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Fracton critical point at a higher-order topological phase transition
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The theory of quantum phase transitions separating different phases with distinct symmetry patterns at zero
temperature is one of the foundations of modern quantum many-body physics. Here we demonstrate that the
existence of a two-dimensional topological phase transition between a higher-order topological insulator (HOTI)
and a trivial Mott insulator with the same symmetry eludes this paradigm. We present a theory of this quantum
critical point (QCP) driven by the fluctuations and percolation of the domain walls between a HOTI and a trivial
Mott insulator region. Due to the spinon zero modes that decorate the rough corners of the domain walls, the
fluctuations of the phase boundaries trigger a spinon-dipole hopping term with fracton dynamics. Hence we
find that the QCP is characterized by a critical dipole liquid theory with subsystem U(1) symmetry and the
breakdown of the area law entanglement entropy which exhibits a logarithmic enhancement: L ln(L). Using the
density matrix renormalization group method, we analyze the dipole stiffness together with the structure factor
at the QCP, which provides strong evidence of a critical dipole liquid with a Bose surface, UV-IR mixing, and a
dispersion relation ω = kxky.
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I. INTRODUCTION

After a decade of intense effort focused on topological
materials, a new class of symmetry-protected topological in-
sulators, dubbed higher-order topological insulators (HOTIs),
has been discovered [1–4]. HOTIs admit gapped surfaces sep-
arated by gapless corners/hinges where the surfaces intersect
and exemplify a rich bulk-boundary correspondence. Aside
from HOTIs generated by topological band structures, recent
research suggests that strongly interacting bosonic systems
can potentially host a HOTI having robust bosonic corner
zero modes [5,6]. Now the characterization of interacting
HOTIs has been widely explored in terms of mathematical
invariants, topological response, and field theory approaches
[7,8]. However, the existence and character of a quantum
phase transition between an interacting HOTI phase and a
trivial Mott insulator phase is still nebulous. In particular,
it is noteworthy to explore whether the critical region in-
herits the topological properties of the HOTI, and how such
a phase transition is influenced by the topological struc-
ture, and the entanglement pattern, of the adjacent HOTI
phase.

In this work, we address these questions and propose
a different type of quantum critical point that connects a
two-dimensional (2D) HOTI phase [8,9] and a trivial Mott
insulator phase. The traditional guiding principle behind the
modern theory of critical phenomena, known as the Ginzburg-
Landau-Wilson (GLW) paradigm, is the identification of an
“order parameter fluctuation” that encapsulates the differ-

ences in symmetry between the two phases proximate to the
critical point. However, the quantum critical point (QCP) that
we present in this paper eludes this paradigm as both the HOTI
phase and the trivial Mott phase have the same symmetries
and are distinguished only through their different topological
character.

Remarkably, we find that the phase transition that we
propose inherits topological features from the HOTI phase.
The QCP can be understood as the bulk percolation [10] of
domain walls that act as phase boundaries between regions
containing a HOTI or trivial Mott insulator. The corners and
rough patches of the 1D domain walls can be treated as the
corners of the HOTI phase, and are thus each decorated with
a robust spinon zero mode. At the QCP, the proliferation
of domain walls triggers the fluctuations of the corner zero
modes and precipitates fracton dynamics of the spinons that
are constrained by subsystem U(1) symmetry. Hence, we
find that this critical point contains quasiparticles with frac-
ton behavior and subdimensional kinetics where the spinon
dipoles only move transverse to their dipole moment [11–28].
This type of quantum criticality leads us to propose that the
phase transition is characterized by a critical dipole liquid
[25,29–32]. This critical theory has several key features in-
cluding: (i) a Bose surface [33] having zero energy states
that form closed nodal lines along the kx and ky axes, and
(ii) a breakdown in the area law of the entanglement entropy,
which is replaced by a scaling with a logarithmic enhancement
L ln(L) at the critical point instead. (iii) The phase transi-
tion theory is subject to UV-IR mixing as the critical point
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FIG. 1. Lattice model and quantum critical point (QCP). (a) The
lattice model. Each unit cell consists of four spin S = 1/2 (red dots).
The ring-exchange terms (red squares) couple four neighboring unit
cells, while sites in the unit cell are isotropically coupled via an XY
interaction (green dotted lines). (b) The correlation length ξχ as a
function of the tuning parameter λ and the bond dimension χ for an
infinite cylinder along x, Lx = ∞, and periodic boundary conditions
along y with a circumference Ly = 6. A second-order quantum phase
transition between a Mott insulator (MI) and higher-order topological
insulator (HOTI) occurs at λc ≈ 2.54.

is controlled by shortwave length modes with strong local
fluctuations.

II. LATTICE MODEL AND PHASE DIAGRAM

To frame our discussion, we consider the following model
on a 2D square lattice with four spin-1/2 degrees of freedom
per unit cell:

H = HXY − λHring exchange

=
∑

R

(S+
R,1S−

R,2 + S+
R,2S−

R,3 + S+
R,3S−

R,4 + S+
R,4S−

R,1)

− λ
∑

R

(
S+

R,2S−
R+ex,1

S+
R+ex+ey,4

S−
R+ey,3

) + H.c. (1)

Hamiltonian (1) contains an intercell ring-exchange interac-
tion between the four spins located at the four corners of
each red plaquette, and an XY spin interaction within the
unit cell, as shown in Fig. 1(a). In passing, we mention that
models having ring-exchange terms of this type can be re-
alized in cold-atom settings, which hence is a natural arena
for the experimental investigation of our subsequent predic-
tions [34,35]. The magnon creation/annihilation operators
S± = σ x ± iσ y can be mapped to a hardcore boson descrip-
tion using b†(b) = S+(S−), Sz = nb − 1/2, where nb = b†b ;
we use both languages interchangeably where convenient.
Equation (1) exhibits time-reversal T = ∏

R

∏4
m=1 iσ y

R,mK
symmetry and a subsystem U(1) symmetry that conserves the
sum of Sz inside the unit cell R, i.e., Sz(R) = ∑4

m=1 Sz
R,m, for

every row (R) and column (C),

U sub
R(C)(1) :

∏
R∈R(C)

eiθSz (R). (2)

The subsystem U(1) symmetry restricts the mobility of the
magnon, and hence the leading-order dynamics are attributed
to pairs of dipoles, each composed of a particle-hole pair on
a lattice link, that hop along the direction transverse to their
dipole moment.

Before turning to the detailed study of the phase diagram
for the model given by Eq. (1), let us discuss two exactly
solvable limits. As λ is tuned, the system effectively has com-
peting orders dominated by either the intracell XY interaction
or the intercell plaquette ring-exchange interaction. In the
limit λ ∼ 0, the intracell term plays the key role and gener-
ates an entangled cluster within each unit cell. The resulting
ground state, which is simply a tensor product of the ground
state of each unit cell, is a featureless Mott insulator with a
magnon gap for both the bulk and boundary. In the opposite
limit λ ∼ ∞, it was shown in Ref. [8] that the plaquette term
projects the four interacting spins into a unique maximally
entangled state | ↓2↑1↓4↑3〉 + | ↑2↓1↑4↓3〉 where we omitted
unit cell labels. The corresponding ground state for the entire
system is thus a product of entangled plaquettes and has a
finite magnon gap in the bulk. In the presence of a smooth
boundary, each edge unit cell naively has two free spin-1/2
modes, but these can be coupled and gapped to form a singlet
state via the on-site XY coupling in Eq. (1) (even for infinitesi-
mal λ). For rough edges and/or corners, there is an additional
spin-1/2 zero mode per corner whose twofold degeneracy is
protected by both T and subsystem U(1) symmetry, so the
resultant state renders a higher-order topological insulator.
This subsystem symmetric HOTI phase was studied in Ref. [8]
and was shown to exhibit a quantized quadrupole moment
density of Qxy = 1/2.

We obtained the phase diagram [Fig. 1(b)] using the den-
sity matrix renormalization group (DMRG) method [36–38]
on an infinitely long cylinder. We find that the aforementioned
limits extend into two gapped phases (a trivial Mott insulator
and a HOTI, respectively). Importantly, our numerics indicate
that the two gapped phases are connected by a second-order
phase transition at λc ≈ 2.54. It is noteworthy to emphasize
that the HOTI phase and the trivial Mott phase display the
same symmetries, but harbor distinct topological features, and
thus cannot be differentiated via any local observable. This
further implies that the QCP between the phases is beyond the
GLW paradigm.

III. DESCRIPTION OF THE QUANTUM CRITICAL POINT

We now provide both an analytic argument and numerical
evidence to demonstrate that the quantum critical point sep-
arating the HOTI phase and the trivial Mott phase displays
gapless fracton quasiparticles akin to a critical dipole liquid.
When the interaction strength λ is comparable to the intracell
tunneling strength, the plaquette entangled patterns and on-
site entangled patterns compete and coexist in the bulk. The
coexistence and spatial phase separation can be viewed from
a percolation picture, illustrated in Fig. 2. In the quantum
critical region adjacent to the trivial Mott phase, the plaquette
ring-exchange term triggers some regions containing plaque-
tte entangled states that exhibit the HOTI ground-state pattern.
Domain walls that form between the two phases can be viewed
as the boundary between the HOTI and trivial phases, and
hence they harbor a spinon zero mode at each corner (and
each “rough” patch on the edges). In the quantum critical
region, strong fluctuations between different phase separation
patterns are induced, and the domain walls tend to proliferate.
These spatial fluctuations concurrently trigger the dynamics
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FIG. 2. (a) At the critical point, the HOTI (blue shaded area)
and trivial Mott insulator (green shaded region) coexist and their
phase boundary (domain wall) contains spinon zero modes (green
dot) at the corners. (b),(c) The spatial fluctuation of phase boundaries
(domain walls) induces motion for the spinon pairs at neighboring
corners.

of the spinon zero modes on the corners of the domain walls,
similar to the percolation of domain wall defects in 1D [10].

More precisely, the spinon dynamics originates from the
resonance between distinct percolation patterns. In Figs. 2(b)
and 2(c), we display two typical phase boundary deforma-
tions. By shrinking a stripe domain along the x direction,
the two spinon zero modes forming an effective y-oriented
dipole can hop along the x direction, and vice versa. This
motion can be described by a ring-exchange term for the
spinons,

2∑
i=1

z†
i (R)zi(R + ex )z†

i (R + ex + ey)zi(R + ey), (3)

where (z†
1, z†

2 ) is the CP1 representation of the spinon with
Sz

i = 1
2 z†

i σ
z
i jz j . Another typical domain wall deformation oc-

curs when a corner is shrunk by removing a corner plaquette
from the stripe. This effectively removes the free spinon from
the corner, but it also creates three other spinons at the newly
created corners. This process is also represented by the ring-
exchange term in Eq. (3). Hence, the spatial fluctuations of
the percolating domain walls generate a ring-exchange type
term for spinons that effectively corresponds to the motion of
dipoles transverse to their dipole moment. An important char-
acteristic of this transition is that the percolation at the QCP
does not trigger the hopping of a single spinon, stemming
from the fact that the spinon modes on the phase boundaries
are localized at the corners.

Based on these key observations, we propose that the low-
energy effective description of the QCP is a critical dipole
liquid theory,

L =
∑

γ=1,2

(∂tθγ + a0)2 − K (∂x∂yθγ + axy)2,

axy → axy + ∂x∂yα, a0 → at + ∂tα, z†
i = nie

iθi . (4)

Here we used a number-phase representation for the CP1

spinons, and a0, axy are components of the emergent gauge
field that couple to the gauge charge of the spinon; their
gauge transformations are also listed above. We note that we
are ignoring the compactification of the boson fields θi, and
have expanded to quadratic order in them [25]. The legiti-
macy of this approximation, which is tied to the irrelevance
of instanton tunneling events, is discussed in detail in the
Supplemental Material [39]. To further analyze this theory,
we can decompose the two CP1 phase fields as θ± = θ1 ± θ2

to find

L = 1

2

∑
γ=±

(∂tθγ )2 − K

2
(∂x∂yθ+ + axy)2 − K

2
(∂x∂yθ−)2. (5)

We find that the field θ+ is the only bosonic spinon mode that
couples to the emergent gauge field axy. Hence this mode is
gapped out due to a Higgs-like mechanism for the gauge field
or, equivalently, by the on-site XY interaction (see the Sup-
plemental Material [39] for details). The field θ− denotes the
gapless magnon mode, S± = ei±θ− , that carries the Sz quantum
number. This field contributes to the low-energy dynamical
phenomena at quantum criticality, and henceforth we only
focus on the θ− branch.

Due to subsystem Sz conservation, the action in Eq. (5)
is invariant under a special U(1) transformation, θ− → θ− +
f (x) + g(y). Consequently, the single magnon hopping term
(∂iθ−)2 is forbidden as it breaks this subsystem U(1) symme-
try explicitly. Instead, the leading-order dynamics originates
from dipole moments oriented along the ith direction, i.e.,
(∂iθ−), that are constrained to move along the transverse jth
direction. This is captured in our theory by a special, higher-
order kinetic term (∂ j∂iθ−)2 yielding a dispersion ω ∼ kxky.

This is remarkable because we find that the QCP exhibits char-
acteristic fractonic features arising from a percolation process
where the corner-localized low-energy modes cannot fluctuate
independently without creating additional corners. Finally, we
note that this theory can also be used to describe the gapped
phases proximate to the QCP (see Supplemental Material [39]
for details).

An alternative way to illustrate the fracton dynamics at
the critical point is to explore the magnon dynamics directly
from the microscopic Hamiltonian in Eq. (1). When the inter-
action strength λ grows, the intercell coupling term triggers
the magnons to fluctuate between unit cells. However, as the
intercell coupling contains only a ring-exchange term, it does
not support single charge hopping between cells and hence
the leading-order dynamics is governed by a pair of magnon
dipoles hopping between cells [30,31,40,41]. To corroborate
this, we find that the two-point correlator 〈S+(R)S−(R)〉 is
short ranged at the QCP. In contrast, since we expect that the
critical region manifests a critical dipole liquid, we find that
the four-point correlation functions between two spin-dipoles
living on the same transverse stripe are [25],

〈S+(R)S−(R + ey)S−(R + x)S+(R + x + ey)〉 = 1

(x)1/(Kπ2 )
,

(6)
and analogously for a stripe along y. These correlation func-
tions exhibit algebraic decay and quasi-long-range order if
and only if the two dipoles are living on the same stripe. This
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FIG. 3. Static structure factor and dipole stiffness. (a) The static
structure factor S(q) calculated for a stripe with Lx = 100 and Ly = 8
sites along the x and y direction, respectively. Hence, the data are ob-
tained for momenta qy = 0, ±π,±π/2 (black, dotted lines). (b) The
absolute value of the dipole stiffness |Dd |, calculated for an infinite
cylinder with Ly = 6. The dipole stiffness is obtained by taking the
second, symmetric derivative with step size δ
 = 0.05.

again supports the fact that we should interpret the critical
point as a dipole liquid having constrained subsystem dynam-
ics.

As a further confirmation of the dipole liquid critical point,
we characterize the dipole liquid by its transport properties
since our model has dipole conservation. In the language of
Ref. [42], we expect the critical dipole liquid to act as a
“dipole metal” and exhibit a nonvanishing dipole conductivity
in the presence of a uniform rank-2 electric field, e.g., Exy.

In analogy to Kohn’s criterion on defining conductors and
insulators [43], Ref. [42] proposed a criterion to establish the
existence of a dipole metal based on the dipole stiffness Dd

(details of its definition and calculation can be found in the
Supplemental Material [39]), suggesting that if Dd is nonvan-
ishing in the thermodynamic limit, then the system is a dipole
metal. Our results for Dd are shown in Fig. 3(b) and we find
that they clearly support our theory since the system shows
a nonvanishing Dd only in the neighborhood of the critical
point.

IV. FEATURES OF THE QUANTUM CRITICAL POINT

Now let us consider several remarkable properties of
this critical point. The critical theory in Eq. (5) produces a
quadratic dispersion ω ∼ kxky, which implies a Bose surface
with characteristic lines of zero-energy modes on both the
kx and ky axes. For each fixed momentum slice ki �= 0, the
low-energy dispersion is akin to the 1D relativistic boson
along the transverse direction. Such “quasi-1D” motion is
a consequence of the subdimensional nature of the critical
dipole liquid, i.e., the fact that an x(y)-oriented dipole is only
mobile along the transverse y(x)-oriented stripes. To confirm
the existence of the Bose surface, we numerically evaluate the

structure factor,

S(q) = 1

N

[
2∏

m=1

∑
Rm,bm

eiq·[(−1)m�m]

] 〈
Sz

�1
Sz

�2

〉
, (7)

where N = LyLx/4 is the total number of unit cells, and
�m = Rm + bm specifies one of the four spins Sz

Rm,m inside
the unit cell Rm with basis vectors bm ∈ 1

2 {0, ex, ey, ex + ey}.
In Fig. 3(a), we show that the numerically obtained structure
factor exhibits clear zero-energy lines along the kx, ky axes.
Furthermore, each ki �= 0 exhibits dispersion like a 1D rel-
ativistic boson along the transverse direction. We note that
since there are nodal lines at kx, ky = 0, there is a subex-
tensive number of quasi-1D modes, and the specific heat
at low temperature will scale as Cv ∼ T ln(1/T ), which is
similar to marginal Fermi liquid theory in 2D [25,29,30].
Remarkably, as a subextensive number of zero-energy modes
survive at high momentum, the resultant theory is con-
trolled and crucially depends on short-wavelength modes that
generate strong local fluctuations. Such a critical theory is
triggered by short-wavelength physics and is subject to UV-
IR mixing [41] (see Supplemental Material [39] for more
details).

Indeed, another noteworthy feature for the critical dipole
liquid is an unusually large entanglement entropy scaling that
exceeds the area law. In conventional 2D quantum critical
points, despite the divergent correlation length, the entan-
glement entropy of the ground state carried by a subregion
of the many-body system is still local in the sense that it
scales with L, the perimeter of the subsystem boundary.
However, in the critical theory we present here, the entangle-
ment entropy should scale with the subregion size as L ln(L)
[44,45]. Such a violation of the area law can be substanti-
ated by dividing the Bose surface into small patches over
which the surface looks approximately flat. Each patch can
be regarded as a 1D relativistic boson whose entanglement
entropy scales as ln(L). Summing over the contributions from
all patches, the total entanglement entropy should scale as
L ln(L). This represents an observation of a 2D quantum
critical point whose entanglement pushes beyond the area
law. This implies that the critical dipole liquid has long-
range mutual information shared by two regions that are far
apart.

In conclusion, we provided a framework to describe a type
of 2D quantum criticality with logarithmic entanglement scal-
ing and emergent fracton dynamics in the absence of Lorentz
invariance. Our description of the HOTI percolation transition
also suggests insights for various topological phase transitions
and critical points beyond the GLW paradigm, and is certain
to have rich theoretical and experimental implications perhaps
in near-term cold-atom experiments.
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