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Abstract: The rapid spread of SARS-CoV-2 required immediate actions to control the transmission
of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome
contributes to the virus’ ability to quickly adapt to environmental changes, impacts transmissibility
and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers
working in vaccine development and drug design to consider the impact of mutations on virus-drug
interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug
candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins
from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were
created and validated using reference crystal structures. We then investigated interactions between
host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient
multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs.
Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified
three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2
inhibition. These compounds are flavanone glycosides found in citrus fruits — an active ingredient of
Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for
which crystal structures are not yet available and (2) scan a more extensive library of compounds
against other mutated viral proteins.

Keywords: COVID-19; SARS-CoV-2 mutations; receptor-binding domain; molecular docking;
molecular mechanics; molecular dynamics; homology modeling; natural compounds; disinfectors

1. Introduction

Coronavirus Infectious Disease-19 (COVID-19) caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) has become a primary foe for humanity as the virus
has been rapidly spreading over the globe since 2019, causing a high sickness rate, deaths,
and triggering a global economic crisis. For the last 2 years, the focal point of interest of the
research community has narrowed down to the development of vaccines and medicines to
stop an ongoing pandemic. At this stage, many therapeutics were tested and recommended
for treating COVID-19 [1-3]. However, the only drug currently authorized by the Food
and Drug Administration (FDA) is the oral antiviral Paxlovid [4]. Several immunization
agents have already been released, including replication-defective viral vector vaccines,
inactivated pathogen vaccines, protein subunit vaccines, virus-like vaccines, and novel
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mRNA vaccines [5]. However, the documented research lacks evidence that already-
developed therapeutics will remain effective against every existing and emerging variant
of SARS-CoV-2 [6,7]. The binding of the human angiotensin-converting enzyme 2 (ACE2)
receptor with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is
attributed to be a major determinant of viral infectivity and spread [8,9]. Therefore, RBD is
a promising target for vaccine development and drug discovery. With an extensive mutation
rate of the virus (the receptor-binding domain is estimated to have about 24 substitutions
per year [10]), scientists need to be prepared for the emergence of new mutated strains with
mutations that increase evasion of the antibody response (Figure 1).
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Figure 1. Structures of the SARS-CoV-2 S protein RBD: (a)—superposition of available RBD 3D
structures with the ball-and-stick representation of mutated residues (ribbons and residues colored
based on variant); (b)—wild-type RBD bound to ACE2 (PDB ID: 6M0J) with RBD residues reported
to interact with ACE2 being marked, and mutating residues” labels being colored in red; (c)—list of
occurred mutations for variants studied here.

The viral variant with the D614G mutation in spike glycoprotein emerged in early
2020 and became the first indication of SARS-CoV-2 genetic evolutionary selection [11].
This mutation is responsible for easier transmission, an increased number of spike proteins
per virion, and a more significant S1/S2 cleavage rate [12,13]. Further, in December 2020,
the Alpha variant appeared in the UK, carrying mutations such as A69/70, A144, N501Y,
and P681H. An important N501Y mutation in RBD increased the affinity of viral spikes to
the ACE2 host cell protein [14,15]. Moreover, Beta, Gamma, Mu, and the newest Omicron
variants’ RBDs also carry this mutation. Next, Beta and Gamma variants originating from
South Africa and Brazil carry additional E484K and K417N/T mutations. K417N/T muta-
tion, presumably, reduced the spike protein’s binding affinity to ACE2 [16-18]. However, it
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did not make these variants less transmittable since all three mutations had compensatory
effects on ACE2 binding [19]. These two variants raised concerns due to increased resis-
tance to antibody neutralization, facilitating immune escape [20-23]. The Delta variant
(B.1.617.2), which emerged from India, outperformed all previously prevalent variants and
became a dominant strain worldwide [24]. Carrying only two mutations in RBD (L452R and
T478K), it became highly transmittable and more resistant to neutralizing antibodies [24].
Other emerging variants did not gain widespread attention until the Omicron variant was
first reported to the World Health Organization (WHO) by South Africa on 24 November
2021. It showed a record-breaking number of mutations with 15 substitutions within the
RBD [25-27], which resulted in viral escape from most existing SARS-CoV-2 neutralizing
antibodies [28-32]. According to the subsampling of globally circulating sequences created
by NextStrain, the spread of most variants was diminished by December 2021. Delta and
Omicron variants are still of primary concern worldwide as of January 2022 [10].

To date, a record-breaking number of research articles have been devoted to computa-
tional drug design for COVID-19. As a result, numerous research teams have produced
low-quality computations based solely on molecular docking, which are not accurate
enough to reasonably serve as a practical guide for any experimental research. Nonetheless,
some exceptional works worth noticing showcase sophisticated state-of-the-art compu-
tations, such as accurate molecular mechanics and molecular dynamics techniques. For
instance, in [33], authors used multiple 500 ns molecular dynamics simulations, utilizing
the Schrodinger Software Package to assess the stability and interfacial interactions of
SARS-CoV-2 and its predecessor SARS-CoV RCBs with host receptor. The 200 ns Molecular
Dynamics simulations performed by researchers in [34] revealed that the SARS-CoV-2
spike glycoprotein completely inactivates at a temperature of 50 °C. Various computa-
tional technics were used in [35] to evaluate the conformational accessibility and binding
affinity of a wild type of SARS-CoV-2 spike glycoprotein to ACE2. Overall, to produce
reliable computational results, researchers should not rely on only one method but rather a
comprehensive modeling pipeline that utilizes various approaches to ensure the accuracy
of calculations.

With the prevailing problem of a high mutation rate, developing inhibitors capable of
binding to viral proteins regardless of mutations is of significant importance. In this case,
computational approaches such as homology modeling may become a valuable tool at a
time when the crystal structure of new mutants is not yet available [36]. Such approaches, if
accurate enough, may serve as a guide for experimental testing and thus have the potential
to accelerate a drug discovery pipeline.

This work presents a computational modeling pipeline designed to identify natural
wide-range inhibitors of interactions between SARS-CoV-2 spike glycoprotein and ACE2
host protein. It reports eight validated using experimental data [37] homology models of
RBDs of different SARS-CoV-2 variants. Developed models and reference structures are
further utilized to elucidate interactions with a host receptor, aiming to determine which
critical residues for receptor recognition can be used as target residues for potential drugs.
Finally, the benchmark model is created for multitarget scanning the potential inhibitors’
library against various strains of the SARS-CoV-2 receptor binding domain.

2. Results and Discussion
2.1. Receptor Binding Domain Mutations and Homology Models of SARS-CoV-2 Variants

Homology models for receptor binding domains of Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427/B.1.429), Lambda (C.37), Mu (B.1.621), and
Omicron (B.1.1.529) variants were built using wild type RBD (PDB ID: 6MQ0]) as a template.
All eight models were subjected to 200 ns molecular dynamics simulation with further
trajectory clustering to ensure a better quality of structures (Figure 1).

For most structures, RMSD plots (Figure 2a) illustrated similar flexibility of models.
The most significant fluctuations were observed for Lambda and Omicron (deviating
slightly above 2.5 A), while deviation for the rest of the models has not exceeded 2 A. Delta
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and Epsilon RBDs were the most stable; both carry the L452R mutation. Analysis of root
mean square fluctuations (Figure 2b) revealed a similar pattern of residue flexibility. The
most considerable fluctuations were noticed near the region between Y473 and C488, as is
the most evidential in Omicron, Beta, Gamma, Lambda, and Mu variants. Interestingly,
in all these variants, except for Lambda, mutation of glutamic acid (E484) had occurred,
substituting it with lysine or alanine (in the case of Omicron). E484K mutation, or so-called
escape mutation, is responsible for reduced antibody affinity, thus immune escape. The
structure of Alpha RBD significantly deviated from the common pattern with considerably
more significant fluctuations near T500 at 2.5 A.
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Figure 2. Homology models of SARS-CoV-2 variants’ RBDs: (a)—RMSD of generated homology
models for 200 ns molecular dynamics simulation; (b)—RMSF of generated homology models for
200 ns molecular dynamics simulation; (¢)—Box and whiskers graph for 10 clusters of each generated
homology model, derived from MD simulation, representing its RMSD aligned on Wild type RBD’s
structure (PDB ID: 6M0]); (d)—Box and whiskers graph for 10 clusters of generated homology models,
representing each variant’s RMSD aligned on corresponding crystallographic structures.

After analyzing molecular dynamics simulations, trajectory clustering was performed,
generating the top 10 most populated clusters for each homology model. Comparison of
RMSD of each cluster fit on Wild type variant structure is illustrated in Figure 2c as a box
and whiskers plot. One can see that clusters for Epsilon variant RBD were the closest in
structure to the Wild type, followed by Mu and Gamma variants. Meanwhile, RBDs of Beta,
Omicron, Alpha, and Delta showed the least similarity to a Wild type structure. Developed
homology models were also compared with existing PDB structures (Figure 2d). Generally,
all models can be built effectively (Figure 3) with RMSD not exceeding 2 A. The highest
deviations were observed for the Beta variant model, and the lowest ones were detected
for Epsilon. This study used the following reference structures (PDB IDs): 2AJF, 6M0],
7ED], 7LYK, 7M8K (7NXC), 7W9I, 7N8H, and 7T9L. As of July 2022, no reference structures
were available for variants’ Lambda and Mu RBDs.; therefore, we used homology models.
It should be noted that we initially used the 7M8K structure of the Gamma variant’s
RBD; however, this structure appeared considerably unstable during all further molecular
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dynamics simulations and showed unrealistically low binding towards ACE2, so this
structure was substituted by PDB ID 7NXC.

Figure 3. Superposition of 3D structures, illustrating 10 clusters of developed homology models of
SARS-CoV-2 variants” RBDs aligned on Wild type variant and reference PDB structures: mutated
residues are labeled.

2.2. Interactions of RBDs with ACE2

Understanding how RBD interacts with ACE2 can guide a search for the most suitable
inhibitors. More specifically, knowing how conserved amino acid residues bind ACE2
despite the mutations, one can design a ligand that blocks specifically this region of RBD. To
learn more details, RBD structures of SARS-CoV (PDB ID: 2AJF), Wild type of SARS-CoV-2
(PDB ID: 6M0J), Alpha (PDB ID: 7ED]J), Beta (PDB ID: 7LYK), Gamma (PDB ID: 7NXC),
Delta (PDB ID: 7W9I), Epsilon (PDB ID: 7N8H), Omicron (PDB ID: 7T9L), Lambda and Mu



Molecules 2022, 27, 7336 6 of 20

(homology models, developed in this work) were combined with ACE2 protein (PDB IDs:
2AJF for SARS-CoV and 6MO0J for SARS-CoV-2) and subjected to 100 ns MD simulation.
With identical initial geometry of ACE2 combined with different RBDs, it was possible to
minimize bias.

As expected, most structures showed large fluctuations on the RMSD graph from
the beginning of simulations (Figure 4a), imitating the host-guest preparation step. Once
complexes were stabilized, their deviations did not exceed 2 A, except for the Delta RBD-
ACE2 complex (less than 2.5 A).
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Figure 4. Results of 100 ns MD simulation for RBDACE2 complexes: (a)—RMSD of complexes (lines
are colored based on the variant, black line illustrates RMSD of SARS-CoV RBDACE2 complex);
(b)—RMSF of ACE2; (¢)—RMSF of RBD; (d)—Number of hydrogen bonds retained during 100 ns
MD simulation.

It took nearly 35 ns for complexes of Lambda and Mu RBD (homology models) with
ACE2 to stabilize. This fact suggests that at least 100 ns simulations or even longer ones
are required for proper investigation. As shown in Figure 4b, RMSF plots for ACE2 had
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similar fluctuations patterns in various regions for complexes of different variants. Only
Omicron RBD bound to ACE2 caused its fluctuations to increase significantly near residues
N134-E140. At the same time, the RMSF plot for RBD (Figure 4c) demonstrated more
considerable flexibility for SARS-CoV. This fact agrees with available data for the stronger
binding of SARS-CoV-2 with the host receptor compared to its predecessor [38].

The number of hydrogen bonds between these proteins as a function of time is pre-
sented in Figure 4d. During most simulation time, Alpha, Mu, and Omicron RBD complexes
formed fewer than 10 H-bonds. Some affinity improvement towards the end of the simula-
tion was observed for the Alpha variant. The complex with Lambda showed a significantly
larger number of interactions at the beginning of the simulation, but this number declined
as the simulation continued. Contrary to this, for the Beta variant, the number of H-bonds
increased gradually, with the largest number observed after 90 ns. The strongest affinity
was noticed in the case of the Gamma and Epsilon variant. The more significant number of
H-bonds observed in the Wild typeACE2 complex is somewhat biased since the complex
was initially more similar in geometry to the reference RBDACE2 complex. These results,
excluding ones for a Wild type (for the above-mentioned reasons) and an Alpha variant,
correlate with experimental findings obtained by Han et al. [37]. Authors measured binding
affinities of the RBDs to ACE2 using a surface plasmon resonance assay to find out that
RBDs from Alpha, Beta, and Gamma demonstrated enhanced affinities to the host protein,
superior to RBDs of Omicron and Delta.

Next, the outputs from molecular dynamics simulations were clustered to analyze
which residues participate in interactions. The most populated cluster was used for interac-
tion analysis (Table 1 and Figure 5).

It was found that the critical residues for almost all variants” complexes are N487
and Q493. Many residues were earlier identified as essential for RBD’s association with
ACE2 (Figure 1b)-although it must be noted that these two are the most conserved ones
disregarding the mutations in the case of all nine studied variants. Thus, we hypothesize
that inhibitors blocking these residues may be beneficial if targeting not just one variant
but all of them simultaneously. N487 forms H-bonds with Y83 and Q24 (in some cases)
of ACE2; Q493 (R493 in the case of the Omicron variant) forms H-bonds with either K31,
H34, E35, or D38 (depending on the variant). Other important residues are K417, Y489,
T500, G502, and Y505. All residues conform to those reported earlier in the literature [33].
Positively charged K417 formed H-bond and salt bridge with negatively charged D30
residue of ACE2. Residue 417 did not interact with ACE2 for Alpha, Beta, Gamma, Mu,
and Omicron variants because of the mutation of positively charged lysine residue into an
uncharged polar one (K417N or K417T mutations for all variants except for Alpha), which
was confirmed by experimental investigation in [39].

Overall, the most significant number of interactions was observed in Gamma and
Epsilon RBDs (as indicated in Table 1 and Figure 5). At the same time, the Lambda RBD had
a relatively small number of interactions: only 5 H-bonds and one salt bridge were formed.
Similarly, poor association with ACE2 was noticed for the Omicron variant. Interestingly,
both the simulation of the retrieved from the PDB databank Omicron RBD (7T9L) and the
simulation of the homology model developed here showed similar results.
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Table 1. Interaction between RBDs and ACE?2 as a result of MD trajectory clustering.

Variant

& &

&

&

&

Wild Type Alpha Beta Gamma Delta Epsilon Lambda Mu Omicron
H34
R403 B!
i D30 D30 HBngB ) D30
HB + SB HB + SB HB + SB
vdW
D38 D38 D38 D38
Y449 HB + vdW HB HB HB
H34 H34 H34
Y453 HB vdW T+ vdW
H34
1455 ol
T27
F456 W
E23
K458 HB + SB
T27 E23 T27
Y473 HB HB vdW
519 Q24 519 + Q24 519
A475 HB HB 2 HB HB
E75
E484 HB + SB
Q24
F486 B
gy | Q483 Y83 Y83 Y83 Y83 Q24 + Y83 Y83 Q24 + Y83
2 HB HB HB HB HB 2 HB HB 2 HB
Va5 Y83 Y83 Y83 Y83 Y83 Y83
HB HB HB HB HB HB
K31 K31
1492 B B
0193 E35 K31 H34+D38  K31+E35 E35 E35 K31 + E35 E35
HB HB 2 HB 2 HB + vdW HB HB 2 HB HB
K353
G99  Hp 4 vaw
Q42 + K353
Q498 A
Y41 Y41 + N330 Y41 + N330 Y41 + N330 D355 D355
T500 2vdW +
HB 2 HB 2 HB HB HB
HB
Y41 + Q42 Y41 K353
N501 HB + n HB
a0 K353 K353 K353 K353 K353 K353
HB HB HB HB HB HB
E37 + R393 E37
Y505 2 HB HB

! HB—hydrogen bond; SB—salt bridge; vdW—Van der Waals interactions; m—-7 stacking.
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Figure 5. 3D structures of RBDACE2 complexes are represented by the most populated cluster
derived from MD simulations: ACE2 residues, which participate in interactions with RBD, are
illustrated with wire representation and are colored from pink to dark red in order of increased
number of interactions. RBD residues, which participate in interactions with ACE2, are illustrated by
thin tube representation and are colored from light blue to dark blue in order of increased number of
interactions. Mutated residues are illustrated with ball-and-stick representation.

2.3. Benchmark Models for Drug Binding

A small library of 48 active ingredients of some TCMs (Table 2) was selected and
scanned against ACE2 and S-protein RBD of SARS-CoV and SARS-CoV-2 variants. This
dataset of natural compounds was chosen purely for a benchmark purpose due to its
evident efficacy in treating COVID-19, as stated in [40]. The ligand poses produced by
molecular docking with the highest scoring modes were subjected to MM-GBSA calculation,
enabling free binding energy evaluation and utilizing protein flexibility for all residues
within 12 A from a ligand. Calculated free binding energies are collected in Table S1 in the
Supporting Information file. A heat map illustrating a binding affinity of ligands to human
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ACE2, RBD of SARS-CoV, and nine variants of SARS-CoV-2 is presented in Figure 6a.
For most ligands, binding affinity with ACE2 was significantly lower than the affinity
for viral spike protein. Moreover, for viral RBDs, a similar efficacy pattern was observed.
Nonetheless, some ligands demonstrated high affinity to a single RBD and low affinity to
all other RBDs. The highest averaged free binding energy was calculated for compounds 5,
10, 17, 26, and 36, varying from —31.45 to —33.54 kcal /mol.

Table 2. Ligands, TCM type, and their PubChem identifiers.

. PubChem Molecular . PubChem Molecular
1

# Ligand TCM Type CID Formula # Ligand TCM Type CID Formula

1 (—)-taxifolin QPD 712316 C15H1207 25 Glycyrrhizic acid QI;I?; g[CSD' 14982 C42H62016
2 (+)-Epicatechin QPD 182232 C15H1406 26 Hederagenin HPD 73299 C30H4804
3 (2S)-dihydrobaicalein QPD 14135323 C15H1205 27 Herbacetin MSD 5280544 C15H1007
4 3-O-Methylviolanone QPD 10019512 C18H1806 28 Hesperidin QPD, MSD 10621 C28H34015
5 7-Methoxy-2-methyl DYY 354368 C17H1403 29 Inflacoumarin A MSD 5318437 C20H1804

isoflavone
6 Amygdalin QPD, MSD 656516 C20H27NO11 30 Isolicoflavonol RDS 5318585 C20H1806
7 Arenobufagin LC 12305198 C24H3206 31 Isotrifoliol MSD 5318679 C16H1006
8 Astragalus HPD 2782115  CIOH7CIN202S 32 Kaempferol MSD, CT, 5280863 C15H1006
polysaccharide DYY
9 Baicalin QPD, MSD 64982 C21H18011 33 Kanzonol F MSD 101666840 C26H2805
10 Bufotalin LC 12302120 C26H3606 34 Licoisoflavone B RDS 5481234 C20H1606
11 Cianidanol QPD 9064 C15H1406 35 Luteolin RDS 5280445 C15H1006
12 Cinobufotalin LC 259776 C26H3407 36 Mairin HPD 64971 C30H4803
13 Cyclo(L-Tyr-1-Phe) QPD 11438306  CI8HI8N203 37 naringenin DYY, QPD 932 C15H1205
14 Dam;‘z::iie“yl HPD 179610 C32H5202 38 Narirutin QPD, MSD 442431 C27H32014
15 Delphinidin MSD 68245 C15H11ClO7 39 Neohesperidin QPD, MSD 442439 C28H34015
16 Desacetylcinobufotalin LC 15513544 C24H3206 40 Oxysanguinarine HPD and TP 443716 C20H13NO5
17 Ephedrine QPD, MSD 9294 C10H15NO 41 Quercetin MCSIP ]’DRY]:;S’ 5280343 C15H1007
18 Eriodyctiol QPD 373261 CI5H1206 2 Resivit MSD 71629 C15H1407
(flavanone)

19 Estrone MSD 5870 C18H2202 43 Semilicoisoflavone-B RDS 5481948 C20H1606
20 Fisetin RDS 5281614 C15H1006 44 Sitosterol MSD 222284 C29H500
21 Formononetin MSD, DYY 5280378 C16H1204 45 SR-01000767148 QPD 676152 C16H1406
2 Gamabufotalin LC 259803 C24H3405 46 Stigmasterol MSD, HPD 5280794 C29H480
23 Glyasperin F RDS 392442 C20H1806 47 telocinobufagin LC 259991 C24H3405
24 Glycyrrhetinic Acid GC 10114 C30H4604 48 ZINC13130930 QPD 25721350 C16H1405

1 TCM (Tradicional Chinese Medicine), QPD (Qingfei Paidu Decoction), DYY (Da Yuan yin), MSD (Maxing Shigan
Decoction), LC (Liushen Capsule), HPD and TP (Hubei Province Diagnosis and Treatment Protocol for COVID-19),
RDS (Respiratory Detox Shot), GC (Gan cao), CP (96,606 classic prescriptions).

The most efficient blockers (based on averaged free binding energy) are ligands 28 (hes-
peridin), 38 (narirutin), and 39 (neohesperidin) (Figure 6b), with free binding energies of
—62.3, —59.28, and —66.62 kcal/mol, respectively. These findings are in agreement with
existing experimental data [41,42] and reported computational results [43—45]. It is worth
noting that these best-scoring compounds are present in citrus essential oils and orange
juice. Analysis of binding modes revealed that these compounds bind inside the proposed
region (Figure 6¢); however, the binding pattern for different variants is not the same
as for RBD-28 (RBD-hesperidin) complexes. Ligands bound along RBD-ACE2 binding
surface direction in Wild type, Beta, Gamma, Delta, Epsilon, and Omicron RBD-hesperidin
complexes. It caused the blocking of amino acid residue Q493 (R493 in the case of Omicron).
Alpha variant’s complex had ligand dislocated closer towards N487. A similar binding
mode was detected for Lambda variants’ complex, with hesperidin being associated per-
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pendicularly to the RBD-ACE2 binding surface line, binding Q493. SARS-CoV had a similar
pattern to the previous one, with the ligand dislocated closer to N487.

Once these three potential multitarget inhibitors were identified using a heat map,
their complexes with different RBDs were used to perform a 100 ns molecular dynamics
simulation to evaluate their binding stability more accurately. Figure 7 illustrates proteins
and ligands RMSD and RMSF plots resulting from 100 ns MD simulation for complexes of
RBD-hesperidin (28).

SARS-CoV

Wwild type

2 Gamma
o Delta
B Epsilon

—ﬁ« Lambda
5 Mu
H.% Omicron

e
rar)
53
[sa]

N v bW

-1 AG, keal/mol 93 Lambda Omicron

Figure 6. Results of MM-GBSA calculation: (a)—Free binding energies of ligand-protein complexes
presented as heat maps; (b)—Active compounds with the highest averaged affinity towards most
SARS-CoV-2 RBD variants; (¢)—3D structures of RBDs complexed with compound 28 (residues of
interest are illustrated with CPK representation). * original sequence numeration for SARS-CoV was
changed in this figure according to the alignment of residues for easier comparison.



Molecules 2022, 27, 7336

12 of 20

RMSD, A

Wﬁ?}m

r[l

60
Stmulation time, ns

20 40

i

&

: “IIIL 1

& 30
20 ‘
o] L ‘ N«M.a i ;: ‘g*
0
(4] 20 40 60

Residue number

9

c 8
6

s

Q" 2

S 4 R

o 3 qu
LA MM.J,M\ b

*’n 33
Simulation time, ns

10

20 25
Atomic number

WH ‘w "w,“

i \I\.MML MI’

353 373 393 413 433 453 473 493 513

30

4 SARS-CoV

on
D/

Wild type

QH

E:
TR
489

PR

- )
TRP 479
AT6

'a' Alpha
80 100

O on
o

ﬁ' Gamma

430

80 100

J Charged (negative)
Hydrophobic

J Charged (positive)
Polar

o—e n-7 stacking
— Hydrogen bond

Figure 7. 100 ns MD simulations results for RBD28 (hesperidin) complexes: (a)—RMSD of protein’s
Ca; (b)—RMSF of protein structures; (¢)—RMSD of ligand fit on protein; (d)—RMSF of ligand’s
structures; (e)—2D interactions diagram for hesperidin and RBDs.

Proteins of all variants were stabilized with RMSD fluctuations not exceeding 1.5 A.
The only exception was the complex with Delta RBD, with an observed significant deviation,
stabilized after 50 ns of simulation. It may indicate a change in the protein’s conformation
upon binding a ligand. The root mean square fluctuation within RBDs was significantly
low, with the highest peaks for most SARS-CoV-2 variants below 3.6 A. Only the Delta
variant’s RBD showed a high fluctuation over 7 A near residues S477-P479. Complex
with SARS-CoV RBS demonstrated high fluctuations of 6.3 A for the residue N388 (N375,
according to the native sequence of SARS-CoV RBS), in the same way as it was for its
complex with ACE2. Ligands fit on protein RMSD revealed extremely high deviation for
the hesperidin complex with Gamma variants” RBD, indicating that ligand was significantly
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departed from the original location. Ligand bound to Beta, Mu, and Omicron RBDs also
showed high deviations.

Stepped change in ligand’s position fit can be observed for Epsilon RBD: stabilizing
during the first 65 ns of a simulation time and further changing its position and stabilizing
again after 85 ns. Overall, hesperidin was fixed the strongest inside of binding pockets of
SARS-CoV, Wild type, Alpha, Delta, Epsilon, and Lambda SARS-CoV-2 variants’ RBDs. A
similar binding pattern can be seen in cases of Wild type, Alpha, and Delta RBDs complexed
with hesperidin. Hydroxyl groups of the glucose ring served here as donors of hydrogen
bonds to E484 (ranging from 44% to 76% of a simulation time). At the same time, one
more H-bond was formed between hydrophobic F490 and the hydroxyl group of phenyl
ring (Wild type, 36% of a simulation time) or linkage oxygen (Alpha, 48% of a simulation
time). RBD residues, which interacted with hesperidin, were similar in the case of Lambda
RBD; however, only the phenyl ring of a ligand participated in interactions, forming 7t-7t
stacking with Y489 and H-bonds with E484 and S490. Considering the importance of E484
in promoting the binding of a ligand, one can assume that mutation of this negatively
charged amino acid into positively charged lysine (or neutral alanine) should result in
reduced binding affinity. Indeed, no contacts between hesperidin and the protein were
observed in all variants carrying the mutation E484K or E484A.

Narirutin (38) showed a weaker affinity toward SARS-CoV and SARS-CoV-2 variants
(Figure 8). As shown in Figure 8a, protein RMSD was stabilized, not exceeding 2 A.
However, the ligand’s RMSD fit on protein revealed substantial changes in the ligand’s
position for most complexes. Ligands RMSF showed large fluctuations for most complexes
except for Gamma and Delta. Narirutin formed the most stable complexes with Alpha,
Gamma, and Delta RBDs. Sever H-bonds and a water bridge have strongly stabilized the
Gamma variant’s RBD binding pocket. Next, H-bonding with E484 stabilized Narirutin
complexes with Alpha and Delta. However, in the case of an Alpha RBD, interactions with
E484 remained shorter within the simulation time. Meanwhile, the Gamma variant’s RBD
carried an E484K mutation, making it impossible to act as an H-bonds acceptor. Thus,
instead of E484, this role was played by E406. Three other residues served as H-bond
donors for the ligand, maintaining contacts for 32-94% of the simulation time. During
100 ns simulation time, narirutin was kept the strongest inside Gamma and Delta RBD’s
binding pockets. Relatively weak affinity was detected for the Lambda, Mu, and Omicron
RBDs, and no interactions were observed for complexes with SARS-CoV, Wild type, Beta,
and Epsilon SARS-CoV-2.

Neohesperidin (39) appeared to be the most potent inhibitor among the ones discussed
in this work. It bound the majority of studied RBDs (Figure 9), except for Beta, Mu,
and Omicron ones. Fluctuations on protein RMSD were not exceeding 1.5 A, with only
deviations slightly below 2 A for the Gamma and Omicron variants. Considerably large
deviations on ligands RMSD were only observed for complexes with Wild type, Beta, and
Mu variants. Next, the ligand was stabilized only after 50 ns and 25 ns for Omicron and
Delta variants, respectively. For Gamma, Delta, and Lambda complexes, H-bonds with
E484 (E406 in the Gamma variant) were retained during 77-98% of the simulation time.
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Figure 9. One hundred nanoseconds of MD simulations results for RBD-39 (neohesperidin) com-
plexes: (a)—RMSD of protein’s Ca; (b)—RMSF of protein structures; (¢)—RMSD of ligand fit on
protein; (d)—RMSF of ligand’s structures; (e)—2D interactions diagram for neohesperidin and RBDs.

After scanning a limited selection of biologically active compounds, which can be
found in some Traditional Chinese Medicines, we were able to find leads that possibly can
inhibit several variants of SARS-CoV-2 spike glycoprotein RBD with similar efficacy. For
instance, all three hit ligands showed a great affinity towards the Delta variant, and two
of them tightly bound the Gamma variant’s RBD. All three hit ligands are components of
citrus essential oils and can be found in orange juice.
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3. Materials and Methods

The Schrodinger software package [46] was used for all the simulations in this work.

3.1. Protein Preparation

The structures of a SARS-CoV and SARS-CoV-2 Wild type, Alpha (B.1.1.7), Beta
(B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427/B.1.429), and Omicron (B.1.1.529)
spike (S) glycoprotein’s receptor-binding domains were retrieved from the Protein Databank
(PDB IDs: 2AJF, 6MO0], 7EDJ, 7LYK, 7M8K (7NXC), 7W9I, 7N8H, and 7T9L, respectively).
Every target protein was prepared using Protein Preparation Wizard [47] implemented in
the Schrodinger. The bond orders were assigned, and all hydrogen atoms were added after
removing the original hydrogens. Protonation states were generated using Epik [48] for a
pH of 7.0 &£ 2.0, the hydrogen bond network was optimized, and restrained minimization
of all atoms was carried out using OPLS3e force fields [49]. The superposition of RBDs
is illustrated in Figure 1a. For the Gamma variant’s RBD, the structure 7M8K was used
initially; however, as simulations were carried out, this structure was found to be not
appropriate for this type of investigation (as described in Section 2); therefore, 7M8K was
substituted by 7NXC.

3.2. Homology Modeling

As the literature suggests [23], the residues responsible for the binding of RBD with
ACE2 include Tyr449, Tyr453, Leu455, Phe456, Phe486, Asn487, Tyr489, GIn493, Gly496,
GIn498, Thr500, Asn501, Gly502, Tyr505 (Figure 1b). For investigated variants, the muta-
tions in RBD occurred in residues Gly339, Arg346, Ser371, Ser373, Ser375, Lys417, Asn440,
Gly446, Leu452, Serd77, Thr478, Glu484, Phe490, GIn493, Gly496, GIn498, Asn501, and
Tyr505, with only five of them appearing to bind to the host cell directly. The highest
number of these mutations (15 overall) were detected for the Omicron variant.

The chain E containing RBD was extracted from wild-type RBD bound to ACE2 (PDB
ID: 6M0]) and then was used as a template for homology modeling of Alpha (B.1.1.7),
Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427/B.1.429), Lambda (C.37),
Mu (B.1.621), and Omicron (B.1.1.529) variants” RBDs. The list of mutations is illustrated
in Figure 1c. Homology models were created using Schrodinger’s Homology Modeling
module [46]. Secondary structure prediction was carried out using the ClustalW alignment
method, which works best for structures with high sequential similarity [50]. Models
were aligned and further built using an energy-based method. All homology models
were further subjected to 200 ns molecular dynamics simulation as described below. The
Desmond Trajectory clustering method was used with the backbone as an RMSD matrix to
extract the most repeated structures from the trajectory. The most populated clusters were
used for further calculations.

3.3. Ligand Preparation

A total of 48 active ingredients of Traditional Chinese Medicines (TCM) [40] were used.
The list of compounds, the TCM type they are found in, and their PubChem identifiers
can be found in Table 2 and Table S2 (Supporting Information). The structures were
retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/ (accessed on
1 January 2022)) and prepared using LigPrep. lonization states were generated using Epik
at pH 7.0 £ 2.0, and structures were minimized using the OPLS3e force field.

3.4. Molecular Docking and Molecular Mechanics

For RBD:s of all variants, the grids for molecular docking were centered on the RBD-
ACE2 binding interface (Figure 1c) with the following coordinates x: —35.0, y: 32.0, z: 0,
with a length of 36 A, and a scaling factor value that was set to 1. The ACE2 receptor grid
was centered on x: —35.0, y: 32.0, z: 10, with a length of 36 A. The size of an inner box was
set by default as a 10 A cube. The extra precision (XP) docking calculations were carried out
using Glide [51]. An OPLS3e force field was used with flexible ligands and rigid protein
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structures. The scaling factor was set to 1. Post-docking minimization with strain correction
terms was performed for each docking calculation. The top hits from each XP simulation
were used to perform a molecular mechanics/generalized Born surface area (MM-GBSA)
calculation implemented in the Prime module [52]. With the VSGB solvation model and
OPLS3e force field, protein residues were set flexible for 12.0 A distance for all ligands
processed. The protein-ligand complexes were ranked based on their binding free energy.

3.5. Molecular Dynamics Simulation

Molecular dynamics simulations allows to estimate more accurately the thermody-
namics and kinetics associated with drug-target recognition and binding when compared
to molecular docking and molecular mechanics methods [53,54], as it was shown in our
previous works. Molecular dynamics simulations were carried out using the Desmond
module [55]. Structures were placed in orthorhombic boxes with minimized size and
solvated with single point charge (SPC) water molecules. Simulation systems were neu-
tralized with CI" or Na* counterions. All systems were subjected to Desmond’s default
eight-stage relaxation protocol that preceded the actual run. The OPLS3e forcefield was
used for all calculations. With a 25 ps recording time step, homology models of RBDs
were simulated within 200 ns. It was shown in our previous work that while 100 ns
simulations were performed for all other complexes. The trajectory clustering method
(described in the Section 3.2) was used to retrieve the most populated geometries for further
calculations. Simulation Interaction Diagram and Simulation Event Analyses were used to
evaluate root-mean-square deviations (RMSD), root-mean-square fluctuations (RMSF), and
ligand-protein interactions.

4. Conclusions

In this work, we built homology models of spike glycoprotein receptor-binding do-
mains from eight SARS-CoV-2 variants as binding targets for the library of potential
inhibitors. Comparing homology models with existing PDB structures indicated the qual-
ity of the developed models and computational techniques used to build them. Thus, it
provides the opportunity to accelerate in silico research targeting newly emerged variants
once the sequence of viral proteins becomes available. Analysis of RBD’s complexes with
host ACE2 receptor revealed residues Q493 and N487 being not only essential to its binding
(as was already proven) but also the most conserved, disregarding the mutations in the
case of all nine variants studied here. This information directed us to propose a hypothesis
that inhibition near these residues may be beneficial if targeting not just one variant but
all of them simultaneously. Next, solely for benchmarking purposes, a set of biologically
active compounds was screened against SARS-CoV and SARS-CoV-2 variants’ RBDs. Three
analyzed ligands demonstrated the strongest binding affinity: hesperidin, narirutin, and
neohesperidin. Molecular dynamics simulations demonstrated stable protein-ligand in-
teraction for these compounds with RBDs of several variants (mainly Delta). With a high
probability of interacting in a specific region of RBD (between residues Q493 and N487),
these ligands are assumed to prevent interaction with RBD SARS-CoV-2. Interestingly, all
three hit compounds can be found in citric essential oils and are relatively safe for humans.

For future studies, a more extensive library of natural compounds must be scanned
against SARS-CoV-2 variants” RBDs using the proposed approach. Considering high-
quality homology modeling results, the proposed approach could be used to build new
models for emerging variants, such as new clades of Omicron (e.g., 21K, 21L, 224, 22B, 22C,
and 22D).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217336/s1, Table S1: Free binding energies of ligand-
protein complexes (AG, kcal/mol); Table S2: Ligands’ SMILES codes.
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