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Abstract— Graph Neural Networks (GNNs) are used for 
predictive analytics on graph-structured data, and they have 
become very popular in diverse real-world applications. Resistive 
random-access memory (ReRAM)-based PIM architectures can 
accelerate GNN training. However, GNN training on ReRAM-
based architectures is both compute- and data-intensive in nature. 
In this work, we propose a framework called SlimGNN that 
synergistically combines both graph and model pruning to 
accelerate GNN training on ReRAM-based architectures. The 
proposed framework reduces the amount of redundant 
information in both the GNN model and input graph(s) to 
streamline the overall training process. This enables fast and 
energy-efficient GNN training on ReRAM-based architectures. 
Experimental results demonstrate that using this framework, we 
can accelerate GNN training by up to !. # × while using %. % × less 
energy compared to the unpruned counterparts. 
 
Index Terms—Graph Neural Network, ReRAM, PIM, Data 
Compression, Pruning 

I. INTRODUCTION 
RAPH neural networks (GNNs) have become 
increasingly popular in diverse real-world industrial 
and scientific applications [1] [2]. GNNs enable 

predictive analytics over graph data through iterative feature 
aggregation over neighborhood vertices. GNN computation 
occurs in two stages: 1) The vertex feature update stage 
involves matrix multiplication of trainable weights and vertex-
level feature vectors similar to conventional deep neural 
networks (DNNs), and 2) The feature aggregation stage 
involves accumulating feature information from neighborhood 
vertices [3]. Hence, GNN training exhibits characteristics of 
both DNN training and graph computation simultaneously. 

 
 
 

Hence, it is both compute- and data-intensive in nature. The 
high amount of data movement required by GNN computation 
poses a challenge to conventional von-Neuman architectures 
(such as CPUs and GPUs) as they have limited memory 
bandwidth [4]. Hence, there is a need for new hardware 
architectures that are suitable for GNN training/inference using 
massive real-world graphs. 

Training machine learning (ML) models on the edge (on-
chip or on embedded systems) has become necessary due to 
data privacy concerns. Moreover, several applications such as 
AR/VR require GNN training on the edge [5]. Emerging 
Resistive random-access memory (ReRAM)-based 
architectures have been proposed as promising candidates for 
accelerating GNN training and inferencing in an on-chip 
environment [6]. The crossbar structure of ReRAMs makes 
them well-suited for performing matrix-vector multiplication 
(MVM) operations, which is the predominant computation 
kernel in both GNN training and inferencing. Hence, a PIM 
architecture consisting of multiple ReRAM-based processing 
elements (PEs) is suitable for large-scale GNN training.  

It is well known that ReRAM writes are slow. Hence, to 
reduce the number of writes, a pipelined training strategy is 
employed [7] [8]. Figure 1 shows an illustration of the pipelined 
GNN training. The training occurs in a pipelined manner where 
all layers of the GNN are computed in parallel to improve the 
overall system throughput. Note that, to enable pipelined 
training, a large monolithic graph is first divided into multiple 
smaller subgraphs using graph partitioning [9]. Each subgraph 
is sent sequentially as input to the pipeline [6]. Figure 1(a) 
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Fig. 1: (a) Pipeline stages during GNN training; each stage is a GNN layer. 
(b) Pipelined execution of a GNN with ! input subgraphs. 

This work was supported, in part by the US National Science Foundation 
(NSF) under grants CNS-1955353, and CNS-1955196. Biresh Kumar Joardar 
was also supported in part by NSF Grant # 2030859 to the Computing Research 
Association for the CIFellows Project.  

Chukwufumnanya Ogbogu, Aqeeb Iqbal Arka, Janardhan Rao Doppa, and 
Partha Pratim Pande are with Washington State University, Pullman, WA, 
99164. Email: {c.ogbogu, aqeebiqbal.arka, jana.doppa, pande}@wsu.edu .  

Lukas Pfromm is with Oregon State University, Corvallis, OR, 97331. 
Email: lukaspfromm@gmail.com.  

Biresh Kumar Joardar is with University of Houston, Houston TX, 77004. 
Email: bjoardar@Central.UH.EDU. 

Krishnendu Chakrabarty is with the Department of Electrical and Computer 
Engineering, Duke University, Durham, NC, 27708. Email: krish@duke.edu 

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore.  Restrictions apply. 



2 

shows the end-to-end pipeline for training a !-layer deep GNN 
on one input subgraph. Here, "#! and $#!  denote the forward 
and backward phase computation of the %"# layer of GNN 
training, respectively. The worst-case delay associated with a 
pipeline stage is denoted as &$"%&'. As shown in Figure 1(b), the 
end-to-end pipeline depth is (( + * − 1), where (	(= 2!)	 is 
the total number of pipeline stages, * is the total number of 
input subgraphs, and 1( is the 2"# input subgraph.  

During GNN training, the overall execution consists of 
computation (i.e., MVM operations) on PEs and inter-PE 
communication (the data of one layer must be sent to the next 
layer). Each computation phase also has one stage for feature 
aggregation over graph edges (344.) associated with it. The 
overall execution time is determined by the end-to-end pipeline 
depth (( + * − 1) and the delay of each pipeline stage (&$"%&'). 
The overall execution time is given by: (( + * − 1) × &$"%&'. 
To improve the execution time, we must improve the pipeline 
depth and/or the pipeline stage delay. The depth of the pipeline 
is governed by the input dataset, i.e., number of subgraphs (*) 
used for training, while the pipeline stage latency is governed 
by the amount of computation and communication in a GNN 
layer. In this work, we improve the performance of ReRAM-
based systems for GNN training by reducing both the pipeline 
depth and the stage delay.  

The end-to-end pipeline depth can be shortened by reducing 
the number of input subgraphs needed for GNN training. 
Recent work has shown that, it is possible to prune the input 
data for training convolutional neural networks without 
sacrificing accuracy [10]. We generalize this approach to prune 
subgraphs (thereby reducing pipeline depth) to improve the 
performance of GNN training on ReRAM-based PIM 
architectures. We identify the necessary subgraphs for GNN 
training very early in the training process similar to [10]. The 
key insight behind pruning the sub-graphs is to exploit the 
redundancies in terms of nodes with similar features, labels, and 
neighborhood; and the fact that some node classification 
examples are easy to learn. These input subgraphs are identified 
very early in training and discarded without sacrificing 
accuracy. This reduces the number of input subgraphs *, 
resulting in reduced pipeline depth, which leads to lower 
execution time. We refer to this subgraph pruning methodology 
as GraphDiet, which enables the GNN to train using a small 
fraction of the input graph.  

The performance of the ReRAM-based PIM architecture 
can be further enhanced by reducing the pipeline stage delay. 
Model weight pruning is a popular technique for reducing the 
number of parameters and redundant computations in a GNN 
by making some of the weights zero. These pruned weights 
need not be stored on chip as an MVM operation involving a 
zero will always result in a zero; hence, such computation is 
unnecessary [11]. Thus, model weight pruning helps to reduce 
redundant MVM operations. Also, weight pruning results in the 
reduction of on-chip traffic, which in turn reduces the inter-PE 
communication delay as well. Thus, weight pruning can help in 
reducing the pipeline stage delay (the parameter &$"%&') 
mentioned above (Figure 1), which ultimately results in lower 

execution time.  
In this work, we propose the incorporation of GraphDiet and 

model pruning methods to reduce both the overall pipeline 
depth and pipeline stage delay for executing GNN training on 
ReRAM-based PIM architectures. We refer to the synergistic 
combination of these two techniques as the SlimGNN 
framework. This framework produces a lightweight GNN 
model, which needs fewer input subgraphs compared to the 
unpruned graph to achieve high accuracy. We train the 
SlimGNN-enabled model on an ReRAM-based PIM 
architecture. SlimGNN achieves high performance while being 
energy- and storage efficient. The key contributions of this 
work are summarized as follows: 

● We leverage GraphDiet and GNN model pruning as 
two synergistic methods to achieve high performance 
and energy efficient training of GNNs on an ReRAM-
based PIM architecture without sacrificing accuracy. 

● Using GraphDiet, we reduce the number of input 
subgraphs required for GNN training very early. 
Hence, it significantly reduces the end-to-end pipeline 
depth during GNN training on ReRAM-based PIM 
architectures. 

● Complimentary to GraphDiet, by pruning the GNN 
model weights, we achieve significant hardware area 
and energy savings while improving the pipeline stage 
delay associated with GNN training on ReRAM 
architectures. 

● Experimental results show that the SlimGNN-enabled 
model trained on the ReRAM-based PIM architecture 
outperforms state-of-the-art ReRAM-based 
counterparts by up to 4.5 × in terms of the execution 
time for training GNNs. 

To the best of our knowledge, this is the first work that 
incorporates GraphDiet to design a high-performance and 
energy-efficient ReRAM-based PIM system for scalable 
training of GNNs on massive graphs. The rest of the paper is 
organized as follows. Section 2 describes relevant prior work. 
In Section 3, we discuss principles of GNN computations on 
ReRAM-based architectures. In Section 4, we present the 
SlimGNN framework, the effect of pruning on the pipeline 
stage delay and the impact of GraphDiet on pipeline depth and 
GNN training on the proposed architecture. Section 5 presents 
experimental results. Finally, Section 6 concludes the paper by 
summarizing our key findings. 

II. RELATED PRIOR WORK 
In this section, we discuss relevant prior work, focusing on 

ReRAM-based architectures, as well as data pruning and model 
pruning for neural networks, especially GNNs.  

ReRAM-based architectures: ReRAMs enable processing-
in-memory, which allows for fast and efficient in-situ MVM 
[11]. Both DNN and graph computation rely heavily on such 
MVM operations. This makes ReRAM-based architectures 
excellent candidates for DNN training/inferencing and graph 
analytics [7] [8] [12] [13] [14] [15]. GNNs exhibit 
characteristics of both DNNs and graph computation. Hence, 
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they also benefit from ReRAM-based systems [16]. However, 
on-chip communication is a major performance bottleneck for 
GNN training on ReRAM-based PIM architectures. The 
communication bottleneck can be addressed by using a 3D 
network-on-chip (NoC) [6]. However, all these accelerators use 
an unpruned neural network model, which leads to unnecessary 
high area and power overheads.  

Model and Data Pruning in Neural Networks: Model 
pruning for neural networks helps reduce redundant 
computations during DNN computation [17] [18] [19]. Several 
crossbar-aware model pruning (CAP) techniques have also 
been proposed to exploit the ReRAM crossbar structure while 
pruning to reduce area and improve energy efficiency without 
compromising accuracy [20] [21] [22]. However, all these 
methods prune pre-trained DNN models for inferencing 
purposes, hence they are not suited for training, which is the 
focus of this work. Moreover, these CAP methods prune 
weights row/column-wise only, which leads to only marginal 
energy and area savings as we elaborate later. Recently, an 
iterative model pruning method called Lottery Ticket Pruning 
(LTP) has been proposed to obtain highly sparse DNN models 
for training [23]. An LTP-inspired pruning method has also 
been used to prune GNN models and graph adjacency matrices 
[24]. However, LTP-based methods don’t take the ReRAM 
crossbar structure into consideration. As a result, there is no 
significant area or power savings. In this work, we propose an 
LTP-inspired CAP method for GNN training on ReRAM-based 
architectures. Our method enhances existing CAP methods by 
taking the overall crossbar structure into consideration and 
implements the pruning in an iterative manner to ensure that the 
pruned GNN models can be trained from scratch. By pruning in 
a crossbar-aware fashion, we can also reduce the pipeline stage 
delay (the variable &$"%&' in Figure 1), which leads to better 
performance. 

On top of model pruning, we can further prune the input data 
to reduce the end-to-end pipeline depth (the variable * in Figure 
1) for GNN training on ReRAM-based architectures. Large 
training datasets pose a challenge for resource-constrained 
devices (such as edge devices) as they require high memory and 
processing power [25]. Recent work has proposed methods to 
reduce the amount of data required for training, generally 
referred to as data pruning [26]. An importance score-based 
data pruning methodology for CNNs was proposed to greatly 
reduce the amount of input data [10]. Graph Early Bird (GEB) 
prunes the edges of the input graphs to reduce MVM operations 
for GNN training very early during the training process [27]. 
Thus, the size of the input feature vector remains unchanged as 
only graph edges are pruned. In contrast to existing data pruning 
techniques for GNNs, our method intelligently prunes large 
portions of an input graph (both nodes and edges) to reduce the 
end-to-end pipeline depth of GNN training on ReRAM-based 
architectures. 

III. GNN COMPUTATION ON RERAM PLATFORMS 
In this section, we discuss the preliminaries of GNN 

computations on ReRAM-based architectures. First, we introduce 

the GNN computation kernel. Next, we present the ReRAM-based 
PIM architecture under consideration.  

A. Preliminaries of GNN Computation 
The GNN computation kernel primarily consists of MVM 

operations involving model weights and graph adjacency 
matrices. To perform GNN training on memory constrained 
environments, the large monolithic graph is broken into * 
subgraphs (1), 1*, … , 1$). Each subgraph 1! 		includes: (a) a 
total of ;! vertices, where each vertex <	has a =-dimensional 
feature vector >+,! 	 associated with it. (b) The graph adjacency 
matrix 3?@!, which is a sparse matrix of size ;! × ;!. The GNN 
model consists of multiple back-to-back neural layers. Each 
layer (!) has a weight matrix A- associated with it. The forward 
phase computation involved in the GNN layer ! corresponding 
to the input subgraph 1! is shown below:  
Forward	Phase: 	2!,#$ = 4(676(89:# , 676(2!,#$%&,<$	)))			(1) 
First, we implement an MVM operation involving feature 

vector (>+,!-.)) and the dense weight matrix (A-). Next, we 
accomplish the feature aggregation over edges, which involves 
MVM with adjacency matrix 3?@! as shown in Equation 1.  The 
input to each neural layer	! is the output of the previous neural 
layer ! − 1. Here, we set the activation function B(. ) to be 
ReLU [25]. Similarly, the error and gradient calculations are 
done during the backward phase computation. Each of them 
consists of two separate MVM operations. The backward phase 
computation is shown in Equations 2, 3, and 4.  

Error:								 G
						HII+,!

- = J;J((A-/))0 , (K+,!
-/) ∙ >+,!

-/)		))				(2)

														K+,!
- = J;J(3?@! , HII+,!

- )																						(3)
			 

Gradient:					U+,!
- = 	J;JV(>+,!

-.))0 , J;J(3?@$, 	K+,!
- )W							(4) 

Equations (2)-(3) show the error calculation (“Error”) during 
the backward phase of GNN computation for neural layer !. 
Equation (2) shows the multiplication of features (>+,!-/)) and 
error (K+,!-/)) with the transpose of the weight matrix (A-/)) to 
calculate the intermediate error, HII+,!- . Equation (3) involves 
the MVM of the adjacency matrix 3?@! and HII+,!-  for the 
computation of the final error HII+,!-  for one vertex (<) of an 
input subgraph 1!. Similarly, Equation (4) is used to compute 
the gradient, U+,$-  where the differentiation operation can be 
decomposed into two separate MVM operations [28]. All these 
operations are executed for * subgraphs that make up the full 
input graph dataset. Moreover, the result of all MVM 
computations of layer l, i.e., 	>+,!- , U+,!-  , and K+,!- , are used as 
inputs to the next GNN layer ! + 1. During the backward phase, 
the data flows from layer ! + 1 to layer !. The amount of data 
generated in every layer is also dependent on the number of 
weights in each layer. In this work, we leverage model/weight 
pruning to decrease the number of weights, which helps in 
reducing the number of MVMs and the associated data 
movement. As the GNN kernel computations must be repeated 
for every subgraph  1!, decreasing the number of subgraphs (*) 
needed for training will help reduce the end-to-end pipeline 
depth. 
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B. ReRAM-based 3D PIM Architecture 
In this work, we consider a 3D PIM architecture consisting 

of multiple ReRAM-based processing elements (PEs) for 
accelerating GNN training. We adopt a 3D architecture to 
enable high degree of integration. This architecture consists of 
multiple PEs stacked vertically across four layers as shown in 
Figure 2. To effectively utilize the high-throughput 
computation provided by ReRAM-based PEs, the overall 
architecture needs to be supported with a high-performance and 
efficient communication backbone. In this architecture, we 
utilize a 3D mesh network-on-chip (NoC) as the 
interconnection backbone for communication between PEs 
during GNN training. Each PE contains multiple ReRAM 
crossbar arrays (xbar) for executing MVM operations as shown 
in Figure 2. The exact PE configuration used in this work is 
described in the Section V. We use a crossbar size of 
128 × 128, with 2 bits/cell configuration, as it provides the best 
performance-area-energy trade-off [6]. Each PE contains 
various peripheral circuits including ADCs, DACs, and Shift 
and Add (S+A), etc. The detailed specifications of each PE is 
shown later in Section V, Table I.  

IV. PROPOSED SLIMGNN FRAMEWORK 
In this section, we describe the SlimGNN framework. As 

shown in Figure 3, SlimGNN is divided into two phases: (1) 

GNN model offline pruning (pre-processing), and (2) in-field 
on-chip training of the pruned model using only critical input 
subgraphs on the ReRAM-based architecture. Here, our overall 
goal is to be able to train a pruned GNN model from scratch in-
field with little to no loss in accuracy compared to its unpruned 
counterpart. For this purpose, we incorporate a crossbar aware 
LTP-inspired iterative model-pruning technique, referred to as 
LT-CAP. The model pruning step using LT-CAP is done offline 
once as a pre-processing step (Figure 3). The offline pruning 
step requires training the GNN model iteratively, and can be 
done using any hardware (CPU, GPU, TPU, etc.). However, 
this training is different from in-field training. The pruned 
model is mapped to ReRAM crossbars and can be used to train 
from scratch any number of times with different hyper-
parameters and graph datasets. Hence, the cost of pre-
processing is amortized over multiple in-field training 
instances. We note that all our experimental results show a 
comparison between the pruned and unpruned models for the 
in-field training phase.  

However, we do not implement data pruning (we refer this 
step as GraphDiet) during model pruning in the preprocessing 
stage. As shown in Figure 3, GraphDiet is an online process 
which implemented during the in-field training process. We 
follow this algorithmic procedure for two reasons. First, the 
pruned models are general and can be used to train on any graph 
dataset. Second, even though the data pruning methodology is 
general and applicable to any graph dataset, the pruning steps 
rely on both model and graph data to decide which parts of the 
graph are redundant. The user may choose to train on different 
graph datasets in-field. Hence, the data pruning strategy should 
be executed in-field on whatever dataset the user wants to train 
on. To address this problem, we adopt a computationally 
inexpensive process, executed once and very-early (within few-
epochs) during the GNN training process on the ReRAM-based 
architecture, referred as GraphDiet. The GraphDiet method 
allows us to prune the large graph dataset during in-field 
pruning. Hence, the computational cost for obtaining the pruned 

  
Fig. 3: Overview of the SlimGNN framework. It consists of the offline Preprocessing (Phase 1) to obtain the LT-CAP pruned model, and the 
in-field training (Phase 2) of the pruned model.  

 
Fig. 2: Illustration of ReRAM-based 3D PIM Architecture. 
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graph is negligible. We present details of the SlimGNN 
framework in the following sub-sections.  

A. Model Pruning in SlimGNN 
Model pruning techniques suited for ReRAM crossbars have 

been proposed in the literature [20] [21] [22]. These crossbar-
aware pruning (CAP) methods prune few crossbar rows, 
columns, or small blocks (portion of a crossbar) to achieve high 
model sparsity while maintaining acceptable accuracy for 
inferencing purposes [21]. However, CAP methods lead to only 
a marginal energy reduction as rows/columns/portions of 
crossbars consume negligible energy compared to the 
crossbar’s peripherals such the Analog-to-Digital Converter 
(ADC) [21]. Crossbar peripherals such as the ADCs (which 
accounts for ~60% of the total energy and area overhead) must 
remain active as the unpruned weights in crossbars must still be 
processed. Clearly, existing crossbar-aware pruning methods 
are not suited for ReRAM-based architectures as they only 
prune part of a crossbar.  

SlimGNN utilizes a block pruning method that considers the 
entire structure of the ReRAM crossbar (i.e., size and bit/cell 
configuration) when pruning the model weights. The pruning 
block size is defined based on the crossbar size and its bits-per-
cell configuration. For example, if the crossbar size is Y × Y, 
with a I bit/cell configuration, the weight pruning block is of 
shape Y × (Y ∗ I/$), where $ is the precision of each weight 
value. In this work, the values of c, r, and B are 128, 2 and 16, 

respectively [7]. Hence, the block size for pruning becomes 
128 × 16. Unlike existing CAP methods, we prune entire 
blocks of weights, which would have otherwise been mapped 
to an entire crossbar. This enables us to power gate or turn ‘off’ 
both the crossbar and its associated peripherals, which results 
in higher energy savings. Figure 4(a) and Figure 4(b) illustrate 
how unpruned weights and the pruned weights of a given GNN 
layer are mapped to ReRAM crossbar arrays. In Figure 4(a), the 
final output of the MVM operation is represented by ?. Here, 
the output generated from the %"# column of the weight matrix 
is ?! where ?! ⊆ ?. As shown in Figure 4(b), the crossbars 
outlined by the red boxes do not have any weights mapped on 
them due to pruning. Hence, they can be turned off alongside 
with their peripherals or they can be used for other purposes. As 
a result, those crossbars do not contribute to the final output 
(?∗). As demonstrated in Figure 4(b), columns 3 and 4 of the 
weight matrix are completely pruned away whereas columns 1 
and 2 are partially pruned. As a result, we generate ?) and ?*, 
but ?2 and ?3 are not generated. Hence, we do not need to send 
?2 and ?3; this reduces inter-PE traffic.  

Existing CAP methods prune pre-trained weights for 
inferencing purposes only. Most of these existing CAP methods 
utilize a multi-group LASSO algorithm to prune groups of 
weights that would otherwise be mapped along a row/column 
in an ReRAM crossbar. However, the pruned models fail to 
train from scratch. In the SlimGNN framework, we prune GNN 
model weights iteratively for the purpose of training from 
scratch as shown in Figure 3. To achieve this goal, we leverage 
a state-of-the-art LTP pruning method to enhance the existing 
CAP techniques so that we can train the pruned models from 
scratch without any noticeable loss in accuracy [23]. We refer 
to this pruning method as LT-CAP. The LT-CAP method 
iteratively prunes weights of a model based on their magnitude 
to find a pruned network that can be trained from scratch 
without accuracy loss. As shown in Figure 3, LT-CAP 
incorporates LTP by repeatedly pruning ^% of Y × (Y ∗ I/$)- 
sized blocks of weights with the lowest average magnitude on 
each pruning iteration. The variable p is a user-defined 
parameter that can be varied based on the desired level of 
sparsity. We mention the value of p used in our experiments in 
Section 5. This step is done offline once per GNN model. The 
SlimGNN-enabled pruned model is then mapped to the 
ReRAM crossbars for in-field training. Model pruning 
accelerates GNN training in multiple ways: (a) it reduces the 
number of MVM operations necessary for training. This 
reduces the computation time for the GNN layers; (b) it reduces 
inter-PE communication. If all the weights in one column of a 
weight matrix are pruned, then the outputs are not generated, 
which reduces traffic hotspots. Both (a) and (b) lead to a 
reduction in the pipeline stage latency &$"%&' (Figure 1), which 
results in faster training; (c) The pruned models can be 
implemented using fewer crossbars, which leads to area and 
energy savings; and (d) The use of fewer crossbars also 
provides us the opportunity to duplicate model parameters to 
further parallelize GNN computations. This allows us to 

  
(a) 

 
(b) 

Fig. 4: Weight mapping and Inter-PE communication for (a) Unpruned GNN 
model and (b) LT-CAP enabled GNN model. 
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process multiple input subgraphs simultaneously, thereby 
leading to better performance.  

B. GraphDiet in SlimGNN 
As discussed earlier, it is challenging to train GNNs on large-

scale graphs. Data pruning can address this problem, but it has 
to be implemented during the in-field training phase. We 
address this problem by systematically reducing the number of 
subgraphs very early (within a few training epochs) during the 
in-field GNN training process on a given graph dataset. Prior 
work has shown that graphs used for GNN training contain 
redundant information [27]. In addition to this, recent work has 
proposed a method of finding important inputs for training 
DNNs without any accuracy loss [10]. Based on these findings, 
we hypothesize that all input subgraphs that are generated after 
the large monolithic graph is partitioned are not required for 
successful training. We validate this hypothesis experimentally 
in Section 5.  

Scoring Function for Pruning: In this work, the unimportant 
subgraphs are identified and removed in a one-shot manner very 
early during GNN training. The key idea is to use the loss 
gradient norm of individual subgraphs to identify critical 
subgraphs to retain for the rest of the GNN training process. The 
importance of each subgraph (1!) is determined by a scoring 
function (*Y`IH) described below:   
																									Score(1!) = ∑ |	U+- (1!)∆A-|- 																										(5)  
This scoring function shown in Equation (5) is the summation 

of the expected loss gradient norm for all neural layers, which 
bounds the expected change in loss for an arbitrary subgraph 
caused by removing the subgraph 1!. In other words, subgraphs 
with a small score are expected to have a limited influence on 
learning how to make predictions for the rest of the training 
subgraphs. The above scoring function ranks each subgraph 
based on the magnitude of the product of the gradient with 
respect to the input subgraph 1! (i. e. , 	U+- (1!)) and the change 
in the weights of the GNN layers (∆A-). The parameter 	U+-  is 
the gradient update as mentioned earlier in Equation (4). This 
score indicates the contribution of each subgraph (1!) to the 
change in the overall training loss function. We first start GNN 
training (in-field) using the entire graph (all the subgraphs). We 
compute the score of each subgraph during training on the 
ReRAM-based architecture and then remove 4% of subgraphs 
with the lowest score (*Y`IH) at the H"# epoch very early in the 
training process. Here, 4 is a user-defined parameter 
determined by the tolerable accuracy drop.  

Reasons for effective subgraph pruning: There are multiple 
synergistic reasons why we can prune subgraphs after a small 
number of training epochs with little to no accuracy loss: 1) 
Graphs are relational in nature and there are redundancies in 
terms of nodes with similar features, labels, and (approximate) 
relational structure. This leads to a “less is more” phenomenon; 
2) The predictions for a large fraction of nodes can be made 
easily using the information from a small neighborhood. The 
subgraphs obtained by graph clustering automatically fall under 
easy (can be pruned) and hard cases (cannot be pruned); 3) The 
pruning step based on the scoring function does not require 
absolute scores (i.e., expected change in loss for an arbitrary 

subgraph caused by removing the subgraph 1!). As long as the 
relative ordering of subgraphs is preserved based on the scores, 
the pruning step will be effective. 

Implementation details:  At epoch e, Equation (5) (an MVM 
operation) is executed on the ReRAM crossbars and the result 
(the score) is transferred to the host to remove the unimportant 
subgraphs. This score computation is done only once 
throughout the training process and the timing overhead is 
included in the overall execution time for SlimGNN enabled 
training. After the eth epoch, only subgraphs with high scores 
are used for GNN training. As we show later, this process leads 
to trained GNN models with little to no accuracy loss when 
compared to training with the full graph. In Section 5, we show 
the predictive performance of the GNN model with GraphDiet 
for different values of 4	 ∈ [0,1] (fraction of pruned 
subgraphs). GraphDiet accelerates GNN training by reducing 
the size of the graph dataset. Instead of training on S subgraphs, 
the GNN model will now train on ((1 − 4) × *) subgraphs 
(where 4 < 1). This reduces the pipeline depth as illustrated in 
Figure 1, which automatically speeds up training as there are 
fewer input subgraphs (hence fewer MVMs).  

In summary, to accelerate GNN training on ReRAM-based 
PIM architectures, we leverage GraphDiet to reduce the input 
graph data and incorporate crossbar-aware model pruning to 
reduce the number of MVMs per layer. These two synergistic 
methods achieve high performance and improve the end-to-end 
execution time for training GNNs on the ReRAM-based 
system.  

V. EXPERIMENTAL RESULTS 
In this section, we evaluate the performance of the proposed 

SlimGNN framework with ReRAM-based accelerator using 
various GNN models and graph datasets.  

A. Experimental Setup 
Datasets and GNN models (Workloads): In this work, we 

choose three diverse GNN models, namely: Graph Convolution 
Networks (GCN), Graph Attention Networks (GAT), and 
Graph sample and aggregate (SAGE); and four large-scale 
graph datasets – Reddit, Amazon2M, PPI, and Open Graph 
Benchmarks-Proteins (ogbn_p) for the purpose of evaluation 
[29]. The unique combination of these models and datasets 
constitutes the workloads for the ReRAM-based PIM 
architecture. More details about these GNN models and datasets 
are provided in Table II and Table III. For the sake of simplicity, 
we will refer to each GNN model and dataset workload 
configuration as Ci (as shown in Table III). For instance, C1 
represents the setting where we train GCN with PPI dataset.  

The datasets consist of several thousand/millions of nodes and 
edges and are representative of a wide range of real-world 
applications of predictive graph analytics. All GNN models 
considered in this work utilize mini-batch based training, which 
divides a large graph into multiple smaller sub-graphs. This 
allows us to train GNNs on memory-constrained settings such 
as in a ReRAM-based PIM architecture. This enables pipelined 
training of GNNs as mentioned earlier. All configurations (C1-
C6) are trained for 200 epochs to ensure their convergence and 
to prevent overfitting. We experimented with different learning 
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rates (lr), and choose the one that works best for each 
configuration. We tune the hyperparameters (lr, b_size and S) 
for each configuration to achieve the best possible accuracy. 
For graph partitioning, we employ METIS, which is a fast and 
scalable graph clustering tool [25][37]. The graph clustering 
algorithm only takes a small portion of preprocessing time, and 
allows us to train on large datasets. In phase 2 (in Fig R3), the 
graph partitions (subgraphs) are loaded from main-memory 
onto the ReRAM architecture for the in-field training process. 

SlimGNN Configuration: As shown in Figure 3, there are 
two stages in the SlimGNN framework. The first stage 
involving LT-CAP (as shown in Figure 3) is executed on the 
preprocessing hardware (as shown in Table I) to generate the 
pruned GNN model. Then, the LT-CAP enabled pruned GNN 
model (with weights reset to their untrained values) is mapped 
to the ReRAM-based 3D PIM architecture (described in Table 
I) for in-field training with different graph datasets as shown in 
Figure 3. The graph pruning (GraphDiet) is done during the in-
field training based on the importance of each input subgraph. 
The importance score for each input subgraph is determined at 
the 5th epoch of training on the ReRAM-based PIM 
architecture. Our experiments show pruning earlier than the 5th 
epoch leads to accuracy loss. This happens as the model does 
not get sufficient opportunity to explore and score the input 
subgraphs reliably before five epochs. The accuracy loss was 
negligible when the pruning was done earliest at the 5th epoch 
and this behavior was consistent for different datasets. 
Subsequently, only the identified critical subgraphs are used for 
the rest of the in-field training process. For all in-field training, 

we compare the unpruned GNN model with its pruned 
counterpart running on the same ReRAM-based architecture as 
tabulated in Table I. This provides a fair comparison between 
the pruned and the unpruned models for each GNN workload 
configuration. 

ReRAM-based Architecture: The architecture considered in 
this work consists of 36 ReRAM-based processing elements 
(PEs) distributed over four planar tiers connected using through 
silicon via (TSV)-based vertical links. Table I summarizes of 
the specifications of the ReRAM-based PIM architecture used 
in this work. In this work, the GNN model weights are stored 
on the ReRAM crossbar array using 16-bit fixed point 
precision. We evaluate the overall system performance of the 
SlimGNN framework using the NeuroSim v2.1 simulator [30]. 
NeuroSim models the performance of ReRAM-based PIM 
accelerators.  We used NeuroSim to obtain the model prediction 
accuracy and determine the area and energy of the ReRAM 
architecture. The NeuroSim software runs on a GPU and CPU 
as described in Table I.  

GNN training generates an enormous volume of traffic, which 
can bottleneck performance [6]. In this architecture, we utilize 
a multicast-enabled 3D mesh network on chip (NoC) as the 
interconnection backbone for communicating between the 
processing elements during GNN training [6]. The 3D ReRAM-
based architecture stacks planar tiers that are connected to each 
other using through-silicon-via (TSV)-based vertical links. The 
vertical links act as logical shortcuts and result in more efficient 
communication, which is crucial for GNN training. The 3D 
mesh NoC architecture also efficiently handles the increased 
communication demand due to duplicated nodes in subgraphs 
and reduces the overall latency. In addition to this, we adopt an 
optimized mapping strategy that maps GNN layers to ReRAM 
tiles to further improve the communication latency [6]. The 
NoC performance has been evaluated using Garnet, and 
NeuroSim was used to calculate the injection rate needed for 
the cycle-accurate NoC simulator [31].  

Training in the presence of non-idealities: To prevent 
accuracy loss due to low precision, we incorporate stochastic 
rounding [32]. Stochastic rounding enables high accuracy even 
at lower precision settings [33]. The implementation of the 
stochastic rounding unit introduces less than 1% area and 
energy overhead. In addition, ReRAMs suffer from multiple 
non-ideal effects such as noise and faults. However, recent 
work has shown that these issues can be addressed using simple 
techniques such as error-correction or weight clipping [34]. 
Hence, we can still train GNNs despite these non-ideal effects. 

 
Fig. 5: Accuracy vs sparsity for LT-CAP pruning technique on the 
Amazon2M dataset in C5. 
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Unpruned LT-CAPTable I. Hardware Specifications 

Preprocessing 
Hardware: 

OS: Linux CentOS 
GPU: NVIDIA V100, 32GB 

CPU: Intel Xeon Gold 5222 @ 3.8GHz, 16 
cores, 32K L1 cache and 1024K L2 cache.  

In-field Training 
Hardware: 

ReRAM-based 3D PIM architecture:  4 planar 
tiers, 9 PEs per tier, 4 ReRAM tiles per PE. 

ReRAM Tile:  
96-ADCs (8-bits), 12×128×8 DACs (1-bit), 96 
crossbars, 128×128 crossbar size, 10MHz, 2-

bit/cell resolution, 0.34W, 0.38 mm2 [7] 
 

Table II. Graph Datasets Statistics 

Datasets # Nodes #Edges FLR 

PPI 56,944 818,716 0.41 

Reddit 232,965 11,606,919 14.68 

Amazon2M 2,449,029 61,859,140 2.13 
Ogbn-proteins 

(ogbn-p) 132,534 39,561,252 4 

 
Table III. Training Workload Configuration (lr: learning rate, b_size: batch size, 

S: number of graph partitions) 

Datasets Model Wrkl. 
Config.  Hyperparameters 

PPI GCN C1  lr=0.01, b_size=2, S=250 
GAT C2 lr=0.005, b_size=2, S=250 

Reddit GCN C3 lr=0.01, b_size=10, S=1,500 
SAGE C4 lr=0.01, b_size=256, S=1,500 

Amazon2M GCN C5 lr=0.01, b_size=20, S=10,000 
Ogbn_p SAGE C6 lr=0.005, b_size=1, S=100 
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However, for this work, we will assume ideal ReRAM behavior 
to demonstrate the effectiveness of the proposed model and 
graph pruning methodology.  

B. Training Performance of SlimGNN 
In this subsection, we present a detailed performance 

evaluation of the SlimGNN framework used for GNN training 
on the ReRAM-based 3D PIM architecture.   

Results for model pruning: First, we present the accuracy 
and sparsity achieved by the model pruning technique (LT-
CAP) and compare it with the unpruned counterpart [6]. Figure 
5 shows the effectiveness of the LT-CAP technique on the C5 
configuration (GCN with Amazon2M dataset) as an example 
compared to its unpruned version at different levels of sparsity. 
In this case, we choose a pruning percentage (^) of 10% in 
every iteration, i.e., we prune 10% of the weights remaining in 
each iteration. The value of ^ is a hyperparameter, which can 
be modified based on the required level of sparsity. As shown 
in Figure 5, as the degree of sparsity increases, the model 
accuracy decreases. Here, we choose the maximally pruned 
model which can be trained from scratch and achieves less than 
0.5% accuracy loss compared to its unpruned counterpart. 
Given this constraint, the LT-CAP technique achieves up to 
90.2% sparsity for C5. Similar accuracy trends were also 
observed for other configurations.  

Next, Figure 6(a) and Figure 6(b) present the model accuracy 
and sparsity for the LT-CAP model for configurations C1 - C6 
(from Table III). As shown in Figure 6(a) and Figure 6(b), under 
the proposed accuracy constraint (0.5% accuracy loss), LT-
CAP can achieve up to 90%, 75%, 92.3%, 91.3%, 90.2%, and 
72.6% sparsity for configurations C1-C6, respectively. Loading 
the LT-CAP pruned GNN models on the ReRAM-based PIM 
architecture enables us to power-gate or re-use the available 
crossbars as shown in Figure 4. This results in reduction in 
crossbar area and energy consumption. Figure 6(c) 
demonstrates the area and energy savings enabled by LT-CAP 
at iso-performance. The savings are compared to the unpruned 
model mapped on the ReRAM crossbars. For a fair comparison 
with the unpruned model, we consider an iso-performance 
scenario (equal training time) to estimate the hardware savings 
achieved by the LT-CAP enabled model. As seen from Figure 
6(c), the proposed LT-CAP based model requires 90% less area 
on average when compared to the unpruned model. 
Commensurate with this, power gating the unused crossbars 
reduces energy consumption by 89.6% on average as well. This 
is because, the pruning technique incorporated in LT-CAP 

removes all weights that could have otherwise been stored on 
the crossbar array. We do not require the peripherals (such as 
ADC, DAC, S+A, etc.) associated with these empty crossbars 
either, resulting in huge area and energy savings. Hence, LT-
CAP can achieve high sparsity while being extremely area and 
energy efficient.  

Results for graph pruning (GraphDiet): While training the 
LT-CAP model, we incorporate GraphDiet introduced in 
Section 4. Figure 7 demonstrates the effect of GraphDiet on the 
accuracy of the LT-CAP GNN models for configurations C1, 
C3 and C5, respectively. Note that similar accuracy trends were 
also observed for other configurations. To determine how much 
of the input graph can be pruned, we vary the amount of graph 
pruning (4,	the percentage of pruned subgraphs) from 10% to 
90%. For all configurations, we observed that the GraphDiet 
decision made at the 5th epoch is sufficient to preserve the GNN 
model accuracy. As seen from Figure 7, as we reduce the 
number of input subgraphs used in training, the model accuracy 
starts degrading. Note that, we allow an additional 0.5% drop 
in accuracy when implementing GraphDiet on top of the LT-
CAP based pruned GNN model. Overall, we allow a maximum 
of 1% drop in model accuracy when compared to the Unpruned 
GNN model with no GraphDiet.  

The amount of achievable graph pruning through GraphDiet 
within this limit is governed by the difficulty of the prediction 
task and the amount of redundant information present in a given 
graph dataset. One of the key properties that characterizes this 
behavior is the number of features associated with each vertex 
(node) of the graph. Graphs with high number of features have 
more discriminative and redundant information with respect to 
the prediction task. However, this is not the only property, 
which determines the possible amount of allowable graph 
pruning using GraphDiet.  

Table II presents a parameter “Feature to Label Ratio” (FLR), 
which captures the amount of available information to 
approximately characterize the difficulty of node classification 
task for any given graph dataset. A dataset with high FLR has 
more features to learn from, but also has relatively lower 
number of class labels resulting in a simpler classification task. 
The dataset with a low value of FLR has relatively less 
redundant information to learn from. Hence, it requires higher 
number of input subgraphs to achieve high accuracy. As seen 
from Figure 7, we can remove 60% of the input subgraphs from 
training for the Reddit dataset in configuration C3 given the 
constraint of less than 1% overall accuracy drop. Under this 

   
(a)     (b)                                             (c)                          

    Fig. 6: (a) Accuracy, (b) Sparsity of GNN model pruned using LT-CAP, and (c) Area and Energy savings enabled by LT-CAP based pruning for C1-C6 
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same constraint, Amazon2M and PPI in C5 and C1 respectively 
achieves reduction in the number of input subgraphs by 40% 
and 30% respectively. These numbers are consistent with the 
FLR for these datasets. Reddit has the highest FLR of 14.68, 
which is ~7 ×, ~35 ×, and ~3.7 × larger than the FLR values 
for Amazon2M, PPI, and ogbn_p respectively. Thus, Reddit has 
the highest amount of redundant information and thus, a 
relatively larger portion of its graph can be removed from the 
training process. PPI has the lowest FLR value of 0.41 and this 
makes it very hard to achieve high accuracy without large 
number of input subgraphs. Thus, for PPI, the amount of 
achievable subgraph pruning incorporating GraphDiet is 
significantly lower. However, for all six configurations (C1-
C6), we observed that we can still safely remove a large number 
of input subgraphs in the early part of the training process. This 
enables improvement in the performance of the SlimGNN-
enabled ReRAM-based architecture. Overall, we can prune 
90%, 75%, 92.3%, 91.3%, 91%, and 72.6% of the weights and 
30%, 30%, 60%, 60%, 40%, and 40% of the input sub-graphs 
for all six configurations (C1-C6), respectively. Next, we 
present the overall performance of the ReRAM-based PIM 
architecture under consideration.  

Granularity of graph partitioning for GraphDiet: In this 
work, we aim to determine an appropriate number of graph 
partitions or input subgraphs (S) that is compatible with the 
SlimGNN framework. It is intuitive that the identification of 
unimportant subgraphs becomes more difficult in scenarios 
where the subgraphs are relatively bigger. Given an input graph, 
we can partition it into S subgraphs using the METIS 
partitioning tool [9] [25]. A large S implies a larger number of 
subgraph partitions, but each subgraph is small and has less 
information; hence, it is easier to prune. Smaller S implies 
fewer partitions, but each partition (input subgraph) is large and 
contains more information; hence it is difficult to prune. 
However, note that, extremely large values of S are not 
desirable as it requires many crossbars to store each sub-graph, 
which may not be available. Similarly, a very small S is also 
undesirable as it unnecessarily increases the execution time as 
the subgraphs are too many in number.  

In Figure 8(a) and Figure 8(b), we show the accuracy of 
GraphDiet (with pruning percentages of 60% and 40% 
respectively) compared to the baseline GNN training for 
different number of partitions. Here, we refer to the baseline as 
the corresponding unpruned GNN model trained using all 
subgraphs. As an illustration, we consider the Reddit and 
Amazon2M datasets trained on a Graph Convolution Network 
as in configurations C3 and C5, respectively. As expected, 
Figure 8 shows that as the number of partitions increases, we 

can prune more as there are many subgraphs with less 
information; hence, these subgraphs are not needed. Moreover, 
the GCN trained using the GraphDiet technique at large S 
achieves comparable accuracy with the baseline. In contrast, 
when the number of subgraphs is less, we are not able to prune 
many subgraphs and there is an accuracy drop. This happens as 
large sub-graphs contain useful information and pruning them 
results in poor training accuracy. In this work, we choose the 
number of partitions (S) to be 100, 250, 1500, and 10,000 for 
ogbn-proteins, PPI, Reddit, and Amazon2M datasets, 
respectively, as our analysis shows that these numbers provide 
a good trade-off between execution time and storage 
requirements.  

C. Overall Performance Evaluation of SlimGNN 
The overall execution time of GNN training on the ReRAM-

based architecture is governed by the delay of each pipeline 
stage and the overall end-to-end pipeline depth. As each GNN 
layer contributes to one stage of the pipeline, the delays 
associated with GNN layers’ computation (MVM operations), 
and inter-PE communication determine the overall stage delay 

 
(a) 

 
(b) 

Fig. 8: Performance of GraphDiet for (a) Reddit and (b) Amazon2M 
using different number of graph partitions (subgraphs). As the 

number of partitions increase on the x-axis, the size of the subgraphs 
reduces. 
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                                              (a)                                                                               (b)                                                                                (c) 
Fig. 7: Accuracy of GraphDiet based data pruning on LT-CAP based Pruned models for (a) C1, (b) C3 and (c) C5 
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(&$"%&'). In this sub-section, we first evaluate the impact of LT-
CAP on the computation and communication latencies of GNN 
training implemented on the ReRAM-based PIM architecture. 
Next, we demonstrate the effects of LT-CAP and GraphDiet 
(which together make up the SlimGNN framework) on the 
overall execution time. Finally, we present the overall 
performance evaluation and energy consumption of the 
SlimGNN-enabled ReRAM-based PIM architecture. We 
assume an iso-area scenario for this analysis, i.e., the number of 
ReRAM crossbars available is the same for all the cases.  

Moreover, we compare the overall performance of SlimGNN 
with respect to a recently proposed unified GNN sparsification 
method (UGS) [24]. UGS jointly prunes GNN weights and 
graph adjacency matrices using trainable masks to reduce the 
number of MVM operations associated with GNN training [24]. 
However, the graph pruning in UGS only removes the edges 
from the graph adjacency matrix and thus the overall size of the 
input (i.e., the number of input subgraphs) remains unchanged. 
Moreover, the weight pruning method proposed in UGS is 
crossbar-unaware. UGS does not guarantee pruning all weights 
belonging to the same row/column/crossbar. Hence, it does not 
reduce crossbar requirement for ReRAM-based architectures. 
We show later via experiments that our proposed SlimGNN 
method outperforms UGS by a significant margin for training 
GNNs.  

Effect of model pruning: Figure 9 shows the worst-case 
computation and communication latencies when we train the 
unpruned and LT-CAP pruned GNN models on ReRAM-based 
architectures. Here, all latencies are normalized with respect to 
the communication delay of the unpruned model. Pruning leads 
to smaller models, which can be implemented on fewer 
crossbars (compared to the unpruned model). Hence, in an iso-
area setting, it is possible to accelerate GNN computation 
further by duplicating the weights on multiple crossbars. Each 
crossbar would then process a different input subgraph in 
parallel. For instance, by duplicating the weights on two sets of 
crossbars, we can reduce the execution time by half and so on. 
The number of times the weights can be duplicated depends on 
the number of ReRAM crossbars available in the overall 
architecture. The unpruned model cannot achieve a similar level 
of parallelism as these models are large. Hence, the architecture 
will have fewer crossbars available to replicate its weights. As 
shown in Figure 6(c), pruning using the LT-CAP method results 
in high crossbar savings (over 90% fewer crossbars on average 

compared to the unpruned case). As a result, we can speed-up 
all the layers using the available ReRAM crossbars. The 
available crossbars can now be used to replicate the unpruned 
weights to reduce the computation delay. Hence, LT-CAP 
results in an average improvement of 39% in the computation 
latency as shown in Figure 9. This results in faster GNN 
training.  

However, inter-PE communication also has a significant 
influence on the execution time of GNN training [6]. The data 
traffic in GNN training is generated from the MVM operations 
as discussed earlier in Section 3. Pruning reduces the amount of 
data being exchanged, thus alleviating the communication 
bottleneck as shown in Figure 4(b). Hence, if many 
rows/columns are pruned, we can reduce the amount of 
communication significantly. However, partially pruned 
rows/columns may still result in non-zero outputs that must be 
communicated. LT-CAP results in multiple rows/columns of 
the full weight matrix becoming zero, which reduces the overall 
number of useful messages generated from the weight matrix of 
any given layer. As shown in Figure 9, this results in a reduction 
of the communication delay varying between 14% to 54% 
depending on the configurations (C1-C6). The improvement is 
much higher for Reddit (in configurations C3 and C4) as it has 
the largest number of features (~75 ×, 12 ×, and 6 × more 
features than ogbn-proteins, PPI, and Amazon2M respectively) 
amongst all the datasets under consideration here. A larger 
number of features results in more redundant information being 
exchanged in each layer, i.e., more communication. LT-CAP 
helps in reducing redundant communication. Thus, we see 
relatively larger improvements for Reddit after pruning.  

Overall, the pipeline stage delay is bottlenecked by the 
slowest among the computation and the inter-PE 
communication stage delays. From Figure 9, we can see that the 
execution time of GNN training for configurations are 
predominantly bottlenecked by communication. However, LT-
CAP accelerates both computation and inter-PE 
communication significantly when compared to the unpruned 
case resulting in lower pipeline stage delay &$"%&'.  

Performance Evaluation with LT-CAP and GraphDiet: 
The second factor that governs the overall execution time of 
GNN training on ReRAM-based architectures is the end-to-end 
pipeline depth. The depth of the pipeline is determined by the 
number of input subgraphs; this number can be reduced 
significantly due to GraphDiet on the ReRAM-based 

 
Fig. 9: Normalized computation (comp.) and communication (comm.) delays for the unpruned and pruned (using LT-CAP) models for all configurations (C1-C6). 
All computation and comunication delays of LT-CAP are normalized with the unpruned model’s computation and communication delays respectively. 
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architecture. As shown in Figure 7, we can reduce up to 30%, 
60%, and 40% of the input subgraphs for configurations C1, 
C3, and C5 respectively. Figure 10(a) and Figure 10(b) 
demonstrates the normalized execution time and energy 
consumption respectively for; the unpruned case, UGS, an 
existing crossbar-aware column-pruning method referred as 
Col-P, the standalone LT-CAP method without GraphDiet (LT-
CAP), and the SlimGNN framework (LT-CAP + GraphDiet) 
for C1-C6.  

UGS is a crossbar-unaware pruning method. As a result, it 
cannot prune entire 128 × 16 block of weights. Hence, it is 
unable to improve the computation time (duplication of blocks 
of weights is not possible) and inter-PE communication time as 
shown in Figure 4. Thus, in an iso-area setting, UGS cannot 
improve the overall execution time of GNN training in a 
ReRAM-based PIM architecture. Furthermore, the Col-P 
method achieves similar levels of sparsity as other methods 
(such as [20] and [22]); hence, we choose Col-P as a 
representative crossbar-aware pruning technique to evaluate the 
effectiveness of LT-CAP.  

As shown in Figure 10(a), the LT-CAP based pruned model 
is able to reduce the execution time by 27.1%, 21.4%, 50%, 
38.6%, 25%, and 25% for configurations C1-C6 respectively 
compared to their unpruned versions. This improvement is 
determined by the reduction in pipeline stage delay for each 
configuration. Enabling GraphDiet on the pruned model results 
in a further execution time reduction of 55%, 33%, 76%, 71%, 
53.3%, and 53% for configurations C1-C6 respectively. The 
performance improvement achieved on top of the LT-CAP 
based pruned model is due to the reduction in end-to-end 
pipeline depth.  

Overall, as shown in Figure 10(a), the SlimGNN-enabled 
training improves execution time by ~57% on average 
compared to the unpruned model running on an iso-area 
ReRAM-based PIM architecture. Figure 10(b) depicts the 
energy consumption (normalized with respect to unpruned) for 
GNN training, respectively, for Unpruned, UGS, Col-P, LT-
CAP, and SlimGNN. Figure 10(b) shows that the SlimGNN-
enabled model reduces energy consumption by 62%, 54.21%, 
95%, 87.5%, 68.8%, and 68% on average for C1-C6, compared 
to the Unpruned, UGS, and LT-CAP models running on the 
same ReRAM-based architecture, respectively. Reddit dataset 
in configurations C3 and C4 has the highest reduction in energy 
and execution time as it achieves high sparsity and has 

significantly more node-level features compared to other 
datasets.  

Also, as shown in Figure 10(b), our proposed standalone LT-
CAP method and the SlimGNN framework (LT-CAP + 
GraphDiet) consumes 27.16% and 46.55% less energy on 
average compared to the Col-P method, respectively. This 
happens because Col-P prunes only individual rows and/or 
columns of the crossbar which leads to only a marginal energy 
reduction as rows/ columns/portions of crossbars consume 
negligible energy compared to the crossbar’s peripherals such 
the Analog-to-Digital Converter (ADC). Unlike existing Col-P 
methods, LT-CAP prunes entire blocks of weights, which 
would have otherwise been mapped to an entire crossbar. This 
enables us to power gate or turn ‘off’ both the crossbar and its 
associated peripherals, which results in higher energy savings.  

In general, the reduced energy consumption results from the 
improved execution time and reduced crossbar requirements 
enabled by SlimGNN in all configurations. Additionally, 
SlimGNN-enabled model on the ReRAM-based architecture is 
~12.8 × faster in terms of execution time compared to a Nvidia 
V100 GPU on an average for the GNN models considered in 
this work. This happens as ReRAMs are significantly faster 
than GPUs for large scale MVM operations [7] [11]. Overall, 
SlimGNN can accelerate training by up to 4.5 × while 
consuming up to 6.6 × less energy than the unpruned 
implementation (Unpruned) on an iso-area ReRAM-based PIM 
architecture.  

Lifetime of SlimGNN-enabled ReRAM Architectures: It is 
well known that ReRAM crossbar arrays suffer from low write 
endurance [35]. Prior work has proposed Low-rank Training 
(LRT) and optimized weight update techniques to address the 
low-write endurance challenge of ReRAM-based architectures 
and prolong their overall lifetime [35] [36].  Incorporating 
SlimGNN improves the endurance of the ReRAM-based 
architecture further. As GraphDiet reduces the number of input 
subgraphs, it also helps to reduce the number of weight updates 
occurring during training. ReRAM-write endurance has been 
shown to be between 104 − 10)* writes [35] [36]. Hence, for 
our analysis we consider a worst-case scenario of 104 writes. 
By incorporating LRT, the write endurance is enhanced by a 
factor of ~300 [35]. As an example, to train on the Reddit 
dataset (in C3 and C4) for 200 epochs, we need ~12k weight 
updates for the SlimGNN-enabled model. Thus, by 
incorporating SlimGNN and LRT, we can train the model for 

    
   (a)       (b) 
Fig. 10: Normalized (a) execution time and (b) energy consumption for the unpruned, UGS, Col-P, LT-CAP and SlimGNN-enabled GNN (normalized with 
respect to the execution of the unpruned model on the ReRAM-based PIM architecture). 
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up to 22,000 times on the proposed ReRAM-based system. 
Similar trends were also observed for the other two datasets. 
Thus, SlimGNN-enabled ReRAM based architectures have 
adequately high lifetime.  

D. Transferability of Pruned Model to other Datasets 
In this work, we also demonstrate that the pruned model 

obtained using one dataset in the pre-processing phase can be 
used to train in-field with another dataset with negligible 
accuracy loss. Figure 11 shows the result of this experiment. In 
Figure 11, the model is pre-processed with a ‘source’ dataset 
and then the pruned model is used to train on a ‘target’ dataset. 
The combinations are referred as Ci-Cj in Figure 11, where Ci 
represents the configuration for pre-processing (with ‘source’ 
dataset) and Cj represents the configuration used for in-field 
training (with ‘target’ dataset). Both Ci and Cj are elaborated in 
Table III of the manuscript. For the sake of brevity, in Figure 
11 we show the results of training the offline pruned model 
generated using the Reddit dataset as the source (configurations 
C3 and C4) on the PPI, Amazon2M and ogbn_proteins datasets 
as targets (configurations C1, C5 and C6) for in-field training. 
Similarly, we have also used a pruned model generated using 
the Amazon2M dataset as the source (configuration C5) to train 
the PPI and Reddit datasets (in C1 and C3) as shown in Figure 
11.  As shown in Figure 11, the pruned models are transferrable 
across datasets. For example, the crossbar-aware pruned (LT-
CAP) GCN model generated with the Reddit dataset in the pre-
processing step can be used for in-field training with the 
Amazon2M dataset (referred as C3-C5 in Figure 11) without 
noticeable accuracy loss.  

The transferability of Lottery-ticket pruned (LTP) models 
across datasets happens because: (a) model behavior is often 
transferable between datasets. This idea is similar to transfer 
learning, where a model trained on one dataset can be reused 
with slight changes for another dataset. The LTP pruned 
networks also exhibit this transferability property [37]; (b) The 
transferred tickets act as a regularizer and prevent overfitting 
while training [37]; and (c) winning tickets learn generic 
inductive biases which improve training. Hence, LT-CAP-
based models (which are based on LTP) can also be used with 
other datasets. Overall, we observe less than 1% accuracy drop 
on average for the pruned model during in-field training 
compared to their respective unpruned versions for all source-
target dataset combinations considered in this work. This 
further demonstrates that the offline pruned model generated 

using one dataset can be transferred to another dataset for in-
field training with negligible accuracy drop compared to their 
unpruned versions.   

VI. CONCLUSION 

ReRAMs enable the design of high-performance and energy-
efficient architectures for accelerating GNN training. The end-
to-end execution time for GNN training on ReRAM-based PIM 
architectures is determined by the number of subgraphs (size of 
input workload) and the model parameters. In this work, we 
propose incorporating GraphDiet on ReRAM-based PIM 
architectures to reduce the number of input subgraphs without 
sacrificing the model accuracy. To compliment GraphDiet, we 
leverage a block-based GNN model pruning, which helps to 
further improve the performance and energy efficiency. 
GraphDiet and GNN model pruning together constitute the 
SlimGNN framework, which enables high performance GNN 
training on ReRAM-based PIM architectures. Overall, 
SlimGNN accelerates training by up to 4.5 ×  while using 6.6 × 
less energy when compared to its unpruned counterpart on 
ReRAM-based 3D PIM platforms.  
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