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Evidence for Dirac flat band super­
conductivity enabled by quantum geometry

Haidong Tian1, Xueshi Gao1, Yuxin Zhang1, Shi Che1, Tianyi Xu2, Patrick Cheung2, 
Kenji Watanabe3, Takashi Taniguchi4, Mohit Randeria1, Fan Zhang2, Chun Ning Lau1 ✉ & 
Marc W. Bockrath1 ✉

In a flat band superconductor, the charge carriers’ group velocity vF is extremely slow. 
Superconductivity therein is particularly intriguing, being related to the long-standing 
mysteries of high-temperature superconductors1 and heavy-fermion systems2. Yet the 
emergence of superconductivity in flat bands would appear paradoxical, as a small vF 
in the conventional Bardeen–Cooper–Schrieffer theory implies vanishing coherence 
length, superfluid stiffness and critical current. Here, using twisted bilayer graphene3–7, 
we explore the profound effect of vanishingly small velocity in a superconducting 
Dirac flat band system8–13. Using Schwinger-limited non-linear transport studies14,15, 
we demonstrate an extremely slow normal state drift velocity vn ≈ 1,000 m s–1 for filling 
fraction ν between −1/2 and −3/4 of the moiré superlattice. In the superconducting state, 
the same velocity limit constitutes a new limiting mechanism for the critical current, 
analogous to a relativistic superfluid16. Importantly, our measurement of superfluid 
stiffness, which controls the superconductor’s electrodynamic response, shows  
that it is not dominated by the kinetic energy but instead by the interaction-driven 
superconducting gap, consistent with recent theories on a quantum geometric 
contribution8–12. We find evidence for small Cooper pairs, characteristic of the 
Bardeen–Cooper–Schrieffer to Bose–Einstein condensation crossover17–19, with an 
unprecedented ratio of the superconducting transition temperature to the Fermi 
temperature exceeding unity and discuss how this arises for ultra-strong coupling 
superconductivity in ultra-flat Dirac bands.

Figure 1a displays the zero-bias longitudinal resistance R versus gate 
voltage Vbg (bottom axis) and filling fraction ν (top axis) for twisted 
bilayer graphene (tBLG) device D1 with twist angle θ = 1.08 ± 0.02° at 
zero magnetic field B = 0. Sharp peaks emerge at carrier density n = 0, 
−1.4, −2.2 and −2.8 × 1012 cm−2, corresponding to ν = 0, −1/2, −3/4 and 
−1, respectively, in agreement with previous works6,20,21. For 
−5/8 ≤ ν ≤ −1/2, superconductivity is observed. The device displays 
one-sided Landau fans and resetting of the Hall resistance at ν = −1/2 
(Extended Data Fig. 1), which are signatures of the so-called ‘Dirac 
revival’6,20,21, where the effective charge density ∼n crosses zero, and the 
Fermi level again aligns to a Dirac point. Hence, in the following n∼ is 
measured from ν = −1/2, as confirmed by Hall density measurements 
(Extended Data Fig. 2). All data are taken at temperature T = 0.3 K unless 
otherwise specified.

Normal state: Nonlinear transport and low velocity
We first examine the device’s non-linear transport in the normal state, 
obtained at B = 0.2 T. Figure 1b,c plot dV/dI versus ñ and bias cur-
rent density J, displaying a ‘bell’-like feature. The differential resist-
ance is low (less than or equal to 200 Ω) and constant at small bias 

(blue region), but increases dramatically to a pronounced peak at a 
critical current Jcn before settling to a high-resistance state (5–7 kΩ, 
green region). For −1/2 < ν < −5/8, Jcn increases almost linearly with 
increasing hole doping. Similar critical current-like behaviour in dV/dI 
has recently been observed in tBLG with θ = 1.23°, in graphene/BN 
superlattices, and in graphene constrictions14. The peaks arise from 
the saturation of the charge carriers’ normal state drift velocity to 
a velocity vn limited by the band structure; at larger current bias, 
new charge carriers are generated by the Schwinger mechanism/
Zener-Klein tunnelling15,22: facilitated by graphene’s gapless Dirac 
spectrum, interband tunnelling creates electron–hole pairs and 
produces a drop in dV/dI14,15,22. In a perfectly linear dispersion with 
energy E = ħvFk, where k is the wavevector and ħ is the reduced Planck’s 
constant, vn ≈ vF. When the band flattens away from the Dirac point as 
expected for tBLG at higher doping, vn is a weighted average of charge 
carriers’ velocities and remains close to the Fermi velocity vF, thereby 
providing a characteristic measurement of the band velocity. Using 
these Schwinger-induced features, we measured vn experimentally 
for a number of devices near charge neutrality, and plotted the values 
together with previously measured vF in literature3,14,23,24 versus θ  
(Fig. 1e). Evidently, near the charge neutrality point, the measured 
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vn values are consistent with other methods of vF measurement, con-
firming the results of ref. 14.

Having tested the non-linear transport technique for measuring the 
characteristic band velocity, we apply it for −1/2 < ν < −5/8 in device D1. 
Strikingly, near half-filling, Jcn ≈ 70–500 nA μm–1, more than two orders 
of magnitude smaller than that reported previously14, indicating that 
θ is very close to the magic angle θMA. Using v J ñe= /n cn , where e is elec-
tron charge, we obtain vn ≈ 700–1,200 m s–1 (Fig. 1d, left axis). This 
extremely slow velocity is reduced from vF in monolayer graphene  
by three orders of magnitude, indicating a small Fermi energy, 
EF ≈ ħvnkF ≈ 0.1 meV, at ñ = 10–11 cm−2, where kF is the Fermi wavevector 
of the electrons, constituting the flattest minibands reported to date. 
This is further confirmed by T-dependent measurements: when kBT is 
comparable to the bandwidth, where kB is the Boltzmann constant, 
thermal excitation of electron–hole pairs smears the transition from 
regular to Schwinger-dominated transport, suppressing the dV/dI 
peaks14 (Fig. 1f and Extended Data Fig. 3). Our band structure calcula-
tions verify that vF ≈ 1,000 m s–1 is reached at mini-Dirac points in 
devices with θ = 1.08° (Fig. 1g,h).

The above estimate of EF is justified by vn being an average of the 
band velocity over the relaxed Fermi surface in the moving frame of the 
non-equilibrium current-carrying state, and confirmed by an in-depth 
analysis of a realistic tBLG band structure that demonstrates at most 
a modest (30%) deviation of vn from vF (Extended Data Figs. 4 and 5). 
Notably, the velocity near half-filling is characteristically much lower 
than that near charge neutrality, consistent with previous works3,4,14. 
The astonishingly slow velocity observed is likely associated with θ 
being extremely close to θMA; in principle, even slower velocity (down to 

vF = 0) can be reached if θ is exactly θMA. While disorder such as angular 
domains, impurities and strains might be present, the low normal state 
resistivity indicates that such disorder does not dominate transport 
and cannot possibly give rise to this extremely slow velocity (see Sup-
plementary Information).

Violation of BCS relations
After establishing the ultra-flat band, we now focus on transport data at 
B = 0. Superconductivity is observed at −3.5 < ñ < 0.3 × 1011 cm−2, with a 
characteristic dome in the T–ñ plane (Fig. 2a,b). In two dimensions (2D), 
the superconducting transition is a Berezinskii–Kosterlitz–Thouless 
transition, driven by vortex–anti-vortex pair proliferation above a criti-
cal temperature Tc

25,26. Empirically we define Tc to be the temperature 
at which R first exceeds 20% (50%) of the normal state resistance at 
zero bias, which reaches approximately 2.2 K (3.0 K) at the top of the 
dome, ñ ≈ −1.8 × 1011 cm−2, taken to be the optimal doping point. This 
is among the highest reported Tc for tBLG. Following the convention 
of cuprates, we denote regions with charge density to the right (left) 
of optimal doping as underdoped (overdoped).

Similarly, a superconducting dome is observed versus B and ñ 
(Fig. 2c,d), where the upper critical magnetic field Bc2 reaches as high as 
around 0.1 T at optimal doping (Fig. 2e, left axis). Thus, the superconduct-

ing coherence length ξ =
B

Φ
2π

0

c2
 is approximately 55 nm at optimal dop-

ing, where Φ0 is the flux quantum, and increases to hundreds of nm when 
ñ approaches half-filling or the von Hove singularity (Fig. 2e, right axis). 
These values of Tc, Bc2 and ξ are similar to those in prior reports4,6,20,27,28.

0

1

2

V
el

oc
ity

 (1
05  

m
 s

–1
)

1.0 1.2 1.4 1.6
Angle (º)

10

0

d
V

/d
I (

kΩ
)

–650 650
J (nA μm–1)

ñ = 0 (1011 cm–2)
1.75
3.85
5.95

–650

650

J 
(n

A
 μ

m
–1

)
–8 –4 0

ñ (1011 cm–2)

B = 0.2 T; T = 0.3 K
20

10

0

10

5

0
–500 500

5

1

T 
(K

)

10

5

0

1,500

500
–6 0

g

0.1

2

4
6

1

2

4
6

10

2

R
 (k

Ω
)

–40 0
Vbg (V)

0–1/2–3/4–1
a b c dν

–150

150

E
 (m

eV
)

Gs Gs MsKs K′s

g
3

0

h

n

B = 0.2 T

fe

V
n 

(m
 s

–1
)

ñ (1011 cm–2)

d
V

/d
I (

kΩ
)

Gs Gs MsKs K′s

E
 (m

eV
)

J (nA μm–1)

Fig. 1 | Normal state transport of tBLG with θ =1.08° at B = 0.2 T and  
T = 0.3 K (unless specified otherwise). a, Log plot of longitudinal resistance  
R versus Vbg (bottom axis) and filling fraction ν (top axis) at B = 0. The shaded 
region is the range of density that we focus on. b–c, dV/dI ( J, ñ) in kΩ, and line 
traces at different ñ. d, Extracted vn versus ñ. e, Plot of Fermi velocity versus twist 
angle, for various methods of measurement and from literature. Squares: 
measured by Shubnikov de Haas (SdH) oscillations; upright triangles: quantum 
Hall data; star: from chemical potential versus density; inverted triangle: from 
capacitance; circles: from Schwinger mechanism. Colours indicate data source 
from various references. Red: ref. 23; purple: ref. 3; orange: ref. 24; green: ref. 14; 
blue: data from present study. Dashed lines are fits to data v = |a(θ–θMA)|, where 

the moiré period a = 4.6 × 105 m s–1 per degree (º) and the magic twist angle 
θMA= 1.15º, showing the general agreement among the different measurement 
techniques. The purple inverted triangle is excluded from the fit due to the 
reported sensitivity of the capacitance data to geometric capacitance, as well as 
its clear position as an outlier. f, dV/dI ( J, T) and line traces at ñ = −1.75 × 1011 cm−2, 
showing the smearing of the peaks with temperature. Line traces (right axis) are 
taken at T = 0.34 K, 2 K, 3 K, 4 K, 5 K and 5.8 K, respectively. g–h, Computed band 
structure of tBLG with θ = 1.08° and vn ≈ 1,000 m s–1 near the mini-Dirac points. 
Only one spin-valley species is shown for simplicity. In h, the dashed line 
corresponds to ν = 0, and the red dots denote the mini-Dirac points.
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From these ξ and velocity measurements, several fundamental BCS 
relations are clearly invalidated. For example, the pairing gap is given 
by Δ ≈ ħvF/ξ. Using vn ≈ vF ≈ 1,000 m s–1 as a characteristic velocity and 
ξ = 55 nm at optimal doping, Δ/kBTc is found to be around 0.05, far 
smaller than the ratio of 1.75 in conventional superconductors. Sim-
ilarly, Pippard’s argument using the uncertainty principle to obtain 
ξ ≈ Δx ≈

ħv
k T

F

B c
, yields ξ ≈ 2.6 nm at optimal doping, much smaller than 

that measured from Bc2 data, or the expected lower bound given by 
the characteristic interparticle spacing. Another fundamental quan-
tity is the superfluid stiffness Ds that determines the superconductor’s 
electromagnetic response. Conventionally, Ds(T) = e2ns(T)/m*, where 
ns is the superfluid density and m* is the effective mass of carriers. 
Using the simple approximation m* = ħkF/vn, where k ñ= 2πF  is the 
Fermi wave vector (the factor of 2 arises from the twofold quasipar-
ticle degeneracy near ν = −1/2 (refs.3,6,20,21)), and assuming ns(0) = ñ, 
we find Ds(0) ≈ 106 H−1 at optimal doping. Since Ds yields an upper 
bound of Berezinskii–Kosterlitz–Thouless transition through the 
Nelson–Kosterlitz criterion29

ħ D
e k T

(0)
≥

8
π

(1)
2

s
2

B c

our estimated Ds(0) thus yields Tc ≤ 0.05 K at optimal doping, far below 
the observed Tc = 2.2 K. We emphasize that the arguments presented 
above are based on order-magnitude estimates, and will not be affected 

even if vn is reduced from vF by a factor of 2, whereas our calculations 
show that vn and vF agree within 30% over the relevant density range 
(Extended Data Fig. 5). Therefore, all these invalidated equations indi-
cate that the flat band superconductivity is markedly different from 
the conventional (BCS-like) behaviour.

Superconducting state: critical current
We now focus on non-linear transport in the superconducting state. 
Figure 3a plots dV/dI versus J and ñ. For |ñ| > 4.0 × 1011 cm−2, the dV/dI 
peaks are identical to those at B = 0.2 T (Fig. 3b). In the superconduct-
ing state, the same ‘bell-like’ features persist, with almost identical 
outlines of critical current density as in Fig. 1b. However, two impor-
tant features differ in the superconducting and normal states. First, 
throughout the underdoped region, the high-bias peaks are extremely 
sharp, and they are suppressed at a small B. We therefore identify these 
very sharp peaks as corresponding to the superconducting critical 
current density Jcs. Surprisingly and importantly, Jcs ≈ Jcn for this under-
doped region—that is, the peak positions are almost identical in both 
the superconducting and normal states (Fig. 3c,d). Second, at higher 
doping (ñ < −2.0 × 1011 cm−2), the dV/dI peak bifurcates—the outer peak 
has a similar location and amplitude as that in the normal state; the inner 
peak occurs at smaller current density and disappears at a small B, thus 
its location is identified as Jcs (Fig. 3e). Jcs decreases rapidly with increas-
ing doping in this overdoped region, vanishing at ñ ≈ −3.8 × 1011 cm−2.

Figure 3f plots Jcs and Jcn as red circles and blue circles, respectively. 
The bifurcation of Jcn and Jcs in the overdoped regime suggests that 
two distinct mechanisms limit the superconducting critical current, 
while their coincidence in the underdoped regime indicates that the 
supercurrent is regulated by the same current-limiting mechanism 
in the normal state, namely the band velocity limit in a Dirac system.

Conventionally, Jcs is limited by the depairing condition30—a super-
current with uniform velocity vs shifts the energy of quasiparticle exci-
tations by ħk vF s, and superconductivity is destroyed when this energy 
shift exceeds Δ, yielding

J n e
Δ

ħk
n e

α k T
ħk

= = (2)cs s
F

s
B c

F

where ns ≈ ñ at low temperatures, and Δ = αkBTc. Assuming α ≈ 2 across 
the entire doping range, based on prior parallel field and scanning 
tunnelling spectroscopy studies4,31,32, we find that the depairing critical 
current obtained from equation (2) (Fig. 3f, dotted black curve) is at 
least an order of magnitude higher than the measured Jcs.

Now we consider the new limiting mechanism to the supercurrent—
that is, the vanishingly small band velocity. The depairing condition in 
a conventional superconductor implicitly assumes that (1) the energy 
shift ħk vF s represents a small perturbation of the Fermi sea, and (2) the 
band dispersion is quadratic, so that there is no saturation limit to vs 
(Fig. 3g). However, neither of these assumptions applies in tBLG with 
flat Dirac minibands. In a gapless Dirac spectrum, while the conden-
sate’s momentum and velocity are proportional at small momentum, 
the velocity saturates to the band velocity vF at large momentum, as 
illustrated in Fig. 3h–j. As J increases from zero, the order parameter 
phase gradient φ∇  continuously grows, while vs asymptotically 
approaches vF. This is analogous to the acceleration of a particle in 
special relativity, where the relativistic mass continuously increases 
while its speed asymptotically approaches the speed of light. Once  

φ∇ ≈ 1/ξ, superconductivity is destroyed, and vs ≈ vF. Larger currents 
are then enabled via the Schwinger mechanism.

In the underdoped regime, as kF ∝ √ñ is very small, such velocity satu-
ration is expected to occur before the depairing limit; in the overdoped 
regime, however, Δ diminishes while kF increases, and the depairing 
condition equation (2) becomes limiting. A full theoretical treatment 
of Jcs is beyond the scope of the work. Nevertheless, as it is determined 
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by the smaller of these two limits, we phenomenologically write the 
effective velocity as









v v

Δ
ħk

= + (3)−1
n
−1

F

−1

and calculate Jcs = ñev. The green dashed line in Fig. 3f shows the result-
ing curve, in reasonable agreement with the experimental data, thus 
confirming the presence of both conventional and unconventional 
limits to supercurrent density in magic angle tBLG.

Quantum geometry and superfluid stiffness
The observed Jcs also enables an estimation of Ds in this flat band super-
conductor. Since conventional techniques of measuring Ds cannot be 
applied to mesoscopic devices, we extract Ds from our data by relating 
Ds and the gauge invariant momentum, p Aħ φ e= ∇ − 2 , to the supercur-
rent =

D
e2
sJ p, where φ is the phase of the superconducting order para

meter and A is the vector potential. The vortex core radius, which is 
characteristically ξ, is determined by the condition where the circulat-
ing current density reaches its critical value Jc

33 (Fig. 4a inset). Using 
φ|∇ |≈ 1/ξ, we obtain

D
J ξ

(0) =
2π

Φ
(4)s

cs

0

where Φ0 = h/2e is the flux quantum. The extracted Ds(0) using experi-
mentally measured Jcs and ξ follows a dome-like behaviour with a maxi-
mum of about 5 × 107 H−1 (solid red line in Fig. 4a), far larger than the 
conventional estimate (black dotted line), while also exhibiting a maxi-
mum, where the conventional estimate is monotonic in density. Putting 
this value into equation (1) yields Tc ≈ 0.6 K without free parameters. 
Though lower than the measured Tc = 2.2 K at optimal doping, its agree-
ment within the same order of magnitude is reasonable, particularly 
considering the model’s simplicity.

To understand the measured Ds we turn to recent insights from mean 
field theories8–13 and exact bounds12,34 for Ds in flat band systems. Here 
the conventional Ds contribution from band dispersion is absent, consist-
ent with the small experimental estimate presented above. Instead, the 
diamagnetic response is determined by the wavefunctions’ quantum 
geometry through the trace of the quantum metric or the non-trivial band 
topology for tBLG35–39. The scale of Ds is set not by the kinetic energy but 
by the interactions, thus it scales with Δ8–12,40. Absent a theory for the full 
density dependence of superconductivity in tBLG that includes resets at  
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half-filling, we use dimensional analysis to estimate D ñ b Δ ñ(0, ) ≈ (0, )e

ħ
s

2

2 , 
where b is a constant of order unity. Using Δ(0,ñ) ≈ 2kBTc(ñ) and b = 0.33, 
we obtain the green dotted curve in Fig. 4a, which has the same general 
dome-shaped curve as that extracted experimentally. This qualitative 
agreement thus provides strong evidence that Ds in tBLG is dominated 
by the interaction-driven quantum geometric contribution, rather than 
the conventional contribution with a scale set by band dispersion.

Strong-coupling superconductivity
Superconductivity in an ultra-flat band system, where interactions are 
comparable to or exceed the bandwidth, is expected to be very strongly 
coupled. Examining the ratio of pair size, estimated by comparing the 
coherence length ξ to the interparticle distance 1/kF (Fig. 4b), we find very 
small values of kFξ that between 1 (underdoped) to 10 (overdoped), char-
acteristic of the strong coupling regime of the BCS to Bose–Einstein con-
densation crossover17–19. This is also consistent with recent observations 
of a pseudogap in scanning tunnelling microscopy studies of tBLG31,41.

We next plot Tc, the Fermi temperature TF and their ratio versus ñ in 
Fig. 4c, where TF = ħvnkF/kB. Remarkably, Tc/TF exceeds 1 for almost the 
entire dome; in the underdoped regime Tc/TF >> 1. The large Tc/TF arises 
from the very small density ñ, due to the reset at half-filling, combined 
with the extremely small vn, so that TF ≈ 0.24 K even at optimal doping. 
Such large values of Tc/TF are unprecedented and different from all other 
superconductors in the Uemura plot4,42 of Tc versus TF. Note that this TF is 
not the ‘bare’ value related to the total density in the eight low-energy bands 
of tBLG, but already renormalized by the interactions that lead to the reset.

To explain this large Tc/TF ratio, we note that Tc ≤ TF/8 only for para-
bolic dispersion34, while the general bound on Tc is in terms of the opti-
cal sum rule. In a gapless Dirac system, there is finite optical spectral 
weight from interband transitions in the limit of EF coinciding with the 
Dirac nodes, thus the Tc is not limited by TF. Moreover, TF is vanishingly 
small for any flat band superconductor (Dirac or otherwise), but in a 
superconducting Dirac system the quantum geometric contributions 
to the low-energy optical spectral weight and Ds are finite12,34, leading 
to a finite Tc. We thus understand why tBLG, a flat band Dirac system, 
is in an unprecedented regime with Tc/TF > 1.

In conclusion, tBLG requires us to face the challenge of ultra-strong 
coupling superconductivity in flat band Dirac systems, where, naively, 
there can be no transport or superconductivity. This work provides 
experimental evidence that the superfluid stiffness in ultra-flat band 
tBLG is dominated by quantum geometric contributions, calls for a 
deeper understanding of how superconductivity arises in flat bands with 
non-trivial topology38,39, and how well-known BCS relations are modified 
when quantum geometric effects dominate, and points to a possible 
new guiding principle for the search for high-Tc superconductors.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information, details of author contributions 
and competing interests, and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-022-05576-2.

1.	 Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature 
superconductivity. Rev. Mod. Phys. 78, 17 (2006).

2.	 Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).
3.	 Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene 

superlattices. Nature 556, 80 (2018).
4.	 Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. 

Nature 556, 43 (2018).
5.	 Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 

(2020).
6.	 Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations 

in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
7.	 Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and 

physics of moiré materials. Nature 602, 41–50 (2022).

8.	 Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 
8944 (2015).

9.	 Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional contribution to the 
superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).

10.	 Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted 
bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

11.	 Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and 
Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. 
Rev. B 101, 060505 (2020).

12.	 Verma, N., Hazra, T. & Randeria, M. Optical spectral weight, phase stiffness, and Tc 
bounds for trivial and topological flat band superconductors. Proc. Nat. Acad. Sci. 118, 
e2106744118 (2021).

13.	 Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid 
weight bounds from symmetry and quantum geometry in flat band. Phys. Rev. Lett. 128, 
087002 (2022)

14.	 Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 
375, 430–433 (2022).

15.	 Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).
16.	 Nishida, Y. & Abuki, H. BCS-BEC crossover in a relativistic superfluid and its significance to 

quark matter. Phys. Rev. D 72, 096004 (2005).
17.	 Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature 

superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).
18.	 Randeria, M. & Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein 

Condensation and the Unitary Fermi Gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 
(2014).

19.	 Nakagawa, Y. et al. Gate-controlled BCS-BEC crossover in a two-dimensional 
superconductor. Science 372, 190–195 (2021).

20.	 Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle 
bilayer graphene. Nature 574, 653 (2019).

21.	 Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. 
Nature 582, 203–208 (2020).

22.	 Allor, D., Cohen, T. D. & McGady, D. A. Schwinger mechanism and graphene. Phys. Rev. D 
78, 096009 (2008).

23.	 Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. 
Phys. 15, 1011–1016 (2019).

24.	 Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, 
Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

25.	 Berezinsky, V. L. Destruction of long range order in one-dimensional and two-dimensional 
systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP 32, 
493–500 (1971).

26.	 Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in 
two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181–1203 (1973).

27.	 Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 
1059 (2019).

28.	 Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer 
graphene below the magic angle. Sci. Adv. 5, eaaw9770 (2019).

29.	 Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional 
superfluids. Phys. Rev. Lett. 39, 1201 (1977).

30.	 Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).
31.	 Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. 

Nature 600, 240–245 (2021).
32.	 Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle 

graphene. Science 372, 264–271 (2021).
33.	 Sensarma, R., Randeria, M. & Ho, T.-L. Vortices in superfluid Fermi gases through the BEC 

to BCS crossover. Phys. Rev. Lett. 96, 090403 (2006).
34.	 Hazra, T., Verma, N. & Randeria, M. Bounds on the superconducting transition temperature: 

applications to twisted bilayer graphene and cold atoms. Phys. Rev. X 9, 031049 (2019).
35.	 Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen-Ninomiya theorem and fragile topology in 

two-dimensional systems with space-time inversion symmetry: application to twisted 
bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).

36.	 Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile 
topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

37.	 Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. 
Lett. 123, 036401 (2019).

38.	 Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 
(2020).

39.	 Fortin-Deschênes, M. et al. Uncovering Topological Edge States in Twisted Bilayer 
Graphene. Nano Lett. 22, 6186–6193 (2022).

40.	 Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions 
and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, 
eabf5299 (2021).

41.	 Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted 
bilayer graphene. Nature 573, 91–95 (2019).

42.	 Uemura, Y. J. et al. Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, 
and heavy-fermion superconductors shown by penetration-depth measurements. Phys. 
Rev. Lett. 68, 2712–2712 (1992).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2023

https://doi.org/10.1038/s41586-022-05576-2


Methods

Device fabrication and measurements
Before the stacking process, a selected monolayer graphene flake is 
cut with the tip of an atomic force microscope to minimize the intro-
duction of strain originating from flake tearing43. A poly(bisphenol 
A carbonate)/polydimethylsiloxane stamp mounted on a glass slide 
is used to pick up, sequentially, the top BN, the first-layer graphene, 
the second-layer graphene after a rotation of approximately 1.1–1.2 
degrees and the bottom BN. The entire stack is deposited onto an 
SiO2 (300 nm)/Si chip. A bubble-free region is selected, and the device 
geometry is defined by electron beam lithography and etching with  
CHF3/O2 plasma. The tBLG device is coupled to contacts by depositing 
Cr/Au (10 nm/90 nm) metal electrodes.

The devices are measured in an He3 refrigerator or flowing He gas 
cryostat using standard lock-in techniques. The a.c. excitation current 
is 5 nA at 17 Hz, with a time constant of 300 ms.

Landau fan over extended range
Extended Data Fig. 1 displays longitudinal resistance Rxx over large 
ranges of Vbg and B at T = 0.3 K. It displays several characteristics that 
are in agreement with earlier works—peaks at ν = 0, −1/4, ±1/2, −3/4 
and ±1, and one-sided Landau fans. We note that the peak at ν = −1/4, 
which has been previously attributed to an isospin Pomeranchuck 
effect, onsets at a lower magnetic field than prior works44,45, sug-
gesting a smaller spin stiffness. This may arise from the very narrow 
bandwidth and stronger electronic interactions in our device, which 
favours spontaneous spin polarization, consistent with the Stoner 
criterion. However, more work will be required to fully understand 
the origin of this behaviour.

In addition to the peaks at quarter- and half-filling, the device also 
displays a number of peaks at other fractions. Using the convention 
that the full-filling of the minibands correspond to filling factor ν∼ = ±4, 
we identify a number of peaks at fractional fillings of ∼ν  = −0.5, 1.5 and 
N ± 1/3, where N is an integer. Similar peaks are observed in a recent 
work from Massachusettes Institute of Technology and Harvard 
groups46, and are attributed to charge density wave and Chern insulator 
states arising from quantum geometry. Also, the presence of fractional 
correlated insulating states at N ± 1/3 filling factors in magic angle tBLG 
have been predicted by a recent work47.

Band structure calculation of tBLG
The moiré band structure of tBLG with a small twist angle is obtained 
by using the 2011 Bistritzer–MacDonald model48. In the original model, 
the AA and AB interlayer tunnelling amplitudes are tAA = tAB = 110 meV, 
and the Fermi velocity is vF = 1 × 106 m s–1. The refined parameter values49 
tAA = 79.7 meV, tAB = 97.5 meV and vF = 7.98 × 105 m s–1 were used here 
to take into account the corrugation effect due to lattice relaxation 
and to better match the previous experimental observations. In our 
model, the momentum cutoff is six times the moiré reciprocal lattice 
vectors. Namely, the considered momentum-space area, centred at 
the K point in the original Brillouin zone, is 108 times the area of the 
first moiré Brillouin zone. Each moiré band is spin degenerate, since 
the spin-orbit coupling is negligibly weak in tBLG. The moiré bands at 
valley K’ of the original Brillouin zone (not shown) can be obtained by 
using the time reversal symmetry.

Relating drift velocity and Fermi velocity
Consider a reference frame moving at the drift velocity vn in the x direc-
tion. The Galilean transformation (v cF≪ ) of space–time coordinates 
and energy of a massless particle reads as follows: t t′ = , E E v p′= − xn , 
y y′ =  and E E v p′ = − xn  (Fig. 3h,i). By assuming that in the moving frame 
electrons have stationary Fermi distribution14—that is, at zero tem-
perature every state below the Fermi energy E ′F is filled—the Fermi 
surface in the lab frame is thus determined by E v p p v p′ = + −x y xF F

2 2
n , 

where px and py are the x and y components of momentum p. It follows 
that the Fermi surface in the lab frame is an ellipse described by 

p p a p b( − ) / + / = 1x x0
2 2 2

y
2 , where p v E v v= /( − )′x0 n F F

2
n
2  is the ellipse centre, 

a E v= γ ′/2
F F  and b E v= γ ′/F F  are respectively the semi-major and 

semi-minor axes, β v v= /n F and γ β= 1/ 1 − 2  (Fig. 3i). The area of the 
ellipse measures the density of electrons in the conduction band: 

∫n d p h= ( )/e ellipse
2 2 . These yield the relation E n h v γ′ = /(π )eF

2 2
F
2 3 . As vn 

increases, the momentum-space distribution of electrons is squeezed 
along the velocity direction in the lab frame. When vn = vF, the ellipse 
crosses the Dirac point, and all the electrons in the conduction band 
(if n-doped) are pushed to one side of the Dirac cone. (The p-doped 
case is similar). To increase the current further, it must involve excita-
tions coming from the valence band—that is, the Schwinger mechanism 
needs to be triggered. Inserting E ′F back to a and b reveals the geomet-
ric deformation of the Fermi surface: a γ∝ 1/2 and b γ∝ −1/2, leaving the 
area and thus the density invariant. The ellipse is elongated and 
becomes a line (eccentricity goes from 1 to 0) when vn = vF (Fig. 3j and 
Extended Data Fig. 4). In this limit, all the electrons have py = 0 in the 
lab frame.

Further consider the realistic case in which the Fermi velocity vF 
decreases as the Fermi energy increases from the Dirac point (where 
the crossing bands are perfectly linear) to the van Hove singularity 
(where the two Dirac cones meet). In this case, the critical drift veloc-
ity vn (vn = vF in the ideal case above) is a function of the Fermi energy, 
or in other words, the carrier density. Without loss of generality,  
we model the non-linear energy-momentum dispersion by using 
E E v p p E= tanh( + / )x y0 DP

2 2
0 , where vDP is the Fermi velocity at the 

Dirac point, and E0 is a saturation energy at the van Hove singularity. 
Following our band structure calculations, we choose vDP = 1,000 m s–1 
and E0 = 0.5 meV. A similar analysis shows that, as the electron den-
sity ne goes up, the Fermi velocity vF decreases, the effective mass 
at Fermi energy m ħk v* = /F F increases and the corresponding critical 
drift velocity vn decreases. These results are summarized in Extended 
Data Fig. 5. Importantly, both vF and vn are still in the same order of 
magnitude as vDP. In fact, the ratio vn/vF is close to 1 for small densi-
ties and larger than 0.6 for the largest reduced density (defined 
from the resettled Dirac point at integer electron/hole fillings) rel-
evant to our experiments.

Schwinger mechanism
In high-energy physics, the Schwinger mechanism15 describes how the 
vacuum decays owing to a large electric field that breaks down the 
gap between electrons and positrons. In condensed matter physics, 
the massless feature of graphene is favourable for the realization of 
the Schwinger mechanism15,22,50. Moreover, the chemical potential 
can be tuned above/below the Dirac point by charge doping, and a 
critical current is thus needed to deplete the carriers for the elec-
tron–hole pair creation to occur. In tBLG near the magic angle, the 
Fermi velocity can be about 10–3 times smaller than that of monolayer 
graphene, making the Schwinger mechanism easier to observe. How-
ever, interaction may induce a mean-field gap m at the Dirac point, 
which needs to be overcome. To assess these effects, we introduce the 
rate for electron–hole creation induced by an electric field E (ref. 22)

Γ
qE

ħ v

m v
qEħ

=
( )

π
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π
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where q is the electron charge and vF is the Fermi velocity. For a  
finite sample of length L and width W, it leads to the following current 
density:
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Moreover, the differential conductivity reads:

j
V

q

ħ v L
q V

m v Lq
V ħ

m v L
qVħ

j
qV

q V
m v Lq

V ħ

d
d

=
π

3
2

+
π

exp −
π

=
( )

3
2

+
π

.

2 3/2
F
1/2 1/2

3/2
1/2

2
F
3 1/2

1/2

2
F
3

3/2

3/2
1/2

2
F
3 1/2

1/2































For m = 0, this yields an I–V curve with I V∝ 3/2 and a differential con-
ductivity map with j V jd /d ∝ 1/3.

Fermi velocity determined by non-linear transport measurements 
and other methods
To compare the band velocity measurements obtained from non-linear 
transport (vNLT) to those obtained from measuring the quantum Hall 
gap at filling factor 4 (vQH), we first measure vNLT near charge neutral-
ity from the slope of the Schwinger peak features, as shown in 
Extended Data Fig. 6a for device D2. This is similar to the method 
discussed in the main text. This yields vNLT = 3.6 × 104 m s–1. We then 
measure the temperature dependence of Rxx in the filling factor νq = 4 
quantum Hall state (Extended Data Fig. 6b). An activation plot of  
Rxx in the νq = 4 resistance minimum at density nmin ≈ 0.4 × 1012 cm−2 is 
shown in the inset. This yields an energy gap of around 2.1 meV for 
D2. The velocity is estimated from the nth Landau level energies  
for a Dirac spectrum, E v eħBn= 2n F , yielding vQH = 2.9 × 104 m s–1  
for D2.

A similar analysis yields vNLT = 2.7 × 104 m s–1 and vQH = 1.1 × 104 m s–1 
for device D3 (Extended Data Fig. 6c,d). Note that while Extended Data 
Fig. 6c shows mainly a dominant upward sloping feature, a negative 
sloping feature with a slope of similar magnitude is present (see inset), 
though not prominent with respect to the background. Nevertheless, 
despite the lower-quality data from this device, the measured velocity 
is consistent with the other data points obtained by the various meth-
ods shown in Fig. 1e. Moreover, the agreement of slope magnitudes 
between the upward and downward sloping features in Extended 
Data Figs. 6a,c and 7 indicate that the contact resistance is not large 
enough to cause gate shift artefacts in the devices arising from the 
voltage bias. The extracted values of vQH are plotted against vNLT for 
D2 and D3 in Extended Data Fig. 6e. The red dashed line corresponds 
to vNLT = vQH, showing the agreement between the two methods of 
velocity measurement.

Figure 1e shows that velocities near the charge neutrality obtained 
using the Schwinger mechanism are consistent with previous literature. 
On the other hand, we note that the velocity measured near charge neu-
trality is typically significantly larger than that measured near half-filling. 
An example is shown for device D4 in Extended Data Fig. 7. The velocity 
obtained near charge neutrality of 1.7 × 104 m s–1 is nearly an order of 
magnitude larger than that obtained near half-filling (2.3 × 103 m s–1). 
This is consistent with previous studies that also show that compared 
to charge neutrality, at half-filling a larger mass3,4 and a lower velocity14 
are observed.

‘Residual’ resistance
The superconducting region in Figs. 2 and 3 has an apparent resist-
ance of about 20–30 Ω, as shown in the left panel in Extended Data 
Fig. 8a. This, however, should not be taken as the true resistance value 
of the superconducting state as these data are taken with a.c. lock-in 
measurements optimized for a large dynamic range (up to around 
50 kΩ), and the 20–30 Ω arises from an instrumental offset. A more 
accurate measurement of the resistance in the superconducting state 
can be achieved by acquiring slow-sweep d.c. voltage–current charac-
teristics. An example is shown for such a curve at ñ = −1.65 × 1011 cm−2, 
which displays an exceedingly flat segment for J < Jcs; fitting a straight 
line to the segment around zero bias yields a slope of −0.2 ± 1.4 Ω, 

indicating a zero resistance state within the measurement noise 
(Extended Data Fig. 8b).

Non-linear transport at other filling fractions
Extended Data Figure 9 plots non-linear measurements of dV/dI ver-
sus current density J and filling fraction ν over the entire range of full 
band filling. Peaks in dV/dI are observed for filling fractions between 
1/2 and 5/8 filling of the moiré superlattice on both hole-doped and 
electron-doped regimes, though the data are not entirely electron–hole 
symmetric. For ν > 1/2, it appears that the band’s group velocity is higher 
than that of the valence band; however, the device characteristics are 
too unstable over the said density range for definitive conclusions to 
be drawn.

Role of disorder and twist angle domains
The twist angle is determined from the density values of the half-filling 
and full-filling peaks, and the charge density is determined from the 
capacitance between the device and the back gate, calculated from the 
Landau fans and confirmed by geometric considerations. The estimated 
error bar of twist angle is less than ±0.02°.

Domains with slightly different twist angles are likely to be present 
in tBLG devices. However, it is unlikely that the transport charac-
teristics of the device are significantly altered by such domains, for 
the following reasons. First, the observed superconductivity of the 
device rules out resistive (non-superconducting) regions that are 
in series over the channel length. Second, the current limit is the 
same in the normal and superconducting states in the underdoped 
regime, which, unless the current is distributed over the entire sam-
ple width, is extremely unlikely and becoming nearly impossible to 
occur over an extended density range. Third, theoretically, twist angle 
domains are not expected to significantly affect transport51. Finally, 
and more fundamentally, the resistance of a conductor is R ≥ h/(N2e2), 
where N is the number of quantum channels, N ≈ W/λ, where W is 
the constriction width and λ is the Fermi wavelength; the minimum 
resistance corresponding to the ballistic limit. From our measured 
normal state resistance of 500 Ω at a carrier density of 3 × 1015 m−2, we 
estimate W ≈ 1 μm, which is the sample width. Any scattering would 
only serve to increase the width estimate; therefore, the agreement 
of the estimate with the physical width suggests ballistic transport 
within the Hall bar.

The mean free path l of the device can be estimated using the relation 

σ k l/ =
ge

h2 F

2
 






, where σ is the two-dimensional resistivity and g = 2 is the 

degeneracy52. For σ ≈ 560 Ω (200 Ω) at a carrier density of 1 × 1015 m−2 
(4 × 1015 m−2), l ≈ 980 nm (800 nm), respectively. Considering that the 
channel length is around 1 μm, these estimates also indicate that the 
device is in the ballistic regime.

Data availability
The data that support the findings of this study are available from the 
corresponding authors on reasonable request.  Source data are pro-
vided with this paper.

Code availability
The code that supports the findings of this study is available from the 
corresponding authors upon reasonable request. 
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Extended Data Fig. 1 | Rxx (Vbg, B) of the device at T = 0.3 K. The numbers on 
the right indicate the filling factors of the peaks (where the full-filling of the 
minibands correspond to filling factors ν∼ = ±4). Using the convention that the 

full-filling of the minibands correspond to filling factor ∼ν  = ±4, we identify a 
number of peaks at fractional fillings of ∼ν  = −0.5, 1.5 and N ± 1/3, where N is an 
integer.



Extended Data Fig. 2 | Hall resistance and inferred charge densities. Left: Symmetrized Rxy versus density. Right: Measured Hall density compared to inferred 
density from capacitance; the red line has a unit slope to show the agreement between the two.
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Extended Data Fig. 3 | Non-linear transport at B = 0 and higher temperatures. 
a–b dV/dI versus J and ñ at T = 5 K, and dV/dI in kΩ versus J at ñ = −1 (blue), −2 (green) 
and −3 (red) × 1011 cm−2, respectively. c–d dV/dI in kΩ versus J and T at ñ ~ −2.8 and 

−1.7 × 1011 cm−2, respectively. The dV/dI peaks disappear at higher temperatures, 
which is consistent with an ultra-small Fermi energy of ~1 meV.



Extended Data Fig. 4 | The shape of Fermi surface in the lab frame for 
various rescaled drift velocity β v v= /n F. Plot of the Fermi surface for various β 
versus x and y momentum components px and py.
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Extended Data Fig. 5 | Theoretical modelling of Fermi velocity vF and the 
critical drift velocity vn. a vF and vn in units of the Fermi velocity at the Dirac 
point vDP, as well as v v/n F, versus electron density ne. b the effective masses at 

Fermi energy, ħk v/F F in theory and ħk v/F n in measurements, in units of the bare 
electron mass m e as functions of the electron density ne.



Extended Data Fig. 6 | Comparison between velocity measured from quantum 
Hall effect, Shubnikov–de Hass oscillations and non-linear transport 
measurements near charge neutrality. a dV/dI versus density n and bias 
current I for device D2 with θ = 1.06º. Peaks due to the Schwinger effect are 
indicated by the red dashed lines. b Rxx versus n at T = 30, 25, 20, 18, 12, 10, 7, 5 
and 2.02 K, respectively (blue to black). Inset: Activation plot of Rxx measured 

in the quantum Hall νq = 4 valley indicated by the arrow in the main panel taken 
at B = 4 T. c–d Same as a–b but for device D3. Inset in c: Zoom-in of same data in 
main panel with background subtracted. Colour scale: black: −1 kΩ; white: 3 kΩ. 
From blue to black, temperatures in d are T = 10, 6, 4, 2.5, 1.8, 1.2, 0.8, 0.4, 0.1 
and 0.03 K. e Plot of vQH versus vNLT for D2 and D3. The dotted line indicates 
vQH = vNLT.
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Extended Data Fig. 7 | Non-linear transport data near charge neutrality  
and half-filling for device D4. a dV/dI (n, I) near charge neutrality. Velocity 
obtained from slope of features near zero density such as shown by the red 
dashed line, yielding vNL = ~ 1.7 × 104 m s–1; averaging the slopes of features over 

four quadrants yields vNL = ~ 1.5 × 104 m s–1. b dV/dI data near half-filling.  
Features indicated by red dashed lines follow nearly equal slopes, yielding 
vNL = 2.3 × 103 m s–1.



Extended Data Fig. 8 | Comparison of ac and dc measurements. a R(n) at 
B = 0, T = 0.3 K and zero bias, measured using ac lock-in techniques with a large 
dynamic range. The superconducting region displays a “residual” resistance of 

~20–30 Ω. b DC voltage-current curve at ñ = −1.65 × 1011 cm−2, B = 0 and T = 0.3 K. 
The blue line is a line fit to the zero-bias region, which has a slope of −0.2 ± 1.4 Ω.
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Extended Data Fig. 9 | Transport data over extended range. Nonlinear transport data dV/dI ( J,ν) in kΩ over a large density range at B = 0 and T = 0.3 K.
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