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The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector
using 8.02 × 1020 protons-on-target in the NuMI beam. The sample of GeVelectron neutrino interactions is
the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical
uncertainties. The double-differential cross section in final-state electron energy and angle is presented for
the first time, together with the single-differential dependence on Q2 (squared four-momentum transfer)
and energy, in the range 1 GeV ≤ Eν < 6 GeV. Detailed comparisons are made to the predictions of the
GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model
over the others consistently across all three cross sections measured, though some models have especially
good or poor agreement in the single differential cross section vs Q2.
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Precision measurements of neutrino oscillation parame-
ters [1–4] such as δCP and the neutrino mass ordering use νe
(ν̄e) appearance in predominantly νμ (ν̄μ) beams and depend
on detailed understanding of neutrino interaction models.
Despite the two-detector technique that largely mitigates the
impact of cross-section uncertainties, oscillation measure-
ments still require model predictions to estimate the energy
spectrum and selection efficiencies of νe interactions via

accurate modeling of interaction rate and outgoing-particle
kinematics.
Lepton universality suggests that νμ and νe interactions

are largely similar, but differences in final-state lepton
mass, tree-level radiative corrections, and imprecisely
known form factors of the nucleon lead to differences
in the predicted cross sections and their uncertainties [5].
There are few direct νe cross-section measurements at the
GeV energy scale as νe comprise ≤ 1% of the neutrino
beams produced at accelerators. The dominant νμ com-
ponent produces significant backgrounds. Previous mea-
surements in this energy range have been performed by
Gargamelle [6] and T2K [7,8], both of which reported the
total integrated cross section as a function of energy.
MINERvA has reported single-differential cross sections
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for the quasielastic component of the νe—carbon cross
section [9]. The measurement presented here uses the
largest GeV sample of electron neutrino-initiated inter-
actions to date, with which the simultaneous differential
dependence on electron energy Ee and angle θe is
extracted for the first time. The cross sections as functions
of squared four-momentum transfer Q2 and neutrino
energy Eν are also presented.
Generators, such as [10–13], group predictions of

neutrino-nucleus interaction cross sections into three proc-
esses in this energy range: quasielastic (QE), baryon
resonance production (RES), and deep inelastic scattering
(DIS). The modeling of these processes must be altered in
the nuclear medium. A fourth process due to meson
exchange current (MEC) occurs only inside the nuclei.
These nuclear effects are not completely understood and
the implementation of existing models in generators is
currently incomplete [14–17]. Measured differential depend-
encies using νe can be used to constrain the underlying
interaction channels, elucidate nuclear effects, and probe key
aspects of neutrino-nucleus interaction models used to
calculate oscillation-experiment acceptances.
The NOvA experiment is designed to measure neutrino

flavor oscillations [1] using two detectors separated by
809 km, placed 14.6 mrad off axis from the central beam
direction of Fermilab’s NuMI beam [18]. Magnetic focusing
horns in the beamline charge-select neutrino parents giving
96% νμ flux between 1 and 6 GeV. The energy spectrum
peak at 1.8 GeVat the near detector (ND) as shown in Fig. 1.
The largest contamination is ν̄μ; the <1% νe þ ν̄e arises
mostly frommuon decays below 3 GeV neutrino energy and
kaon decays above.
The ND is a tracking calorimeter composed of liquid

scintillator-filled PVC cells. The portion of the detector
relevant to this measurement is 3.9 m × 3.9 m × 12.8 m
(long dimension along beam direction) in size and is
segmented into cells 3.9 m long with a rectangular cross
section of 6.6 cm (0.15 radiation length) in the beam

direction and 3.9 cm (0.45 Molière radius) transverse to
the beam, spanning the height and width of the detector in
planes of alternating vertical and horizontal orientation.
Each cell is filled with a blend of 95% mineral oil and 5%
pseudocumene with trace concentrations of wavelength
shifting fluors [19]. The resulting composition by mass is
67% carbon, 16% chlorine, 11% hydrogen, 3% titanium,
and 3% oxygen with other trace elements. When a particle
traverses the detector, a wavelength-shifting fiber in the cell
collects and delivers scintillation light to an avalanche
photodiode. The result is digitized by custom front-end
electronics. All signals above a noise-vetoing threshold are
sent to a data buffer.
This Letter presents data corresponding to 8.02 × 1020

protons delivered to the NuMI production target (POT)
between November 2014 and February 2017.
This analysis relies on simulation to calculate the flux,

optimize event selection criteria, estimate selection effi-
ciency, and assess the effects of detector resolution, accep-
tance, and systematic uncertainties. The simulation proceeds
in several steps: first neutrinos are generated from simulated
mesons in the NuMI beam, then those neutrinos interact
with nuclei in the detector, after which the final-state
particles are transported through the detector.
The NuMI flux is predicted using GEANT4 v9.03 [20] with

the FTFP BERT hadronic model. The hadron production
model is adjusted and constrained using external measure-
ments by the PPFX package [21]. Neutrino interactions are
simulated using the GENIE v2.12.2 [10] event generator,
hereinafter referred to as GENIE v2. The neutrino-interaction
model output is adjusted to incorporate advances in theory
and external data to better match a sample of νμ charged-
current (CC) interactions from NOvAND data as detailed in
Ref. [22]. In this dedicated tune, hereinafter referred to as
the NOvA tune, there are three substantial adjustments to
the GENIE v2 prediction: (1) the QE axial mass (MA CCQE)
is changed from 0.99 to 1.04 GeV=c2 [23]; (2) soft non-
resonant single pion production events from neutrinos are
reduced by 57%; (3) the empirical MECmodel [24] is tuned
to ND data using a two-dimensional fit in hadronic energy
and momentum transfer. This procedure changes the shape
of the MEC prediction and increases its cross section by
50%. The NOvA-tune is applied to all simulated CC
interactions.

GEANT4(v10.1.p3) is used to simulate energy deposited in
the NOvA ND from the particles generated by neutrino
interactions. Photon generation and propagation are mod-
eled separately as follows: (1) the modeling and transfer of
scintillation light uses NOvA measurements of scintillator
response and fiber attenuation properties [25]; (2) the Birks
suppression of the scintillation light is tuned using test-stand
measurements and validated using a custom simulated
response of the readout electronics [26].
The signature of νe CC interactions is an electron in the

final state that produces an electromagnetic cascade within
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FIG. 1. NuMI neutrino-mode beam flux spectra at the NOvA
ND below 6 GeV. The bands represent the total flux uncertainty
on hadron production and beam optics for each component.
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the detector. The major backgrounds are neutral current
(NC) and νμ CC interactions with final-state π0s that decay
into two photons. These can mimic electron energy
depositions if the showers overlap or one photon is low
energy.
Candidate neutrino interactions (events) are reconstructed

by forming collections of observed energy deposits (hits)
from final-state charged particles correlated in space and
time [27]. Events are assigned a vertex by minimizing the
angular spread of hits relative to candidate vertices [28].
Using a fuzzy K-means algorithm, hits within the event are
clustered in regions of space emanating from the vertex into
reconstructed particle trajectories (prongs) [29]. Primary
event vertices are required to be contained in a 49 t fiducial
volume spanning 2.8 m in both width and height and 6.5 m
in length. All prongs are required to stop at least 30 cm from
any edge of the detector to ensure containment. Events
containing between 20 and 200 hits and at least one prong
are selected for analysis. Events outside this range are
generally low visible energy NC events or high-multiplicity
events in which the electromagnetic cascade is difficult to
isolate.
Prongs are identified as candidate electrons using a

boosted decision tree (BDT) algorithm [30]. One input to
the BDT is the output of a convolutional neural network
trained using simulated samples of single particles labeling
prongs as muonic, electromagnetic, or hadronic in origin.
Other inputs include the energy-weighted transverse width
of the prong and the distance from the vertex to the prong
start aiding the separation of photon- from electron-induced
showers. BDT performance was validated against a side-
band of data enriched with EM showers in νμCCπ0 events.
Candidate events are assigned an ElectronID score equal
to the most electron-like BDT score of their constituent

prongs. Figure 2 shows the ElectronID distribution in data
and simulation after selection criteria (and kinematic
restrictions, defined below) are applied.
The selected sample is binned according to the candidate

electron shower’s calorimetric energy Ee, and angle cos θe.
Within each electron kinematic bin, the simulated
ElectronID distribution is used to generate signal and
background predictions, or templates. Each bin’s templates
are broken further into three components, whose three
independent normalization parameters are constrained in a
simultaneous fit to the data: νe þ ν̄e, νμ þ ν̄μ, and NC.
Neutrinos and antineutrinos are not separated due to
similarities in the shapes of their templates.
Electron-kinematic bins that satisfy two criteria are

included in the fit: at least 100 predicted signal events
and an estimated signal-to-background ratio > 0.4 in the
ElectronID > 0.2 region. These requirements remove
regions (e.g., cos θe > 0.94; 1 ≤ Ee < 1.5 GeV) that do
not have adequate discrimination between signal and
photon-induced backgrounds and limit the measurement
to the kinematic ranges:

0.85 ≤ cos θe < 0.90 ∩ 1.0 ≤ EeðGeVÞ < 1.65;

0.90 ≤ cos θe < 0.94 ∩ 1.0 ≤ EeðGeVÞ < 2.0;

0.94 ≤ cos θe < 0.97 ∩ 1.4 ≤ EeðGeVÞ < 3.0;

0.97 ≤ cos θe ≤ 1.00 ∩ 1.4 ≤ EeðGeVÞ < 6.0: ð1Þ

A χ2 minimization procedure [31] fits the normalizations
of the signal and two background templates. A covariance
matrix encodes the correlations between templates across all
kinematic and template bins using systematic uncertainties
which affect the shape of ElectronID and reconstructed
electron kinematics within the fit. The fit produces a χ2

of 131 for 141 degrees of freedom and normalization
parameters ranging between 0.9 to 1.1 with outliers in
low-statistics, high-uncertainty bins. A sample purity of
13$ 1.3% is predicted by extracting signal and background
as the integral of the corresponding post-fit templates.
Uncertainties on purity rise to 1.5% in kinematic regions
where the νμ þ ν̄μ and NC normalization parameters are
highly correlated due to similarities in template shape. The
contribution of ν̄e CC background is removed from the
renormalized signal template using the 5% contribution from
simulation. The resulting sample is estimated to contain
9200$ 1000 νe CC interaction candidates. The selection
efficiency is approximately 40% at 2 GeV, cos θe ≥ 0.97 and
reduces linearly to 13% at the edges of the phase space with
an average of 23%. The signal sample is estimated to be 28%
QE, 20% MEC, 31% RES, 20% DIS, and 1% CC coherent
pion production.
The flux-averaged double-differential νe CC cross sec-

tion in final state electron kinematic variables is constructed
using
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FIG. 2. Simulated ElectronID distributions of νe þ ν̄e CC
(blue), νμ þ ν̄μ CC (orange), and NC (green), compared to data
integrated over the reported electron kinematic phase space. The
dashed (solid) line shows the total prediction from simulation
(after extracted fit normalization corrections). Statistical uncer-
tainties on data are too small to be seen. The vertical errors
represents the $1σ systematic range. All spectra are normalized
to the data exposure.
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where Nνe is the estimated νe CC events from the template
fit. Uij is an unfolding matrix used to relate the recon-
structed value in bin j to the true value in bin i. The data are
iteratively unfolded using d’Agostini’s method [32] with
two iterations as implemented in RooUnfold [33]. The
optimal number was found by minimizing the average
mean square error [34] calculated across simulated samples
with random variations of systematic uncertainties. Nt is
the number of nuclear targets in the fiducial volume, ϕ the
integrated neutrino flux, ϵ the selection efficiency correc-
tion factor, and ΔE and Δ cos θ are the bin widths used for
the electron kinematic variables. Bin widths are chosen
small enough to match the detector resolution and large
enough to include a statistically significant event sample.
The average Ee resolution is 350 MeV, and the angular
resolution ranges from 2° for forward-going electrons to
11° for less forward-going electrons.
Table I summarizes the effects of sources of uncertainty

on the measurements. Systematic uncertainties are evaluated
by varying the parameters used to model neutrino flux,
neutrino-nucleus interactions (ν-A), detector response, and
re-extracting the differential cross section. The difference
between the cross section extracted using the nominal
simulation and that extracted using the simulation with a
varied parameter is taken as the uncertainty due to each
parameter. The procedure accounts for changes in the
compositions of backgrounds, selection efficiency, and
event reconstruction due to the variations considered.
Dominant sources of systematic uncertainty are from the

neutrino flux and ν-A predictions. Uncertainties on the flux
arise from hadron production uncertainties (9%) [21] and
beam optics modeling (4%). ν-A modeling uncertainties are
assessed through reweightable parameters from the GENIE
generator [10] and a custom set of NOvA-specific uncer-
tainties [22]. At Eν < 3 GeV, parameters affecting the RES
signal and backgrounds (CC=NCπ0) and the MEC signal
prediction are dominant. DIS related multipion production
uncertainties dominate at Eν > 3 GeV.

Nonleading sources of uncertainty come from detector
calibration and modeling. These sources become dominant
at cos θe < 0.94 and Ee < 1.5 GeV. Minor sources of
uncertainty, which include detector mass, integrated beam
exposure, beam intensity modeling, and the modeling of
diffractive (DFR) π0 production, are combined in the
“other” category of Table I. DFR modeling uncertainties
are evaluated by reweighting the default ν-H NC inter-
actions producing a π0 prediction from GENIE to an
estimate based on the Kopeliovich model et al. [35,36]
as a function of Eν and the Björken scaling variables. The
average uncertainty on DFR modeling is 2.6%.
Table I shows the weighted average bin-to-bin correla-

tions [37] calculated as

hcorri ¼
P

i<jCij × σi × σjP
i<jσi × σj

; ð3Þ

where Cij is the correlation between bins i and j and σi is
the double-differential cross section measured in bin i for
each source of systematic uncertainty. Large average
correlation from the flux uncertainty indicate that it mainly
impacts normalization. Interaction modeling also exhibits
strong correlations across all bins, due to a combination of
the template fitting procedure and model parameters, such
as the axial mass from the RES model and DIS pion
production uncertainties, that impact selection efficiency.
Three results are presented: the flux-integrated double-

differential cross section vs electron energy and angle
shown in Fig. 3, the cross section vs Eν shown in Fig. 4,

TABLE I. Fractional uncertainties and correlations, broken
down by source. Averages are taken across all reported bins,
weighted by the measured cross section.

Source Average uncertainty (%) Average correlation

Flux 10.3 0.90
ν-A model 9.8 0.64
Calibration 5.9 0.05
Detector model 5.6 0.21
Other 2.8 0.03
Statistical 7.4 0.02
Total 18.2 0.59
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statistical only. The data are compared to several models.
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and the differential cross section vs Q2 shown in Fig. 5. All
results are calculated from data using unfolding and
efficiency corrections derived from the NOvA tune. The
one-dimensional results apply the phase space restrictions in
(1), without any restriction on the derived quantities of Eν

or Q2f¼ 2Eν½Ee − ðPe cos θeÞ' −m2
eg. Eν is reconstructed

using a quadratic function determined from a 2D fit to the
simulated electron and hadronic calorimetric energy [38].
The result is extracted with unfolding and efficiency
corrections in Eν or Q2.
The extracted cross sections are compared to predictions

from several generators: GENIE (NOvA-tune, v2.12.2, and

v3.00.06 with a global configuration N18_10j_02_11a),
NuWro 2019 [13], GiBUU 2019 [11], and NEUT 5.4.0
[12]. Table II summarizes χ2 values for each model
compared to data with a full treatment of bin-to-bin
correlations. The values show no model is consistently
favored across the ensemble of measurements.
Though the GiBUU and NuWro predictions have nor-

malizations systematically lower than the data in Figs. 3–5
(15% and 10%, respectively) their χ2s in Table II are
comparable to other models’ due to the phenomenon of
Peelle’s Pertinent Puzzle (PPP) [39,40]. PPP arises when
the dominant uncertainty of a result is from highly
correlated normalization uncertainties, like the flux uncer-
tainty in Table I. Under these circumstances, the best-fitting
model as reckoned by χ2 can be well outside the data
points. Disagreements with the GENIE predictions are
dominated by the discrepancy in the Ee > 4.75 GeV bin
and its correlations with other bins. When this bin is
excluded from the calculation, the χ2’s for the GENIE
predictions approach those of the NuWro and GiBUU
predictions. NEUT shows slight disagreement throughout
that angular slice, predicting a softer energy spectrum than
is observed in data.
In Eν comparisons NuWro and GiBUU plateau at a

lower total cross section than the data as described above.
The differential cross section vs Q2 shows preference
toward the NOvA-tune and GENIE v3 predictions. NEUT
predicts a softer Q2 distribution than seen in data, while
GiBUU and NuWro accurately predict the lowQ2 behavior
but tension is seen at high Q2. The gray band in Fig. 5
shows the size of the flux-related normalization uncertain-
ties, which illustrates that differences seen between data
and the generators are not consistent with an overall change
in the cross-section normalization.
This Letter presents the first measurement of the inclusive

charged-current double-differential electron-neutrino cross
section vs electron energy and angle, using the NOvA ND.
This provides new information concerning directly observ-
able final-state electron kinematics necessary for neutrino
energy estimation and efficiency correction in νe appearance
measurements. Measured cross sections are shown com-
pared to multiple versions of GENIE, and to GiBUU,
NEUT, and NuWro event generators, in the neutrino energy
range from 1 to 6 GeV. The models show general agreement
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FIG. 4. Top: The differential cross section vs Eν. Bottom:
Comparisons as a ratio to the NOvA-tune prediction. The gray
band represents the normalization uncertainty from the neutrino
flux prediction. The data are presented showing statistical and
total uncertainties.
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FIG. 5. Top: the differential cross section vs Q2. Bottom: as in
Fig. 4, but for Q2.

TABLE II. χ2 calculated for each model presented in Figs. 3–5
compared to data. Degrees of freedom are 17, 12, and 9 for the
double-differential, Eν, and Q2 results, respectively.

Generator d2σ=d cos θedEe σðEνÞ dσ=dQ2

GENIE v2—NOvA-tune 24.1 13.4 1.3
GENIE v2.12.2 24.3 14.3 19.6
GENIE v3.00.06 27.4 21.6 3.4
GiBUU 2019 17.5 16.0 14.7
NEUT 5.4.0 25.1 16.9 45.0
NuWro 2019 18.7 15.3 10.0
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with the data in the two-dimensional phase space as well as
various levels of success in the neutrino energy and Q2

measurements. Disagreements are seen in both overall
normalization across all reported measurements and with
certain shape differences, primarily seen in Q2. The data
related to this measurement and systematic covariance
matrices can be found at [41].
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