

1 Dilute Limit Alloy Pd-Cu Bimetallic Catalysts

2 Prepared by Simultaneous Strong Electrostatic

3 Adsorption: A Combined Infrared Spectroscopic and

4 Density Functional Theory Investigation

5

6

7 *Leandro De Castro^{1,2}, Dia Sahsah¹, Andreas Heyden¹, John Regalbuto¹, Christopher Williams^{1,*}*

8

9 ¹University of South Carolina, Columbia, South Carolina 29088 (USA)

10 ²University of the Philippines Los Baños, Laguna, 04031 (PH)

11

12 *Corresponding author. Email: WILLIA84@cec.sc.edu

13 Keywords: Dilute Limit Alloy, Single Atom Alloy, CO-FTIR, DFT

14

15 **Abstract**

16 Well-defined single-atom catalytic sites with unique geometric and electronic properties are at the
17 forefront of catalyst research. One type of SAC is a so-called dilute limit alloy, where single metal
18 atom sites are supported on (or in) the surface of a second metal. This contribution explores the
19 simple and scalable approach of strong electrostatic adsorption (SEA) to synthesize silica-
20 supported dilute limit alloy (DLA) of palladium on copper. The catalysts were characterized using
21 X-ray diffraction, temperature programmed reduction and TEM images to confirm the presence of
22 tightly distributed metal nanoparticles. The isolated Pd sites on Cu were probed using transmission
23 Fourier-transform infrared (FTIR) spectroscopy during adsorption of CO. Through spectral curve-
24 fitting to extract Gaussian peak parameters, coupled with density functional theory (DFT)
25 calculations, the nature and structure of the Pd sites was determined. In addition to typical
26 vibrational features observed for CO on copper, three additional peaks at 2046, 2021 and 1908 cm⁻¹
27 were observed for the dilute limit alloy Pd-Cu system. The DFT analysis of the same system
28 showed that these peaks are consistent with CO linearly adsorbed on an embedded palladium atom
29 on a Cu(100) surface, a Pd on a Cu(111) surface, and a bridge CO between Pd and Cu with the Pd
30 embedded on a Cu(211) surface, respectively. Experimental and computation trends in CO
31 vibration wavenumber could be well interpreted using the Dewar-Chatt-Duncanson (DCD) model.
32 The promise of the SEA approach for producing DLAs and the utility of this combined FTIR/DFT
33 approach for their characterization will be discussed in light of these findings.

34

35

36 **1. Introduction**

37 The promise of atom-efficient utilization of precious metals combined with the potential for
38 unique catalytic applications drives recent efforts to develop novel synthesis methods and
39 characterization techniques for single-sites heterogeneous catalysts (SSHC).^{1,2,3-5} Such well-
40 defined (and more uniform) active sites may also allow for a more straightforward interpretation
41 of reaction kinetics and mechanisms through experimental evaluation and computational
42 methods.^{6,7} Isolating a known active metal (e.g., Pd, Pt, etc.) in a "sea" of another metal is a known
43 strategy to produce a type of single-site catalyst. Such DLA might have unique properties if the
44 electronic structure of the isolated metal is altered or the resulting isolated site geometry causes an
45 ensemble effect. Decreased utilization of the active (often precious) metal with similar or enhanced
46 catalytic performance would increase atom efficiency.

47 Several reports have appeared in the literature that show the effectiveness of DLA catalysts for
48 a range of reactions. For example, pioneering work by Flytzani-Stephanopoulos and co-workers
49 explored small surface concentrations of palladium atoms dispersed on a Cu(111) surface and
50 alumina-supported Cu particles ($Pd_{0.18}Cu_{15}/Al_2O_3$). Significant improvement was observed for the
51 selective hydrogenation of phenylacetylene to styrene relative to monometallic palladium
52 catalyst.⁸ The higher selectivity was attributed to spillover of Pd site-dissociated hydrogen atoms
53 to the Cu surface, thus allowing the inactive copper to serve as an effective bifunctional
54 hydrogenation catalyst. Silica-supported Pd-Cu DLA prepared in the same manner were also found
55 to be active in selective oxidation of methanol towards methyl formate at low temperatures. In this
56 case, the high selectivity is due to the formation of an atomically dispersed Pd oxide active site on
57 the copper matrix.⁹ Selective oxidation of methacrolein with methanol to methyl methacrylate was
58 also enhanced by doping isolated Ni atoms on the Au surface. The single atom of nickel acted as

59 a binding site for methanol, as a base to stabilize the reaction intermediate and increase the number
60 of Au-Ox active sites.¹⁰ Improvements in dehydrogenation (NiCu), selective partial hydrogenation
61 (PtCu), selective hydrogenation (PdAg, PdAu), and hydrogenolysis (PtCu) were also made with
62 the use of DLA catalysts.¹¹⁻¹⁵

63 These promising results using DLAs have motivated researchers in both computational and
64 experimental catalysis.^{16,17} Computational studies readily allow for exploring metal combinations
65 to target a specific reaction and can also aid in the interpretation of experimental results.^{18,19}
66 However, while the structures of single metal alloy active sites are relatively simple (compared to
67 standard bimetallic catalysts), the synthesis of such structures is challenging. A variety of methods
68 have been used with varying success and complexity. Galvanic displacement (GD) has been
69 successfully applied to make a variety of single metal alloy catalysts.^{8,12,20} For example, Flytzani-
70 Stephanopoulos et al. dispersed Pd atoms alloyed on a Cu metal nanoparticle surface on alumina
71 support via galvanic displacement of Cu by Pd.⁸ The method was extended to prepare NiCu⁸ and
72 PtCu^{9,10} DLA nanoparticles supported on silica and alumina, respectively. One limitation of this
73 method is the reduction potential compatibility of the two metals involved. Second, the metal to
74 be displaced must be present in a reduced state, requiring inert gas protection during the GD
75 process.

76 Another method has been proposed by Zhang and co-workers (2015), which involves the
77 formation of hydroxide species $M(OH)_z$ on a reducible oxide support A_xO_y . Calcination then forms
78 M-O-A bonds between the singly dispersed $M(OH)_z$ and A_xO_y , followed by a controlled reduction
79 to remove some oxygen atoms to form isolated M_1A_n sites.^{22,23} The reduction of precursors is
80 crucial in preparing the catalyst, and the approach is limited to reducible oxide supports. In the
81 vapor phase, atomic layer deposition of a second metal onto a metal nanoparticle has been

82 explored.²⁴⁻²⁷ For example, Wang et al. used a combination of deposition-precipitation of Ni
83 followed by selective atomic layer deposition of Pd to produce single metal alloy PdNi on silica.
84 The ALD method was able to selectively target the Pd onto the Ni surface rather than on the silica
85 support surface. However, this selective ALD procedure has only been demonstrated for silica
86 support.²⁸

87 Recently, Filie et al. (2021) prepared a dilute PdAu nanoparticles supported on raspberry-
88 colloid-templated (RCT) silica. It is a three-step synthesis method involving intitial synthesis of
89 monometallic and narrowly-sized (~5nm) gold nanoparticles (NPs). Dilute bimetallic Pd_xAu_{1-x}
90 was prepared by adding palladium (II) nitrate hydrate ($Pd(NO_3)_2$) to a solution containing as-
91 synthesized Au NPs and ascorbic acid aqueous solution. Lastly, these bimetallic nanoparticles
92 were then delivered to silica support using the RCT approach.²⁹

93 More traditional co- and sequential- incipient wetness (IW) impregnation methods have also
94 been used to make single metal alloy catalysts.³⁰⁻³⁵ For example, $Pd-Ag/SiO_2$ with dilute levels of
95 Pd were synthesized using nitrates as precursors.³⁶ The resulting improvement in activity and
96 selectivity for hydrogenation of acrolein was attributed to the addition of atomically dispersed Pd.
97 However, as is typical with IW methods, the particle sizes were on the order of 5-9 nm, which is
98 not a high degree of dispersion.

99 One key consideration in designing a single atom alloy catalyst is the possible segregation of the
100 active isolated surface atom into the bulk phase of the abundant host metal. Zhang et al. (2015)
101 reported surface atom migration during the galvanic replacement of Pd on Ag metal surface due
102 to the large difference in surface free energy. Pd tends to diffuse to the bulk of the base Ag particle
103 and vice-versa, providing fresh Ag atoms for galvanic displacement.¹³ Thermodynamic limitations
104 depending on the surface free energies dictate how a given metal would preferentially segregate

105 to a nanoparticle surface, thus possibly avoiding bulk migration. In addition, for a given reaction,
106 the strong interaction of a single metal site with a specific adsorbate (e.g., CO) might serve to
107 stabilize the atom on the surface. In the context of ultrasmall bimetallic catalysts as prepared by
108 Wong et.al. (2017), the significantly low number of bulk atoms provides a low probability for an
109 isolated surface atom to bulk segregate. In a cuboctahedron cluster model developed by Benfield
110 (1992), a copper particle having a 1.49 nm particle diameter ($m=4$, $a=0.362$ nm) has ~63% of its
111 atoms on the surface.³⁷ This high probability of surface atoms as the particle size decreases is the
112 motivation for the synthesis of isolated surface atoms using the co-SEA method. This strategy
113 would allow for facile one-pot synthesis of any dilute limit alloy bimetallic catalyst (DLA) using
114 the method of simultaneous strong electrostatic adsorption (co-SEA).³⁸

115 One challenging aspect of isolated metal atoms is characterization due to their inherent small
116 concentration in the catalysts. X-ray photoelectron spectroscopy (XPS) typically does not provide
117 a high enough signal for the isolated atoms and would require a synchrotron beam line for a
118 brighter X-ray source.³⁹ Aberration corrected scanning transmission electron microscopy (AC-
119 STEM) can be used to distinguish between a single atom and neighboring atoms when there is a
120 high atomic number difference (i.e., Z-contrast) but is often challenging when the atoms are similar
121 in size.⁴⁰ Other techniques such as temperature programmed reduction (TPR), may provide
122 information about the interaction between the dilute metal and its host, but not the direct surface
123 environment.^{41,42}

124 One approach that shows some promise for characterizing single atom alloy catalysts is Fourier
125 transform infrared spectroscopy (FTIR) of CO adsorption. The highly sensitive signal can allow
126 the vibrational properties of various single atom sites to be explored. FTIR is a well-established
127 method used to characterize monometallic and bimetallic catalyst surfaces. A significant number

128 of publications have been published for most of the metals used in catalysis. Sheppard and Nguyen
129 (1978) consolidated IR results from various studies (single crystals and oxide supported metals)
130 and suggested schemes for interpreting spectral results. In the recent review made by Sheppard
131 and De la Cruz on the reliability of vibrational spectroscopy for structure identification of
132 chemisorbed species such as CO on (111) surfaces, they concluded a 2130-2000 cm⁻¹ range for
133 linear (on-top) sites and an extended range 1950-1800 cm⁻¹ for 3-fold (hollow) bridge CO
134 overlapping with 2-fold bridge CO in the range 2000-1870 cm⁻¹ at higher coverage.⁴³ FTIR
135 characterization of CO adsorption is relatively straightforward for monometallic catalysts since
136 the CO surface species are associated with only one metal (albeit with various coordination and
137 geometric structures). For a bimetallic catalyst with only one metal adsorbing CO, spectra analysis
138 can be similar to that of the monometallic counterpart¹³. However, in systems where both metals
139 adsorb CO, the resulting spectra involve a convolution of vibrational features that can make even
140 a qualitative analysis challenging.^{44,45}

141 In this study, silica-supported Pd-Cu bimetallic catalysts were synthesized using a dilute limit
142 approach involving simultaneous strong electrostatic adsorption (co-SEA).^{41,42} The molar ratio of
143 Pd to Cu was varied in an attempt to achieve single atom alloy sites of Pd on Cu. These catalysts
144 have been characterized by a range of structural approaches, and especially with FTIR during CO
145 adsorption, to probe the evolution of the Pd₁Cu single metal alloy sites. Extensive spectral curve
146 fitting over a range of conditions was used to identify unique vibrational features, which were then
147 confirmed using density functional theory (DFT) modeling of various adsorbed species. This
148 powerful combination of experimental and computational approaches revealed the presence of two
149 types of single atom Pd₁Cu species that appear in the dilute limit.

150 **2. Experimental and Computational Details**

151 **2.1 Experiments.**

152 **Catalyst Preparation.** Evonik Aerosil 300® (BET=304 m²/gm) was used as silica support for
153 adsorption with a surface loading of 1000 m²/L. Metal precursors used are copper (II) nitrate
154 hydrate (Sigma-Aldrich 99.999%) and tetraamminepalladium (II) chloride monohydrate (Sigma-
155 Aldrich 99.99%). Dilute limit alloys of palladium-copper supported on silica were prepared by
156 simultaneous strong electrostatic adsorption (co-SEA), which has been described previously.⁴¹
157 Silica supported monometallic palladium, and copper catalysts were also prepared using the same
158 method but using only the associated single metal precursors. Silica was poured into an ammonium
159 hydroxide-adjusted solution (pH 12) containing cationic palladium and copper ammine complex
160 precursors. In making the dilute limit alloy, a palladium to copper metal ratio range from 1:15 to
161 1:60 with an initial metal concentration based on one monolayer theoretical surface adsorption
162 density (~1.2 μmole/m²) for metal ammine complexes were prepared.^{42,46} Silica having a PZC=3.6
163 deprotonates at pH > PZC and develops the negatively charged surface, thereby allowing for the
164 strong adsorption of one monolayer of hydrated cationic ammine complex on the surface. The
165 mixture was placed in an orbital shaker for 15 minutes, and the support was recovered using
166 vacuum filtration. The recovered silica containing the adsorbed precursors was dried at room
167 temperature for at least 12 hours, followed by a muffle furnace oven drying at 120 °C for 4 hours.
168 Finally, the catalysts were reduced in a horizontal tubular furnace under a gas mixture of 20% H₂
169 balanced N₂ with a total flow rate of 500 SCCM. A ramp of 5 °C/min to 400 °C and a soak time
170 of 1 hour were employed.

171 **Catalyst Characterization:** Aliquots of solution were taken before and after contact with the
172 support to determine metal adsorption. Metal concentrations were measured using a PerkinElmer
173 Avio 200 inductively-coupled plasma optical emission spectrometer (ICP-OES) using

174 multiwavelength calibration, multiple replicate data, and multiple view mode. The samples were
175 diluted to minimize the effect of highly volatile compounds on plasma stability.

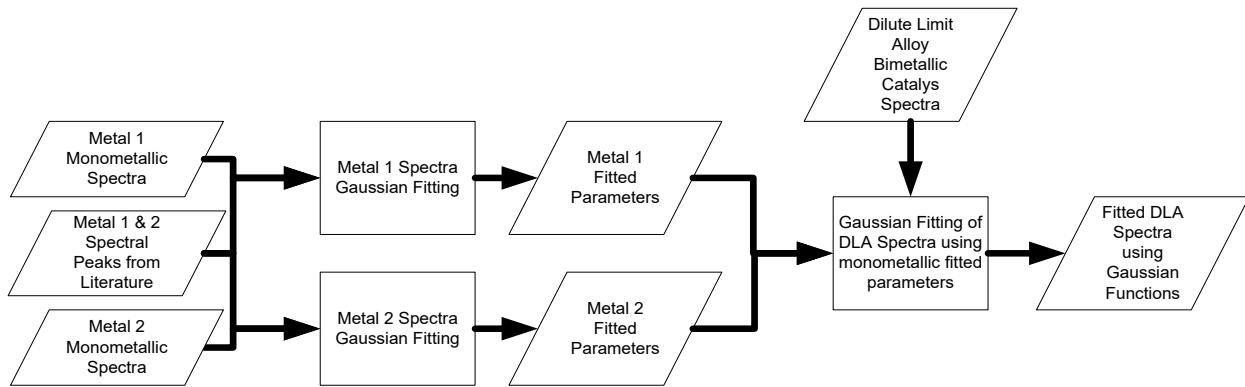
176 X-ray diffraction (XRD) patterns were obtained using a Rigaku MiniFlex II equipped with a
177 high sensitivity D/tex Ultra Si slit detector. Patterns were recorded from 10-80° 2θ using a step
178 size of 0.02°, and a Cu-K α radiation source ($\lambda=1.5406$ Å) operated at 30 mA and 15 kV.

179 X-ray photoelectron spectroscopy (XPS) investigation of untreated and treated catalysts was
180 carried out using a Kratos AXIS Ultra DLD XPS (Kratos Analytical). The XPS system is equipped
181 with a monochromatic Al K α source operated at 15 keV and 150 W, a hemispherical analyzer,
182 charge neutralizer, catalyst treatment cell, and a load lock chamber for rapid introduction of
183 samples without breaking vacuum. The X-rays were incident at an angle of 45°, with respect to
184 the surface normal. Analysis was performed at a pressure of $\sim 1 \times 10^{-9}$ mbar and high-resolution
185 core level spectra were measured with a pass energy of 40 eV. The XPS experiments were
186 performed by using an electron beam, directed on the sample, for charge neutralization. The curve
187 fitting procedure was carried out using the XPS Peak 41 software and the peak approximation was
188 carried out by a combination of Gaussian - Lorentzian functions, with subtraction of Shirley-type
189 background. The in-situ reduction of the catalysts was performed in a reaction cell (Model: ES-
190 009R01) directly attached to the XPS chamber, which allows the sample to be treated at gas flow
191 conditions. The samples were transferred inside the reaction cell and back to the analysis chamber
192 without exposure to the atmosphere.

193 Scanning transmission electron microscopy (STEM) images were obtained with a JEOL 2100F
194 200kV FEG-STEM/TEM equipped with a CEOS Cs corrector on the illumination system. The
195 equipment was controlled to have an aperture of 17.5 mrad, which at 200 kV provides a nominal
196 probe size of <0.1 nm. High angle annular dark-field (HAADF) STEM images were acquired on a

197 Fischione Model 3000 HAADF detector with a camera length such that the detector spanned 50–
198 191 mrad. The dwell time per pixel was 15.8 μ s. The samples were prepared for STEM by dropping
199 the powder onto 300 mesh Cu grids coated with a holey amorphous carbon film.

200 TPR was performed on the oven-dried catalysts by using a Micromeritics 2920 equipped with
201 a TCD. The temperature was set at a ramp rate of 5°C/min, and the reducing gas of 10% H₂
202 balanced Ar was set at a flow rate of 50 SCCM.


203 A Nicolet Nexus 470 spectrometer equipped with liquid nitrogen-cooled MCT-B detector was
204 used in transmission to obtain a series of transient CO adsorption spectra with a resolution of 2
205 cm⁻¹ averaging 32 scans using a single beam mode. Catalyst samples were compressed to obtain
206 self-supporting 12 mm thin disks with a density for a given thickness of approximately 25 mg/cm².
207 The sample is contained inside a transmission cell made of 10 cm long stainless steel capped with
208 IR-transparent NaCl windows on both ends that are cooled with flowing coolant. The cell body is
209 wrapped with heating tape and is heated using a temperature controller. A thermocouple is located
210 near the sample to monitor temperature during sample pretreatment and measurement. In situ
211 drying and reduction pretreatment were performed prior to each measurement. Samples were dried
212 for 1 hour at 100°C with flowing nitrogen gas. Upon cooling to room temperature, the samples
213 were then reduced at 400°C for 1 hour in a 20% H₂ balanced N₂ gas mixture with a total flow rate
214 of 250 SCCM. A ramp rate of 5°C/minute was used in both the drying and reduction steps and
215 only the cooling steps use nitrogen gas. A series of spectral measurements, with background
216 spectra measured with nitrogen gas flowing, were recorded in 3 minutes intervals starting with the
217 introduction of 1% CO/He. The first stage (CO adsorption) involves measurements starting with
218 the introduction of CO gas into the system until saturation condition within 90-120 minutes. The
219 second stage (N₂ purging) starts upon replacing the CO gas mixture with nitrogen gas until a final

220 purge spectrum at approximately 90-120 minutes. All measurements were made under
221 atmospheric pressure and room temperature.

222 Spectral fitting using Gaussian functions was made according to scheme 1. Prior to fitting the
223 dilute limit alloy spectra, the corresponding monometallic spectra were deconvoluted and fitted
224 first. A review of the adsorbed CO vibration wavenumber found in the literature was made for
225 each metal to determine the spectral similarities and peaks observed. Curve fitting for the series of
226 spectra was made using a general purpose curve fitting program Fityk⁴⁷. The optimized Gaussian
227 function widths (FWHM) of the relevant peaks are kept the same across a given series of spectra.

228 The peak center wavenumber and height/area were allowed to change from spectrum to spectrum.
229 Thus, for the purpose of analysis, it was assumed that the FWHM values of the contributing
230 adsorbed CO peaks do not change as a function of their intensity. In the case of spectra from the
231 Pd-Cu system, the obtained Gaussian functions from the monometallic copper fitting were used as
232 part of the starting set of fitting functions for the bimetallic catalyst spectra. The same FWHM and
233 peak ratios from monometallic copper were used to obtain the contributions from adsorbed CO on
234 copper. Additional Gaussian functions associated with isolated palladium were then included in
235 the fitting using the series of spectra obtained during the N₂ purging stage. The set of Gaussian
236 functions for monometallic palladium were also included in the fitting function to determine any
237 presence of isolated monometallic palladium nanoparticles. All deconvoluted spectra presented on
238 this paper converge with an R-square above 0.99 and a residual standard deviation of less than
239 0.002.

240 Scheme 1 General fitting scheme for dilute limit alloy bimetallic catalyst.

241

242

243 2.2 Computational Methods

244 First principle calculations were performed using non-spin polarized plane-wave Density
 245 Functional Theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP
 246 5.4.4).^{48,49} A frozen-core, all-electron projector augmented wave (PAW)^{49,50} approach was used to
 247 describe the electron-ion interactions. The Revised Perdew-Burke-Ernzerhof (RPBE) functional
 248 proposed by Hammer *et al.*⁵¹ was used to treat the exchange-correlation effects. Compared to other
 249 functionals within the Generalized Gradient Approximation (GGA), RPBE functional is reported
 250 in the literature to predict accurate adsorption geometries for adsorbed CO over transition
 251 metals.⁵²⁻⁵⁴ In particular, RPBE predicted experimentally observed CO adsorption sites over
 252 several facets of Cu.⁵⁵

253 Basis sets included wavefunctions with kinetic energy up to 600 eV. A 1.0×10^{-7} eV
 254 convergence criterion was set for the electronic Self-Consistent Field (SCF) loops. Structures were
 255 considered relaxed when the maximum force on any atom was less than 0.01 eV/Å. Harris
 256 corrections based on the Harris-Foulkes formalism^{56,57} have been applied to the forces and stress
 257 tensors, and the total energy was corrected for dipole effects using a modified version of the
 258 Makov-Payne scheme.⁵⁸ The Brillouin zone was sampled using a Monkhorst-Pack⁵⁹ $4 \times 4 \times 1$ k-
 259 point grid. First-order Methfessel-Paxton⁶⁰ smearing ($\sigma = 0.10$ eV) was used to speed up the

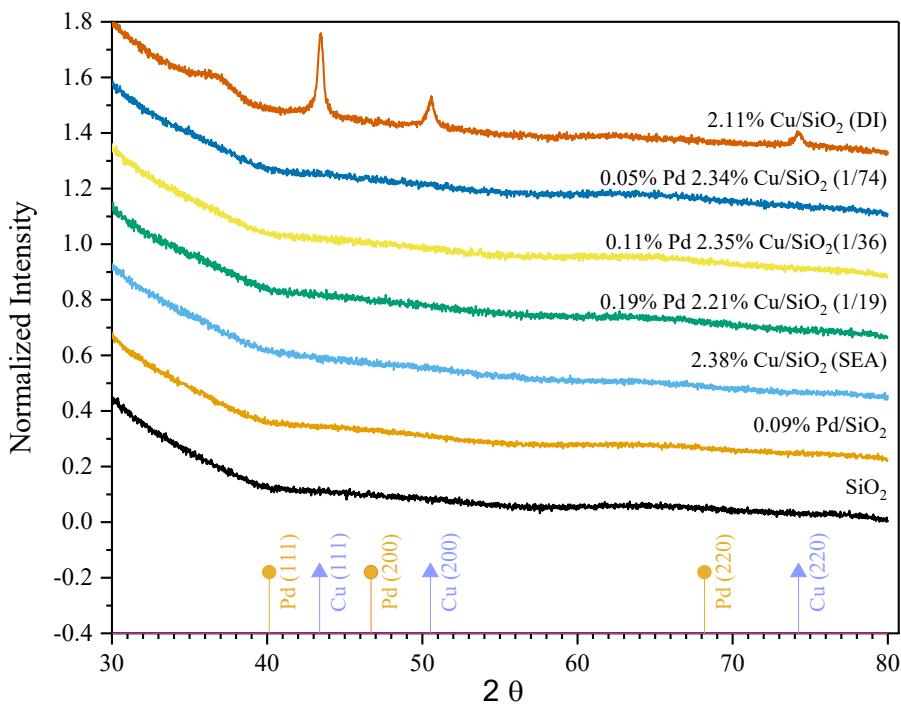
260 convergence of reciprocal space integrals with respect to the number of k-points. Bulk lattice
261 constants for FCC-Cu and FCC-Pd were calculated to be ($a_{\text{Cu}} = 3.672 \text{ \AA}$) and ($a_{\text{Pd}} = 3.972 \text{ \AA}$),
262 values that are in good agreement with reported experimental values of ($a_{\text{Cu}} = 3.597 \text{ \AA}$) and (a_{Pd}
263 = 3.859 Å).⁶¹ Different CO-metal surface complexes were modeled using slab models consisting
264 of 4 surface layers. For the (111) and (100) surface models we used supercell of size (3 × 4) . A
265 (2 × 3) supercell was used for the (211) and (110) surface models. For the embedded site models,
266 a single Cu surface atom was replaced with a single Pd atom. For ad-atom site models a single Pd
267 atom was located over the surface in the energetically most favorable position. For all surface
268 models, the Pd surface concentration is 1/12 ML (1/13 ML for the ad-atom models), except for
269 (211) where we have a surface concentration of 1/18 ML. The top two layers were relaxed in all
270 calculations while the bottom two layers were fixed to their bulk positions. A vacuum space of 15
271 Å was added along the perpendicular to the surface normal to ensure that the charge density trails
272 off to zero along the surface normal. Such a vacuum gap is also sufficient to ensure that slabs do
273 not interact with their periodic images in the vertical direction.

274 Harmonic vibrational frequencies were calculated using a numerical computation of the Hessian
275 matrix using the tools implemented in the VTST package for VASP developed by the Henkelman
276 group.⁶² Numerical calculations needed to compute second derivatives of the energy were
277 performed using the central-difference approximation, wherein the adsorbate atoms were displaced
278 by 0.005 Å from their equilibrium positions. To account for the systematic deviation between
279 DFT-calculated vibrational frequencies and experimental frequencies^{63,64}, a scaling factor of
280 1.0314 was applied to the RPBE frequencies. The scaling factor was selected such that the scaled
281 calculated C—O stretching frequency in the gas phase is equal to the experimental value of 2170
282 cm⁻¹.⁶⁵

283 **3. Results and Discussion**284 **3.1 Characterization of Catalysts**

285 Calculated nominal weight loadings and surface densities of as-synthesized monometallic
 286 palladium and copper catalysts and dilute limit alloy Pd-Cu bimetallic catalysts are shown in Table
 287 1. The weight loading of monometallic palladium is comparable with that of the bimetallic
 288 catalysts. Applying the synthesis method of Wong et al. (2017), the adsorption of the copper
 289 complex on an amorphous silica surface falls within the theoretical monolayer predicted for strong
 290 electrostatic adsorption of ammine complex precursor ($\sim 1.2 \mu\text{mole/m}^2$).⁴⁶ This suggests the
 291 absence of copper dimer formation as observed in previous works wherein the amount of adsorbed
 292 copper is beyond one monolayer of theoretical adsorbed precursor retaining one layer of hydration
 293 sheath.^{42,66} The observed total surface density also conforms with the maximum density observed
 294 in the uptake survey for the Pd-Cu co-SEA system.⁴¹

295 Table 1. As synthesized silica-supported Pd, Cu and dilute limit Pd-Cu catalyst weight loading

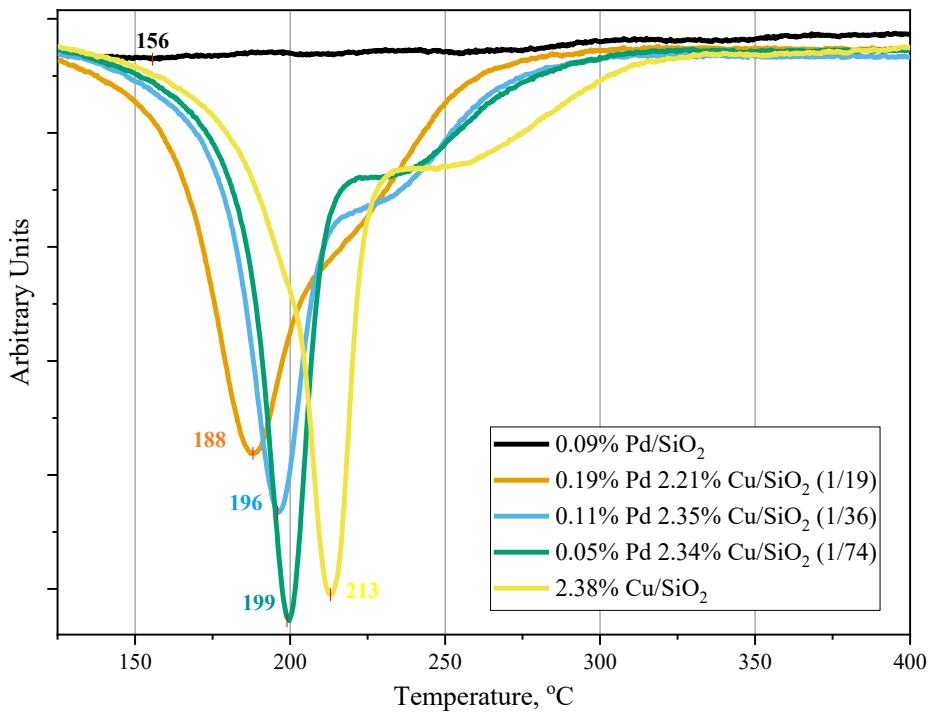

Catalyst	Measured Molar Cu/Pd Ratio	Weight Loading, wt%		Surface $\mu\text{mole/m}^2$		Density, Total
		Pd	Cu	Pd	Cu	
Pd		0.09		0.028		0.028
Cu			2.38		1.217	1.217
1Pd-15Cu	19/1	0.19	2.21	0.06	1.13	1.187
1Pd-30Cu	36/1	0.11	2.35	0.034	1.205	1.238
1Pd-60Cu	74/1	0.05	2.34	0.016	1.197	1.213

296

297 Within the limit of high-resolution XRD, the powder diffraction pattern (Figure 1) for both the
 298 SEA-prepared monometallic and bimetallic catalysts show the absence of sharp peaks for the

299 palladium and copper grain. In comparison, a similar loading monometallic copper prepared by
300 dry-impregnation shows the presence of a larger copper grain size (Figure 1). The pattern suggests
301 a small particle size (<2 nm) typical for catalysts prepared by SEA due to the strong metal
302 precursor-support interaction that limits atom migration during nanoparticle formation.^{41,67} The
303 particle size also conforms with the STEM image obtained for the bimetallic Pd-Cu system (Figure
304 S1).

305



306

307 Figure 1. Powder X-Ray Diffraction Pattern for Cu, Pd and Dilute Limit Alloy Pd-Cu Catalysts.

308 The H₂-TPR profiles provide insight into how the strongly adsorbed precursors become reduced
309 to form metal particles. In Figure 2, the peak reduction temperature of a series of increasing
310 dilution of palladium in copper shows that the reduction peak position shifts towards that of
311 monometallic copper. Nevertheless, at a dilute amount of palladium, the reduction peak of the
312 copper metal precursor is decreased significantly (~15 °C), confirming a close interaction between

313 the two metals. Since the palladium precursor reduces first (peak at 156 °C), these reduced Pd
314 atoms dissociate H₂ to H atoms⁶⁸, which spillover and reduce the copper at a lower temperature.

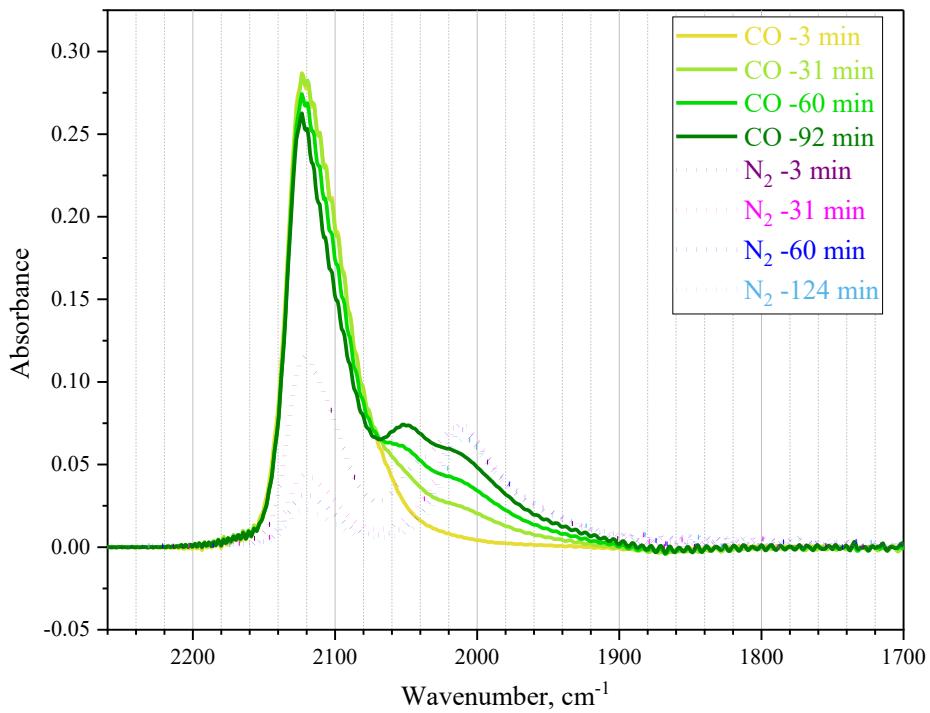
315
316 Figure 2. H₂-TPR of Pd, Cu and dilute limit alloy Pd-Cu dried catalyst prepared by strong
317 electrostatic adsorption.

318 XPS measurements show identical behavior in Cu 2p binding energy for both the monometallic
319 copper and bimetallic dilute limit alloy catalyst. Two peaks were observed for Cu(OH)₂ (B.E. =
320 936.4 eV) and CuO (B.E. = 934.1 eV) species for pre-reduced samples exposed to atmospheric
321 conditions. After in-situ reduction, only one peak corresponding to a fully reduced copper (Cu⁰)
322 (BE=932.5 eV) was observed. XPS measurement of this reduced copper after CO exposure shows
323 two peaks with higher binding energy (Figure S2a & S2c). The 933.1 eV peak is associated with
324 bridge CO while the 934.6 eV peak is attributed to linear CO. The adsorbed CO on the copper
325 surface has its anti-bonding π bond orbitals filled by electron π -backdonation, thereby losing

326 electrons from the copper metal surface. In an ambient pressure XPS study by Zhang and Ptasinska
327 (2016) on Cu crystals, the shift in Cu 2p was not observed but instead the existence of shake-up
328 peaks suggests CO interaction with Cu.⁶⁹ The same increase is observed for the Pd 3d binding
329 energy after CO exposure in the present study (Figure S2b & S2d). An increase in B.E. of Pd 3d
330 from 335.2 eV for the reduced isolated Pd on copper to B.E. 335.9 eV with the Pd-CO system. In
331 a NAP (near ambient pressure)-XPS study by Bukhtiyarov et al. (2018) on Pd-Au bimetallic
332 catalysts, they found the same blue shift in B.E. from Pd state (B.E. =334.7 eV) to Pd-CO state
333 with linear and bridge CO contribution (B.E=335.6 eV and B.E.= 336.2 eV, respectively).^{70,71} The
334 Pd-Cu DLA also shows the same trend as that of monometallic Cu, which suggests the absence of
335 electron transfer between Pd and Cu atoms. This could be attributed to strong metal-support
336 interaction that overshadows the electron transfer between Pd and Cu atoms. Spectra for C 1s
337 suggest an adsorbed CO giving a binding energy at ~289.8 eV (Figure S3). The increase in oxygen
338 atomic % in all samples upon CO exposure comes from the CO adsorbed on the metal surface
339 (Table S1-S3). The increased C-C peak after CO exposure for both monometallic copper and Pd-
340 Cu DLA suggests a decomposition of adsorbed CO on the surface (Figure S3a &S3c, Table S4).
341 In a study by Ichikawa, S. et al. (1985), they found disproportionation of CO to CO₂ and carbon
342 on a small palladium particles on a silica support.⁷² They found a decrease in CO chemisorption
343 sites after seven cycles of CO adsorption and desorption at elevated temperature. At mild
344 temperature, CO disproportionation was observed by Li et al. (1991) on partially reduced cerium
345 oxide using FTIR spectroscopy.⁷³ Although the XPS experiment of CO exposure were made in
346 high vacuum system, the disproportionation of CO during the CO exposure stage is not known.
347 The potential effect of this is the loss of site for CO adsorption that could lower signal (e.g. CO-
348 FTIR) for the Pd-CO isolated sites due to surface poisoning.

349 3.2 FTIR of Adsorbed CO

350 To probe the surface of the dilute limit alloy catalysts prepared by co-SEA, FTIR spectra were
351 obtained during and after exposure to CO. In addition, spectra of monometallic Cu and Pd catalysts
352 (at similar loadings found in the dilute limit alloy samples) were also acquired for comparison.
353 The in-situ reduction performed prior to CO-FTIR was confirmed by XPS to result in reduced
354 metal surface (see Supporting Information, Figure S2). Selected background-corrected spectra are
355 reported to show the relevant trends, with the full sets of raw spectra provided in the supporting
356 information (Figure S4). With the given dilute metal ratio, the amount of isolated atom present in
357 one cluster would depend on the total number of atoms comprising one particle. In this study, the
358 dynamic behavior of the spectra of the monometallic catalysts (Cu) was observed from the start
359 of CO introduction to the final N₂-purged spectra.

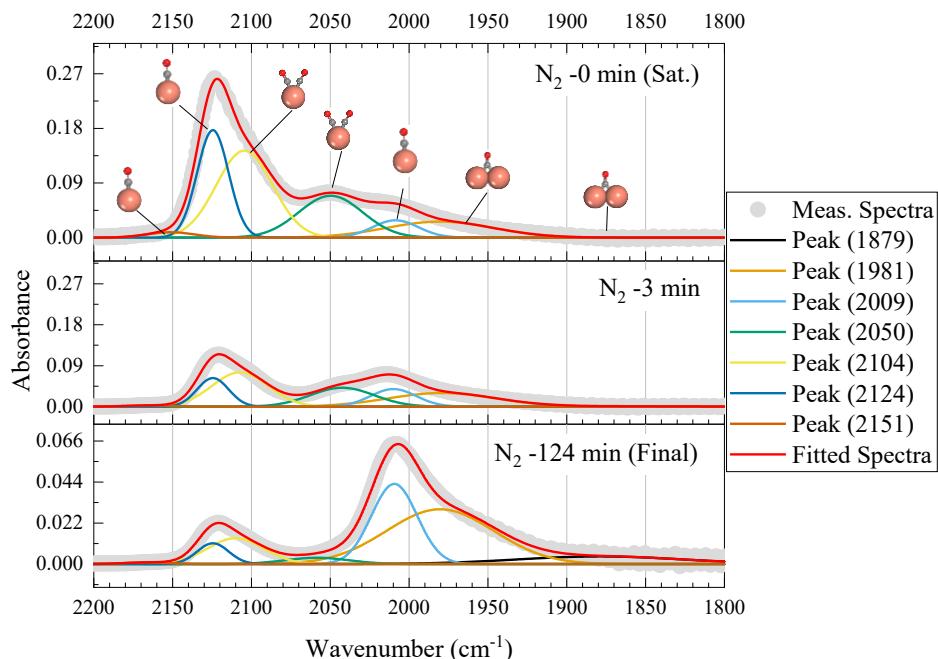

360 It should be noted that several studies have shown that exposure to CO can result in surface
361 segregation of Pd in bimetallic PdAu⁷¹ and PdAg⁷⁴ systems. While this possibility cannot be ruled
362 out in the present case, such behavior would not alter the present conclusions, since analysis of
363 CO adsorption was performed on steady state spectra after saturation and N₂ purging. To clearly
364 determine this would require the use of near ambient-pressure XPS and x-ray absorption
365 spectroscopy measurements that are beyond the scope of the present study.

366

367 3.2.1 Monometallic Copper and Palladium Catalysts

368 Selected spectra obtained during transient CO adsorption and N₂ purging are shown in Figure 3
369 for monometallic copper. At the onset of CO adsorption, the band intensity in the region 2070-
370 2140 cm⁻¹ immediately reached its highest intensity. However, upon continuous exposure to CO,
371 the band envelope from 1900-2050 cm⁻¹ gradually gains in intensity while the 2070-2140 cm⁻¹

372 region decreased slightly. This transition also produced an isosbestic point at 2070 cm^{-1} . The entire
373 band envelope became stable after 90 minutes of exposure, with two peaks becoming prominent
374 at 2050 cm^{-1} and 2010 cm^{-1} near the end. When the CO gas was purged with N_2 , both the 2070-
375 2140 cm^{-1} region and the 2050 cm^{-1} peak intensities rapidly decreased while the 2010 cm^{-1} peak
376 increased beyond its CO-saturated intensity. Another isosbestic point at 2030 cm^{-1} was also visible
377 during this transition but not as clear due to the transient nature of the experiment. It is also evident
378 that the $1900\text{-}2000\text{ cm}^{-1}$ region slightly increased in intensity.


379
380 Figure 3. Selected blank-subtracted transient spectra for CO adsorption and desorption on monometallic
381 copper catalyst.

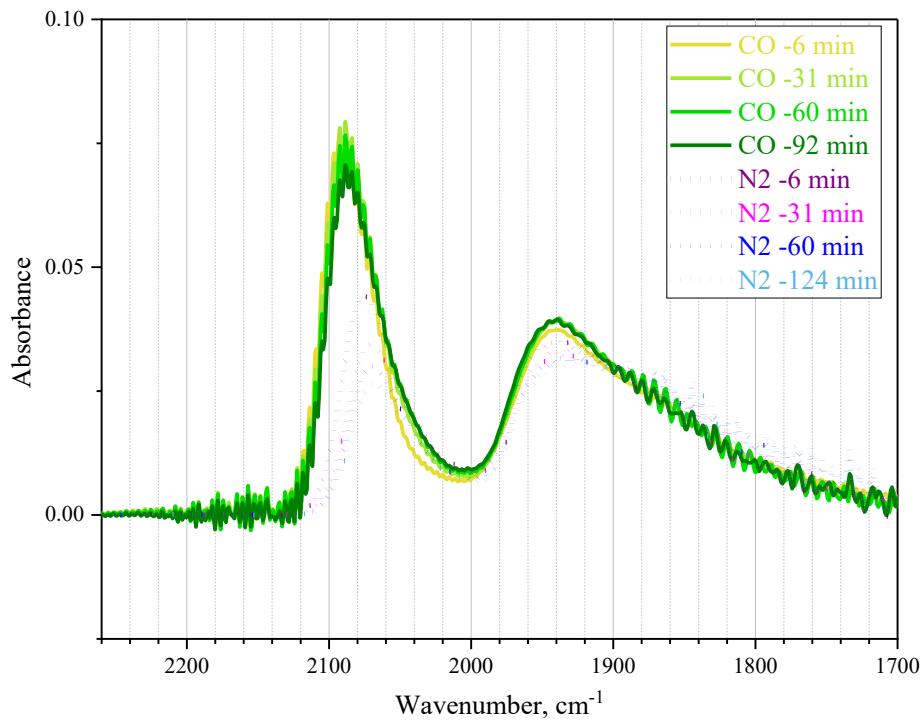
382 Figure 4 shows the fitted functions from the saturated CO spectra to the final N_2 -purged spectra.
383 From these fits, the integrated areas of each associated peak were obtained and are plotted versus
384 time in Figure S5a. The total integrated intensity during the CO exposure stage shows a gradual

385 increasing trend suggesting the transformation of adsorbed species upon prolonged CO exposure.
386 Figure S5 reveals that the 2104 cm⁻¹ peak decreased while the peaks in the region 1970 cm⁻¹ to
387 2050 cm⁻¹ increased, indicating a probable switch in adsorption mode. In the FTIR study by
388 Hadjiivanov et al. on Cu/SiO₂, adsorbed CO species were observed at 2045 and 2018 cm⁻¹, with
389 the former dominating at high CO partial pressure and the latter at low CO partial pressure. The
390 2045 cm⁻¹ peak was assigned to the asymmetric stretch of the *gem*-dicarbonyl. The *gem*-dicarbonyl
391 species transitioned to monocarbonyl at 2018 cm⁻¹.⁷⁵ The second expected peak associated with a
392 dicarbonyl CO species was not evident in their spectra due to the possible masking of a Cu⁰-CO
393 band at 2129 cm⁻¹. In the present case, during the N₂ purge, the 2104 and 2050 cm⁻¹ peaks
394 decreased markedly, and their ratio remained approximately constant. From this trend, we assign
395 the 2104 cm⁻¹ absorption as the second peak of the *gem*-dicarbonyl species together with the 2050
396 cm⁻¹ peak analogous to the dicarbonyl as proposed by Hajiiivanov et al. Also, the increase in
397 integrated area for the 2009 cm⁻¹ peak during the nitrogen purging stage could be associated with
398 the linear CO formed from this dicarbonyl CO species. This assignment would give a ~50-55 cm⁻
399 ¹ difference in symmetric and asymmetric CO vibrations which is comparable to that reported in
400 the literature.^{76,77}

401 The in-situ reduction at 400 °C assures that most of the copper are in a reduced state (confirmed
402 by XPS, cf. Fig S6) given that the reduction temperature peak obtained for pure copper catalyst is
403 at 210°C. Thus, the 2124 cm⁻¹ peak is assigned to linear CO adsorbed on a reduced copper atom
404 (Cu⁰ – CO) situated in a low index terrace site. It is noted that in the literature this peak has been
405 assigned inconsistently to Cu⁰-, Cu^{δ+}- or Cu⁺-CO vibrations.^{76,78-81} In the study by Scarano et al.
406 (1998) on silica-supported Cu₂O, they found a 2158 cm⁻¹ peak at high CO coverage and proposed
407 it to be associated with the symmetric mode of a dicarbonyl species on monocoordinated Cu(I) on

408 the (111) face of Cu_2O .⁷⁶ It should be noted that the particle size under consideration is 10- to 50-
 409 times higher than the particle size in this study and the adsorption temperature is at ~ 100 K. Thus,
 410 the low intensity 2156 cm^{-1} peak can be attributed to unreduced copper in defect sites or corner
 411 sites^{76,82}. Bridge CO was assigned to the two low broad bands at 1981 cm^{-1} and 1879 cm^{-1} ,
 412 specifically associated with terrace and edge/step sites of Cu, respectively. Band assignments for
 413 monometallic copper are summarized in Table 2.

414
 415 Figure 4. Fitted gaussian functions for 2.38%Cu/SiO₂ selected spectra during nitrogen purging and
 416 the corresponding Cu-CO site peak assignment.


417 Table 2. FTIR CO frequency surface sites assignment for monometallic copper.

Metal-CO Species	Surface Sites								
	Corners/Defects				Terraces		Steps/Edges		
	Low Cov.	High Cov.	Ref.	Low Cov.	High Cov.	Ref.	Low Cov.	High Cov.	Ref.
Cu-(CO) ₂							(2058, 2110)	(2050, 2104)	2045 ⁷⁵

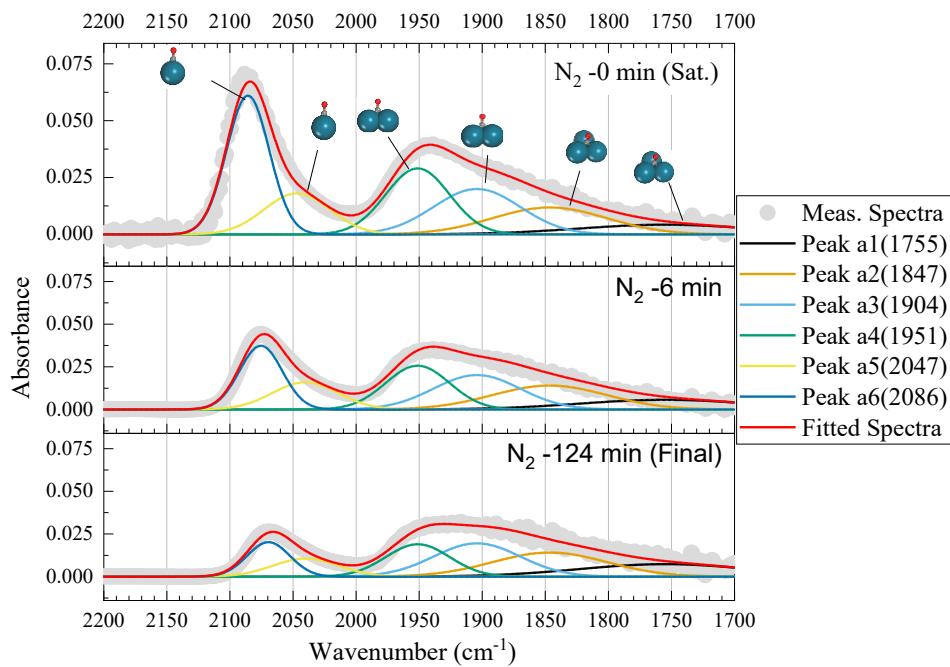
Cu-CO	2167	2151	2157^{83} 2154^{76}	2124	2124	2129^{75}	2009	2009	2003^{75}
$\text{Cu}_2\text{-CO}$				1980	1981		1879	1879	

418

419

420

421 Figure 5. Selected blank-subtracted transient spectra for CO adsorption and desorption on
 422 monometallic palladium catalyst.


423 Spectra obtained for 0.09%Pd/SiO₂ during CO adsorption and N₂ purging are shown in Figure
 424 5. Band separation between linearly ($>2000\text{cm}^{-1}$) and non-linearly ($<2000\text{ cm}^{-1}$) adsorbed CO is
 425 evident and agrees well with the literature⁸⁴⁻⁸⁷. The asymmetric band envelope in the linear region
 426 involves a main peak at $\sim 2086\text{ cm}^{-1}$ with a shoulder at $\sim 2047\text{ cm}^{-1}$ becoming somewhat more
 427 prominent upon longer CO exposure. Upon purging with N₂, the absorbance in this region
 428 decreased but eventually reached a steady state. The non-linear region is characterized by a broad
 429 and unresolved band from $1700\text{-}2000\text{ cm}^{-1}$, suggesting convolution of several peaks arising from

430 various highly coordinated CO surface species. At saturation, this band has a high intensity peak
431 at 1940 cm^{-1} , which decreases in intensity upon N_2 purging. Also, the shoulder at $\sim 1800\text{ cm}^{-1}$ in
432 the final purge spectra shows a relatively higher intensity with respect to that obtained at saturation.

433 The fitted functions from the saturated CO spectra to the final N_2 -purged spectrum for Pd/SiO_2
434 are shown in Figure 6. Six Gaussian functions with unique constant FWHM were obtained to fit
435 across the series of spectra. In the fitting process, two Gaussian functions were utilized for the
436 linear region and the respective wavenumbers were allowed to shift. From initial CO introduction
437 to saturation, the high wavenumber linear CO peak (2086 cm^{-1}) reached the saturation intensity
438 instantly (Figure S4b) and during the desorption stage, the peak downshifted to 2069 cm^{-1} . After
439 almost two hours of continuous nitrogen gas purging, a non-changing and lower absorption
440 intensity was obtained in both the linear and nonlinear CO vibration regions. This observation
441 suggests that palladium clusters were formed with the synthesis method at low weight loading and
442 conforms with the results obtained in previous studies.^{45,88}

443 Bardshaw and Hoffman (1978) made a thorough infrared studies on CO adsorption on palladium
444 single crystal and proposed an adsorption band of a CO singleton. They associated the 2050 to
445 2120 cm^{-1} to linearly bonded CO, 1880 to 2000 to bridge CO and 1800 to 1880 to three-fold co-
446 ordination sites. Although these assignments neglected other effects such as CO coupling, the
447 same can be used to assign the adsorbed CO species for the fitted Gaussian functions (Table 3) in
448 this study. In assigning linear CO to either from a terrace or edge site, the degree of electron π -
449 backdonation to the anti-bonding orbital was used with edges sites having more available electrons
450 hence would give a relatively lower CO stretching band wavenumber.⁸⁹

451

452

453 Figure 6. Fitted Gaussian functions for 0.09%Pd/SiO₂ spectra taken after 124 minutes of nitrogen
 454 purging with the corresponding Pd-CO site peak assignment.

455 Table 3. FTIR CO frequency and surface site assignments for monometallic palladium.

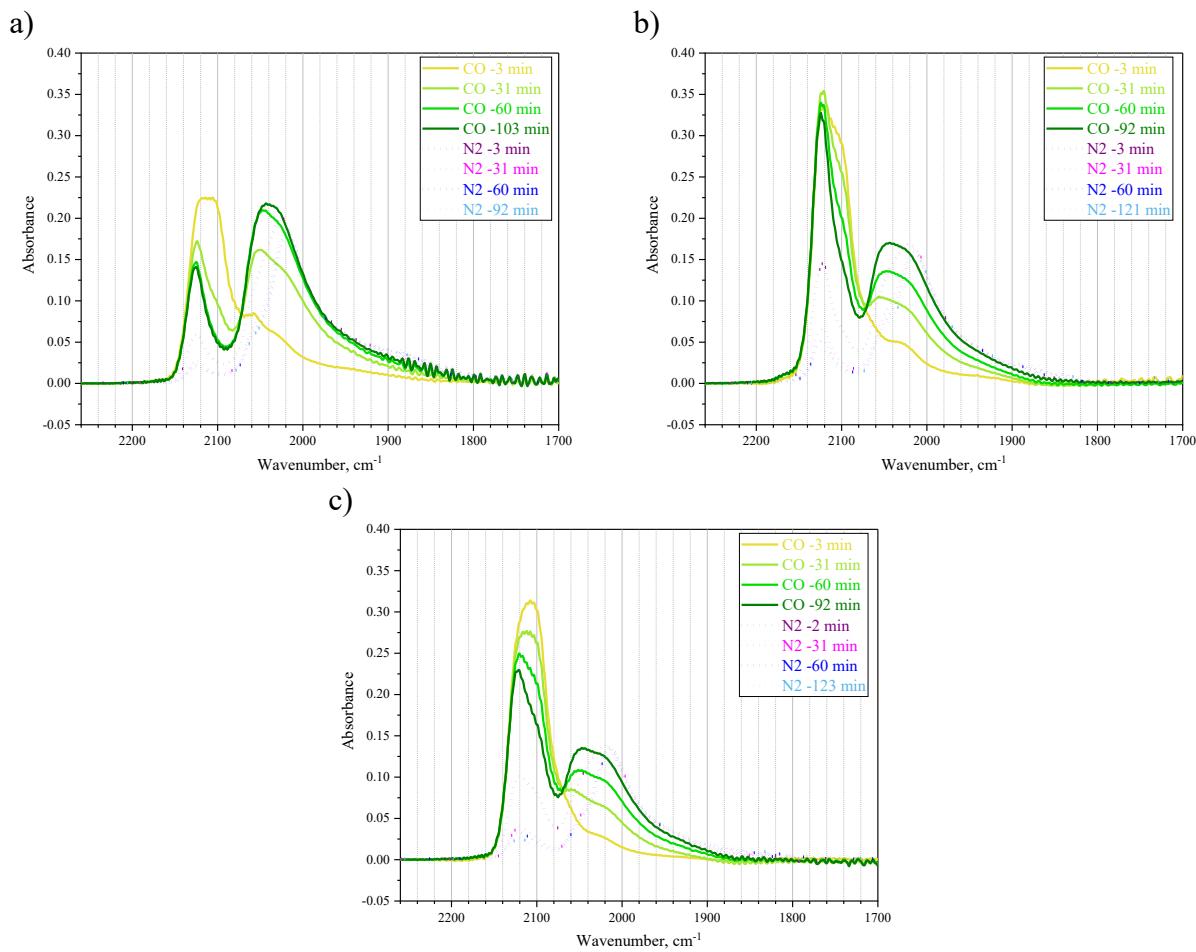
Metal-CO Species	Surface Sites					
	Terraces			Steps/Edges		
	Low Cov.	High Cov.	Ref.	Low Cov.	High Cov.	Ref.
Pd-CO	2069	2086	2095 ⁸⁸ , 2092 ⁹⁰ , 2077 ⁹¹ , 2073 ⁹²	2038	2047	2050 ⁹¹ , 2049 ¹³ , 2033 ⁹
Pd ₂ -CO	1949	1951	1949 ⁹⁰ , 1951 ⁹² , 1937 ⁹ , 1956 ⁸⁸	1904	1904	1914 ⁹²

Pd ₃ -CO	1847	1847	1836 ⁹⁰ , 1840 ⁹¹ , 1830 ⁸⁸
	1755	1755	

456

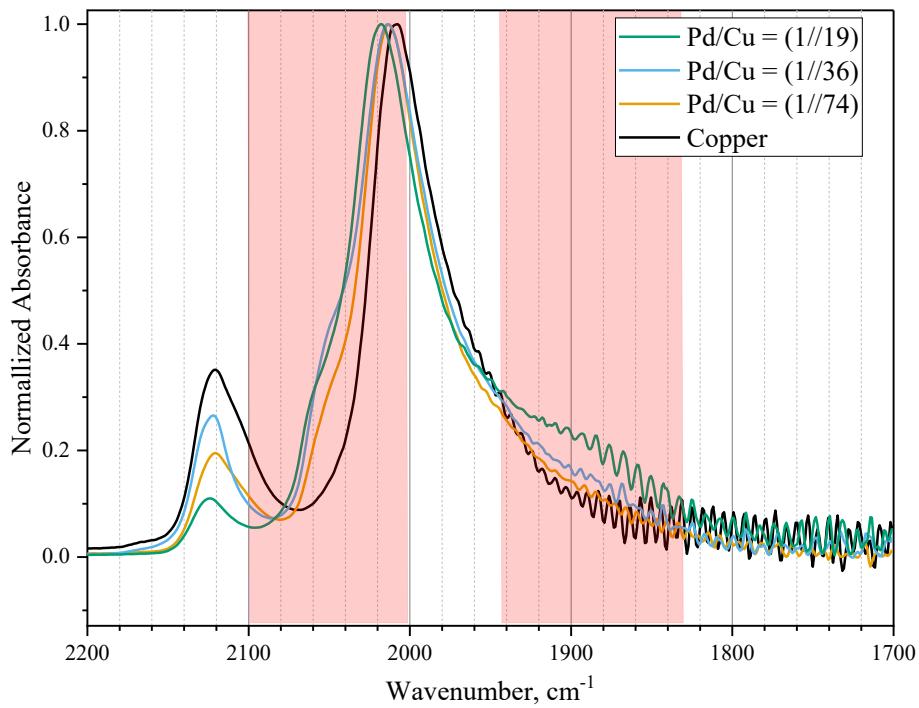
457 3.2.2 Pd-Cu Dilute Limit Alloy

458 Transient spectra for the 1/19 (Figure S6a), 1/30 (Figure S6b) and 1/74 (Figure S6c) dilute limit
459 alloy catalysts were acquired during CO adsorption and N₂ purging with the selected blank-
460 subtracted spectra shown in Figure 7a-c. Overall, the progression of the spectra is similar to that
461 obtained for monometallic copper. Two prominent features at ~2050 and ~2010 cm⁻¹ are observed,
462 together with a gradual decrease in ~2100 cm⁻¹ intensity as CO reaches saturation. There is a rapid
463 decrease in intensity in the ~2100 cm⁻¹ region and 2050 cm⁻¹ region together with an increase in
464 2010 cm⁻¹ region during the N₂ purging step. Overall, the results suggest that the nanoparticle
465 surfaces are largely made up of Cu sites, as expected for a dilute limit alloy. In this category of
466 isolated atom on a ultrasmall cluster of copper particle, the expected number of surface isolated
467 atoms for a diluted bimetallic would be small. Unlike the single atom alloy produced by the
468 galvanic displacement approach, the abundant base metal starts at a particle size with a significant
469 number of total atoms. The relatively large nanoparticles with several isolated atoms on the surface
470 may segregate once exposed to CO as presented by van Spronsen, M. A., et al. (2019) on a
471 Pd/Ag(111) system.⁷⁴ CO induced segregation of surface atoms are also observed in moderate metal
472 ratio alloyed bimetallic catalysts and alloyed core-shell structure.^{70,71} This state of segregation is
473 believed to be not occurring in the current dilute limit alloy Pd-Cu catalysts prepared by co-SEA
474 with small size abundant metal.


475 The clearest comparison between monometallic Cu and the dilute limit alloys can be made by
476 considering the most strongly adsorbed species on each sample. Figure 8 shows the normalized (to

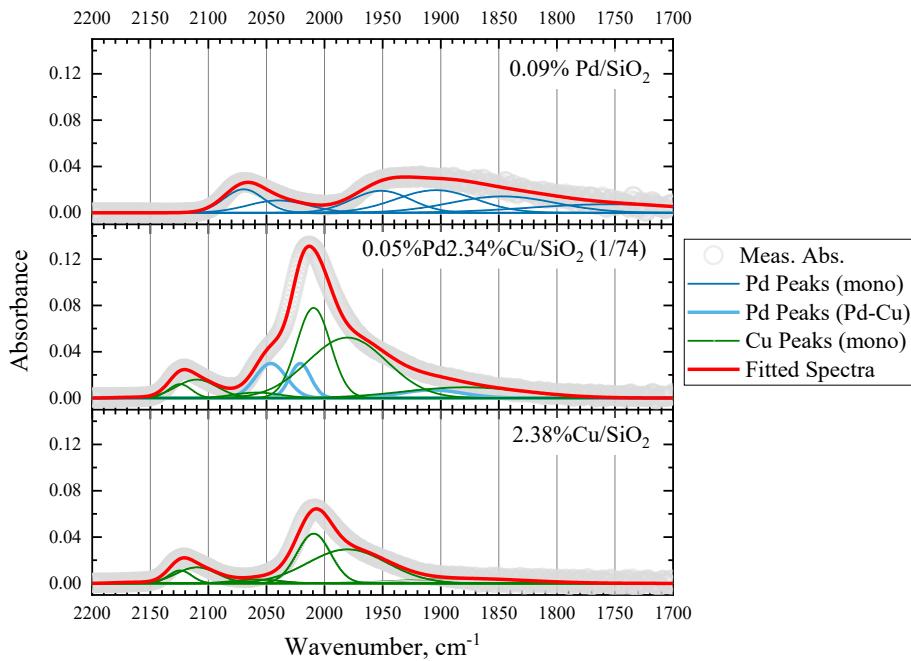
477 the ~2010 feature) final N₂-purged raw spectra for each DLA sample and for monometallic copper.
478 Once again, the overall similarity in the absorbance shape of these spectra is noted. However, two
479 regions (2000-2100 cm⁻¹, 1830-1940 cm⁻¹, highlighted in red) clearly show an added CO
480 absorbance that is absent from monometallic copper. These contributions to the spectra can be
481 attributed to the presence of Pd as either DLA sites or monometallic Pd.

482 Figure 9a shows the fitted spectra for monometallic 0.09 wt% Pd/SiO₂ (top) and 2.38 wt%
483 Cu/SiO₂ (bottom), and the most dilute Pd-Cu catalyst (middle). Deconvolution of DLA Pd-Cu
484 catalyst made use of the fitted Gaussian function parameters obtained from monometallic Cu
485 (green peaks). During fitting, the FWHM and peak positions of the Cu peaks were kept constant
486 while some peak ratios (minimal) and the overall intensity height were allowed to change. As can
487 be seen, there are no obvious features in the DLA that can be associated with monometallic Pd
488 (blue peaks). In order to fit the remaining spectral features, three new Gaussian peaks were
489 required. As seen more clearly in Figure 9b, a pair of linear CO peaks at 2046 and 2021 cm⁻¹ were
490 found, with a single lower-frequency feature at 1908 cm⁻¹ in the bridging region. Table S5 gives a
491 summary of Gaussian function parameters obtained during the fitting. It should be noted that these
492 three new peaks are present to varying extents in the other dilute limit alloy samples as shown in
493 Figure S7. In a study using Pd-Cu SAA nanoparticles with a particle size range from 3 to 7 nm, an
494 isolated peak at 2033 cm⁻¹ associated with the linear CO on isolated Pd atom on copper was
495 observed.⁹ In this study by Shan et al. (2020), the monometallic copper has no adsorption on the
496 2000 cm⁻¹ region as compared with the current study. One possible explanation for this is the
497 significant difference in particle size. The SEA-derived catalysts explored here exhibit a Cu
498 particle size less than 1.5 nm, which high proportion of edge/step sites. In contrast, the catalysts
499 in Shan et al. (2020) ranged from 3-7 nm, which comprises mainly terrace sites. The electron

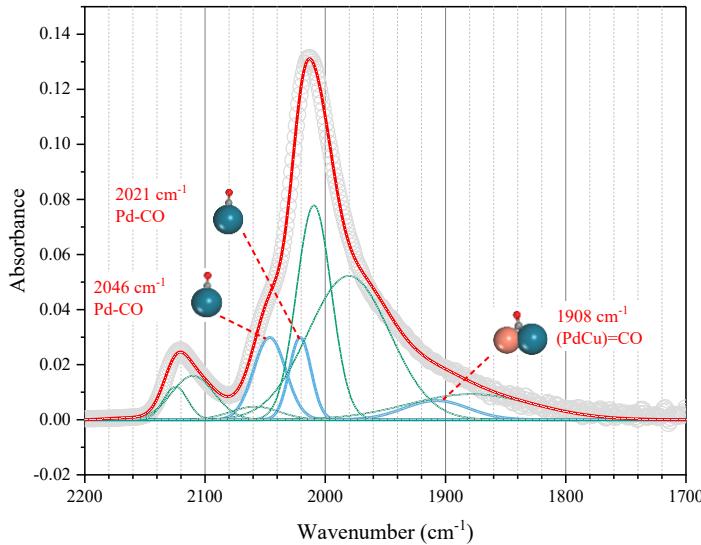

500 density on the copper surface is also dependent on the particle size as well as there possibly being
501 a stronger metal-support interaction.

502

503 Figure 7. Selected blank-subtracted spectra for (a) 1/19, (b) 1/36 and (c) 1/74 Pd dilution on Cu.


504

505


506 Figure 8. Normalized CO-FTIR spectra taken after 124 minutes of nitrogen purging for
507 monometallic copper and dilute limit alloy series Pd-Cu.

508 (a)

509

510 (b)

511

512 Figure 9. (a) Fitted spectra (final N₂ purged) for monometallic Pd and Cu, and bimetallic Pd-Cu
513 system and (b) three additional peak assignment for isolated palladium atom sites on Pd-Cu dilute
514 limit alloy.

515

516 3.3 DFT Calculation Results

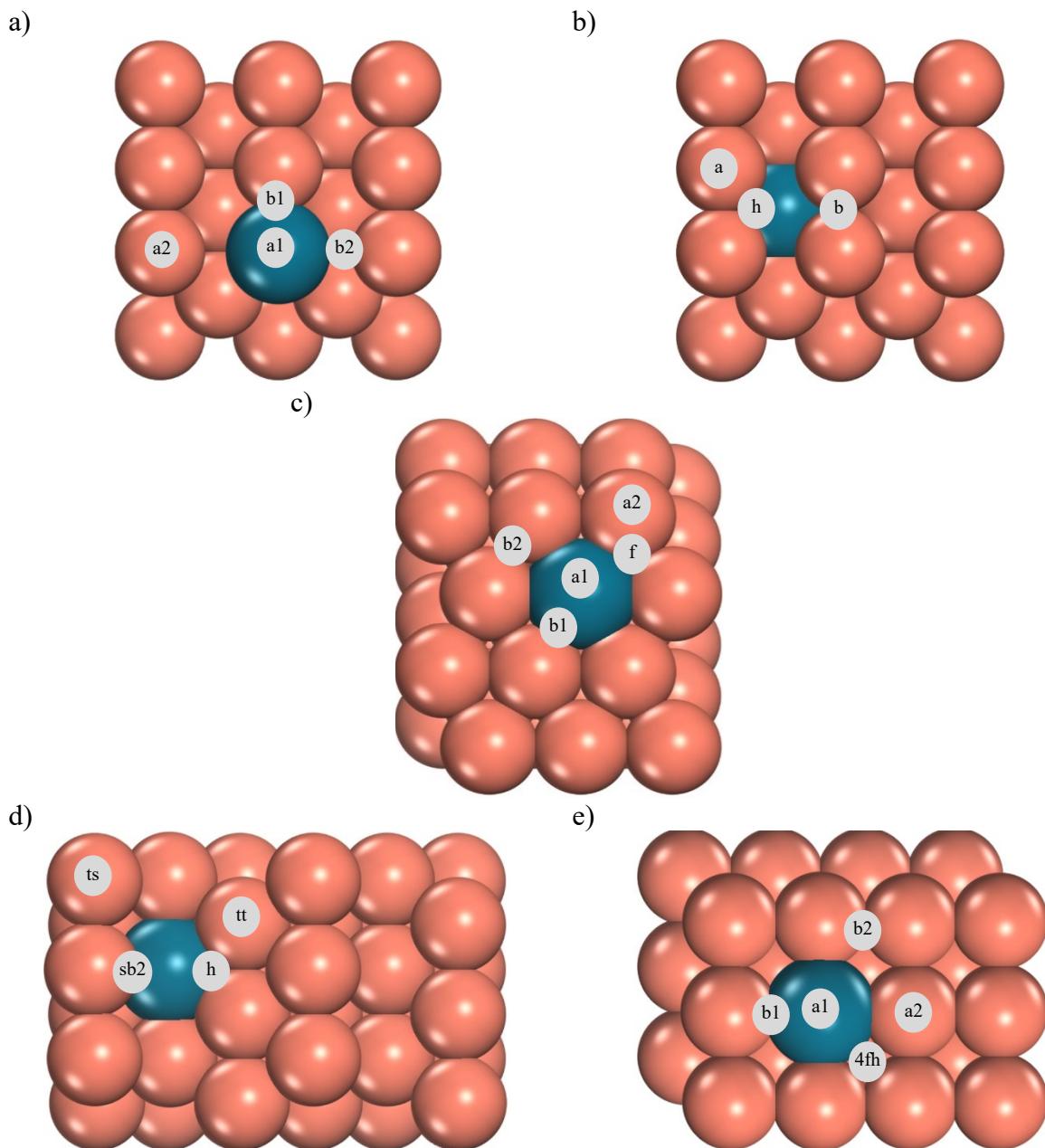
517 DFT simulations were employed to assist in the band assignments of the three new peaks
518 observed in the DLA samples as well as for the monometallic palladium and copper catalysts. Low
519 coverage calculations were performed for four surface models (111, 100, 211 and 110) of
520 monometallic palladium and copper surfaces and single atom alloy surfaces of bimetallic
521 palladium-copper systems. Figure 10 and S4 illustrate the surface models and CO adsorption sites.

522 Table 4 shows the calculated wavenumber for adsorbed CO species on the various sites for the
523 monometallic copper and palladium systems with the corresponding observed experimental CO-
524 FTIR peaks. In all configurations, linearly adsorbed CO shows a wavenumber greater than 2000
525 cm^{-1} . The calculated wavenumbers for linearly adsorbed CO does not go beyond 2102 cm^{-1} (which
526 we compute for a Cu adatom on Cu(111)). This conforms with the experimental results for
527 monometallic palladium. For copper, the measured peak at 2124 cm^{-1} was assigned to a CO
528 adsorbed linearly atop a Cu-adatom on the Cu(111) surface facet (Table 4). The DFT calculated
529 wavenumber (2102 cm^{-1}) close to this value suggests a linear CO adsorbed on an undercoordinated
530 copper adatom situated over a low index terrace site (although all Cu-adatom models display
531 somewhat similar frequencies – Table 4).

532 DFT calculations also confirmed the presence of gem-carbonyl species where a $\text{Cu}(\text{CO})_2$
533 complex was predicted to form over Cu(111) surface facets. The *gem*-dicarbonyl was oriented
534 such that the (C-Cu-C) angle is 118.83° (Figure S8a & S8b). For the asymmetric stretching, we
535 computed a frequency of 2064 cm^{-1} versus 2095 cm^{-1} for the symmetric stretching (Table 4)⁹³. The
536 difference of the calculated dicarbonyl wavenumbers (31 cm^{-1}) is somewhat lower than that of the

537 experimental observation (52cm^{-1}); however, it is difficult to determine if this difference originates
538 from computational uncertainties or the presence of another Cu site not investigated in this study.

539 For terrace surface facets, the calculated wavenumber for linear CO adsorbed on Cu(100) is
540 greater than that of Cu (111) site, which implies a lesser degree of π -electron back donation on
541 Cu(100). For copper, the degree of π backdonation is in direct correlation with the coordination
542 number of the adsorption site with the fcc(111) surface atoms having CN=9 as compared with
543 fcc(100) with CN=8. However, for monometallic palladium, the degree of π backdonation is lesser
544 with increasing coordination number. This suggests that sharing of available electrons is
545 dominating in palladium surface atoms. The higher coordination number of Pd (111) terrace sites
546 as compared with Pd (100) shows a higher wavenumber, which implies less available electrons for
547 π backdonation. With respect to the number of metal atoms coordinated with the adsorbed CO, the
548 calculated frequency obeys the trend as atop > bridge > 3-fold-hollow > 4-fold-hollow.


549 Table 5 shows the calculated frequencies for CO adsorbed on isolated palladium on four types
550 of copper surface facets with an embedded and ad-atom configuration (Figure 10 & 12). From the
551 experimental CO vibration results for the isolated Pd, the association with the calculated
552 wavenumbers was made accordingly. For a linearly adsorbed CO on an isolated palladium atom,
553 a wavenumber of 2052 cm^{-1} was calculated for atop CO on Pd embedded on a Cu(100) facet
554 (Figure 10e). Within the range of computation certainty, vibration frequencies for CO adsorbed on
555 Pd adatoms on Cu(100) (2052 cm^{-1}), Cu(111) (2058 cm^{-1}) and Cu(211) (2048 cm^{-1}) were also
556 calculated (Table 5). A significantly lower wavenumber at 2026 cm^{-1} was obtained for Pd single-
557 atoms embedded in a Cu(111) facet (Figure 10c). The trend in CO frequency can be explained by
558 the Dewar–Chatt–Duncanson (DCD) model.⁹⁴ With copper acting as a ligand that donates
559 electrons to the isolated palladium atom, as the coordination number of Pd with Cu increases, the

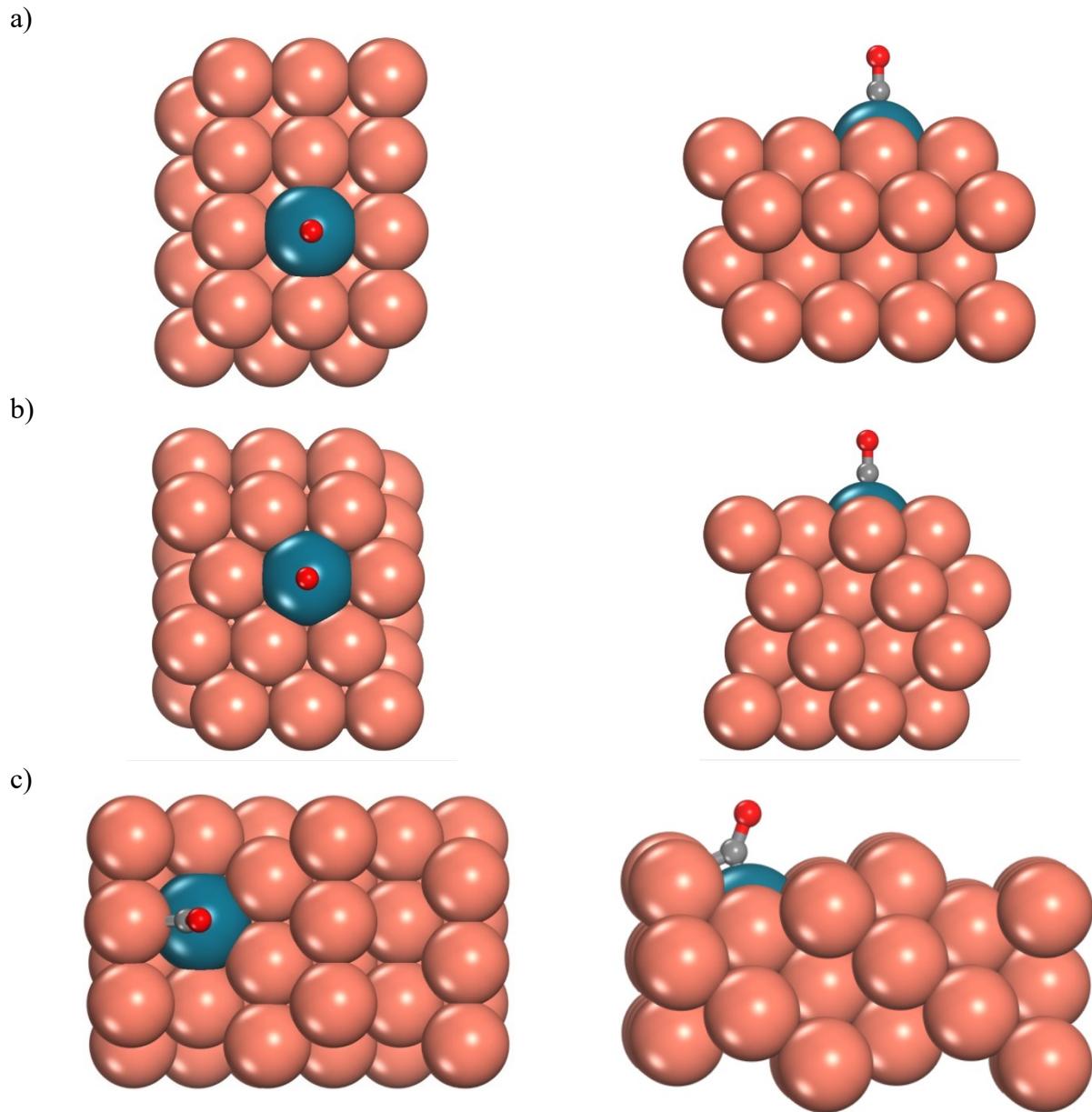
560 number of electrons available for backdonation also increases giving a much lower CO
561 wavenumber. DFT calculated a 1911 cm⁻¹ frequency on CO forming a bridge between Pd and Cu
562 on a Pd embedded on a Cu(211) terrace site. This frequency is within the region of the additional
563 bridge peak that was required to fit the spectra for the Pd-Cu DLA (1908 cm⁻¹). As the particle
564 gets smaller, the percentage of undercoordinated atoms such as, e.g. edges and steps, increases
565 relative to terrace surface atoms. The Benfield (1992) model on cubooctahedral cluster particles
566 suggests that as the particle size falls below 2 nm the fraction of edge atoms can go beyond 50%.³⁷
567 Given this surface atom distribution, there is a high probability of this isolated Pd atom situated
568 on step-edge sites of the abundant metal. For clusters, geometrical factors could change, such as a
569 shorter span of the terrace facet making no significant difference in (111) and (100) facets CO
570 adsorption.

571

572 Table 4. DFT calculation on CO vibration frequency for the monometallic copper and palladium
 573 systems. If the adsorption site is not located at a potential energy minimum, it is considered
 574 unstable and hence no frequency was calculated. Figure S8 & S9 lists all the adsorption sites for
 575 the monometallic systems.

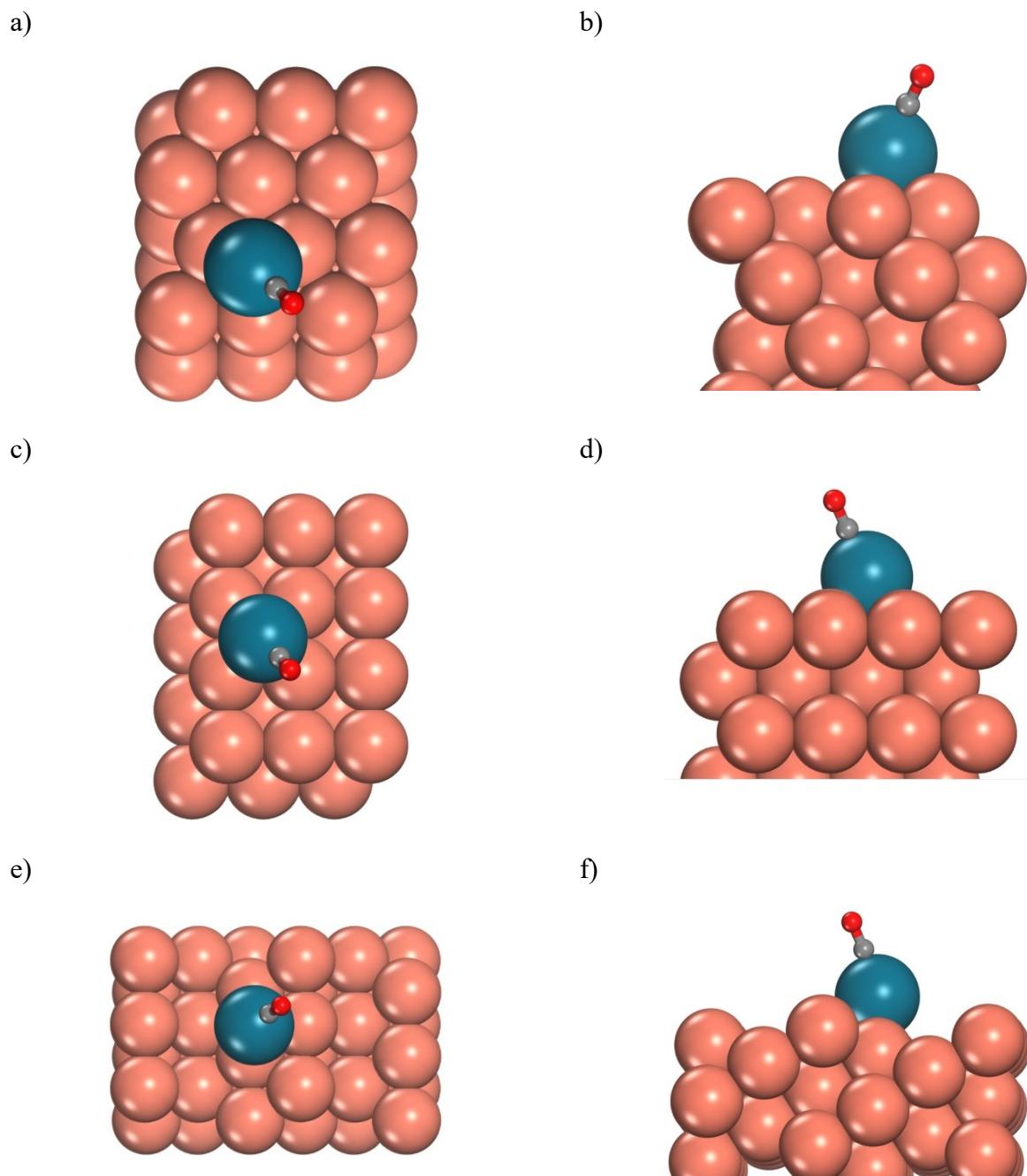
System	Adsorption Site	C-O stretching frequency (cm ⁻¹)			
		Copper		Palladium	
		Calculated	Observed (range)	Calculated	Observed (range)
(100)	atop (a)	2052	2050 to 2058	2057	2038 to 2047
	bridge (b)	1913		1890	
	4-fold-hollow (4f)	1727		1756	1755
(110)	atop (a)	2061	2050 to 2058	2050	2038 to 2047
	terrace bridge (tb)	1931		1822	
	step bridge (sb)	1928		1881	
(111)	atop (a)	2017	2009	2072	2069 to 2086
	Bridge (b)	1853	1879	1882	
	fcc, hcp	1855	1879	1801	
(211)	atop step (ts)	2064	2050 to 2058	2054	2038 to 2047
	atop terrace (tt)	2038		unstable	
	step bridge (eb)	unstable		1893	1904
	step-terrace bridge (sb1)	unstable		unstable	
	step-terrace bridge (sb2)	1915		1873	
	3-fold-hollow (h)	1828		1725	1755
	3-fold hollow (f1)	1802		1794	1755
Cu-adatom /Cu(111)	Cu(CO) ₁	2102	2124	NA	
	Cu(CO) ₂	2064,2095	(2050 to 2058, 2104 to 2110)	NA	
Cu-adatom /Cu(211)	Cu(CO) ₁	2097		NA	
	Cu(CO) ₂	2037,2074		NA	
Cu-adatom /Cu(110)	Cu(CO) ₁	2084		NA	
Cu-adatom /Cu(100)	Cu(CO) ₁	2084		NA	

577 Figure 10. Stable adsorption sites for Pd-Cu bimetallic catalyst. a) Cu(110) facet alloyed with a Pd
 578 atom replacing a step Cu atom, b) Cu(110) facet alloyed with a Pd atom replacing a terrace Cu
 579 atom, c) Cu(111) facet alloyed with a Pd atom (Pd/Cu111), d) Cu(211) facet alloyed with a Pd
 580 atom (Pd/Cu211) where the Pd atom has a coordination number (CN) of 10, and e) Cu(100) facet
 581 alloyed with a Pd atom (Pd/Cu100).


582 Table 5. DFT calculation on CO vibration frequency for the dilute limit alloy bimetallic palladium-
 583 copper system.

System	Adsorption Site	C-O stretching frequency (cm ⁻¹)	
		DFT Calculated	Observed (Pd)
Pd/Cu(100)	atop-Pd (a1)	2052	2046
	atop-Cu (a2)	1928	
	Pd-Cu bridge (b1)	1930	
	Cu-Cu bridge (b2)	1914	
	hollow (4-fold)	1927	
Pd/Cu(111)	atop-Pd (a1)	2026	2021
	atop-Cu (a2)	2057	
	Pd-Cu bridge (b1)	1927	
	Cu-Cu bridge (b2)	1865	
	2Cu-1Pd-FCC (F)	1873	
Pd/Cu(211)	3-fold-hollow (h)	1852	
	Pd-Cu step-terrace bridge (sb2)	1911	1908
	atop-Cu step (ts)	2066	
	Atop-Cu terrace (tt)	2044	
Pd/Cu(110) (Pd in step)	atop-Pd (a1)	2046	
	atop-Cu (a2)	2061	
	2-step bridge Pd-Cu (b2)	1882	
	1-step bridge Pd-Cu (b1)	1934	
Pd/Cu(110) (Pd in terrace)	atop-Cu (a)	2063	
	bridge-Cu-Cu (b)	1932	
	3-fold-hollow (h)	1822	
Pd-adatom/Cu(100)	atop-Pd	2052	2046
Pd-adatom/Cu(111)	atop-Pd	2059	2046
Pd-adatom/Cu(211)	atop-Pd	2048	2046

584


585

586

587 Figure 11. Top and side views of surface models corresponding to experimentally observed CO
588 vibration; (a) 2052 cm^{-1} atop CO on Pd/Cu(100), (b) 2026 cm^{-1} atop CO on Pd/Cu(111), and (c)
589 1911 cm^{-1} bridge CO.

590

591 Figure 12. Top and side views of surface models of Pd-adatom with CO vibrations;(a,b) 2059 cm^{-1}
592 1 on Cu(111),(c,d) 2052 cm^{-1} on Cu(100), and (e,f) 2048 cm^{-1} on Cu(211) .

593

594

595

596 **4. Conclusions**

597 A facile synthesis method to prepare DLAs of Pd in Cu supported on SiO_2 has been
598 demonstrated. Simultaneous co-SEA combined with controlled removal of ligands and reduction
599 of the metal resulted in the formation of small metallic clusters on the support surface. These
600 reduced particles presented isolated Pd sites on their surface, as confirmed by in-situ FTIR
601 spectroscopy measurements of adsorbed CO and complementary DFT computations. In addition,
602 at the low dilution levels examined, no evidence could be found for formation of monometallic
603 clusters or particles of Pd.

604 The present results suggest that co-SEA can provide a more general and scalable approach to
605 producing highly dispersed DLA catalysts as compared with other more exotic approaches. While
606 only Pd and Cu are considered here, SEA is applicable to the entire range of transition metals
607 relevant to catalysis. In the present case, Pd was found to situate itself on the Cu surface, or at least
608 be drawn out to the surface during CO adsorption. However, depending on the metals in question,
609 a dilute species might be submerged within the other metal. Ongoing studies in our laboratory are
610 exploring these Pd-Cu and other co-SEA-derived DLA catalysts for a variety of catalytic
611 applications, including selective hydrogenation reactions.

612 **5. Supporting Information**

613 Supporting raw CO-FTIR spectra, STEM images, fitted Gaussian functions parameters,
614 additional DFT models and XPS spectra are available in the supplementary material.

615 **6 Acknowledgments**

616 D.S. and A.H. acknowledge financial support from the National Science Foundation under Grant
617 No. CBET-1805307 and the South Carolina State Center for Strategic Approaches to the
618 Generation of Electricity (SAGE). Computing resources have been provided by the National
619 Energy Research Scientific Computing Center (NERSC) under Contract No. DE-AC02-

620 05CH11231 and Pacific Northwest National Laboratory (Ringgold ID 130367, Grant Proposal
621 51711), XSEDE facilities located at San Diego Supercomputer Center (SDSC) and Texas
622 advanced Computing Center (TACC) under grant number TG-CTS090100, and the High-
623 Performance Computing clusters located at University of South Carolina.

624 L.D. , C.W., and J.R. acknowledge financial support from Catalysis for Renewable Fuels Center
625 (CReF), University of South Carolina. We also acknowledge the XPS measurements made by Dr.
626 Stavros Karakalos and the STEM images captured by Dr. Abolfazl Sahkouri.

627 L.D. also acknowledges the financial support from Engineering Research Development for
628 Technology (ERDT), Department of Science and Technology (DOST), Republic of the Philippines
629 under the Engineering R&D for Technology Faculty Development Foreign PhD Scholarship
630 Grant.

631

632

633

634

635

636

637

638

639 **7. References**

640 (1) Thomas, J. M.; Harris, K. D. M. Some of Tomorrow's Catalysts for Processing Renewable
641 and Non-Renewable Feedstocks, Diminishing Anthropogenic Carbon Dioxide and
642 Increasing the Production of Energy. *Energy Environ. Sci.* **2016**, *9* (3), 687–708.
643 <https://doi.org/10.1039/c5ee03461b>.

644 (2) Thomas, J. M.; Raja, R. The Advantages and Future Potential of Single-Site Heterogeneous
645 Catalysts. *Top. Catal.* **2006**, *40* (1–4), 3–17. <https://doi.org/10.1007/s11244-006-0105-7>.

646 (3) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species
647 on Ceria-Based Water-Gas Shift Catalysts. *Science (80-.)* **2003**, *301* (5635), 935–938.
648 <https://doi.org/10.1126/science.1085721>.

649 (4) Darby, M. T.; Stamatakis, M.; Michaelides, A.; Sykes, E. C. H. Lonely Atoms with Special
650 Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom
651 Alloys. *Journal of Physical Chemistry Letters*. American Chemical Society September
652 2018, pp 5636–5646. <https://doi.org/10.1021/acs.jpclett.8b01888>.

653 (5) Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-
654 Atom Alloy Catalysis. *Chem. Rev.* **2020**, *120* (21), 12044–12088.
655 <https://doi.org/10.1021/acs.chemrev.0c00078>.

656 (6) Thomas, J. M.; Raja, R.; Lewis, D. W. Single-Site Heterogeneous Catalysts. *Angew. Chemie
657 - Int. Ed.* **2005**, *44* (40), 6456–6482. <https://doi.org/10.1002/anie.200462473>.

658 (7) Cao, X.; Fu, Q.; Luo, Y. Catalytic Activity of Pd-Doped Cu Nanoparticles for
659 Hydrogenation as a Single-Atom-Alloy Catalyst. *Phys. Chem. Chem. Phys.* **2014**, *16* (18),

660 8367–8375. <https://doi.org/10.1039/c4cp00399c>.

661 (8) Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.;
662 Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Single Atom Alloy Surface Analogs in
663 Pd0.18Cu15 Nanoparticles for Selective Hydrogenation Reactions. *Phys. Chem. Chem.*
664 *Phys.* **2013**, *15* (29), 12187–12196. <https://doi.org/10.1039/c3cp51538a>.

665 (9) Shan, J.; Giannakakis, G.; Liu, J.; Cao, S.; Ouyang, M.; Li, M.; Lee, S.; Flytzani-
666 Stephanopoulos, M. PdCu Single Atom Alloys for the Selective Oxidation of Methanol to
667 Methyl Formate at Low Temperatures. *Top. Catal.* **2020**, *63* (7–8), 618–627.
668 <https://doi.org/10.1007/s11244-020-01288-x>.

669 (10) Trimpalis, A.; Giannakakis, G.; Cao, S.; Flytzani-Stephanopoulos, M. NiAu Single Atom
670 Alloys for the Selective Oxidation of Methacrolein with Methanol to Methyl Methacrylate.
671 *Catal. Today* **2019**. <https://doi.org/10.1016/J.CATTOD.2019.04.021>.

672 (11) Shan, J.; Liu, J.; Li, M.; Lustig, S.; Lee, S.; Flytzani-Stephanopoulos, M. NiCu Single Atom
673 Alloys Catalyze the CH Bond Activation in the Selective Non- Oxidative Ethanol
674 Dehydrogenation Reaction. *Appl. Catal. B Environ.* **2018**, *226*, 534–543.
675 <https://doi.org/10.1016/J.APCATB.2017.12.059>.

676 (12) Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-
677 Stephanopoulos, M.; Sykes, E. C. H. Selective Hydrogenation of 1,3-Butadiene on
678 Platinum-Copper Alloys at the Single-Atom Limit. *Nat. Commun.* **2015**, *6*, 1–8.
679 <https://doi.org/10.1038/ncomms9550>.

680 (13) Zhang, Y.; Diao, W.; Monnier, J. R.; Williams, C. T. Pd-Ag/SiO₂ Bimetallic Catalysts

681 Prepared by Galvanic Displacement for Selective Hydrogenation of Acetylene in Excess
682 Ethylene. *Catal. Sci. Technol.* **2015**, *5* (8), 4123–4132. <https://doi.org/10.1039/c5cy00353a>.

683 (14) Zhang, X.; Cui, G.; Feng, H.; Chen, L.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L.; Hong,
684 S.; Wei, M. Platinum–Copper Single Atom Alloy Catalysts with High Performance towards
685 Glycerol Hydrogenolysis. *Nat. Commun.* **2019**, *10* (1), 1–12.
686 <https://doi.org/10.1038/s41467-019-13685-2>.

687 (15) Liu, J.; Shan, J.; Lucci, F. R.; Cao, S.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M.
688 Palladium-Gold Single Atom Alloy Catalysts for Liquid Phase Selective Hydrogenation of
689 1-Hexyne. *Catal. Sci. Technol.* **2017**, *7* (19), 4276–4284.
690 <https://doi.org/10.1039/c7cy00794a>.

691 (16) Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.;
692 Liu, H.; Du, X. W. Ruthenium-Based Single-Atom Alloy with High Electrocatalytic
693 Activity for Hydrogen Evolution. *Adv. Energy Mater.* **2019**, *9* (20), 1–7.
694 <https://doi.org/10.1002/aenm.201803913>.

695 (17) Degnan, T. Single-Atom Catalysis – the Future Looks Bright. *Focus Catal.* **2016**, *2016* (11),
696 1–2. <https://doi.org/10.1016/J.FOCAT.2016.10.001>.

697 (18) Thirumalai, H.; Kitchin, J. R. Investigating the Reactivity of Single Atom Alloys Using
698 Density Functional Theory. *Top. Catal.* **2018**, *61* (5–6), 462–474.
699 <https://doi.org/10.1007/s11244-018-0899-0>.

700 (19) Zhang, Y.; Shi, X. R.; Sun, C.; Huang, S.; Duan, Z.; Ma, P.; Wang, J. CO Oxidation on Ni-
701 Based Single-Atom Alloys Surfaces. *Mol. Catal.* **2020**, *495* (July), 111154.

702 https://doi.org/10.1016/j.mcat.2020.111154.

703 (20) Shan, J.; Janvelyan, N.; Li, H.; Liu, J.; Egle, T. M.; Ye, J.; Biener, M. M.; Biener, J.; Friend,
704 C. M.; Flytzani-Stephanopoulos, M. Selective Non-Oxidative Dehydrogenation of Ethanol
705 to Acetaldehyde and Hydrogen on Highly Dilute NiCu Alloys. *Appl. Catal. B Environ.*
706 **2017**, *205*, 541–550. https://doi.org/10.1016/J.APCATB.2016.12.045.

707 (21) Marcinkowski, M. D.; Darby, M. T.; Liu, J.; Wimble, J. M.; Lucci, F. R.; Lee, S.;
708 Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu
709 Single-Atom Alloys as Coke-Resistant Catalysts for Efficient C-H Activation. *Nat. Chem.*
710 **2018**, *10* (3), 325–332. https://doi.org/10.1038/NCHEM.2915.

711 (22) Nguyen, L.; Zhang, S.; Tan, L.; Tang, Y.; Liu, J.; Tao, F. F. Ir₁Zn_n Bimetallic Site for
712 Efficient Production of Hydrogen from Methanol. *ACS Sustain. Chem. Eng.* **2019**, *7* (23),
713 18793–18800. https://doi.org/10.1021/acssuschemeng.9b03247.

714 (23) Zhang, S.; Nguyen, L.; Liang, J. X.; Shan, J.; Liu, J. J.; Frenkel, A. I.; Patlolla, A.; Huang,
715 W.; Li, J.; Tao, F. F. Catalysis on Singly Dispersed Bimetallic Sites. *Nat. Commun.* **2015**,
716 *6*, 1–10. https://doi.org/10.1038/ncomms8938.

717 (24) Lu, J.; Low, K. Bin; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P. C.; Elam, J. W. Toward
718 Atomically-Precise Synthesis of Supported Bimetallic Nanoparticles Using Atomic Layer
719 Deposition. *Nat. Commun.* **2014**, *5*. https://doi.org/10.1038/ncomms4264.

720 (25) Zhang, L.; Ball, M. R.; Liu, Y.; Kuech, T. F.; Huber, G. W.; Mavrikakis, M.; Hermans, I.;
721 Dumesic, J. A. Synthesis Gas Conversion over Rh/Mo Catalysts Prepared by Atomic Layer
722 Deposition. **2019**. https://doi.org/10.1021/acscatal.8b04649.

723 (26) Ramachandran, R. K.; Dendooven, J.; Detavernier, C. Controlled Synthesis of Fe-Pt
724 Nanoalloys Using Atomic Layer Deposition. *Nanotechnology* **2021**, *32* (9).
725 <https://doi.org/10.1088/1361-6528/abc5f5>.

726 (27) Ingale, P.; Knemeyer, K.; Preikschas, P.; Ye, M.; Geske, M.; Naumann d'Alnoncourt, R.;
727 Thomas, A.; Rosowski, F. Design of PtZn Nanoalloy Catalysts for Propane
728 Dehydrogenation through Interface Tailoring via atomic Layer Deposition. *Catal. Sci.
729 Technol.* **2021**, *11* (2), 484–493. <https://doi.org/10.1039/d0cy01528h>.

730 (28) Wang, H.; Luo, Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei,
731 S.; et al. Quasi Pd₁Ni Single-Atom Surface Alloy Catalyst Enables Hydrogenation of
732 Nitriles to Secondary Amines. *Nat. Commun.* **2019**, *10* (1), 1–9.
733 <https://doi.org/10.1038/s41467-019-12993-x>.

734 (29) Filie, A.; Shirman, T.; Aizenberg, M.; Aizenberg, J.; Friend, C. M.; Madix, R. J. The
735 Dynamic Behavior of Dilute Metallic Alloy Pd_xAu_{1-x}/SiO₂ raspberry Colloid Tempered
736 Catalysts under CO Oxidation. *Catal. Sci. Technol.* **2021**, *11* (12), 4072–4082.
737 <https://doi.org/10.1039/d1cy00469g>.

738 (30) Sun, G.; Zhao, Z. J.; Mu, R.; Zha, S.; Li, L.; Chen, S.; Zang, K.; Luo, J.; Li, Z.; Purdy, S.
739 C.; et al. Breaking the Scaling Relationship via Thermally Stable Pt/Cu Single Atom Alloys
740 for Catalytic Dehydrogenation. *Nat. Commun.* **2018**, *9* (1). <https://doi.org/10.1038/s41467-018-06967-8>.

742 (31) Ma, L.; Jia, I.; Guo, X.; Xiang, L. High Performance of Pd Catalysts on Bimodal Mesopore
743 for the Silica Catalytic Oxidation of Toluene. *Chinese J. Catal.* **2014**, *35* (0), 108–119.

744 https://doi.org/10.1016/S1872.

745 (32) Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang,
746 X.; Tai, Z.; et al. Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective
747 Hydrogenation of Acetylene to Ethylene in Excess Ethylene. *ACS Catal.* **2015**, *5* (6), 3717–
748 3725. https://doi.org/10.1021/acscatal.5b00700.

749 (33) Xing, F.; Jeon, J.; Toyao, T.; Shimizu, K. I.; Furukawa, S. A Cu-Pd Single-Atom Alloy
750 Catalyst for Highly Efficient NO Reduction. *Chem. Sci.* **2019**, *10* (36), 8292–8298.
751 https://doi.org/10.1039/c9sc03172c.

752 (34) Rassolov, A. V.; Bragina, G. O.; Baeva, G. N.; Smirnova, N. S.; Kazakov, A. V.;
753 Mashkovsky, I. S.; Bukhtiyorov, A. V.; Zubavichus, Y. V.; Stakheev, A. Y. Formation of
754 Isolated Single-Atom Pd₁ Sites on the Surface of Pd–Ag/Al₂O₃ Bimetallic Catalysts. *Kinet.*
755 *Catal.* **2020**, *61* (5), 758–767. https://doi.org/10.1134/S0023158420050080.

756 (35) Yang, C.; Miao, Z.; Zhang, F.; Li, L.; Liu, Y.; Wang, A.; Zhang, T. Hydrogenolysis of
757 Methyl Glycolate to Ethanol over a Pt–Cu/SiO₂ Single-Atom Alloy Catalyst: A Further
758 Step from Cellulose to Ethanol. *Green Chem.* **2018**, *20* (9), 2142–2150.
759 https://doi.org/10.1039/c8gc00309b.

760 (36) Aich, P.; Wei, H.; Basan, B.; Kropf, A. J.; Schweitzer, N. M.; Marshall, C. L.; Miller, J. T.;
761 Meyer, R. Single-Atom Alloy Pd–Ag Catalyst for Selective Hydrogenation of Acrolein. *J.*
762 *Phys. Chem. C* **2015**, *119* (32), 18140–18148. https://doi.org/10.1021/acs.jpcc.5b01357.

763 (37) Benfield, R. E. Mean Coordination Numbers and the Non-Metal-Metal Transition in
764 Clusters. **1992**, *88* (8), 1107–1110.

765 (38) Cho, H. R.; Regalbuto, J. R. The Rational Synthesis of Pt-Pd Bimetallic Catalysts by
766 Electrostatic Adsorption. *Catal. Today* **2015**, *246*, 143–153.
767 <https://doi.org/10.1016/j.cattod.2014.09.029>.

768 (39) Simonovis, J. P.; Hunt, A.; Palomino, R. M.; Senanayake, S. D.; Waluyo, I. Enhanced
769 Stability of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111)
770 Surface in an Ambient Pressure of CO. *J. Phys. Chem. C* **2018**, *122* (8).
771 <https://doi.org/10.1021/acs.jpcc.8b00078>.

772 (40) Datye, A. K.; Guo, H. Single Atom Catalysis Poised to Transition from an Academic
773 Curiosity to an Industrially Relevant Technology. *Nat. Commun.* **2021**, *12* (1), 10–12.
774 <https://doi.org/10.1038/s41467-021-21152-0>.

775 (41) Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of Ultrasmall,
776 Homogeneously Alloyed, Bimetallic Nanoparticles on Silica Supports. *Science* (80-.).
777 **2017**, *358* (6369), 1427–1430. <https://doi.org/10.1126/science.aa06538>.

778 (42) Jiao, L.; Regalbuto, J. R. The Synthesis of Highly Dispersed Noble and Base Metals on
779 Silica via Strong Electrostatic Adsorption: I. Amorphous Silica. *J. Catal.* **2008**, *260* (2),
780 329–341. <https://doi.org/10.1016/j.jcat.2008.09.023>.

781 (43) Sheppard, N.; De La Cruz, C. The Reliability of Vibrational Spectroscopy as a Means of
782 Identification of the Structures of Chemisorbed Species on Metal Surfaces: The Cases of
783 CO, NO and C₂ Hydrocarbon Surface Species. *Catal. Today* **2001**, *70* (1–3), 3–13.
784 [https://doi.org/10.1016/S0920-5861\(01\)00403-5](https://doi.org/10.1016/S0920-5861(01)00403-5).

785 (44) Chin, S. Y.; Williams, C. T.; Amiridis, M. D. FTIR Studies of CO Adsorption on Al₂O₃-

786 and SiO₂-Supported Ru Catalysts. *J. Phys. Chem. B* **2006**, *110* (2), 871–882.
787 <https://doi.org/10.1021/jp053908q>.

788 (45) Rebelli, J.; Rodriguez, A. A.; Ma, S.; Williams, C. T.; Monnier, J. R. Preparation and
789 Characterization of Silica-Supported, Group IB–Pd Bimetallic Catalysts Prepared by
790 Electroless Deposition Methods. *Catal. Today* **2011**, *160* (1), 170–178.
791 <https://doi.org/10.1016/J.CATTOD.2010.06.011>.

792 (46) Jiao, L.; Regalbuto, J. R. The Synthesis of Highly Dispersed Noble and Base Metals on
793 Silica via Strong Electrostatic Adsorption: II. Mesoporous Silica SBA-15. *J. Catal.* **2008**,
794 *260* (2), 342–350. <https://doi.org/10.1016/j.jcat.2008.09.023>.

795 (47) Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. *J. Appl. Crystallogr.* **2010**, *43*
796 (5 PART 1), 1126–1128. <https://doi.org/10.1107/S0021889810030499>.

797 (48) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals
798 and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6* (1), 15–
799 50. [https://doi.org/10.1016/0927-0256\(96\)00008-0](https://doi.org/10.1016/0927-0256(96)00008-0).

800 (49) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamcis for Liquid Metals. *Phys. Rev. B* **1993**,
801 *47* (1), 558.

802 (50) Kresse, G.; Joubert, D. Kresse, Joubert - Unknown - From Ultrasoft Pseudopotentials to the
803 Projector Augmented-Wave Method. **1999**, *59* (3), 11–19.

804 (51) Hammer, B.; Hansen, L. B.; No, J. K. Improved Adsorption Energetics within Density-
805 Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. **1999**, *59* (11),
806 7413–7421.

807 (52) Feibelman, P. J.; Hammer, B.; Wagner, F.; Scheffler, M.; Stumpf, R.; Watwe, R.; Dumesic,
808 J. The CO / Pt (111) Puzzle †. **2001**, No. 111, 4018–4025.

809 (53) Eichler, A.; Hafner, J. CO Adsorption on Cu(211) Surface: First Principle and STM Study.
810 **2004**, No. April.

811 (54) Gajdos, M. CO Adsorption on Cu (1 1 1) and Cu (0 0 1) Surfaces : Improving Site
812 Preference in DFT Calculations. **2005**, *590*, 117–126.
813 <https://doi.org/10.1016/j.susc.2005.04.047>.

814 (55) Gameel, K. M.; Sharafeldin, I. M.; Abourayya, A. U.; Biby, A. H. Unveiling CO Adsorption
815 on Cu Surfaces : New Insights from Molecular Orbital Principles †. **2018**, 25892–25900.
816 <https://doi.org/10.1039/c8cp04253e>.

817 (56) Harris, J. Simplified Method for Calculating the Energy of Weakly Interacting Fragments.
818 *Phys. Rev. B* **1985**, *31* (4), 1770–1779. <https://doi.org/10.1103/PhysRevB.31.1770>.

819 (57) Foulkes, W. M. C.; Haydock, R. Tight-Binding Models and Density-Functional Theory.
820 *Phys. Rev. B* **1989**, *39* (17), 12520–12536. <https://doi.org/10.1103/PhysRevB.39.12520>.

821 (58) Makov, G.; Payne, M. C. Periodic Boundary Conditions in Ab Initio Calculations. *Phys.*
822 *Rev. B* **1995**, *51* (7), 4014–4022. <https://doi.org/10.1103/PhysRevB.51.4014>.

823 (59) Pack, J. D.; Monkhorst, H. J. “special Points for Brillouin-Zone Integrations”-a Reply. *Phys.*
824 *Rev. B* **1977**, *16* (4), 1748–1749. <https://doi.org/10.1103/PhysRevB.16.1748>.

825 (60) Methfessel, M.; Paxton, A. T. High-Precision Sampling for Brillouin-Zone Integration in
826 Metals. *Phys. Rev. B* **1989**, *40* (6), 3616–3621. <https://doi.org/10.1103/PhysRevB.40.3616>.

827 (61) Davey, W. P. Precision Measurements of the Lattice Constants of Twelve Common Metals.
828 *Phys. Rev.* **1925**, *538* (1922), 735–761. <https://doi.org/10.1103/PhysRev.25.753>.

829 (62) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Climbing Image Nudged Elastic Band Method
830 for Finding Saddle Points and Minimum Energy Paths. *J. Chem. Phys.* **2000**, *113* (22),
831 9901–9904. <https://doi.org/10.1063/1.1329672>.

832 (63) Laury, M. L.; Carlson, M. J.; Wilson, A. K. Vibrational Frequency Scale Factors for Density
833 Functional Theory and the Polarization Consistent Basis Sets. **2012**.
834 <https://doi.org/10.1002/jcc.23073>.

835 (64) Martin, N. M.; Bossche, M. Van Den; Gro, H.; Hakanoglu, C.; Zhang, F.; Li, T.; Gustafson,
836 J.; Weaver, J. F.; Lundgren, E. CO Adsorption on Clean and Oxidized Pd (111). *J. Phys.*
837 *Chem. C* **2014**, *118* (111), 1118–1128. <https://doi.org/10.1021/jp410895c>.

838 (65) Nakamura, Y.; Kon, K.; Touchy, A. S.; Shimizu, K. I.; Ueda, W. Selective Synthesis of
839 Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt
840 Catalysts. *ChemCatChem* **2015**, *7* (6), 921–924. <https://doi.org/10.1002/cctc.201402996>.

841 (66) Schreier, M.; Teren, S.; Belcher, L.; Regalbuto, J. R.; Miller, J. T. The Nature of
842 “overexchanged” Copper and Platinum on Zeolites. *Nanotechnology* **2005**, *16* (7).
843 <https://doi.org/10.1088/0957-4484/16/7/036>.

844 (67) Eskandari, S.; Dong, A.; De Castro, L. T.; AB Rahman, F. B.; Lipp, J.; Blom, D. A.;
845 Regalbuto, J. R. Pushing the Limits of Electrostatic Adsorption: Charge Enhanced Dry
846 Impregnation of SBA-15. *Catal. Today* **2019**, 338.
847 <https://doi.org/10.1016/j.cattod.2019.06.082>.

848 (68) Lucci, F. R.; Darby, M. T.; Mattera, M. F. G.; Ivimey, C. J.; Therrien, A. J.; Michaelides,
849 A.; Stamatakis, M.; Sykes, E. C. H. Controlling Hydrogen Activation, Spillover, and
850 Desorption with Pd-Au Single-Atom Alloys. *J. Phys. Chem. Lett.* **2016**, *7* (3), 480–485.
851 <https://doi.org/10.1021/acs.jpclett.5b02400>.

852 (69) Zhang, X.; Ptasinska, S. High-Pressure-Induced Pseudo-Oxidation of Copper Surfaces by
853 Carbon Monoxide. **2016**, pp 1632–1635.

854 (70) Bukhtiyarov, A. V.; Prosvirin, I. P.; Saraev, A. A.; Klyushin, A. Y.; Knop-Gericke, A.;
855 Bukhtiyarov, V. I. In Situ Formation of the Active Sites in Pd-Au Bimetallic Nanocatalysts
856 for CO Oxidation: NAP (near Ambient Pressure) XPS and MS Study. *Faraday Discuss.*
857 **2018**, *208*, 255–268. <https://doi.org/10.1039/c7fd00219j>.

858 (71) Mamatkulov, M.; Yudanov, I. V.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.;
859 Neyman, K. M. Pd Segregation on the Surface of Bimetallic PdAu Nanoparticles Induced
860 by Low Coverage of Adsorbed CO. *J. Phys. Chem. C* **2019**, *123* (13), 8037–8046.
861 <https://doi.org/10.1021/acs.jpcc.8b07402>.

862 (72) Ichikawa, S.; Poppa, H.; Boudart, M. Disproportionation of CO on Small Particles of Silica-
863 Supported Palladium. *J. Catal.* **1985**, *91*, 1–10.

864 (73) Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.; Onishi, T. CO Disproportionation at
865 Mild Temperatures over Partially Reduced Cerium Oxide. *J. Chem. Soc. Chem. Commun.*
866 **1991**, No. 6, 410–411. <https://doi.org/10.1039/C39910000410>.

867 (74) Van Spronsen, M. A.; Daunmu, K.; O'Connor, C. R.; Egle, T.; Kersell, H.; Oliver-
868 Meseguer, J.; Salmeron, M. B.; Madix, R. J.; Sautet, P.; Friend, C. M. Dynamics of Surface

869 Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O₂. *J. Phys. Chem. C* **2019**, *123*
870 (13), 8312–8323. <https://doi.org/10.1021/acs.jpcc.8b08849>.

871 (75) Hadjiivanov, K.; Venkov, T.; Knözinger, H. FTIR Spectroscopic Study of CO Adsorption
872 on Cu/SiO₂: Formation of New Types of Copper Carbonyls. *Catal. Letters* **2001**, *75* (1–2),
873 55–59. <https://doi.org/10.1023/A:1016759123842>.

874 (76) Scarano, D.; Bordiga, S.; Lamberti, C.; Spoto, G.; Ricchiardi, G.; Zecchina, A.; Otero
875 Areán, C. FTIR Study of the Interaction of CO with Pure and Silica-Supported Copper (I)
876 Oxide. *Surf. Sci.* **1998**, *411* (3), 272–285. [https://doi.org/10.1016/S0039-6028\(98\)00331-8](https://doi.org/10.1016/S0039-6028(98)00331-8).

877 (77) Meissner, H.; Gutschick, D.; Ewald, H.; Muller, H. The Influence of Support on the
878 Geminal Dicarbonyl Species RhI(CO)₂ on Supported Rhodium Catalysts: An IR
879 Spectroscopic Study. *J. Mol. Catal.* **1986**, *36*–37, 359–373.

880 (78) Kaminski, P.; Ziolek, M.; Campo, B.; Daturi, M. FTIR Spectroscopic Study of CO
881 Oxidation on Bimetallic Catalysts. *Catal. Today* **2015**, *243* (x), 218–227.
882 <https://doi.org/10.1016/j.cattod.2014.08.035>.

883 (79) Venkov, T.; Hadjiivanov, K. FTIR Study of CO Interaction with Cu/TiO₂. *Catal. Commun.*
884 **2003**, *4* (4), 209–213. [https://doi.org/10.1016/S1566-7367\(03\)00035-9](https://doi.org/10.1016/S1566-7367(03)00035-9).

885 (80) Hadjiivanov, K. FTIR Study of Low-Temperature CO Adsorption on Cu / Silicalite-1. **2002**,
886 *3*, 37–44.

887 (81) Schumann, J.; Kröhnert, J.; Frei, E.; Schlögl, R.; Trunschke, A. IR-Spectroscopic Study on
888 the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a
889 ZnO Overlayer. *Top. Catal.* **2017**, *60* (19–20), 1735–1743. <https://doi.org/10.1007/s11244-017-0511-2>

890 017-0850-9.

891 (82) Hadjiivanov, K. I.; Kantcheva, M. M.; Klissurski, D. G. IR Study of CO Adsorption on Cu-
892 ZSM-5 and CuO/SiO₂, *Catalysts*: **1996**, *92* (22), 4595–4600.

893 (83) Hadjiivanov, K.; Knözinger, H. FTIR Study of Low-Temperature CO Adsorption on Cu-
894 ZSM-5: Evidence of the Formation of Cu²⁺(CO)₂ Species. *J. Catal.* **2000**, *191* (2), 480–
895 485. <https://doi.org/10.1006/jcat.1999.2805>.

896 (84) Rebelli, J.; Rodriguez, A. A.; Ma, S.; Williams, C. T.; Monnier, J. R. Preparation and
897 Characterization of Silica-Supported, Group IB-Pd Bimetallic Catalysts Prepared by
898 Electroless Deposition Methods. *Catal. Today* **2011**, *160* (1), 170–178.
899 <https://doi.org/10.1016/j.cattod.2010.06.011>.

900 (85) Lear, T.; Marshall, R.; Lopez-Sanchez, J. A.; Jackson, S. D.; Klapötke, T. M.; Bäumer, M.;
901 Rupprechter, G.; Freund, H. J.; Lennon, D. The Application of Infrared Spectroscopy to
902 Probe the Surface Morphology of Alumina-Supported Palladium Catalysts. *J. Chem. Phys.*
903 **2005**, *123* (17). <https://doi.org/10.1063/1.2101487>.

904 (86) Eischens, R. P.; Pliskin, W. A. The Infrared Spectra of Adsorbed Molecules. *Adv. Catal.*
905 **1958**, *10*, 1–56. [https://doi.org/10.1016/S0360-0564\(08\)60403-4](https://doi.org/10.1016/S0360-0564(08)60403-4).

906 (87) Yudanov, I. V.; Sahnoun, R.; Neyman, K. M.; Ro, N.; Hoffmann, J.; Schauermann, S.; Joha,
907 V.; Unterhalt, H.; Freund, H. CO Adsorption on Pd Nanoparticles : Density Functional and
908 Vibrational Spectroscopy Studies. **2003**, 255–264. <https://doi.org/10.1021/jp022052b>.

909 (88) Cabilla, G. C.; Bonivardi, A. L.; Baltanás, M. A. Characterization by CO/FTIR
910 Spectroscopy of Pd/Silica Catalysts and Its Correlation with Syn-Gas Conversion. *Catal.*

911 *Letters* **1998**, *55* (3–4), 147–156.

912 (89) Blyholder, G. Molecular Orbital View of Chemisorbed Carbon Monoxide. *J. Phys. Chem.*
913 **1964**, *68* (10), 2772–2778. <https://doi.org/10.1021/j100792a006>.

914 (90) Bradshaw, A. M.; Hoffmann, F. M. The Chemisorption of Carbon Monoxide on Palladium
915 Single Crystal Surfaces: IR Spectroscopic Evidence for Localised Site Adsorption. *Surf.*
916 *Sci.* **1978**, *72* (3), 513–535. [https://doi.org/10.1016/0039-6028\(78\)90367-9](https://doi.org/10.1016/0039-6028(78)90367-9).

917 (91) Rebelli, J.; Detwiler, M.; Ma, S.; Williams, C. T.; Monnier, J. R. Synthesis and
918 Characterization of Au–Pd/SiO₂ Bimetallic Catalysts Prepared by Electroless Deposition.
919 *J. Catal.* **2010**, *270* (2), 224–233. <https://doi.org/10.1016/J.JCAT.2009.12.024>.

920 (92) Giorgi, J. B.; Schroeder, T.; Bäumer, M.; Freund, H.-J. Study of CO Adsorption on
921 Crystalline-Silica-Supported Palladium Particles. *Surf. Sci.* **2002**, *498* (1–2), L71–L77.
922 [https://doi.org/10.1016/S0039-6028\(01\)01756-3](https://doi.org/10.1016/S0039-6028(01)01756-3).

923 (93) Meunier, F. C. Relevance of IR Spectroscopy of Adsorbed CO for the Characterization of
924 Heterogeneous Catalysts Containing Isolated Atoms. *J. Phys. Chem. C* **2021**, *125* (40),
925 21810–21823. <https://doi.org/10.1021/acs.jpcc.1c06784>.

926 (94) Bistoni, G.; Rampino, S.; Scafuri, N.; Ciancaleoni, G.; Zuccaccia, D.; Tarantelli, F.
927 Chemical Science How p Back-Donation Quantitatively Controls the CO Stretching
928 Response in Classical and Non- Classical Metal Carbonyl Complexes †. *Chem. Sci.* **2016**,
929 7, 1174–1184. <https://doi.org/10.1039/c5sc02971f>.

930