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