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Abstract

This Mini-review considers the use of De Donder relations to facilitate a thermodynamically
rigorous discussion of liquid phase reaction kinetics through the analysis of elementary steps.
In quantifying “solvent effects,” pure species reference states are convenient. Rate expres-
sions developed with this convention capture all effects of thermodynamic non-ideality in
solvent-specific activity coefficients or excess free energies, whereas commonly applied in-
finite dilution reference states lead to solvent- and composition-dependent standard-state
rate and equilibrium constants. Two solvent effects are described: a “kinetic” effect, which
comprises solvation of a transition state relative to reactants in an elementary step, and
a “thermodynamic” effect, which comprises solvation of products relative to reactants in
an elementary step. The former impacts the forward rate constant, and the latter impacts
reversibility. These effects are formally encoded in De Donder rate expressions; thus, they
inherently account for solvation while maintaining thermodynamic consistency with respect
to elementary rate and equilibrium constants. A series of case studies are presented. These
demonstrate that solvent effects can lead to substantial deviations from anticipated behavior
during routine analysis of liquid-phase reactions. Additionally, we find that surface reactions
and degree of rate control in multi-reaction sequences can be impacted by bulk solvation,
but such effects are difficult to predict a priori.
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Highlights

� Thermodynamically consistent rate laws are developed using De Donder relations.

� De Donder relations force thermodynamic rigor, so they are ideal for liquid-phase
analysis.

� Pure species reference states are convenient when quantifying the impacts of solvent
variation.

� Thermodynamic nonidealities may cause composition-dependent rate constants, lead-
ing to unexpected non-linearity in analysis.

� Solvation effects are non-trivial in multi-step reaction mechanisms.
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1 Introduction

Catalytic processes in condensed media are important for a variety of emerging and es-
tablished industries. Biorefining requires upgrading carbohydrates and lignin, which are
thermally unstable macromolecules. Further, the platform chemicals derived therefrom—
levulinic acid, γ-valerolactone, 5-hydroxymethylfurfural, and aromatic oxygenates—are oxygen-
rich, polar, non-volatile, and reactive [1, 2]. These characteristics all demand low-temperature,
solution-phase processing. In addition, the trend toward low-cost, carbon-free electricity
makes electrochemical and electrocatalytic reduction attractive for a broad set of hydrogen-
intensive processes, including CO2 hydrogenation [3] and ammonia synthesis [4, 5]. The
requirement of charge conduction dictates that electrochemical processes occur in a con-
densed phase [6].

The catalysis community has primarily focused on the design of new, increasingly complex
materials to break longstanding performance plateaus. For reactions in condensed media,
rational design of the solvent environment is equally important. Diversity in the chemical
and physical structures of molecules allows for tunable interactions between solvents, so-
lutes, and/or electrolytes, which can have profound impacts on reactivity and selectivity.
Indeed, there are many examples where the solvent is more critical than the catalyst in
determining feasibility. A classic example is the acid-catalyzed dehydration of fructose to
form 5-hydroxymethylfurfural [7]. The reaction is Brønsted-mediated [8], and, while the
literature reports numerous homogeneous [9–11] and heterogeneous proton sources [12, 13],
they all perform comparably to the benchmark mineral acids that have been used to dehy-
drate sugars for the better part of a century (e.g., HCl, H2SO4). As evidenced by work from
Moreau [12], Dumesic [14, 15], Huber [16], Wyman [9], and others [17–19], far more signif-
icant gains in selectivity are attainable through solvent manipulation. Similarly, there has
been extensive discussion of reactions, such as metal-catalyzed carbonyl hydrogenation [20,
21], acid-catalyzed alcohol dehydration [22–26], alkene epoxiation [27], and Fisher-Tropsch
synthesis [28], that show remarkable rate enhancements in the presence of certain solvents.
These “solvent effects” are evident at the macroscale, and their molecular-level impacts
are well-developed in chemical thermodynamics. That said, there are few cases where the
fundamental underpinnings of solvation have been correctly embedded in the analysis of
liquid-phase reactions [7, 28–31]. Common practice is to process kinetics data using the ma-
chinery of transition state theory applied to thermodynamically ideal systems; however, this
approach is inadequate for describing solvation, which is a consequence of thermodynamic
nonideality.

Toward our goal of enabling the rational design of liquid-phase, catalytic processes, we outline
a thermodynamically rigorous framework for the analysis of elementary and macroscopic
reaction kinetics. We do so using the concept of reaction affinity, which was originally
developed by De Donder [32, 33]. This method is ideally suited to a description of liquid phase
reactions because it explicitly captures the impacts of solvation on elementary free energies of
reaction and activation. Our presentation is inspired by concepts discussed in Denbigh’s The
Principles of Chemical Equilibrium [34]; Denbigh’s and Turner’s Chemical Reactor Theory
[35]; Sandler’s Chemical and Engineering Thermodynamics [36]; Laidler’s Chemical Kinetics
[37]; O’Connell’s and Haile’s Thermodynamics: Fundamentals for Applications [38]; The
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Microkinetics of Heterogeneous Catalysis [39] and related articles by Dumesic [40–43]; the
works on microkinetic analysis and degree of rate control by Campbell [44–47] and others
[48–51]; the excellent paper from Madon and Iglesia on reactions in thermodynamically
nonideal media [29]; and, of course, pioneering works by Michel Boudart [33, 52–55], wherein
the development of rate expressions for thermodynamically non-ideal systems is addressed
directly [56]. Importantly, it was Boudart’s interest in the concept of reaction affinity that
inspired the modern take on De Donder relations and Degree of Rate Control that has evolved
over the last 30 years [40].

Readers familiar with the above references will recognize concepts herein, which are relatively
well-established. That said, they are infrequently applied in catalysis practice, particularly
in the experimental analysis of liquid-phase reactions. This is a consequence of entrenched
conventions that take an overly simplified approach to the development of rate laws, which
has implications in fundamental kinetic analysis. Our aim in this Mini-review is twofold.
First, we hope to build an understanding of why conventional approaches have been his-
torically successful but may fail for reactions in solution. Second, we aim to provide the
community with a rigorous, yet tractable framework for the analysis of reactions in solution.
De Donder relations address both goals. They are straightforward to develop, and, as one
does so, solvation effects are clearly resolved and rigorously quantified. Accordingly, we tailor
classic De Donder relations to liquid-phase reactions, and we apply them in the analysis of
multiple case studies through which we highlight the unpredictable ways that solvation can
impact elementary and macroscale phenomena. The discussion to follow presumes systems
that are characterized by infinitely fast heat and mass transfer [57, 58] and are free from
product inhibition [59]. Further, our primary focus is the solvation of reacting species by a
bulk liquid; hence, we do not consider the potentially significant impacts of competitive sol-
vent adsorption [60, 61] or lateral interactions [28]. Finally, it is important to state explicitly
that De Donder relations and the rate expressions developed therefrom are strictly valid only
for elementary steps. As we show in various case studies, one can use De Donder relations to
build thermodynamically rigorous expressions for overall reaction rates [50, 51, 62]; however,
this is best accomplished by considering the impacts of solvation on the elementary steps
comprising the reaction mechanism.

2 Background

Our default methods of kinetic analysis usually invoke tacit assumptions about reference
states and thermodynamic ideality; historically, this has been of little consequence. This is
because foundational work in chemical and catalytic kinetics was largely performed in gas-
phase systems at low pressure, where partial pressures are reasonable approximations for
fugacities, and where we employ a universal thermodynamic reference state of a pure species
at 1 bar. This is not the case for liquid-phase reactions, which require a careful treatment of
thermodynamics. Unfortunately, gas-phase conventions prevail in most analyses, leading to
a broad mischaracterization of liquid phase kinetics and thus the impacts of solvation. To
highlight incongruities in common approaches, it is helpful to consider a thought experiment.

4



2.1 A Textbook Analysis of Elementary Kinetics?

We begin by considering an elementary, liquid-phase reaction:

A ⇌ 2B (1)

The law of mass action is appropriate for an elementary step. Thus, one writes a rate
expression by assuming the rate scales with species concentration, with the order for each
species given by its stoichiometric coefficient:

r = kfCA − krCB
2 (2)

Because this is an elementary reaction, microscopic reversibility [63] requires that the dif-
ference between forward and reverse free energies of activation is equal to the free energy of
reaction [53]. Thus, the values of forward and reverse rate constants are constrained by the
value of the equilibrium constant:

kf
kr

= K = exp

(−∆G◦

RT

)

P=1bar

(3)

This constraint precludes independent specification of the forward rate constant, the reverse
rate constant, and the reaction free energy for an elementary step. More subtly, it requires
that the extent of reaction obtained by solving the material balance for an arbitrary reactor at
an infinite residence time must equal the composition predicted by the relationship between
the equilibrium constant and the thermodynamic activities of species participating in the
reaction [35]:

K =
aB

2

aA
(4)

These are manifestations of microscopic reversibility for an elementary step [42, 62], and
they are useful for characterizing elementary kinetics. Thermodynamic data are relatively
accessible for stable species (i.e., free energies of formation or combustion), so calculation of
reaction free energies is often straightforward. In contrast, thermodynamic data for transition
states (i.e., free energies of activation) are significantly harder to come by. Accordingly, when
describing the kinetics of an elementary step, it is a good practice to impose this constraint
by specifying only one rate constant—whichever is more computationally or experimentally
accessible—and computing the other as a function of the equilibrium constant (i.e., the free
energy of reaction). We caution that this constraint cannot be generally applied to empirical
rate laws that describe overall reactions, only to rate expressions for elementary steps.

kr =
kf
K

(5)
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As both authors have observed while teaching courses in microkinetic analysis, a problem
arises if this value of the reverse rate constant, kr, is substituted directly into the rate
law posited above (Eq. 2). A thermodynamic equilibrium constant, K, is a dimensionless
quantity. Thus, one consequence of microscopic reversibility is that forward and reverse rate
constants in an elementary step must have identical units. In contrast, the mass action rate
equation written in terms of species concentrations (Eq. 2) requires a first-order forward
rate constant (with dimensions of inverse time) and a second-order reverse rate constant
(with dimensions of inverse concentration and inverse time) for dimensional consistency.1

This discrepancy becomes plainly visible when considering an arbitrary reactor at an infinite
residence time, where the elementary step is equilibrated and its rate decays to zero. In this
regime, we set the mass action rate law equal to zero , which gives the following result:

kf
kr

=
CB

2

CA

(6)

More fundamentally, for an elementary step at chemical equilibrium, microscopic reversibility
requires that:

K =
kf
kr

=
aB

2

aA
(7)

Equations 6 and 7 are in conflict, and they only reconcile for a reaction occurring in ther-
modynamically ideal media and for specific reference state conventions. In reality, the rate
constants in Equation 6 and Equation 7 are fundamentally different, and they should not
be conflated; unfortunately, common conventions in the specification of mass action rate
equations tempt one to do so (as we have shown above).

We rarely discuss reference state conventions or the assumptions that underlie these default
rate expressions, but these specifications are critically important. Failure to address them
leads to significant complications, particularly in the analysis of liquid-phase systems. By
stating that a liquid-phase reaction rate scales directly with species concentration, we are
tacitly invoking results from Transition State Theory applied to a homogeneous reaction
occurring in thermodynamically ideal media and for which thermodynamic data are spec-
ified at a hypothetical one-molar, solution-phase reference state that has infinite dilution
properties. This may or may not be representative of the system under consideration; as
such, our near-universal adoption of rate laws that presume thermodynamic ideality and
an infinite dilution (1M) reference state is problematic. Consider the analysis of organic
reactions, where one infrequently has access to thermodynamic data at infinite dilution in
each solvent of interest. Data for pure species are far more abundant; accordingly, most of
us compute thermodynamic functions that are based on pure species reference states. When

1It is worth considering that elementary rate constants developed using transition state theory, k =
kbT
h exp

(
−∆G‡

RT

)
, have units of inverse time regardless of reaction order. This is consistent with microscopic

reversibility. As we demonstrate hereafter, dimensions of concentration appear in rate constants only after
one sets an intensive basis, assigns reference states, and defines thermodynamic activities in transition state
theory rate expressions.
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we couple this with our tendency to write rate expressions as functions of concentration,
we are mixing reference state conventions. This has serious consequences. Even in the rare
case of a thermodynamically ideal liquid-phase reaction, mismatched reference states yield
kinetic models that violate thermodynamic consistency. For the more common case where
liquid media deviate from thermodynamic ideality, there is a complex relationship between
composition and chemical potential. This can lead to unpredictable behavior, invalidate core
assumptions, and obscure the fundamental origins of changes to the apparent, macroscale
observables favored by experimentalists, i.e. rate constants, reaction orders, and activation
barriers.

Concentration-based rate expressions have been successfully applied in the analysis of gas-
phase reactions for decades. This hinges on two important details. First, for gas-phase
systems, composition dependencies in rate and equilibrium expressions almost always re-
duce to partial pressures and a reference state of pure species at 1 bar. Second, for gases
at low pressure, the assumption of thermodynamic ideality introduces little error. Even at
considerable pressures, fugacity coefficients rarely show substantial deviations from unity. As
a consequence, for most gas-phase reactions, partial pressures provide a thermodynamically
rigorous stand-in for fugacities. For this reason, variations in gas-phase chemical potentials
are well-described by variations in species partial pressure. This means that partial pres-
sures (and thus concentrations) rigorously capture composition dependencies in rate and
equilibrium expressions for gas-phase reactions. Further, the near-universal reference state
convention of pure species at 1 bar means that thermodyanmic activities, free energies of
reaction, and free energies of activation almost always use a common standard state, so ther-
modynamic consistency is easily ensured. Gas phase methodologies have come to define a
standard approach for kinetic analysis; unfortunately, the above conveniences do not extend
to liquid-phase systems, where one finds multiple reference state conventions and substantial
deviations from thermodynamic ideality. Put simply, in liquid media, one can not generally
trust that concentration is an adequate stand-in for chemical potential.

In a practical sense, describing liquid-phase kinetics using concentration-based rate expres-
sions is useful. Concentrations are convenient to measure and control, whereas thermody-
namically rigorous quantities (i.e., activities, fugacities, and chemical potentials) are not.
Furthermore, concentration-based rate expressions are generally adequate for applied prob-
lems in reactor design, where it is often unnecessary to resolve solution thermodynamics to
correctly size or scale a reactor. However, liquid-phase processes are becoming more preva-
lent, and we have become increasingly interested in rational pairings of solvent and catalyst.
As we seek to understand and leverage solvation, it is important that we move toward im-
proving thermodynamic rigor in kinetic analysis. Unfortunately, this is non-trivial, and it is
almost universally excluded from formal training in chemical kinetics. After years of strug-
gling to define best practices, it was humbling for the authors to realize that De Donder
provided an ideal framework nearly 100 years ago. De Donder’s approach is perfectly suited
to the analysis of liquid-phase reactions because it is based upon a comprehensive, fun-
damental treatment of kinetic and thermodynamic driving forces for elementary reactions.
As such, De Donder relations enable a complete resolution of “solvent effects” and prevent
mischaracterization of observable phenomena.

7



2.2 Chemical Potential, Activity, and Fugacity

Species chemical potential, µj, is the driving force for chemical reactions [38], and it appears
in multiple steps of the derivations to follow. Accordingly, we need a framework for com-
puting the chemical potential of a species in terms of measurable and tabulated quantities.
This is done using Equation 8, which casts µj as a function of its chemical potential in a
thermodynamically ideal reference state, G◦

j (i.e., its partial molar Gibbs free energy2), and
a thermodynamic activity, aj, which reflects a perturbation from the thermodynamically
ideal reference state [34]. By inspection, we find that the activity of a species in its reference
state, where µj = G◦

j , is necessarily unity.

µj = G◦
j +RT ln (aj) (8)

Formally, the thermodynamic activity of a species in a mixture, aj, is defined as the ratio
of the fugacity of the species in the mixture, fj, to the species in its reference state, f ◦

j , as
shown in Equation 9 [36].

aj =
fj
f ◦
j

(9)

It is difficult to put a fine point on what liquid-phase fugacities are, but it is useful to dis-
cuss them for what they enable—rigorous quantification of thermodynamic activities and
chemical potentials for species in real systems. Conventions for specifying the fugacity of a
species in a mixture, fj, and the fugacity of a species in its reference state, f ◦

j , are dictated
by the phase of matter; the availability of thermodynamic data; and convenience. In general,
fugacities are a product of a pressure (e.g., a system pressure or a saturation pressure), a
composition (e.g., a mole fraction), and correction factors that account for deviations from
thermodynamic ideality (e.g., fugacity coefficients and activity coefficients). Standard defi-
nitions rely on dimensionless compositions and correction factors; as such, fugacities always
have units of pressure. Importantly, by using fugacities to define thermodynamic activities
(Eq. 9), one is forced to consider reference states, which helps to ensure thermodynamic con-
sistency in rate expressions and De Donder relations. To this end, when defining a chemical
potential, reference states used in calculating thermodynamic activities should be the same
as those used in specifying standard state partial molar Gibbs free energies, G◦

j . In the con-
sideration of chemical reactions, reference states are typically specified at the temperature
of the reacting system and a pressure of 1 bar; beyond this, there is considerable variation in
reference state composition and state of matter. Some common reference states include pure
gases; pure liquids; pure solids; and 1 molar or 1 molal solutions of dissolved solutes that
have infinite dilution properties. Although Equations 8 and 9 make clear the necessity of
defining fugacities and reference states, it is counterproductive to present an exhaustive list

2Note that chemical potentials are equivalent to partial molar Gibbs free energies. We prefer the use
of the term “partial molar Gibbs free energies” for thermodynamically ideal reference states because these
quantites are eventually collected into a Gibbs free energy change of reaction, which is the more familiar
term in kinetic analysis. However, in most thermodynamics texts, Equation 8 uses the symbol µ◦

j rather
than G◦

j .
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of conventions here. We will instead focus our discussion on best practices in the characteri-
zation of solvent effects. For a general discussion of fugacities and thermodynamic activities,
Sandler’s Chemical and Engineering Thermodynamics is a good reference [36].

2.3 Thermodynamic Reference States

Before one can quantify activities and chemical potentials, it is necessary to define a ther-
modynamic reference state. Numerous conventions are in use [34, 36, 38], and as long as
the same reference state is applied consistently throughout the analysis, one may choose any
that is convenient. Unit molarity reference states (with infinite dilution properties) are often
suggested for the analysis of condensed-phase reactions. This is the convention that most of
us apply by default when we write concentration-based rate laws for liquid-phase reactions.
In our view, this is a cumbersome reference state for consideration of solvent effects. Instead,
we suggest that the pure species reference state is more useful in practice.

Infinite dilution reference states define systems that are dominated by solute-solvent intera-
tions and where solute-solute interactions are non-existent. These reference states are useful
in cases where solute mole fractions can be maintained at or near the infinite dilution limit
(xj ≲ 0.01) and where the solvent identity is constant. With this convention, activity coef-
ficients are unity in the infinite dilution limit. Accordingly, as long as the system remains
at infinite dilution, one can use concentration as a rigorous stand in for thermodynamic
activity in the development of rate and equilibrium expressions. This is attractive because
concentrations are experimentally convenient. Infinite dilution criteria, are, in general, easily
met in low molecular weight solvents, like water, where it is possible to span a large range of
solute concentrations without exceeding solute mole fractions of ≈ 0.01. While this reference
state is frequently useful, there are problems with this convention in a fundamental analysis
of solvation. Most importantly, unity activity coefficients do not mean that the chemical
potentials of reactants, products, and transition states are invariant with changes in solvent
identity at infinite dilution. Instead, solvent-induced changes in chemical potential are em-
bedded in the infinite dilution reference state, which is inherently solvent-dependent in this
convention. As such, standard state free energies of reaction and activation will vary among
solvents, requiring one to redefine critical parameters, like equilibrium constants, with every
change in solvent identity.

Although this approach is reasonable in principle, it introduces problems in practice. At a
conceptual level, redefinition of the standard state with each new solvent is a subtle detail
that is likely to be overlooked, thereby inviting misinterpretation. Further, thermodynamic
state functions are not generally tabulated for species at infinite dilution in multiple solvents,
which prevents straightforward computation of, e.g., solvent-specific equilibrium constants
at infinite dilution. Finally, although one can often constrain bench-scale experiments to
infinite dilution, real processes may deviate significantly from this limit. Infinite dilution
activity coefficients vary substantially from unity at high concentration, where solute-solute
interactions dominate. Indeed, one cannot even guarantee that infinite dilution activity co-
efficients will equal unity at 1M because infinite dilution properties may not hold at this
concentration—a 1M solution with infinite dilution properties is a purely hypothetical refer-
ence state. For these reasons, when using infinite dilution reference states, one must generally
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define a separate family of solvent-specific activity coefficients alongside solvent-specific rate
and equilibrium constants. In short, one does not escape thermodynamic non-ideality sim-
ply by choosing an infinite dilution reference state, and the convention loses its convenience
when one considers changes in solvent identity and operation over large ranges of solute
concentration, as is likely for organic reactions. For tangible examples, one might consider
the significant variations in reactant and product concentration—and thus the solvation
environment—as batch reactors proceed from low conversion to high conversion. Alterna-
tively, large variations in solute concentration should be anticipated in experiments designed
to measure apparent reaction orders. These are commonly performed in tubular reactors
under differential conditions to avoid concentration gradients across the reactor; however, a
reliable determination of reaction orders generally requires order-of-magnitude variation in
bulk species concentration over the course of the experiment.

For several reasons, we prefer the reference state of a pure liquid at 1 bar. First, thermody-
namic data are widely available for pure species at 1 bar, especially for organic molecules,
which are our primary interest. Second, the pure species reference state is independent of
solvent identity, making this a useful convention for characterizing the impact of solvent
manipulation. As we will show subsequently, when using a pure species reference state,
one defines a single standard state equilibrium and/or rate constant. Thereafter, all devia-
tions from thermodynamic ideality are captured through solvent-specific activity coefficients,
which are functions of excess Gibbs free energies [34]. Importantly, many common models for
predicting activity coefficients are also based on pure-species reference states (e.g., UNIFAC
[64]). In this convention, activity coefficients can vary by orders of magnitude at infinite di-
lution, and they approach unity for pure species. To develop a sense of scale for the impact of
varying activity coefficients, consider that the UNIFAC activity coefficient for 2-pentanone
dissolved in water at infinite dilution—a highly nonideal environment—is ≈ 100. In contrast,
its activity coefficient in 1,4-dioxane at infinite dilution—a relatively ideal environment—is
≈ 1.

With the reference state of a pure liquid at 1 bar established, one defines fugacities and
thermodynamic activities as in Equations 10 to 12 [38]:

f ◦
j = P sat

j (10)

fj = γjxjP
sat
j (11)

aj =
fj
f ◦
j

= γjxj (12)

In the above, f ◦
j is the fugacity of species j in its reference state (pure liquid, 1 bar); fj

is the fugacity of species j at the system temperature, pressure, and composition; aj is the
thermodynamic activity of species j at the system temperature, pressure, and composition;
xj is the liquid-phase mole fraction of species j at the system temperature, pressure, and
composition; γj is the activity coefficient for species j at the system temperature, pressure,
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and composition; and P sat
j is the saturation pressure of species j at the system temperature.

These definitions assume that the reference pressure (1 bar) and the system pressure are
sufficiently close to the saturation pressure of species j that one can neglect the Poynting
correction. At modest pressures, this generally introduces little error for liquids, which have
relatively small molar volumes.

3 The De Donder Relation

We now apply the above described reference state conventions and definitions for fugacities,
activities, and chemical potentials to develop thermodynamically rigorous rate expressions
using De Donder relations. In the De Donder framework, the net rate of an elementary step,
r, is written in terms of the forward rate of reaction, rf , and an “affinity” for the reaction,
A [40],

r = rf

[
1− exp

(−A

RT

)]
(13)

The first term, rf , represents a purely kinetic term, i.e., the rate of reaction that is attained
at infinite displacement from chemical equilibrium. This can be derived using transition
state theory. The second, bracketed term captures the thermodynamic driving force for
the reaction. It comprises the gradient in free energy between the system at its present
composition and the system at chemical equilibrium, where the reaction rate falls to zero.
We find it helpful to consider the derivation in parts, and so we address each term separately.

3.1 The Forward Rate of Reaction: Kinetic Effects of Solvation

First, we develop a rate expression for the forward reaction using Transition State Theory.
We pursue this development for a straightforward case: a unimolecular, irreversible, elemen-
tary reaction occurring homogeneously in condensed media. That said, the concepts are
easily generalized to any system of interest (See Appendix B).

A −→ B (14)

The rate of an elementary step—in extensive units—scales with the number of transition
states present in the system [37]. Specifically, the extensive rate can be expressed as the
product of the frequency at which the transition state is converted into products, ν‡, and
the number of transition states that exist in the system of interest, N ‡.

r̄f = ν‡ ·N ‡ (15)

An intensive rate expression is more useful in practice; however, by beginning from Equation
15 we are forced to consider an appropriate dimensional normalization. This ultimately leads
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to straightforward development of rate expressions that are both rigorous and dimensionally-
consistent. The basic tenets of transition state theory were developed in consideration of
homogeneous reactions that occur uniformly in 3-dimensional space, leading to normalization
of rates by volume [65]. This is reflected in the prevailing notion that reaction rates scale with
the concentration of the transition state. Although a subtle point, it is perhaps more correct
to state that the intensive rate of reaction per unit volume scales with the concentration
of the transition state. One is free to chose any normalization that is convenient, which
can allow, for example, a straightforward TST derivation for turnover frequencies in surface
reactions (See Appendix B). Because we are presently considering a homogeneous, liquid-
phase reaction (Eq. 14), we choose to normalize by system volume. This leads to the familiar
starting point for the development of elementary rate expressions via Transition State Theory
(Eq. 16).

rf = ν‡ · C‡ (16)

Here, C‡ represents the molar concentration of the transition state. Subsequently, one as-
sumes that the transition state is in equilibrium with the reacting species that form it, with
the system composition described by an equilibrium constant:

K‡ =
∏

j

a
νj
j (17)

Activities are defined as in Eq. 12, and the mole fraction of the transition state is described
as a function of its concentration, C‡, the system volume, V , and the total number of moles,
N :

x‡ =
C‡V

N
(18)

Thus, the transition state concentration can be expressed as a function of a thermodynamic
equilibrium constant, a ratio of activity coefficients, the total bulk system concentration (i.e.,
N/V ), and a reactant mole fraction:

C‡ = K‡ · γA
γ‡ · N

V
· xA (19)

Substituting this result into Eq. 16 yields the following expression:

rf = ν‡ ·K‡ · γA
γ‡ · N

V
· xA (20)

In transition state theory, the equilibrium constant, K‡, is expressed as the product of a
single, low-frequency vibrational mode and the standard state free energy change to form
the transition state from the reactants:

12



K‡ =
kBT

hν‡ · exp
(−∆G◦,‡

RT

)
(21)

Application of Eq. 21 then gives the transition state theory rate expression for an irreversible,
unimolecular, elementary, liquid-phase reaction (Eq. 22), analogous to those developed
elsewhere [26, 29, 31, 37].

rf =
kBT

h
exp

(−∆G◦,‡

RT

)
· γA
γ‡ · N

V
· xA (22)

Note that compositions are expressed here as mole fractions rather than concentrations,
which is a consequence of our decision to work with pure species reference states. Upon
seeing the product of xA and N/V in the rate expression, it is tempting to replace it with CA.
However, this is a unique result for first-order reactions. When using a pure species reference
convention, mole fractions cannot be replaced with concentrations for, e.g., an elementary
bimolecular reaction.3 The free energy of activation, ∆G◦,‡, represents the standard state
free energy change incurred upon converting the reactants as pure species into the transition
state as a pure species. It is therefore independent of solvent identity. For this reason, we
define a standard state rate constant, k◦, whose value remains constant for any solvent and
any degree of thermodynamic non-ideality (note, this is the same formalism adopted in the
classical Brønsted-Bjerrum relation for consideration of ionic systems [35, 37]).

k◦ =
kBT

h
· exp

(−∆G◦,‡

RT

)
(23)

It is worth pointing out that because k◦ is referenced to pure species, it is relatively easy
to estimate its value using either computational methods or generalized correlations. In
contrast, calculating the analogous free energy of activation for a solution-phase reference
state requires one to explicitly consider solute-solvent interactions. Combining Equations 22
and 23 results in a concise, thermodynamically rigorous expression for the forward rate of
reaction in condensed media.

rf = k◦γA
γ‡ · N

V
· xA (24)

Because we have retained activity coefficients, this expression applies for any condensed-
phase, homogeneous, unimolecular elementary reaction, regardless of solvent identity or
degree of thermodynamic non-ideality. Solvation effects are embedded in the activity coeffi-
cients, which are specific to each solvent. This expression will capture any “kinetic” impact
of solvation, i.e., a solvent-induced change in the free energy separation between the transi-
tion state and the reactant state. From an experimentalist’s perspective, the use of activity

3To develop a rate expression strictly as a function of species concentrations, one would instead employ
a unit molarity reference state in developing Equations 17 to 20.
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coefficients in Eq. 24 is convenient because of the broad availability of activity coefficient
models (e.g., Margules [36], Wilson [66], NRTL [67], UNIFAC [64], etc.). From a theoreti-
cian’s perspective, these equations are probably better expressed solely in terms of Gibbs free
energies, which are directly accessible through density functional theory or ab initio molec-
ular dynamics simulations. The result is generalized by expressing activity coefficients as
functions of excess Gibbs free energies, which are both solvent- and composition-dependent
[34]:

γj = exp

(
GE

j

RT

)
(25)

In this Mini-review, we primarily discuss activity coefficients since they are more concise, but,
as Eq. 25 shows, these are interchangeable with excess Gibbs free energies. By substituting
Eq. 25 into Eq. 22, we find that the ratio of activity coefficients, γA/γ

‡, reduces to a change
in excess Gibbs free energies of activation, ∆GE,‡, leading to an equivalent rate expression:

r =
kbT

h
exp

(
−
(
∆G0,‡ +∆GE,‡)

RT

)
· N
V

· xA (26)

If one retains activity coefficients (Eq. 24), it is clear that, to observe a solvent effect, the
activity coefficient ratio, γA/γ

‡, must deviate from unity. This ratio reflects the degree of
stabilization or destabilization of the transition state relative to the reactants (or, impor-
tantly, vice versa), which is another way of saying that the change in excess free energy of
activation, ∆GE,‡, is non-zero (Eq. 26). Stabilization of the transition state relative to the
reactant (γA/γ

‡ > 1) will lead to an increase in the observed rate constant, whereas desta-
bilization of the transition state relative to the reactant (γA/γ

‡ < 1) will lead to a decrease
in the observed rate constant. Equivalently, Eq. 26 shows that a positive excess free energy
of activation results in an increased free energy separation between the transition state and
the reactant state, and a negative excess free energy of activation implies the converse. The
former manifests as a decrease in the observed rate constant (lower “reactivity”), while the
latter will increase the observed rate constant (higher “reactivity”).

Because transition states are often chemically similar to the reactants that form them, it
is reasonable to expect that the reactant and transition state will have similar activity
coefficients [29]. In this case, even if individual activity coefficients deviate substantially from
unity, no significant “kinetic” effect of solvation is observed because ∆GE,‡ is approximately
zero. For a solvent to perturb a rate constant, there must be a significant difference in
the extent of solvation between reactants and transition states, which is anticipated only in
systems where the two states are chemically dissimilar and there are strong interactions with
the solvent. For example, one might anticipate a significant kinetic effect of solvation in an
elementary step that proceeds through a late transition state and converts a polar reactant
into a non-polar product.
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3.2 The Net Rate of Reaction: Thermodynamic Effects of Solva-
tion

Equations 24 and 26 apply only to an elementary step that is infinitely displaced from
chemical equilibrium. As the system approaches chemical equilibrium, the reverse reaction
becomes significant, and the net rate of reaction decreases relative to the aforementioned
limit. This is best described as a decrease in the thermodynamic driving force for reaction,
and it can also be impacted by solvation. Rigorously capturing these impacts is where De
Donder relations truly shine.

We begin by relaxing the assumption of irreversibility in our homogeneous reaction:

A ⇌ B (27)

In the preceding section, we derived a rate expression for the forward reaction using Tran-
sition State Theory and pure species reference states (Eq. 24). We now substitute that
expression into the De Donder relation (Eq. 13), which gives the net rate of reaction:

r = k◦γA
γ‡ · N

V
· xA

(
1− exp

(−A

RT

))
(28)

The parenthetical quantity on the right hand side captures the thermodynamic driving force
for the reaction. The exponential term is generally called the “reversibility” of the reaction.
For convenience, it is assigned the symbol z [40]:

z = exp

(−A

RT

)
(29)

The reaction affinity, A, is defined as the negative change in the system Gibbs free energy,
G, with respect to the extent of reaction, ξ, with temperature and pressure held constant at
reaction conditions [53]:

A =

(−∂G

∂ξ

)

T,P

(30)

Following standard thermodynamic definitions for the total derivative of G(n, P, T ), this
partial derivative is defined in terms of chemical potentials for each species, µj (Eq. 31).
Substituting the definition of chemical potential (Eq. 8) allows this summation to be ex-
pressed in terms of standard state partial molar Gibbs free energies, G◦

j , and thermodynamic
activities of reactants and products as they exist under reaction conditions, aj.

A = −
∑

j

νjµj = −
∑

j

νj
[
G◦

j +RT ln(aj)
]

(31)
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The first summation on the right hand side is equal to the standard state free energy of
reaction, which leads to a practical expression for reversibility:

z =

∏
j a

νj
j

exp
(−∆G◦

RT

) (32)

Importantly, the standard state free energy of reaction as we have defined it reflects the
conversion of reactants as pure species into products as pure species. Similar to the standard
state rate constant, k◦, described in the preceding section, it is not impacted by composition
or solvent identity. Accordingly, we define a standard state equilibrium constant, K◦, which is
unaffected by changes in composition or solvent environment. This gives a concise expression
for reversibility:

z =

∏
j a

νj
j

K◦ (33)

Substituting Eq. 33 into the De Donder rate expression (Eq. 28) yields the following form,
which makes clear some important limiting behavior.

r = k◦γA
γ‡ · N

V
· xA

(
1−

∏
j a

νj
j

K◦

)
(34)

First,
∏

j a
νj
j is equal to zero at infinite displacement from chemical equilibrium, where

product mole fractions are zero. This ensures that the thermodynamic driving force for
reaction is at a maximum value of 1 when the system is infinitely displaced from chemical
equilibrium (i.e., z = 0). Accordingly, in this limit, one observes the maximum possible net
rate of reaction, which is equal to the rate of the irreversible forward reaction. Second, this
expression guarantees that the rate of reaction decays to zero at chemical equilibrium, where
K◦ =

∏
j a

νj
j . In this way, the De Donder relation rigorously enforces constraints on an

elementary step that arise from microscopic reversibility. We next expand the components
of the reversibility, z, which highlights the impacts of solvation on reaction affinity. We again
express thermodynamic activities as functions of activity coefficients and mole fractions, per
Eq. 12:

r = k◦γA
γ‡ · N

V
· xA

(
1− 1

K◦
γB
γA

xB

xA

)
(35)

Because we retain activity coefficients, the rate expression given in Eq. 35 applies in con-
densed media regardless of solvent identity or degree of thermodynamic nonideality; more-
over, it explicitly accounts for displacement from chemical equilibrium. In this full rate
expression, there are two ratios of activity coefficients that describe the impacts of solva-
tion. As before, the kinetic impact of solvation is captured by the ratio (γA/γ

‡). Here, we
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also see a “thermodynamic” impact of solvation, captured by the ratio (γB/γA). We clarify
these impacts by expressing rate constants, equilibrium constants, and activity coefficients
as functions of Gibbs free energy. Per convention, we define ∆GE,‡ as the change in excess
Gibbs free energy of activation, and we define ∆GE as the change in excess Gibbs free en-
ergy of reaction. Standard state free energies of activation, ∆G◦,‡, and reaction, ∆G◦, are
based on pure species reference states and are thus independent of composition and solvent
identity, while excess Gibbs free energies of reaction and activation are composition- and
solvent-dependent, so ∆GE,‡ and ∆GE in Eq. 36 have implicit composition dependencies.

r =
kbT

h
exp

(
−
(
∆G0,‡ +∆GE,‡)

RT

)
N

V
xA

(
1− xB

xA

exp

(
∆G0 +∆GE

RT

))
(36)

If the presence of a solvent induces a non-zero excess free energy of activation (i.e., ∆GE,‡ ̸=
0), one will observe a perturbation to the observed rate constant and thus a “kinetic” impact
of solvation. Alternatively, a solvent will have a “thermodynamic” impact when solvation
induces a change in the reaction free energy (i.e., ∆GE ̸= 0). This will generally cause a
change in the equilibrium position of the affected elementary reaction, which manifests in two
important ways. First, it will change the equilibrium extent of reaction. For example, one
might observe different equilibrium concentrations or coverages of an intermediate that has
been stabilized or destabilized by solvation. Second, because the excess free energy of reaction
appears in the reversibility, it will change the thermodynamic driving force for reaction,
(1−z). This results in a different reaction rate at an identical extent of reaction, even in the
case where forward rate constants are identical. Generally speaking, a positive excess Gibbs
free energy of reaction will decrease the thermodynamic driving force for reaction, while a
negative excess Gibbs free energy of reaction will increase the thermodynamic driving force
for reaction.

Solvent-induced perturbations to reaction free energies are anticipated where reactants are
chemically distinct from products and there are strong interactions between solutes and sol-
vents. Whereas transition states are frequently similar to reactant states, product states and
reactant states often vary in terms of structure, functional groups, and polarity. This sug-
gests that reactants and products are likely to have unique susceptibilities to solute-solvent
interactions and that free energies of reaction may be generally more sensitive to solvation
than free energies of activation. That is to say, manipulation of the solvent seems more likely
to have a “thermodynamic” impact than a “kinetic” impact on a given elementary step. Al-
though kinetic studies are usually performed under differential conditions where the overall
reaction is far from equilibrium, one generally assumes that the majority of elementary steps
in the underlying reaction mechanism are quasi-equilibrated and that multiple equilibrium
constants are embedded in the overall rate expression. As such, the thermodynamic effects of
solvation on individual elementary steps may be significant under conditions where the over-
all reaction is kinetically controlled, provided that the affected equilibrium constant appears
in the overall rate expression.

We next demonstrate application of rate laws developed through the De Donder formalism
in various case studies. In each, we highlight potential impacts of solvation, and we comment
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on the ways that they might manifest and the implications for experimental design.

4 Case Studies

4.1 An Irreversible, Elementary Reaction

Even in simple systems, solvation can have surprisingly complex impacts. It is worth con-
sidering these scenarios as they build a foundation for more complex analysis, and they
inform our expectations about how changes in solvent identity and species composition may
influence reacting systems. For now, we consider the irreversible elementary step:

A −→ B

4.1.1 Variable Rate Constants: A Kinetic Impact of Solvation

In common experimental practice, one would assume that the rate of the elementary step
A −→ B will scale directly with composition and thus take the form:

r = k′ · N
V

· xA (37)

A comparison of this empirical rate expression with those derived directly from Transition
State Theory (Equations 24 and 26) suggests two equivalent expressions for the apparent
rate “constant” in a typical, composition-based rate expression, k′. Eq. 38 thus captures
“kinetic” impacts of solvation, which manifest as changes in the observed rate constant for
a given elementary step.

k′ =





k◦ γA
γ‡

kbT
h

exp

(
−(∆G0,‡

j +∆GE,‡
j )

RT

) (38)

It is critical to recognize that, although the standard state free energy of activation is
composition-independent, (i.e., k◦ is composition-independent), excess free energies of ac-
tivation (and thus activity coefficients) have strong, nonlinear composition dependencies.
Therefore, one should anticipate that the observed rate “constant” in a composition-based
rate equation, k′, is not only solvent-dependent, but also composition dependent within that
solvent. This has implications for characterizing the rate of reaction along a reaction coor-
dinate, where one generally observes large changes in species composition.

It now becomes essential to estimate values for activity coefficients, and to capture their vari-
ations with system composition. For simplicity, we utilize a single parameter Margules model
to do so (Eq. 39)[36]. This is a truncation of the Redlich-Kister expansion, and it quantifies
excess Gibbs free energies relative to a pure-species standard state. It is a univariate function
of solvent mole fraction, xS, and it is parameterized with a single, composition-independent
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coefficient, Λj,S, that reflects the solvation of species j in solvent S [36, 38]. Specifically, a
comparison with Eq. 25 reveals that Λj,S is equal to GE,j/RT for species j in solvent S at
infinite dilution, where xS = 1.0. The one-parameter model is accurate for simple mixtures,
but it can fail when higher-order, asymmetric non-idealities exist and more complex solu-
tion models are required. Regardless, it is adequate for illustrating salient points, and the
following concepts are easily generalized to more sophisticated solvation models as required
for real systems.

ln(γj) = Λj,S · xS
2 (39)

To visualize the impact of a composition-dependent rate constant, we consider the case of
the unimolecular, irreversible elemenary step, A −→ B, wherein the reaction product, B
acts as a selective solvent for the transition state, A‡. The transition state here can be either
stabilized (ln(γ‡) < 0) or destabilized (ln(γ‡) > 0) relative to the reactant, A, which is not
solvated (ln(γA) = 0). Results are presented in Figure 1, where we illustrate the magnitude
of the observed rate constant, k′, as a function of solvent mole fraction, xB, for three cases:
one of an ideal solution (Λ‡,B = 0), one with a stabilized transition state (Λ‡,B = −2),
and one with a destabilized transition state (Λ‡,B = 2). The observed rate constant was
calculated using Eq. 38, and activity coefficients were calculated for the transition state in
each solvation environment using Eq. 39. This range of Margules parameters corresponds
to activity coefficients that range from −2.0 ≤ ln(γ‡) ≤ 2.0 as a function of solvent mole
fraction. To provide a connection to physically intuitive quantities, we note that extrema
in this activity coefficient range are equivalent to changes in excess Gibbs free energies of
activation of approximately ±5 kJ mol−1 at 300 K. Although we present normalized rate
constants in Figure 1, for the sake of completeness, the standard state rate constant, k◦, was
fixed at 1.0, and both it and the apparent rate constant, k′, have dimensions of inverse time.

When the solvent mole fraction is 0 (i.e., when the extent of reaction is zero), the system is
thermodynamically ideal (pure A), and the observed rate constant, k′, is equal to the stan-
dard state rate constant, k◦, regardless of the value of the Margules parameter. Deviations
from thermodyanmic ideality increase with solvent mole fraction (i.e., as the reaction pro-
gresses). This causes the transition state to experience solvation relative to the reactant, and
the observed rate constant increasingly deviates from the standard state value. As xB → 1.0,
the transition state mole fraction approaches the infinite dilution limit, where pure species
activity coefficients reach maximum deviation from unity. As anticipated in consideration
of Eq. 38, stabilization of the transition state manifests as an increase in the observed rate
constant, and we see the converse for destabilization. Importantly, we find that a relatively
minor perturbation in the free energy of activation (± ≈ 5 kJ/mol at 300K) causes order-
of-magnitude variation in the observed rate constantover this composition range. This is
reasonable considering that rate constants depend exponentially on activation barriers. One
concludes that if preferential solvation of the transition state occurs to an appreciable extent,
it should be readily apparent in a well-designed experiment.

This simple illustration shows that, in liquid media, rate “constants” may vary with solvent
identity, composition, and even reaction progress. The extent of this variation will be de-
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Figure 1: Impacts on observed rate constants of transition state solvation by reaction products, illustrating
substantial deviation from ideality as fractional conversion increases. Ideal Solution, Λ‡,B = 0 ( );
Stabilize Transition State, Λ‡,B = −2 ( ); Destabilize Transition State, Λ‡,B = 2 ( ).

termined by the relationship between activity coefficients and composition over the range
where data are collected. This is significant since our prevailing notion is that rate con-
stants are independent of composition, and experimentalists rarely take measures to ensure
composition-independent activity coefficients over the course of reaction progress.

4.1.2 Reactivity in Liquid-phase Batch Reactors

A composition-dependent rate constant may lead to complex behavior. We highlight poten-
tial issues by simulating the A −→ B reaction in a constant-volume batch reactor that is
initially charged with pure species A. We choose a constant-volume batch reactor as this is,
by far, the most common system employed for the experimental characterization of liquid-
phase reaction kinetics. Since we are considering an irreversible, elementary reaction, the
rate is given by Eq. 24, where k◦ has a value of 1.0 in units of inverse time. The same solvent
effects outlined above are used again here. Specifically, the reaction product B solvates the
transition state, A‡, and we use Margules coefficients of -2.0, 0.0, and 2.0 with Eq. 39 to
capture solvation of the transition state as a function of reaction progress. Results are pre-
sented in Figure 2. In general, solvation always results in deviation from the behaviors we
anticipate for a first-order reaction in a constant-volume batch reactor. The consequences
of this aberrant behavior are significant. For example, if the transition state is stabilized by
solvation, the rate constant increases as a function of fractional conversion (Figure 1). This
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increase mitigates the impact of decreasing reactant mole fraction, so the reaction rate de-
cays more slowly than in the thermodynamically ideal system (Figure 2a), and the reaction
reaches completion on significantly shorter time scales (Figure 2b). Destabilization of the
transition state has the opposite effect.
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Figure 2: Impacts of transition state solvation in a constant volume batch reactor on reaction rate (a),
fractional conversion (b), and common tests for first-order behavior (c and d). Ideal Solution, Λ‡,B = 0
( ); Stabilize Transition State, Λ‡,B = −2 ( ); Destabilize Transition State, Λ‡,B = 2 ( ).

These composition-driven changes in rate constant are conceptually similar to those observed
for adiabatic reactors where ∆H ̸= 0, which has significant implications for how we inter-
pret the observed data. For example, a common analysis applied when studying first-order
systems is to plot − ln (1−XA) against time (Figure 2c, XA = fractional conversion) or
rate against fractional conversion (Figure 2d), both of which should be linear. However,
when the product appreciably solvates the transition state, one observes nonlinearity due to
the rate constant’s implicit composition dependence. Although this is a hypothetical sce-
nario, these observations illustrate that common assumptions about reactor behavior may not
hold for condensed-phase systems. Classical treatments generally presume a composition-
independent rate constant, but this may be difficult to guarantee for reactions in solution,
especially those carried out over large conversion ranges. This is important to consider since
batch reactors are applied frequently in the study of liquid-phase reactivity, we often accu-
mulate substantial fractional conversions therein, and we rarely ask the question of whether
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or not rate constants vary with composition over the course of the experiment.

4.1.3 Experimental Determination of Reaction Orders

The potential composition dependence of the apparent rate constant, k′, has serious implica-
tions for the determination of reaction orders in condensed media. Observed reaction orders
are useful in kinetic analysis as they provide clues to the mechanism and rate determining
step. Accordingly, one might consider measuring reaction orders in multiple solvents as a
way to probe the impacts of solvation. In doing so, our usual approach would be modulate
the substrate concentration in the solvent over several orders of magnitude; unfortunately,
mole fractions are a better predictor of excess Gibbs free energies. The relationship between
concentration and mole fraction is strongly solvent dependent, and one rarely has an intuitive
sense of infinite dilution limits in molarity units.4 A lack of awareness about infinite dilution
limits may lead to unintended operation in regimes where activity coefficients (and thus rate
constants) are strongly composition-dependent. This is especially problematic when com-
paring reaction kinetics in low molecular weight solvents, like water, to those observed in
high molecular weight solvents, like hexadecane.
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Figure 3: Impacts of transition state solvation on apparent reaction orders, showing a) non-linear behavior
for a high-molecular-weight solvent (hexadecane, ◦) and linear behavior for a low-molecular-weight solvent
(water, •) over a concentration range of 0.01M to 2.0M, b) correct reaction orders obtained close to the
infinite dilution limit (Cj ≤ 0.1M), and c) deviations from the correct reaction order as one exceeds the
infinite dilution limit (Cj ≥ 0.2M).

To illustrate these effects, we plot reaction rates as a function of reactant mole fraction at zero
conversion for the irreversible, elementary, unimolecular reaction A −→ B occurring in water
and hexadecane at concentrations ranging from 0.01 to 2.0 moles per liter (Figure 3). This set
of concentrations mimics a typical span of experimental concentrations in liquid-phase kinetic
studies. Rates were computed using Eq. 24, the standard state rate constant, k◦, was fixed
at 1.0 with dimensions of inverse time, and we used the single parameter Margules model
(Eq. 39) for predicting activity coefficients for the transition state, γ‡, in each solvent, S. To
facilitate contrast in the predicted reaction rates in Figure 3, we arbitrarily assume that water
stabilizes the transition state (Λ‡,W = −2.0) and that hexadecane destabilizes it (Λ‡,H = 2.0).
For the purpose of relating concentrations to reactant mole fractions, we assume that the
reactant has properties of 2-butanol and that volume change of mixing is negligible. Data
are presented on a log scale, so slopes of the regressed lines correspond to apparent reaction

4It is important to be aware of the infinite dilution limit since it defines a regime where activity coefficients
are composition-independent.
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orders. In water, one observes reasonable linearity over the full composition range and finds
that the overall reaction order is 0.95, consistent with expectations for a first-order process.
In contrast, data in hexadecane are nonlinear, and we observe an apparent order of 1.3,
despite generating the data via simulation of a first order reaction. The reason that we
observe linearity in the water data set is that, for concentrations from 0.01 to 2.0M, reactant
mole fractions range from 10-4 to 0.05 in water. Thus, all aqueous-phase reaction rates are
calculated at or near the infinite dilution limit, where activity coefficients are insensitive to
composition. In contrast, for reactant concentrations of 0.01 to 2.0M in hexadecane, reactant
mole fractions vary from 0.003 to 0.42. The upper end of this range falls well outside the
infinite dilution limit, and activity coefficients (and thus rate constants) change dramatically
with reactant concentration in hexadecane. Hence, we observe non-first order behavior for
a process that is fundamentally first order.

Considering data obtained only at and below a concentration of 0.1M (Figure 3b) in each sol-
vent, we observe approximately first-order kinetics in both cases because, at and below 0.1M,
both water and hexadecane systems are sufficiently close to the infinite dilution limit that
activity coefficients are composition-independent. In contrast, isolating high concentration
data (Cj ≥ 0.2M) we observe a 0.9 order in water alongside a 1.7 order in hexadecane. Even
at high concentrations, the aqueous system remains relatively close to infinite dilution, but
the organic system does not; hence, rate constants have a strong composition dependence in
the latter, and one observes a corrupted reaction order.

These phenomena are notable because our usual tendency is to interpret significant changes
in reaction order as evidence of distinct mechanisms or rate controlling steps, but they may
also arise simply from a composition-dependent impact of solvation. Such solvent-induced
changes in reaction order (without a change in the underlying mechanism or rate determining
step) have been observed experimentally during the etherification of 5-hydroxymethylfurfural
with ethanol in an ethanol/water solvent system [22]. Predicting these composition-dependent
solvation effects a priori can be difficult because the relationship between concentration and
mole fractions differs among solvents, and the impact of composition on activity coefficients
is both complex and solvent-specific. In reality, many experimental systems likely move into
or out of the infinite dilution limit upon variation in solvent identity and/or solute concen-
tration; however, the resulting thermodynamic non-idealities are generally not addressed.
Considering this, best practice in the analysis of solvation effects is to control species mole
fractions instead of concentrations and to maintain systems at conditions where activity
coefficients (and therefore rate constants) are composition-independent. This is best accom-
plished by operating at or near infinite dilution (xA < 0.01). While activity coefficients are
also nearly invariant close to the pure species limit (0.9 ≤ xA ≤ 1.0), it is not generally
possible to obtain a meaningful reaction order in that regime since changes in solute concen-
tration at the pure species limit are too small to produce a statistically significant response
in the rate of reaction. If solute mole fractions vary between 0.01 ≤ xA ≤ 0.90, one should
assume that activity coefficients are strongly composition-dependent and, as highlighted in
the case of 2-pentanone in water, may vary by orders of magnitude (see the discussion of
UNIFAC activity coefficients in Section 2.3).
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4.1.4 Activity-based Rate Expressions

Because thermodynamic activities enable a rigorous description of chemical potential, it is
tempting to simply replace composition-based, mass-action rate expressions for elementary
steps with their activity-based analogs (e.g., r = kaA instead of r = kCA); we caution against
doint this without forethought. According to Transition State Theory, reaction rates scale
with the number of transition states, not their thermodynamic activities. Thermodynamic
activities appear in elementary rate expressions because of the assumption that the transition
state is in equilibrium with the initial state, and one cannot avoid the activity coefficient
for the transition state simply by writing an activity-based mass-action statement. As an
illustration, we compute reaction rates as a function of reactant activity using Eq. 24 and
assuming k◦ = 1.0. We note that the product γAxA appearing in Eq. 24 is equal to the
activity of species A in solution. As before, we use the Margules model to capture the impacts
of reactant and transition state solvation. This analysis makes clear that an activity-based
expression is rigorous only if the transition state is not solvated (Figure 4a). Otherwise, the
(composition-dependent) activity coefficient for the transition state will lead to nonlinearity
as shown in Figure 4b. Writing rate expressions based on reactant activity alone neglects the
contribution of transition state solvation; therefore, it is best practice to initiate development
of elementary rate expressions in consideration of the number of transition states in a system
and to retain activity coefficients for reactants and transition states unless chemical intuition
or computational data suggest that they are of comparable magnitude and will cancel from
the rate expression.
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Figure 4: (a) Reaction rates are linear with respect to thermodynamic activity when γ‡ = 1, and (b)
non-linear when the transition state is solvated. k◦ = 1.0; Ideal Solution, Λj,S = 0 ( ); Stabilization,
Λj,S = −2 ( ); Destabilization, Λj,S = 2 ( ).

4.2 Reversible Reactions

The effects of solvation become increasingly complex as we transition to the more general
case of a reversible elementary step:

A ⇌ B
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In short, one must now consider how solvation impacts both rate and equilibrium constants,
i.e., the kinetic and thermodynamic drivers for reaction.

4.2.1 Thermodynamic vs. Kinetic Solvent Effects

Here, we characterize the impacts of changing rate constants and reaction affinity through
consideration of a reversible, liquid-phase elementary step, A ⇌ B. We again illustrate
outcomes observed in a constant volume batch reactor. We introduce an external solvent,
S, which does not participate in the reaction and solvates either the transition state, A‡, or
the reaction product, B, without solvating the reactant, A. We isolate kinetic and thermo-
dynamic impacts by separately considering solvation of the transition state and the product.
As before, we employ a single-parameter Margules model, where activity coefficients are
determined entirely by the solvent mole fraction. We consider three cases: thermodynamic
ideality (Λj,S = 0), stabilization (Λj,S = −2), and destabilization (Λj,S = 2). Further, we
ensure that the solvent, S, is present in large excess (xS = 0.999), and that mole fractions
for species A and B are always maintained in the infinite dilution limit (xA ≈ xB ≤ 0.001).
This ensures that activity coefficients, while deviating substantially from unity, are always
composition-independent. Finally, we compute the rate of reaction using Eq. 35, and we fix
the standard state rate and equilibrium constants (k◦, K◦) to values of 1.0.
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Figure 5: Combined kinetic and thermodynamic impacts of solvation; k◦ = 1.0, K◦ = 1.0. (a-c, top
row) show the impacts of solvation on the forward rate constant, while (d-f, bottom row) show the impacts
of solvation on reaction affinity. Ideal Solution, (Λj,S = 0) ( ); Stabilization, (Λj,S = −2) ( );
Destabilization, (Λj,S = 2) ( ).

The top panel in Figure 5 illustrates the impacts of solvating the transition state. As in
consideration of the irreversible reaction, one observes that stabilizing the transition state
accelerates completion of the reaction (Figure 5a), while destabilization achieves the opposite.
Importantly, the change in excess free energy of reaction for this case is zero, and the system
always achieves the equilibrium conversion anticipated in a thermodynamically ideal system
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(50%). The kinetic impact of changing the solvent is evident in Figure 5b. The rate of
reaction observed in the zero conversion limit (y-intercept) represents the forward rate of
reaction at zero conversion; it is increased by stabilizing the transition state and decreased by
destabilizing the transition state. Finally, Figure 5c shows that the thermodynamic driving
force for reaction, (1 − z), is independent of transition state solvation as expected for an
elementary step.

We next consider impacts of solvation-induced changes in the excess Gibbs free energy of
reaction (Figures 5d - f). Changes to the reaction free energy should manifest as changes in
the equilibrium conversion, which are clearly observed in Figure 5d: stabilizing the reaction
product increases equilibrium conversion while destabilizing the product decreases equilib-
rium conversion. Less intuitive is that each system reaches equilibrium on different time
scales (note the logarithmic X-axis). This indicates that product solvation impacts reaction
kinetics without perturbing the transition state.5 As shown in Figure 5e, reaction rates vary
as a function of fractional conversion; however, because the transition state is not solvated,
the rate at zero conversion is unperturbed by solvation, and all systems have a common
y-intercept of 0.10. This y-intercept represents the rate of reaction at infinite displacement
from chemical equilibrium. It is a purely “kinetic” term, so it is independent of reaction free
energy. As conversion increases, the thermodynamic driving force decays in all cases, but we
observe substantial variation with the solvent environment. This arises through a perturba-
tion to the reversibility, which is clearly demonstrated in Figure 5f, where stabilization and
destabilization of the product have a dramatic effect on the thermodynamic driving force. In
the case of product stabilization, there is no meaningful change in reversibility below ≈ 25%
conversion, whereas destabilizing the reaction product causes the system to reach equilib-
rium (z = 1) at ≈ 10% conversion. That reaction rates can be so dramatically impacted
even at low conversion (< 5%) suggests that care must be taken to measure forward reaction
rates at true differential conditions, which must be determined based on knowledge of the
reaction equilibrium (as is routinely done, for example, when studying the water-gas shift
or ammonia synthesis reactions in the gas phase). Unfortunately, this can be challenging in
liquid media because, while activity coefficients can be calculated, they are not tabulated. In
cases where one is uncertain of the equilibrium limit, best practice is to measure conversion
and product yields at multiple residence times. In the differential limit, conversion and yield
will increase linearly with residence time, and the slope of the observed trend provides a
good estimate of the forward rate of reaction.

5For the sake of a holistic interpretation, it is worth considering that stabilization and destabilization of
the reaction product constitutes a change in the free energy difference between the product and the transition
state, i.e., the free energy of activation for the reverse step. From the perspective of the reverse reaction, this
is a “kinetic” effect using our own terminology. Despite this, we categorize it as a “thermodynamic” effect
since the free energy separation between the transition state and the reactant remains fixed in this scenario.
Specifically, we classify this as a change in the reversibility of the forward reaction.

26



5 Using De Donder Relations to Analyze Multi-step

Reaction Mechanisms

We next consider a common scenario in catalytic kinetics: that of a multi-step mechanism
that includes surface adsorption and reaction. For simplicity, we will analyze a surface-
catalyzed unimolecular isomerization according to the adsorption-reaction sequence shown
below.

1. A+ ∗ ⇌ A∗

2. A∗ ⇌ B + ∗

A ⇌ B

Here, solvation effects become non-intuitive. The effects on a single elementary step illus-
trated in the prior case studies still hold, but they are convoluted with effects on additional
elementary steps in the reaction sequence. For example, using our own terminology, stabi-
lizing the surface intermediate, A∗, in isolation has a “thermodynamic” effect on the first
elementary step (solvation of the product relative to the reactant), whereas, with respect
to the second step, it has both “thermodynamic” effects (solvation of the reactant relative
to the product) and “kinetic” effects (solvation of the reactant relative to the transition
state). Accordingly, it is difficult to predict how solvation of individual species will mani-
fest in a multi-reaction sequence. To facilitate visualization, we first develop an overall rate
expression, and we subsequently plot outcomes anticipated in a batch reactor.

Following the approaches described in Section 3, one can derive expressions for the turnover
frequencies of steps 1 and 2 (see Appendix B); here, the triple-prime notation denotes di-
mensions of inverse time:

r′′′1 = k◦
1

γAγ∗
γ1‡

· xAθ∗

(
1− 1

K◦
1

γA∗

γAγ∗

θA
xAθ∗

)
(40)

r′′′2 = k◦
2

γA∗

γ2‡
· θA

(
1− 1

K◦
2

γBγ∗
γA∗

xBθ∗
θA

)
(41)

We consider the case where the first step is fast and quasi-equilibrated, and the second step
is slow and rate-controlling. Assuming a Langmuirian surface, we solve for the coverages of
vacant sites, θ∗, and adsorbed A∗ species, θA:

θ∗ =
1

1 +K◦
1xA

γAγ∗
γA∗

(42)

θA =
K◦

1xA
γAγ∗
γA∗

1 +K◦
1xA

γAγ∗
γA∗

(43)
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Substitution of these coverages into the rate of step 2 (Eq. 41) leads to an expression for
the overall reaction rate in turnover frequency units:

r′′′ =
k◦
2

γ2‡

(
K◦

1xAγAγ∗
1 +K◦

1xA
γAγ∗
γA∗

− 1

K◦
2

xBγBγ∗
1 +K◦

1
γAγ∗
γA∗

xA

)
(44)

To examine the impact of solvation on the the overall A ⇌ B reaction, we evaluate the case
where this reaction is carried out in a constant-volume batch reactor containing 10−3 moles
of active sites, 0.1 moles of A, and 99.9 moles of a solvent, S, that does not participate in
the reaction. The initial mole fraction of A is set to 0.001 to ensure that bulk mole fractions
of species A and B are always maintained in the infinite dilution limit, which guarantees
conversion-independent solvation effects and allows us to isolate impacts of specific free
energy perturbations. In this case, we assume that the reactant, A, and the vacant site, ∗,
do not experience solvation (i.e., γA = γ∗ = 1). We consider only the impacts of solvating
the kinetically relevant transition state, TS2, the reaction product, B, and the surface-bound
intermediate, A∗. Because we have assumed that the first reaction is quasi-equilibrated, the
activity coefficient for the first transition state is absent from the overall rate expression,
and its solvation has no impact on the overall rate of reaction.

In examining the overall rate expression (Eq. 44) one observes similar functional depen-
dencies on the activity coefficient of the kinetically relevant transition state, γ‡

2, and the
reaction product, γB, as shown in the prior example of a single elementary step, Eq. 35. It
is therefore not surprising that, when stabilizing the transition state or the reaction product
in step 2, one observes qualitatively similar behavior for this multi-reaction sequence to that
illustrated for a single elementary step in Figure 5. Accordingly, these results are excluded
as they add no new insights. The final activity coefficient that appears in the rate expression
is that of the surface intermediate, A∗. Inspection of Eq. 44 suggests that impacts of solvat-
ing species A∗ (i.e., variation in γA∗) will depend on the magnitude of K◦

1 , so we evaluate
multiple scenarios. Reaction rates are computed using Eq. 44. For each simulation, we fix
the value of k◦

2 at 0.01; we set the equilibrium constant of the overall reaction, A ⇌ B, to
K◦ = 1.0; and we vary the standard state equilibrium constant for the first elementary step,
K◦

1 , from 10 to 105. As K◦
1 is varied, we calculate the equilbrium constant for the second

elementary step, K◦
2 , as K◦/K◦

1 . This is essential to ensure thermodynamic consistency
with the overall reaction (A ⇋ B), which should approach an equilibrium conversion of 0.5
regardless of stabilization of the surface intermediate. Further, varying K◦

2 in proportion to
K◦

1 guarantees that the thermodynamic driving force for reaction, 1 − z2, as a function of
reaction extent is independent of solvating species A∗. Finally, we fix activity coefficients
for all species other than the surface intermediate to 1.0, and we consider the cases where,
relative to all other species, the surface intermediate is stabilized (ΛA∗,S = −2), destabilized
(ΛA∗,S = 2), or experiences no solvation (ΛA∗,S = 0). We assume that species A∗ is exposed
to the same infinite dilution environment as bulk species A and B, so we compute γA∗ as a
function of bulk solvent mole fraction using the single parameter Margules model.6As shown

6One can envision scenarios where surface species (including transition states) exist in a different solvent
environment than the bulk species, including species present inside zeolite pores [23, 26] or in catalysts
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in Figures 6 to 8, the observed behavior is non-intuitive.
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Figure 6: Fractional conversion of A as a function of time in a batch reactor upon solvation of a surface
intermediate for a range of standard state adsorption equilibrium constants with k◦2 = 0.01 and K◦

2 = 1/K◦
1 .

a) K◦
1 = 10, b) K◦

1 = 103, c) K◦
1 = 104, d) K◦

1 = 105. Ideal Solution, ΛA∗,S = 0 ( ); Stabilize A∗,
ΛA∗,S = −2 ( ); Destabilize A∗, ΛA∗,S = 2 ( ).

In Figure 6, we plot fractional conversion as a function of time in a batch reactor wherein
species A, B, and A∗ are always present at infinite dilution and wherein species A∗ ex-
periences various solvation environments. As anticipated, the impacts of solvating A∗ are
extremely sensitive to the value of the standard state equilibrium constant for step 1, K◦

1 ,
and we find that the approach to an equilibrium conversion of 0.5 is impacted by solvation
of A∗ only for large values of K◦

1 . Interestingly, stabilizing the surface intermediate, A∗,
slows the approach to equilibrium relative to the thermoydnamically ideal case, whereas
destabilizing the surface intermediate accelerates the reaction. The underlying reason is not
immediately apparent. To gain further insight, we plot surface coverages for species A∗ as
a function of reaction time in each solvent enviroment (Figure 7). These coverages were ob-
tained directly from the simulations used to generate conversion profiles illustrated in Figure
6. Consistent with intuition, we find that stabilizing A∗ relative to A in solution increases its

that contain microenvironments [30], among other examples [29]. The same formalism applies to these
situations, and our conclusions here mirror those from the experimental works cited, although the mechanics
of computing activity coefficients or excess Gibbs free energies are more complicated.
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Figure 7: Coverages of A∗ as a function of time in a batch reactor for solvation of a surface intermediate
for a range of standard state adsorption equilibrium constants with k◦2 = 0.01 and K◦

2 = 1/K◦
1 . a) K

◦
1 = 10,

b) K◦
1 = 103, c) K◦

1 = 104, d) K◦
1 = 105. Ideal Solution, ΛA∗,S = 0 ( ); Stabilize A∗, ΛA∗,S = −2 ( );

Destabilize A∗, ΛA∗,S = 2 ( ).

fractional coverage compared to the thermodynamically ideal case, whereas destabilizing it
reduces coverage. This impact is most pronounced for small values of K◦

1 , and it diminishes
as K◦

1 → ∞, where all systems approach saturation. Curiously, the correlation between sol-
vation and coverage is exactly opposite to the correlation between solvation and fractional
conversion. Specifically, we find that the time scales required to reach equilibrium are most
sensitive to the solvation of A∗ for large values of K◦

1 (Figure 6d), yet solvation of A∗ has
little impact on coverage in this regime (Figure 7d). In contrast, a comparison of Figure 6a
and Figure 7a for the case where K◦

1 = 10 shows that order-of-magnitude variations in cover-
age have no apparent impact on reaction rates, which is counterintuitive for a unimolecular
surface reaction

The origins of these phenomena can be understood by examining trends in coverage, ther-
modynamic activity, and rate as a function of K◦

1 . Here, we compute quantities of interest
at zero conversion in a system where the mole fraction of species A is 0.001, the mole frac-
tion of species B is 0.0, and the solvent mole fraction is 0.999. We consider a range of
activity coefficients for the surface intermediate, A∗, to capture stabilization (ln(γ) < 0)
and destabilization (ln(γ) > 0). Activity coefficients were computed with a single parameter

30



10−2 100 102 104 106 108
10−8

10−6

10−4

10−2

100

K◦
1

θ A
(a)

ln(γ) ≈ −3
ln(γ) ≈ −2
ln(γ) ≈ −1
ln(γ) = 0
ln(γ) ≈ 1
ln(γ) ≈ 2
ln(γ) ≈ 3

10−2 100 102 104 106 108
10−8

10−6

10−4

10−2

100

102

K◦
1

Ac
tiv

ity
of

A
∗

(b)

ln(γ) ≈ 3
ln(γ) ≈ 2
ln(γ) ≈ 1
ln(γ) = 0
ln(γ) ≈ −1
ln(γ) ≈ −2
ln(γ) ≈ −3

10−2 100 102 104 106 108
10−9

10−6

10−3

100

K◦
1

ra
te

(c)

ln(γ) ≈ 3
ln(γ) ≈ 2
ln(γ) ≈ 1
ln(γ) = 0
ln(γ) ≈ −1
ln(γ) ≈ −2
ln(γ) ≈ −3

Figure 8: Trends in a) coverage, b) thermodynamic activity, and c) reaction rate upon variation in K◦
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Margules model with coefficients, ΛA∗,S, ranging from -3 to 3 at a solvent mole fraction of
0.999, and results are presented in Figure 8. Consistent with expectations, coverages are
generally higher in instances where A∗ is stabilized; however, this is most prevalent for small
equilibrium constants and in situations where coverages are low. As one considers increas-
ingly large equilibrium constants, the surface coverage for all solvent environments converges
to unity as required by the site balance. Consideration of thermodynamic activities reveals
an interesting compensation effect (Figure 8b). Specifically, for values of K◦

1 < 10− 100 we
observe identical activities for species A∗ in all solvent environments despite considerable
variation in coverage. Although destabilization of the surface intermediate decreases its cov-
erage, it also increases its activity coefficient, resulting in a constant thermodynamic activity
for the surface intermediate. In contrast, the maximum attainable surface coverage is 1.0,
but activity coefficients change considerably from one solvent to the next; hence, we see
pronounced differences in thermodynamic activity (i.e., reactivity) at high coverage. This
can be rationalized by considering that the activity for species A∗ is given by:

aA∗ = γA∗θA (45)

And at low coverages:

θA ≈ K◦
1xA

γAγ∗
γA∗

(46)

Writing the activity of A∗ by combining Equations 45 and 46, we see a cancellation of the
activity coefficient for species A∗; thus, at low coverages, its thermodynamic activity is inde-
pendent of solvation and directly proportional to the mole fraction of species A in solution.
For this reason, we observe comparable reaction rates and thus fractional conversions in cases
of stabilization, destabilization, and thermodynamically ideal media for small values of K◦

1

(Figure 6a). In contrast, in the high coverage limit, we find:

θA ≈ 1 (47)

Here, the thermodynamic activity of A∗ is equal to its activity coefficient per Eq. 45. For
this reason, the thermodynamic activity for A∗ under saturation conditions is higher when
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it is destabilized relative to the bulk (ln(γA∗) > 0) and lower when it is stabilized relative
to the bulk (ln(γA∗) < 0). Essentially, under saturation conditions observed at high values
of the equilibrium constant, the destabilized surface intermediate is “more reactive” because
the free energy separation between it and the transition state of the kinetically relevant
step, TS2, is diminished relative to the thermodynamically ideal environment. This result
is apparent if one examines the overall rate expression, Eq. 44, at low coverage regimes.
Because the simulations underlying Figure 8 were performed at zero conversion, we neglect
the contribution of the reverse reaction to find:

r′′′ = k◦
2K

◦
1

γAγ∗

γ‡
2

(48)

It is clear from this expression that the overall reaction rate at low coverage depends on the
differential solvation between the bulk reactant, A, and the kinetically relevant transition
state, TS2. Thus, it is independent of the degree of solvation for the surface intermediate.
In contrast, in the high coverage regime, the overall rate depends on the degree to which the
surface intermediate, A∗, is solvated relative to the kinetically relevant transition state, TS2:

r′′′ = k◦
2

γA∗

γ‡
2

(49)

In this case, the rate of reaction scales directly with the activity coefficient for the surface
intermediate; hence, we observe larger reaction rates and a more rapid increase in fractional
conversion for the case of a destabilized surface intermediate (γA∗ > 1).

6 Degree of Rate Control

As the preceding examples make clear, solvation can have significant impacts on rates of
reaction. Changes in excess free energies of activation manifest as changes in rate constants,
so it is plausible that kinetic impacts of solvation could alter the degree of rate control
in a multistep mechanism. In addition, Dumesic has demonstrated that the reversibility
of an elementary step is an indicator of its kinetic significance [40, 41], and collections
of reversibilities can be used to estimate degrees of rate control [42, 43, 50]. Solvation
can impact reaction affinity by perturbing reversibility, potentially driving an elementary
step either to equilibrium or a large displacement therefrom. Indeed, a thermodynamically
rigorous interpretation of experimental results from hydrogenation studies in the presence of
polymer microenvironments indicates that adsorption equilibrium constants can be impacted
enough by solvation to meaningfully alter the coverage of abundant surface species [30]. Thus,
one may posit that Degree of Rate Control can be influenced by both thermodynamic and
kinetic effects of solvation. As discussed in the preceding example, the convoluted impacts
of solvation on multi-step reactions are difficult to anticipate, so we present them in the
context of a simple example. Specifically, we consider the surface-mediated isomerization
reaction outlined in Section 5 under identical conditions of infinite dilution of species A in
solvent S. To facilitate analysis of rate control, we relax the assumption that adsorption is
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equilibrated, and we instead consider the process at steady state in a CSTR. In this case,
one can derive an overall rate expression by considering that the coverage of the surface
intermediate, A∗, is time invariant. For simplicity, we restrict consideration to the zero-
conversion limit, where the product mole fraction, xB, is equal to zero. Ultimately, we arrive
at Eq. 50 (See Appendix B).

r′′′ =
k◦
1k

◦
2
γAγ∗γA∗

γ‡
1γ

‡
2

xA

k◦1
K◦

1

γA∗
γ‡
1

+ k◦
2
γA∗
γ‡
2

+ k◦
1
γAγ∗
γ‡
1

xA

(50)

As developed by Campbell, the degree of rate control for each step is given by:

XRCi
=

kf,i
r

∂r

∂kf,i

∣∣∣∣
Ki,kj ̸=i

(51)

In this equation, kf,i and Ki are, respectively, the forward rate constant and the equilibrium
constant for the ith step in the reaction mechanism. Importantly, Ki must be held constant
when differentiating with respect to kf,i, which requires that reverse rate constant for step i
also change upon differentiation. We ensure this by defining reverse constants using Eq. 5.
Rate constants for all remaining steps (i ̸= j) are also held constant during analysis of the
ith step. Finally, r is the overall rate of reaction, which can be calculated either using Eq.
50 or by numerically integrating the transient CSTR balance on A∗ until reaching steady
state. We used the latter approach to estimate the degree of rate control for step 1, XRC1 , by
subjecting the system to a 0.1% change in k◦

1. The resultant change in reaction rate was used
to approximate the derivative in Eq. 51, allowing us to quantify XRC1 in various solvation
environments and parameter spaces. Specifically, inspection of Eq. 50 suggests that the
overall reaction rate (and thus, potentially, the Degree of Rate Control) is sensitive to k◦

1, k
◦
2,

and K◦
1 . Accordingly, we consider a large span of values for each of these parameters in our

analysis. In all scenarios, standard state rate parameters were adjusted to give XRC1 = 0.5 in
a thermodynamically ideal environment. In Figure 9, we plot XRC1 for select parameter sets
upon solvation of the bulk reactant, A, the surface intermediate, A∗, the reaction product,
B, and the transition state for each elementary step. Varying degrees of solvation for each
species are given by the magnitude of the activity coefficient, which is plotted on the x-axis.
Activity coefficients were calculated using the single parameter Margules model for a solvent
mole fraction of 0.999 with coefficients, Λj,S, varying from -4 to 4. Because these simulations
were performed in the zero-conversion limit, the mole fraction of species B is always 0.0.
Accordingly, step 2 is infinitely displaced from equilibrium, and solvation of species B has
no impact on Degree of Rate Control

As illustrated in Figure 9, the extent to which solvation of a particular species affects degree
of rate control depends strongly on the magnitude of standard state rate and equilibrium
constants. We examine the nature of that dependence by developing an analytical solution
for the Degree of Rate control for Step 1:
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Figure 9: Impact of species solvation on degree of rate control in a 2-step reaction for various values of
standard state rate and equilibrium constants a) k◦1 = 0.1, k◦2 = 100, K◦

1 = 0.001, b) k◦1 = 10−4, k◦2 = 1.0,
K◦

1 = 1.0, c) k◦1 = 103, k◦2 = 1.0, K◦
1 = 106, d) k◦1 = 166.5, k◦2 = 1.0, K◦

1 = 200. Solvate A (◦) ; Solvate A∗
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XRC1 =

k◦2
k◦1

γA∗
γ‡
2

1
K◦

1

γA∗
γ‡
1

+
k◦2
k◦1

γA∗
γ‡
2

+ γA
γ‡
1

xA
(52)

From this expression, we can examine the impact of solvation on degree of rate control in
several regimes. First, in the limiting case where K◦

1 is extremely small, the leading term in
the denominator will dominate, resulting in the following expression for XRC1 :

XRC1 =
k◦
2K

◦
1

k◦
1

γ‡
1

γ‡
2

(53)

This corresponds to the scenario in Figure 9a, where we see that degree of rate control is
only influenced by solvation of the transition states for each of the elementary steps. As the
transition state for step 1 is stabilized (ln(γ‡

1) < 0), step 1 becomes less kinetically significant,
which is the anticipated consequence of stabilizing a transition state (i.e., the rate of that
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reaction will increase). In contrast, as the transition state for the first step is destabilized
(ln(γ‡

1) > 0), we observe an increase in the degree of rate control for step 1. Again, it stands
to reason since this destabilization corresponds to a decrease in the rate constant for step 1,
which should increase its degree of rate control.

Another extreme to consider is that where the ratio k◦
2/k

◦
1 is very large, such that the middle

term in the denominator of Eq. 52 dominates. In this case, one finds:

XRC1 = 1 (54)

This is consistent with intuition: as the second reaction becomes increasingly fast relative to
the first reaction, the first step will be fully rate controlling, regardless of the degree to which
any species is solvated. This corresponds to the scenario in Figure 9b. Next, we consider
the case where K◦

1 is large and the ratio of k◦
2/k

◦
1 is small. In this scenario, the final term of

the denominator in Eq. 52 will dominate, and one observes the following result for degree
of rate control:

XRC1 =
k◦
2

k◦
1

γA∗

γA

γ‡
1

γ‡
2

1

xA
(55)

In this case, one expects that degree of rate control will be sensitive to solvation of the
reactant, the surface intermediate, and both transition states. This corresponds to the
illustration in Figure 9c, where one observes equal and opposite sensitivities to the solvation
of A and A∗ as well as TS1 and TS2. Inspection of Eq. 55 reveals that this is a complex regime
where thermodynamic effects of solvation on step 1 (γA∗/γA), kinetic effects of solvation on
step 1 (γ‡

1/γA), and kinetic effects of solvation on step 2 (γA∗/γ
‡
2) may all impact the degree

of rate control. The case presented in Figure 9d represents an intermediate regime where
there is no single term dominating the polynomial expression in the denominator of Eq. 52.
In this case, solvation of the transition states has substantial influence over degree of rate
control, whereas the influences of solvation of the reactant, A, and the surface intermediate,
A∗, are muted.

The major takeaway is that the impacts of solvation are complex and non-intuitive for multi-
step pathways, particularly in cases where no clear rate determining step exists. That said,
it is straightforward to develop rate expressions with the De Donder framework, regardless of
the number of elementary steps. Although the expressions are more complex, they ensure a
rigorous treatment of the kinetic and thermodyanmic impacts of solvation, and their solution
is routine with modern numerical methods packages. The difficulty lies in obtaining good
estimates for activity coefficients or excess free energies of solvation, but the approach is
general, and we propose that it could be adopted in lieu of more conventional rate expressions,
particularly for the analysis of reactions in liquid media.
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7 Conclusions & Recommendations

In this Mini-review, we have shown that De Donder relations can be used to rigorously de-
scribe the impacts of solvation on elementary and multi-step reaction kinetics. Using the
De Donder formalism, we classify “solvent effects” into two categories—kinetic effects that
impact the rate constant of the forward reaction and thermodynamic effects that impact the
reaction affinity. Generalizing this framework is straightforward, and, when implemented in
basic kinetic and reactor models, one observes substantial deviations from conventionally ex-
pected behavior. Surprising trends arise because activity coefficients (and the related excess
Gibbs free energies) are strongly dependent on both solvent identity and system composi-
tion. This leads to rate and equilibrium “constants” that vary with solvent identity and
system composition. This is an important consideration in the analysis of liquid-phase reac-
tions. Even for the most basic system, the impacts of solvation can be significant enough to
cause deviations in measurements of reaction orders and unexpected non-linearity in stan-
dard methods for extracting kinetic parameters from reactor-scale observations. The impact
of composition-dependent activity coefficients on reactivity measurements is conceptually
similar to the effects of a nonzero heat of reaction in an adiabatic reactor (i.e., the rate
constant changes over the course of the experiment), with similar attendant changes to
our interpretation of the data. We have also shown that these effects are compounded for
multi-step reactions, leading to non-intuitive impacts on observed rates and kinetic trends.
Because solvation can impact both rate constants and reversibilities, it can affect the degree
of rate control, implying that changes in solvent can, for some reactions, change the reaction
mechanism or, at the very least, the rate determining step.

For analysis of liquid-phase reactions, we make several recommendations. The first is that
we increasingly make use of De Donder relations, as they capture kinetic and thermodynamic
impacts of solvation while enforcing thermodynamic consistency with respect to elementary
rate and equilibrium constants. Further, as De Donder relations apply for any elementary
reaction, it is straightforward to extend these concepts to the analysis of multi-step reaction
mechanisms. A second recommendation is that we force ourselves to explicitly consider ther-
modynamic reference states in kinetic analysis. Whether or not it is formally acknowledged
in most analyses, one must invoke a thermodynamic reference state in developing a rate ex-
pression from Transition State Theory. Failure to acknowledge reference states may lead to
the development of rate expressions that violate thermodynamic consistency. In considering
the impact of solvent modulation, we suggest the use of a pure component reference state
because it is independent of solvent identity. Further, in this convention, all information
about non-ideality is encoded in solvent-specific activity coefficients (or, equivalently, ex-
cess Gibbs free energies). In contrast, infinite dilution reference states will generally require
unique standard state rate and equilibrium constants as well as activity coefficient mod-
els for each solvent. Finally, liquid-phase kinetics experiments should ideally be performed
close to the infinite dilution limit. While this approach leads to activity coefficients that are
large in magnitude (based on the pure component reference state), it minimizes the more
problematic composition-dependence of activity coefficients.

Underlying this approach, of course, is a general adherence to the guiding principles of
catalysis research set forth by Michel Boudart. His respect for kinetic and thermodynamic
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rigor, and his insistence on careful measurement of reaction rates in kinetically-controlled
regimes has long been an inspiration to the authors. We are honored to continue a discussion
that he began over 30 years ago.

8 Materials and Methods

All simulations discussed in Case Studies were written in Julia [68], and reactor simulations
were performed using DifferentialEquations.jl package [69]. Figures were generated using
Plots.jl with a PGFPlotsX backend. Source codes for each case study are provided in Jupyter
Notebooks at https://github.com/jqbond/XXXXX.
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Appendix A. Summary of Symbols and Definitions

aj Thermodynamic activity of species j
fj Fugacity of species j in a mixture
f ◦
j Fugacity of species j in a reference state
h Planck’s Constant
kB Boltzmann Constant
ki Mass action rate constant of reaction i
k◦
i Standard state rate constant of reaction i

k′
i Apparent rate constant of reaction i

rf Forward rate of reaction
ri Volumetric rate of reaction i (intensive)
r′′′i Surface rate of reaction i (intensive)
r̄i Rate of reaction i (extensive)
xj Mole fraction of species j
x‡ Mole fraction of transition state
zi Reversibility of reaction i
Ai Affinity of reaction i
Λ12 Margules parameter
Cj Molar concentration of species j
C‡ Molar concentration of transition state
G◦

j Partial molar Gibbs free energy of species j
GE

j Excess Gibbs free energy of species j

∆G◦,‡
i Standard state activation free energy of reaction i

∆G◦
i Standard Gibbs free energy of reaction i

∆GE
i Change in excess Gibbs free energy of reaction i

∆GE,‡
i Change in excess Gibbs free energy of activation of reaction i

∆H Change in enthalpy
Ki Equilibrium constant of reaction i

K‡
i Equilibrium constant describing formation of transition state of reaction i

K◦
i Standard state equilibrium constant of reaction i

N Total number of moles
N ‡ Number of transition states
P Pressure
R Universal Gas Constant
T Temperature
V System volume
Xj Fractional conversion of species j
Xj0 Initial fractional conversion of species j
XRCi

Degree of rate control of reaction i
γj Activity coefficient of species j
γ‡ Activity coefficient of transition state
µj Chemical potential of specis j
νj Species stoichiometric coefficient
ν‡ Frequency factor
θj Fractional surface coverage of species j
ξ Extent of reaction 38



Appendix B. Supplementary material

Derivation of rate expressions from transition state theory; derivation of Equation 50. Sup-
plementary data to this article can be found online at DOI LINK.
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