
1

Chukwufumnanya Ogbogu, Student Member, IEEE, Aqeeb Iqbal Arka, Graduate Student Member, IEEE, Lukas
Pfromm, Student Member, IEEE, Biresh Kumar Joardar, Member, IEEE, Janardhan Rao Doppa, Senior Member,

IEEE, Krishnendu Chakrabarty, Fellow, IEEE, and Partha Pratim Pande, Fellow, IEEE

Abstract— Graph Neural Networks (GNNs) are used for
predictive analytics on graph-structured data, and they have
become very popular in diverse real-world applications. Resistive
random-access memory (ReRAM)-based PIM architectures can
accelerate GNN training. However, GNN training on ReRAM-
based architectures is both compute- and data-intensive in nature.
In this work, we propose a framework called SlimGNN that
synergistically combines both graph and model pruning to
accelerate GNN training on ReRAM-based architectures. The
proposed framework reduces the amount of redundant
information in both the GNN model and input graph(s) to
streamline the overall training process. This enables fast and
energy-efficient GNN training on ReRAM-based architectures.
Experimental results demonstrate that using this framework, we
can accelerate GNN training by up to !. # × while using %. % × less
energy compared to the unpruned counterparts.

Index Terms—Graph Neural Network, ReRAM, PIM, Data
Compression, Pruning

I. INTRODUCTION
RAPH neural networks (GNNs) have become
increasingly popular in diverse real-world industrial
and scientific applications [1] [2]. GNNs enable

predictive analytics over graph data through iterative feature
aggregation over neighborhood vertices. GNN computation
occurs in two stages: 1) The vertex feature update stage
involves matrix multiplication of trainable weights and vertex-
level feature vectors similar to conventional deep neural
networks (DNNs), and 2) The feature aggregation stage
involves accumulating feature information from neighborhood
vertices [3]. Hence, GNN training exhibits characteristics of
both DNN training and graph computation simultaneously.

Hence, it is both compute- and data-intensive in nature. The
high amount of data movement required by GNN computation
poses a challenge to conventional von-Neuman architectures
(such as CPUs and GPUs) as they have limited memory
bandwidth [4]. Hence, there is a need for new hardware
architectures that are suitable for GNN training/inference using
massive real-world graphs.

Training machine learning (ML) models on the edge (on-
chip or on embedded systems) has become necessary due to
data privacy concerns. Moreover, several applications such as
AR/VR require GNN training on the edge [5]. Emerging
Resistive random-access memory (ReRAM)-based
architectures have been proposed as promising candidates for
accelerating GNN training and inferencing in an on-chip
environment [6]. The crossbar structure of ReRAMs makes
them well-suited for performing matrix-vector multiplication
(MVM) operations, which is the predominant computation
kernel in both GNN training and inferencing. Hence, a PIM
architecture consisting of multiple ReRAM-based processing
elements (PEs) is suitable for large-scale GNN training.

It is well known that ReRAM writes are slow. Hence, to
reduce the number of writes, a pipelined training strategy is
employed [7] [8]. Figure 1 shows an illustration of the pipelined
GNN training. The training occurs in a pipelined manner where
all layers of the GNN are computed in parallel to improve the
overall system throughput. Note that, to enable pipelined
training, a large monolithic graph is first divided into multiple
smaller subgraphs using graph partitioning [9]. Each subgraph
is sent sequentially as input to the pipeline [6]. Figure 1(a)

Accelerating Graph Neural Network Training on
ReRAM-based PIM Architectures via Graph and Model

Pruning

G

Fig. 1: (a) Pipeline stages during GNN training; each stage is a GNN layer.
(b) Pipelined execution of a GNN with ! input subgraphs.

This work was supported, in part by the US National Science Foundation
(NSF) under grants CNS-1955353, and CNS-1955196. Biresh Kumar Joardar
was also supported in part by NSF Grant # 2030859 to the Computing Research
Association for the CIFellows Project.

Chukwufumnanya Ogbogu, Aqeeb Iqbal Arka, Janardhan Rao Doppa, and
Partha Pratim Pande are with Washington State University, Pullman, WA,
99164. Email: {c.ogbogu, aqeebiqbal.arka, jana.doppa, pande}@wsu.edu .

Lukas Pfromm is with Oregon State University, Corvallis, OR, 97331.
Email: lukaspfromm@gmail.com.

Biresh Kumar Joardar is with University of Houston, Houston TX, 77004.
Email: bjoardar@Central.UH.EDU.

Krishnendu Chakrabarty is with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC, 27708. Email: krish@duke.edu

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

2

shows the end-to-end pipeline for training a !-layer deep GNN
on one input subgraph. Here, "#! and $#! denote the forward
and backward phase computation of the %"# layer of GNN
training, respectively. The worst-case delay associated with a
pipeline stage is denoted as &$"%&'. As shown in Figure 1(b), the
end-to-end pipeline depth is ((+ * − 1), where ((= 2!)	 is
the total number of pipeline stages, * is the total number of
input subgraphs, and 1(is the 2"# input subgraph.

During GNN training, the overall execution consists of
computation (i.e., MVM operations) on PEs and inter-PE
communication (the data of one layer must be sent to the next
layer). Each computation phase also has one stage for feature
aggregation over graph edges (344.) associated with it. The
overall execution time is determined by the end-to-end pipeline
depth ((+ * − 1) and the delay of each pipeline stage (&$"%&').
The overall execution time is given by: ((+ * − 1) × &$"%&'.
To improve the execution time, we must improve the pipeline
depth and/or the pipeline stage delay. The depth of the pipeline
is governed by the input dataset, i.e., number of subgraphs (*)
used for training, while the pipeline stage latency is governed
by the amount of computation and communication in a GNN
layer. In this work, we improve the performance of ReRAM-
based systems for GNN training by reducing both the pipeline
depth and the stage delay.

The end-to-end pipeline depth can be shortened by reducing
the number of input subgraphs needed for GNN training.
Recent work has shown that, it is possible to prune the input
data for training convolutional neural networks without
sacrificing accuracy [10]. We generalize this approach to prune
subgraphs (thereby reducing pipeline depth) to improve the
performance of GNN training on ReRAM-based PIM
architectures. We identify the necessary subgraphs for GNN
training very early in the training process similar to [10]. The
key insight behind pruning the sub-graphs is to exploit the
redundancies in terms of nodes with similar features, labels, and
neighborhood; and the fact that some node classification
examples are easy to learn. These input subgraphs are identified
very early in training and discarded without sacrificing
accuracy. This reduces the number of input subgraphs *,
resulting in reduced pipeline depth, which leads to lower
execution time. We refer to this subgraph pruning methodology
as GraphDiet, which enables the GNN to train using a small
fraction of the input graph.

The performance of the ReRAM-based PIM architecture
can be further enhanced by reducing the pipeline stage delay.
Model weight pruning is a popular technique for reducing the
number of parameters and redundant computations in a GNN
by making some of the weights zero. These pruned weights
need not be stored on chip as an MVM operation involving a
zero will always result in a zero; hence, such computation is
unnecessary [11]. Thus, model weight pruning helps to reduce
redundant MVM operations. Also, weight pruning results in the
reduction of on-chip traffic, which in turn reduces the inter-PE
communication delay as well. Thus, weight pruning can help in
reducing the pipeline stage delay (the parameter &$"%&')
mentioned above (Figure 1), which ultimately results in lower

execution time.
In this work, we propose the incorporation of GraphDiet and

model pruning methods to reduce both the overall pipeline
depth and pipeline stage delay for executing GNN training on
ReRAM-based PIM architectures. We refer to the synergistic
combination of these two techniques as the SlimGNN
framework. This framework produces a lightweight GNN
model, which needs fewer input subgraphs compared to the
unpruned graph to achieve high accuracy. We train the
SlimGNN-enabled model on an ReRAM-based PIM
architecture. SlimGNN achieves high performance while being
energy- and storage efficient. The key contributions of this
work are summarized as follows:

● We leverage GraphDiet and GNN model pruning as
two synergistic methods to achieve high performance
and energy efficient training of GNNs on an ReRAM-
based PIM architecture without sacrificing accuracy.

● Using GraphDiet, we reduce the number of input
subgraphs required for GNN training very early.
Hence, it significantly reduces the end-to-end pipeline
depth during GNN training on ReRAM-based PIM
architectures.

● Complimentary to GraphDiet, by pruning the GNN
model weights, we achieve significant hardware area
and energy savings while improving the pipeline stage
delay associated with GNN training on ReRAM
architectures.

● Experimental results show that the SlimGNN-enabled
model trained on the ReRAM-based PIM architecture
outperforms state-of-the-art ReRAM-based
counterparts by up to 4.5 × in terms of the execution
time for training GNNs.

To the best of our knowledge, this is the first work that
incorporates GraphDiet to design a high-performance and
energy-efficient ReRAM-based PIM system for scalable
training of GNNs on massive graphs. The rest of the paper is
organized as follows. Section 2 describes relevant prior work.
In Section 3, we discuss principles of GNN computations on
ReRAM-based architectures. In Section 4, we present the
SlimGNN framework, the effect of pruning on the pipeline
stage delay and the impact of GraphDiet on pipeline depth and
GNN training on the proposed architecture. Section 5 presents
experimental results. Finally, Section 6 concludes the paper by
summarizing our key findings.

II. RELATED PRIOR WORK
In this section, we discuss relevant prior work, focusing on

ReRAM-based architectures, as well as data pruning and model
pruning for neural networks, especially GNNs.

ReRAM-based architectures: ReRAMs enable processing-
in-memory, which allows for fast and efficient in-situ MVM
[11]. Both DNN and graph computation rely heavily on such
MVM operations. This makes ReRAM-based architectures
excellent candidates for DNN training/inferencing and graph
analytics [7] [8] [12] [13] [14] [15]. GNNs exhibit
characteristics of both DNNs and graph computation. Hence,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

3

they also benefit from ReRAM-based systems [16]. However,
on-chip communication is a major performance bottleneck for
GNN training on ReRAM-based PIM architectures. The
communication bottleneck can be addressed by using a 3D
network-on-chip (NoC) [6]. However, all these accelerators use
an unpruned neural network model, which leads to unnecessary
high area and power overheads.

Model and Data Pruning in Neural Networks: Model
pruning for neural networks helps reduce redundant
computations during DNN computation [17] [18] [19]. Several
crossbar-aware model pruning (CAP) techniques have also
been proposed to exploit the ReRAM crossbar structure while
pruning to reduce area and improve energy efficiency without
compromising accuracy [20] [21] [22]. However, all these
methods prune pre-trained DNN models for inferencing
purposes, hence they are not suited for training, which is the
focus of this work. Moreover, these CAP methods prune
weights row/column-wise only, which leads to only marginal
energy and area savings as we elaborate later. Recently, an
iterative model pruning method called Lottery Ticket Pruning
(LTP) has been proposed to obtain highly sparse DNN models
for training [23]. An LTP-inspired pruning method has also
been used to prune GNN models and graph adjacency matrices
[24]. However, LTP-based methods don’t take the ReRAM
crossbar structure into consideration. As a result, there is no
significant area or power savings. In this work, we propose an
LTP-inspired CAP method for GNN training on ReRAM-based
architectures. Our method enhances existing CAP methods by
taking the overall crossbar structure into consideration and
implements the pruning in an iterative manner to ensure that the
pruned GNN models can be trained from scratch. By pruning in
a crossbar-aware fashion, we can also reduce the pipeline stage
delay (the variable &$"%&' in Figure 1), which leads to better
performance.

On top of model pruning, we can further prune the input data
to reduce the end-to-end pipeline depth (the variable * in Figure
1) for GNN training on ReRAM-based architectures. Large
training datasets pose a challenge for resource-constrained
devices (such as edge devices) as they require high memory and
processing power [25]. Recent work has proposed methods to
reduce the amount of data required for training, generally
referred to as data pruning [26]. An importance score-based
data pruning methodology for CNNs was proposed to greatly
reduce the amount of input data [10]. Graph Early Bird (GEB)
prunes the edges of the input graphs to reduce MVM operations
for GNN training very early during the training process [27].
Thus, the size of the input feature vector remains unchanged as
only graph edges are pruned. In contrast to existing data pruning
techniques for GNNs, our method intelligently prunes large
portions of an input graph (both nodes and edges) to reduce the
end-to-end pipeline depth of GNN training on ReRAM-based
architectures.

III. GNN COMPUTATION ON RERAM PLATFORMS
In this section, we discuss the preliminaries of GNN

computations on ReRAM-based architectures. First, we introduce

the GNN computation kernel. Next, we present the ReRAM-based
PIM architecture under consideration.

A. Preliminaries of GNN Computation
The GNN computation kernel primarily consists of MVM

operations involving model weights and graph adjacency
matrices. To perform GNN training on memory constrained
environments, the large monolithic graph is broken into *
subgraphs (1), 1*, … , 1$). Each subgraph 1! 		includes: (a) a
total of ;! vertices, where each vertex <	has a =-dimensional
feature vector >+,! 	 associated with it. (b) The graph adjacency
matrix 3?@!, which is a sparse matrix of size ;! × ;!. The GNN
model consists of multiple back-to-back neural layers. Each
layer (!) has a weight matrix A- associated with it. The forward
phase computation involved in the GNN layer ! corresponding
to the input subgraph 1! is shown below:
Forward	Phase: 	2!,#$ = 4(676(89:# , 676(2!,#$%&,<$)))			(1)
First, we implement an MVM operation involving feature

vector (>+,!-.)) and the dense weight matrix (A-). Next, we
accomplish the feature aggregation over edges, which involves
MVM with adjacency matrix 3?@! as shown in Equation 1. The
input to each neural layer	! is the output of the previous neural
layer ! − 1. Here, we set the activation function B(.) to be
ReLU [25]. Similarly, the error and gradient calculations are
done during the backward phase computation. Each of them
consists of two separate MVM operations. The backward phase
computation is shown in Equations 2, 3, and 4.

Error:								 G
						HII+,!

- = J;J((A-/))0 , (K+,!
-/) ∙ >+,!

-/)))				(2)

														K+,!
- = J;J(3?@! , HII+,!

-)																						(3)
			

Gradient:					U+,!
- = 	J;JV(>+,!

-.))0 , J;J(3?@$, 	K+,!
-)W							(4)

Equations (2)-(3) show the error calculation (“Error”) during
the backward phase of GNN computation for neural layer !.
Equation (2) shows the multiplication of features (>+,!-/)) and
error (K+,!-/)) with the transpose of the weight matrix (A-/)) to
calculate the intermediate error, HII+,!- . Equation (3) involves
the MVM of the adjacency matrix 3?@! and HII+,!- for the
computation of the final error HII+,!- for one vertex (<) of an
input subgraph 1!. Similarly, Equation (4) is used to compute
the gradient, U+,$- where the differentiation operation can be
decomposed into two separate MVM operations [28]. All these
operations are executed for * subgraphs that make up the full
input graph dataset. Moreover, the result of all MVM
computations of layer l, i.e., 	>+,!- , U+,!- , and K+,!- , are used as
inputs to the next GNN layer ! + 1. During the backward phase,
the data flows from layer ! + 1 to layer !. The amount of data
generated in every layer is also dependent on the number of
weights in each layer. In this work, we leverage model/weight
pruning to decrease the number of weights, which helps in
reducing the number of MVMs and the associated data
movement. As the GNN kernel computations must be repeated
for every subgraph 1!, decreasing the number of subgraphs (*)
needed for training will help reduce the end-to-end pipeline
depth.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

4

B. ReRAM-based 3D PIM Architecture
In this work, we consider a 3D PIM architecture consisting

of multiple ReRAM-based processing elements (PEs) for
accelerating GNN training. We adopt a 3D architecture to
enable high degree of integration. This architecture consists of
multiple PEs stacked vertically across four layers as shown in
Figure 2. To effectively utilize the high-throughput
computation provided by ReRAM-based PEs, the overall
architecture needs to be supported with a high-performance and
efficient communication backbone. In this architecture, we
utilize a 3D mesh network-on-chip (NoC) as the
interconnection backbone for communication between PEs
during GNN training. Each PE contains multiple ReRAM
crossbar arrays (xbar) for executing MVM operations as shown
in Figure 2. The exact PE configuration used in this work is
described in the Section V. We use a crossbar size of
128 × 128, with 2 bits/cell configuration, as it provides the best
performance-area-energy trade-off [6]. Each PE contains
various peripheral circuits including ADCs, DACs, and Shift
and Add (S+A), etc. The detailed specifications of each PE is
shown later in Section V, Table I.

IV. PROPOSED SLIMGNN FRAMEWORK
In this section, we describe the SlimGNN framework. As

shown in Figure 3, SlimGNN is divided into two phases: (1)

GNN model offline pruning (pre-processing), and (2) in-field
on-chip training of the pruned model using only critical input
subgraphs on the ReRAM-based architecture. Here, our overall
goal is to be able to train a pruned GNN model from scratch in-
field with little to no loss in accuracy compared to its unpruned
counterpart. For this purpose, we incorporate a crossbar aware
LTP-inspired iterative model-pruning technique, referred to as
LT-CAP. The model pruning step using LT-CAP is done offline
once as a pre-processing step (Figure 3). The offline pruning
step requires training the GNN model iteratively, and can be
done using any hardware (CPU, GPU, TPU, etc.). However,
this training is different from in-field training. The pruned
model is mapped to ReRAM crossbars and can be used to train
from scratch any number of times with different hyper-
parameters and graph datasets. Hence, the cost of pre-
processing is amortized over multiple in-field training
instances. We note that all our experimental results show a
comparison between the pruned and unpruned models for the
in-field training phase.

However, we do not implement data pruning (we refer this
step as GraphDiet) during model pruning in the preprocessing
stage. As shown in Figure 3, GraphDiet is an online process
which implemented during the in-field training process. We
follow this algorithmic procedure for two reasons. First, the
pruned models are general and can be used to train on any graph
dataset. Second, even though the data pruning methodology is
general and applicable to any graph dataset, the pruning steps
rely on both model and graph data to decide which parts of the
graph are redundant. The user may choose to train on different
graph datasets in-field. Hence, the data pruning strategy should
be executed in-field on whatever dataset the user wants to train
on. To address this problem, we adopt a computationally
inexpensive process, executed once and very-early (within few-
epochs) during the GNN training process on the ReRAM-based
architecture, referred as GraphDiet. The GraphDiet method
allows us to prune the large graph dataset during in-field
pruning. Hence, the computational cost for obtaining the pruned

Fig. 3: Overview of the SlimGNN framework. It consists of the offline Preprocessing (Phase 1) to obtain the LT-CAP pruned model, and the
in-field training (Phase 2) of the pruned model.

Fig. 2: Illustration of ReRAM-based 3D PIM Architecture.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

5

graph is negligible. We present details of the SlimGNN
framework in the following sub-sections.

A. Model Pruning in SlimGNN
Model pruning techniques suited for ReRAM crossbars have

been proposed in the literature [20] [21] [22]. These crossbar-
aware pruning (CAP) methods prune few crossbar rows,
columns, or small blocks (portion of a crossbar) to achieve high
model sparsity while maintaining acceptable accuracy for
inferencing purposes [21]. However, CAP methods lead to only
a marginal energy reduction as rows/columns/portions of
crossbars consume negligible energy compared to the
crossbar’s peripherals such the Analog-to-Digital Converter
(ADC) [21]. Crossbar peripherals such as the ADCs (which
accounts for ~60% of the total energy and area overhead) must
remain active as the unpruned weights in crossbars must still be
processed. Clearly, existing crossbar-aware pruning methods
are not suited for ReRAM-based architectures as they only
prune part of a crossbar.

SlimGNN utilizes a block pruning method that considers the
entire structure of the ReRAM crossbar (i.e., size and bit/cell
configuration) when pruning the model weights. The pruning
block size is defined based on the crossbar size and its bits-per-
cell configuration. For example, if the crossbar size is Y × Y,
with a I bit/cell configuration, the weight pruning block is of
shape Y × (Y ∗ I/$), where $ is the precision of each weight
value. In this work, the values of c, r, and B are 128, 2 and 16,

respectively [7]. Hence, the block size for pruning becomes
128 × 16. Unlike existing CAP methods, we prune entire
blocks of weights, which would have otherwise been mapped
to an entire crossbar. This enables us to power gate or turn ‘off’
both the crossbar and its associated peripherals, which results
in higher energy savings. Figure 4(a) and Figure 4(b) illustrate
how unpruned weights and the pruned weights of a given GNN
layer are mapped to ReRAM crossbar arrays. In Figure 4(a), the
final output of the MVM operation is represented by ?. Here,
the output generated from the %"# column of the weight matrix
is ?! where ?! ⊆ ?. As shown in Figure 4(b), the crossbars
outlined by the red boxes do not have any weights mapped on
them due to pruning. Hence, they can be turned off alongside
with their peripherals or they can be used for other purposes. As
a result, those crossbars do not contribute to the final output
(?∗). As demonstrated in Figure 4(b), columns 3 and 4 of the
weight matrix are completely pruned away whereas columns 1
and 2 are partially pruned. As a result, we generate ?) and ?*,
but ?2 and ?3 are not generated. Hence, we do not need to send
?2 and ?3; this reduces inter-PE traffic.

Existing CAP methods prune pre-trained weights for
inferencing purposes only. Most of these existing CAP methods
utilize a multi-group LASSO algorithm to prune groups of
weights that would otherwise be mapped along a row/column
in an ReRAM crossbar. However, the pruned models fail to
train from scratch. In the SlimGNN framework, we prune GNN
model weights iteratively for the purpose of training from
scratch as shown in Figure 3. To achieve this goal, we leverage
a state-of-the-art LTP pruning method to enhance the existing
CAP techniques so that we can train the pruned models from
scratch without any noticeable loss in accuracy [23]. We refer
to this pruning method as LT-CAP. The LT-CAP method
iteratively prunes weights of a model based on their magnitude
to find a pruned network that can be trained from scratch
without accuracy loss. As shown in Figure 3, LT-CAP
incorporates LTP by repeatedly pruning ^% of Y × (Y ∗ I/$)-
sized blocks of weights with the lowest average magnitude on
each pruning iteration. The variable p is a user-defined
parameter that can be varied based on the desired level of
sparsity. We mention the value of p used in our experiments in
Section 5. This step is done offline once per GNN model. The
SlimGNN-enabled pruned model is then mapped to the
ReRAM crossbars for in-field training. Model pruning
accelerates GNN training in multiple ways: (a) it reduces the
number of MVM operations necessary for training. This
reduces the computation time for the GNN layers; (b) it reduces
inter-PE communication. If all the weights in one column of a
weight matrix are pruned, then the outputs are not generated,
which reduces traffic hotspots. Both (a) and (b) lead to a
reduction in the pipeline stage latency &$"%&' (Figure 1), which
results in faster training; (c) The pruned models can be
implemented using fewer crossbars, which leads to area and
energy savings; and (d) The use of fewer crossbars also
provides us the opportunity to duplicate model parameters to
further parallelize GNN computations. This allows us to

(a)

(b)

Fig. 4: Weight mapping and Inter-PE communication for (a) Unpruned GNN
model and (b) LT-CAP enabled GNN model.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

6

process multiple input subgraphs simultaneously, thereby
leading to better performance.

B. GraphDiet in SlimGNN
As discussed earlier, it is challenging to train GNNs on large-

scale graphs. Data pruning can address this problem, but it has
to be implemented during the in-field training phase. We
address this problem by systematically reducing the number of
subgraphs very early (within a few training epochs) during the
in-field GNN training process on a given graph dataset. Prior
work has shown that graphs used for GNN training contain
redundant information [27]. In addition to this, recent work has
proposed a method of finding important inputs for training
DNNs without any accuracy loss [10]. Based on these findings,
we hypothesize that all input subgraphs that are generated after
the large monolithic graph is partitioned are not required for
successful training. We validate this hypothesis experimentally
in Section 5.

Scoring Function for Pruning: In this work, the unimportant
subgraphs are identified and removed in a one-shot manner very
early during GNN training. The key idea is to use the loss
gradient norm of individual subgraphs to identify critical
subgraphs to retain for the rest of the GNN training process. The
importance of each subgraph (1!) is determined by a scoring
function (*Y`IH) described below:
																									Score(1!) = ∑ |	U+- (1!)∆A-|- 																										(5)
This scoring function shown in Equation (5) is the summation

of the expected loss gradient norm for all neural layers, which
bounds the expected change in loss for an arbitrary subgraph
caused by removing the subgraph 1!. In other words, subgraphs
with a small score are expected to have a limited influence on
learning how to make predictions for the rest of the training
subgraphs. The above scoring function ranks each subgraph
based on the magnitude of the product of the gradient with
respect to the input subgraph 1! (i. e. , 	U+- (1!)) and the change
in the weights of the GNN layers (∆A-). The parameter 	U+- is
the gradient update as mentioned earlier in Equation (4). This
score indicates the contribution of each subgraph (1!) to the
change in the overall training loss function. We first start GNN
training (in-field) using the entire graph (all the subgraphs). We
compute the score of each subgraph during training on the
ReRAM-based architecture and then remove 4% of subgraphs
with the lowest score (*Y`IH) at the H"# epoch very early in the
training process. Here, 4 is a user-defined parameter
determined by the tolerable accuracy drop.

Reasons for effective subgraph pruning: There are multiple
synergistic reasons why we can prune subgraphs after a small
number of training epochs with little to no accuracy loss: 1)
Graphs are relational in nature and there are redundancies in
terms of nodes with similar features, labels, and (approximate)
relational structure. This leads to a “less is more” phenomenon;
2) The predictions for a large fraction of nodes can be made
easily using the information from a small neighborhood. The
subgraphs obtained by graph clustering automatically fall under
easy (can be pruned) and hard cases (cannot be pruned); 3) The
pruning step based on the scoring function does not require
absolute scores (i.e., expected change in loss for an arbitrary

subgraph caused by removing the subgraph 1!). As long as the
relative ordering of subgraphs is preserved based on the scores,
the pruning step will be effective.

Implementation details: At epoch e, Equation (5) (an MVM
operation) is executed on the ReRAM crossbars and the result
(the score) is transferred to the host to remove the unimportant
subgraphs. This score computation is done only once
throughout the training process and the timing overhead is
included in the overall execution time for SlimGNN enabled
training. After the eth epoch, only subgraphs with high scores
are used for GNN training. As we show later, this process leads
to trained GNN models with little to no accuracy loss when
compared to training with the full graph. In Section 5, we show
the predictive performance of the GNN model with GraphDiet
for different values of 4	 ∈ [0,1] (fraction of pruned
subgraphs). GraphDiet accelerates GNN training by reducing
the size of the graph dataset. Instead of training on S subgraphs,
the GNN model will now train on ((1 − 4) × *) subgraphs
(where 4 < 1). This reduces the pipeline depth as illustrated in
Figure 1, which automatically speeds up training as there are
fewer input subgraphs (hence fewer MVMs).

In summary, to accelerate GNN training on ReRAM-based
PIM architectures, we leverage GraphDiet to reduce the input
graph data and incorporate crossbar-aware model pruning to
reduce the number of MVMs per layer. These two synergistic
methods achieve high performance and improve the end-to-end
execution time for training GNNs on the ReRAM-based
system.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed

SlimGNN framework with ReRAM-based accelerator using
various GNN models and graph datasets.

A. Experimental Setup
Datasets and GNN models (Workloads): In this work, we

choose three diverse GNN models, namely: Graph Convolution
Networks (GCN), Graph Attention Networks (GAT), and
Graph sample and aggregate (SAGE); and four large-scale
graph datasets – Reddit, Amazon2M, PPI, and Open Graph
Benchmarks-Proteins (ogbn_p) for the purpose of evaluation
[29]. The unique combination of these models and datasets
constitutes the workloads for the ReRAM-based PIM
architecture. More details about these GNN models and datasets
are provided in Table II and Table III. For the sake of simplicity,
we will refer to each GNN model and dataset workload
configuration as Ci (as shown in Table III). For instance, C1
represents the setting where we train GCN with PPI dataset.

The datasets consist of several thousand/millions of nodes and
edges and are representative of a wide range of real-world
applications of predictive graph analytics. All GNN models
considered in this work utilize mini-batch based training, which
divides a large graph into multiple smaller sub-graphs. This
allows us to train GNNs on memory-constrained settings such
as in a ReRAM-based PIM architecture. This enables pipelined
training of GNNs as mentioned earlier. All configurations (C1-
C6) are trained for 200 epochs to ensure their convergence and
to prevent overfitting. We experimented with different learning

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

7

rates (lr), and choose the one that works best for each
configuration. We tune the hyperparameters (lr, b_size and S)
for each configuration to achieve the best possible accuracy.
For graph partitioning, we employ METIS, which is a fast and
scalable graph clustering tool [25][37]. The graph clustering
algorithm only takes a small portion of preprocessing time, and
allows us to train on large datasets. In phase 2 (in Fig R3), the
graph partitions (subgraphs) are loaded from main-memory
onto the ReRAM architecture for the in-field training process.

SlimGNN Configuration: As shown in Figure 3, there are
two stages in the SlimGNN framework. The first stage
involving LT-CAP (as shown in Figure 3) is executed on the
preprocessing hardware (as shown in Table I) to generate the
pruned GNN model. Then, the LT-CAP enabled pruned GNN
model (with weights reset to their untrained values) is mapped
to the ReRAM-based 3D PIM architecture (described in Table
I) for in-field training with different graph datasets as shown in
Figure 3. The graph pruning (GraphDiet) is done during the in-
field training based on the importance of each input subgraph.
The importance score for each input subgraph is determined at
the 5th epoch of training on the ReRAM-based PIM
architecture. Our experiments show pruning earlier than the 5th
epoch leads to accuracy loss. This happens as the model does
not get sufficient opportunity to explore and score the input
subgraphs reliably before five epochs. The accuracy loss was
negligible when the pruning was done earliest at the 5th epoch
and this behavior was consistent for different datasets.
Subsequently, only the identified critical subgraphs are used for
the rest of the in-field training process. For all in-field training,

we compare the unpruned GNN model with its pruned
counterpart running on the same ReRAM-based architecture as
tabulated in Table I. This provides a fair comparison between
the pruned and the unpruned models for each GNN workload
configuration.

ReRAM-based Architecture: The architecture considered in
this work consists of 36 ReRAM-based processing elements
(PEs) distributed over four planar tiers connected using through
silicon via (TSV)-based vertical links. Table I summarizes of
the specifications of the ReRAM-based PIM architecture used
in this work. In this work, the GNN model weights are stored
on the ReRAM crossbar array using 16-bit fixed point
precision. We evaluate the overall system performance of the
SlimGNN framework using the NeuroSim v2.1 simulator [30].
NeuroSim models the performance of ReRAM-based PIM
accelerators. We used NeuroSim to obtain the model prediction
accuracy and determine the area and energy of the ReRAM
architecture. The NeuroSim software runs on a GPU and CPU
as described in Table I.

GNN training generates an enormous volume of traffic, which
can bottleneck performance [6]. In this architecture, we utilize
a multicast-enabled 3D mesh network on chip (NoC) as the
interconnection backbone for communicating between the
processing elements during GNN training [6]. The 3D ReRAM-
based architecture stacks planar tiers that are connected to each
other using through-silicon-via (TSV)-based vertical links. The
vertical links act as logical shortcuts and result in more efficient
communication, which is crucial for GNN training. The 3D
mesh NoC architecture also efficiently handles the increased
communication demand due to duplicated nodes in subgraphs
and reduces the overall latency. In addition to this, we adopt an
optimized mapping strategy that maps GNN layers to ReRAM
tiles to further improve the communication latency [6]. The
NoC performance has been evaluated using Garnet, and
NeuroSim was used to calculate the injection rate needed for
the cycle-accurate NoC simulator [31].

Training in the presence of non-idealities: To prevent
accuracy loss due to low precision, we incorporate stochastic
rounding [32]. Stochastic rounding enables high accuracy even
at lower precision settings [33]. The implementation of the
stochastic rounding unit introduces less than 1% area and
energy overhead. In addition, ReRAMs suffer from multiple
non-ideal effects such as noise and faults. However, recent
work has shown that these issues can be addressed using simple
techniques such as error-correction or weight clipping [34].
Hence, we can still train GNNs despite these non-ideal effects.

Fig. 5: Accuracy vs sparsity for LT-CAP pruning technique on the
Amazon2M dataset in C5.

80

82

84

86

88

0 10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y
(%

)

Sparsity (%)

Unpruned LT-CAPTable I. Hardware Specifications

Preprocessing
Hardware:

OS: Linux CentOS
GPU: NVIDIA V100, 32GB

CPU: Intel Xeon Gold 5222 @ 3.8GHz, 16
cores, 32K L1 cache and 1024K L2 cache.

In-field Training
Hardware:

ReRAM-based 3D PIM architecture: 4 planar
tiers, 9 PEs per tier, 4 ReRAM tiles per PE.

ReRAM Tile:
96-ADCs (8-bits), 12×128×8 DACs (1-bit), 96
crossbars, 128×128 crossbar size, 10MHz, 2-

bit/cell resolution, 0.34W, 0.38 mm2 [7]

Table II. Graph Datasets Statistics

Datasets # Nodes #Edges FLR

PPI 56,944 818,716 0.41

Reddit 232,965 11,606,919 14.68

Amazon2M 2,449,029 61,859,140 2.13
Ogbn-proteins

(ogbn-p) 132,534 39,561,252 4

Table III. Training Workload Configuration (lr: learning rate, b_size: batch size,

S: number of graph partitions)

Datasets Model Wrkl.
Config. Hyperparameters

PPI GCN C1 lr=0.01, b_size=2, S=250
GAT C2 lr=0.005, b_size=2, S=250

Reddit GCN C3 lr=0.01, b_size=10, S=1,500
SAGE C4 lr=0.01, b_size=256, S=1,500

Amazon2M GCN C5 lr=0.01, b_size=20, S=10,000
Ogbn_p SAGE C6 lr=0.005, b_size=1, S=100

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

8

However, for this work, we will assume ideal ReRAM behavior
to demonstrate the effectiveness of the proposed model and
graph pruning methodology.

B. Training Performance of SlimGNN
In this subsection, we present a detailed performance

evaluation of the SlimGNN framework used for GNN training
on the ReRAM-based 3D PIM architecture.

Results for model pruning: First, we present the accuracy
and sparsity achieved by the model pruning technique (LT-
CAP) and compare it with the unpruned counterpart [6]. Figure
5 shows the effectiveness of the LT-CAP technique on the C5
configuration (GCN with Amazon2M dataset) as an example
compared to its unpruned version at different levels of sparsity.
In this case, we choose a pruning percentage (^) of 10% in
every iteration, i.e., we prune 10% of the weights remaining in
each iteration. The value of ^ is a hyperparameter, which can
be modified based on the required level of sparsity. As shown
in Figure 5, as the degree of sparsity increases, the model
accuracy decreases. Here, we choose the maximally pruned
model which can be trained from scratch and achieves less than
0.5% accuracy loss compared to its unpruned counterpart.
Given this constraint, the LT-CAP technique achieves up to
90.2% sparsity for C5. Similar accuracy trends were also
observed for other configurations.

Next, Figure 6(a) and Figure 6(b) present the model accuracy
and sparsity for the LT-CAP model for configurations C1 - C6
(from Table III). As shown in Figure 6(a) and Figure 6(b), under
the proposed accuracy constraint (0.5% accuracy loss), LT-
CAP can achieve up to 90%, 75%, 92.3%, 91.3%, 90.2%, and
72.6% sparsity for configurations C1-C6, respectively. Loading
the LT-CAP pruned GNN models on the ReRAM-based PIM
architecture enables us to power-gate or re-use the available
crossbars as shown in Figure 4. This results in reduction in
crossbar area and energy consumption. Figure 6(c)
demonstrates the area and energy savings enabled by LT-CAP
at iso-performance. The savings are compared to the unpruned
model mapped on the ReRAM crossbars. For a fair comparison
with the unpruned model, we consider an iso-performance
scenario (equal training time) to estimate the hardware savings
achieved by the LT-CAP enabled model. As seen from Figure
6(c), the proposed LT-CAP based model requires 90% less area
on average when compared to the unpruned model.
Commensurate with this, power gating the unused crossbars
reduces energy consumption by 89.6% on average as well. This
is because, the pruning technique incorporated in LT-CAP

removes all weights that could have otherwise been stored on
the crossbar array. We do not require the peripherals (such as
ADC, DAC, S+A, etc.) associated with these empty crossbars
either, resulting in huge area and energy savings. Hence, LT-
CAP can achieve high sparsity while being extremely area and
energy efficient.

Results for graph pruning (GraphDiet): While training the
LT-CAP model, we incorporate GraphDiet introduced in
Section 4. Figure 7 demonstrates the effect of GraphDiet on the
accuracy of the LT-CAP GNN models for configurations C1,
C3 and C5, respectively. Note that similar accuracy trends were
also observed for other configurations. To determine how much
of the input graph can be pruned, we vary the amount of graph
pruning (4,	the percentage of pruned subgraphs) from 10% to
90%. For all configurations, we observed that the GraphDiet
decision made at the 5th epoch is sufficient to preserve the GNN
model accuracy. As seen from Figure 7, as we reduce the
number of input subgraphs used in training, the model accuracy
starts degrading. Note that, we allow an additional 0.5% drop
in accuracy when implementing GraphDiet on top of the LT-
CAP based pruned GNN model. Overall, we allow a maximum
of 1% drop in model accuracy when compared to the Unpruned
GNN model with no GraphDiet.

The amount of achievable graph pruning through GraphDiet
within this limit is governed by the difficulty of the prediction
task and the amount of redundant information present in a given
graph dataset. One of the key properties that characterizes this
behavior is the number of features associated with each vertex
(node) of the graph. Graphs with high number of features have
more discriminative and redundant information with respect to
the prediction task. However, this is not the only property,
which determines the possible amount of allowable graph
pruning using GraphDiet.

Table II presents a parameter “Feature to Label Ratio” (FLR),
which captures the amount of available information to
approximately characterize the difficulty of node classification
task for any given graph dataset. A dataset with high FLR has
more features to learn from, but also has relatively lower
number of class labels resulting in a simpler classification task.
The dataset with a low value of FLR has relatively less
redundant information to learn from. Hence, it requires higher
number of input subgraphs to achieve high accuracy. As seen
from Figure 7, we can remove 60% of the input subgraphs from
training for the Reddit dataset in configuration C3 given the
constraint of less than 1% overall accuracy drop. Under this

(a) (b) (c)

 Fig. 6: (a) Accuracy, (b) Sparsity of GNN model pruned using LT-CAP, and (c) Area and Energy savings enabled by LT-CAP based pruning for C1-C6

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6

A
cc

ur
ac

y
(%

)
Unpruned LT-CAP

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6

Sp
ar

si
ty

 (%
)

LT-CAP

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6

Sa
vi

ng
s (

%
)

Energy Area

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

9

same constraint, Amazon2M and PPI in C5 and C1 respectively
achieves reduction in the number of input subgraphs by 40%
and 30% respectively. These numbers are consistent with the
FLR for these datasets. Reddit has the highest FLR of 14.68,
which is ~7 ×, ~35 ×, and ~3.7 × larger than the FLR values
for Amazon2M, PPI, and ogbn_p respectively. Thus, Reddit has
the highest amount of redundant information and thus, a
relatively larger portion of its graph can be removed from the
training process. PPI has the lowest FLR value of 0.41 and this
makes it very hard to achieve high accuracy without large
number of input subgraphs. Thus, for PPI, the amount of
achievable subgraph pruning incorporating GraphDiet is
significantly lower. However, for all six configurations (C1-
C6), we observed that we can still safely remove a large number
of input subgraphs in the early part of the training process. This
enables improvement in the performance of the SlimGNN-
enabled ReRAM-based architecture. Overall, we can prune
90%, 75%, 92.3%, 91.3%, 91%, and 72.6% of the weights and
30%, 30%, 60%, 60%, 40%, and 40% of the input sub-graphs
for all six configurations (C1-C6), respectively. Next, we
present the overall performance of the ReRAM-based PIM
architecture under consideration.

Granularity of graph partitioning for GraphDiet: In this
work, we aim to determine an appropriate number of graph
partitions or input subgraphs (S) that is compatible with the
SlimGNN framework. It is intuitive that the identification of
unimportant subgraphs becomes more difficult in scenarios
where the subgraphs are relatively bigger. Given an input graph,
we can partition it into S subgraphs using the METIS
partitioning tool [9] [25]. A large S implies a larger number of
subgraph partitions, but each subgraph is small and has less
information; hence, it is easier to prune. Smaller S implies
fewer partitions, but each partition (input subgraph) is large and
contains more information; hence it is difficult to prune.
However, note that, extremely large values of S are not
desirable as it requires many crossbars to store each sub-graph,
which may not be available. Similarly, a very small S is also
undesirable as it unnecessarily increases the execution time as
the subgraphs are too many in number.

In Figure 8(a) and Figure 8(b), we show the accuracy of
GraphDiet (with pruning percentages of 60% and 40%
respectively) compared to the baseline GNN training for
different number of partitions. Here, we refer to the baseline as
the corresponding unpruned GNN model trained using all
subgraphs. As an illustration, we consider the Reddit and
Amazon2M datasets trained on a Graph Convolution Network
as in configurations C3 and C5, respectively. As expected,
Figure 8 shows that as the number of partitions increases, we

can prune more as there are many subgraphs with less
information; hence, these subgraphs are not needed. Moreover,
the GCN trained using the GraphDiet technique at large S
achieves comparable accuracy with the baseline. In contrast,
when the number of subgraphs is less, we are not able to prune
many subgraphs and there is an accuracy drop. This happens as
large sub-graphs contain useful information and pruning them
results in poor training accuracy. In this work, we choose the
number of partitions (S) to be 100, 250, 1500, and 10,000 for
ogbn-proteins, PPI, Reddit, and Amazon2M datasets,
respectively, as our analysis shows that these numbers provide
a good trade-off between execution time and storage
requirements.

C. Overall Performance Evaluation of SlimGNN
The overall execution time of GNN training on the ReRAM-

based architecture is governed by the delay of each pipeline
stage and the overall end-to-end pipeline depth. As each GNN
layer contributes to one stage of the pipeline, the delays
associated with GNN layers’ computation (MVM operations),
and inter-PE communication determine the overall stage delay

(a)

(b)

Fig. 8: Performance of GraphDiet for (a) Reddit and (b) Amazon2M
using different number of graph partitions (subgraphs). As the

number of partitions increase on the x-axis, the size of the subgraphs
reduces.

91
.3

3

92
.5

1

92
.8

1

82
.2

92
.2

1

92
.6

2
60

70

80

90

100

15 150 1500

Ac
cu

ra
cy

 (%
)

Number of graph Partitions (S)

Reddit
Baseline GraphDiet

86
.9

2

86
.9

2

87
.0

9

87
.4

1

84
.4

1

86
.1

5

86
.6

7

87
.1

5

75

80

85

90

95

500 1000 5000 10000

Ac
cu

ra
cy

 (%
)

Number of graph partitions (S)

Amazon2M
Baseline GraphDiet

 (a) (b) (c)
Fig. 7: Accuracy of GraphDiet based data pruning on LT-CAP based Pruned models for (a) C1, (b) C3 and (c) C5

70
75
80
85
90
95

0 10 20 30 40 50 60 70 80 90A
cc

ur
ac

y
(%

)

Percentage of Data Pruning

1% Accuracy Drop
70
75
80
85
90
95

0 10 20 30 40 50 60 70 80 90A
cc

ur
ac

y
(%

)

Percentage of Data Pruning

1% Accuracy Drop

70
75
80
85
90

0 10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y
(%

)

Percentage of Data Pruning

1% Accuracy Drop

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

10

(&$"%&'). In this sub-section, we first evaluate the impact of LT-
CAP on the computation and communication latencies of GNN
training implemented on the ReRAM-based PIM architecture.
Next, we demonstrate the effects of LT-CAP and GraphDiet
(which together make up the SlimGNN framework) on the
overall execution time. Finally, we present the overall
performance evaluation and energy consumption of the
SlimGNN-enabled ReRAM-based PIM architecture. We
assume an iso-area scenario for this analysis, i.e., the number of
ReRAM crossbars available is the same for all the cases.

Moreover, we compare the overall performance of SlimGNN
with respect to a recently proposed unified GNN sparsification
method (UGS) [24]. UGS jointly prunes GNN weights and
graph adjacency matrices using trainable masks to reduce the
number of MVM operations associated with GNN training [24].
However, the graph pruning in UGS only removes the edges
from the graph adjacency matrix and thus the overall size of the
input (i.e., the number of input subgraphs) remains unchanged.
Moreover, the weight pruning method proposed in UGS is
crossbar-unaware. UGS does not guarantee pruning all weights
belonging to the same row/column/crossbar. Hence, it does not
reduce crossbar requirement for ReRAM-based architectures.
We show later via experiments that our proposed SlimGNN
method outperforms UGS by a significant margin for training
GNNs.

Effect of model pruning: Figure 9 shows the worst-case
computation and communication latencies when we train the
unpruned and LT-CAP pruned GNN models on ReRAM-based
architectures. Here, all latencies are normalized with respect to
the communication delay of the unpruned model. Pruning leads
to smaller models, which can be implemented on fewer
crossbars (compared to the unpruned model). Hence, in an iso-
area setting, it is possible to accelerate GNN computation
further by duplicating the weights on multiple crossbars. Each
crossbar would then process a different input subgraph in
parallel. For instance, by duplicating the weights on two sets of
crossbars, we can reduce the execution time by half and so on.
The number of times the weights can be duplicated depends on
the number of ReRAM crossbars available in the overall
architecture. The unpruned model cannot achieve a similar level
of parallelism as these models are large. Hence, the architecture
will have fewer crossbars available to replicate its weights. As
shown in Figure 6(c), pruning using the LT-CAP method results
in high crossbar savings (over 90% fewer crossbars on average

compared to the unpruned case). As a result, we can speed-up
all the layers using the available ReRAM crossbars. The
available crossbars can now be used to replicate the unpruned
weights to reduce the computation delay. Hence, LT-CAP
results in an average improvement of 39% in the computation
latency as shown in Figure 9. This results in faster GNN
training.

However, inter-PE communication also has a significant
influence on the execution time of GNN training [6]. The data
traffic in GNN training is generated from the MVM operations
as discussed earlier in Section 3. Pruning reduces the amount of
data being exchanged, thus alleviating the communication
bottleneck as shown in Figure 4(b). Hence, if many
rows/columns are pruned, we can reduce the amount of
communication significantly. However, partially pruned
rows/columns may still result in non-zero outputs that must be
communicated. LT-CAP results in multiple rows/columns of
the full weight matrix becoming zero, which reduces the overall
number of useful messages generated from the weight matrix of
any given layer. As shown in Figure 9, this results in a reduction
of the communication delay varying between 14% to 54%
depending on the configurations (C1-C6). The improvement is
much higher for Reddit (in configurations C3 and C4) as it has
the largest number of features (~75 ×, 12 ×, and 6 × more
features than ogbn-proteins, PPI, and Amazon2M respectively)
amongst all the datasets under consideration here. A larger
number of features results in more redundant information being
exchanged in each layer, i.e., more communication. LT-CAP
helps in reducing redundant communication. Thus, we see
relatively larger improvements for Reddit after pruning.

Overall, the pipeline stage delay is bottlenecked by the
slowest among the computation and the inter-PE
communication stage delays. From Figure 9, we can see that the
execution time of GNN training for configurations are
predominantly bottlenecked by communication. However, LT-
CAP accelerates both computation and inter-PE
communication significantly when compared to the unpruned
case resulting in lower pipeline stage delay &$"%&'.

Performance Evaluation with LT-CAP and GraphDiet:
The second factor that governs the overall execution time of
GNN training on ReRAM-based architectures is the end-to-end
pipeline depth. The depth of the pipeline is determined by the
number of input subgraphs; this number can be reduced
significantly due to GraphDiet on the ReRAM-based

Fig. 9: Normalized computation (comp.) and communication (comm.) delays for the unpruned and pruned (using LT-CAP) models for all configurations (C1-C6).
All computation and comunication delays of LT-CAP are normalized with the unpruned model’s computation and communication delays respectively.

0

0.2

0.4

0.6

0.8

1

Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm.

C1 C2 C3 C4 C5 C6

N
or

m
al

iz
ed

 P
ip

el
in

e
D

el
ay

Unpruned LT-CAP

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

11

architecture. As shown in Figure 7, we can reduce up to 30%,
60%, and 40% of the input subgraphs for configurations C1,
C3, and C5 respectively. Figure 10(a) and Figure 10(b)
demonstrates the normalized execution time and energy
consumption respectively for; the unpruned case, UGS, an
existing crossbar-aware column-pruning method referred as
Col-P, the standalone LT-CAP method without GraphDiet (LT-
CAP), and the SlimGNN framework (LT-CAP + GraphDiet)
for C1-C6.

UGS is a crossbar-unaware pruning method. As a result, it
cannot prune entire 128 × 16 block of weights. Hence, it is
unable to improve the computation time (duplication of blocks
of weights is not possible) and inter-PE communication time as
shown in Figure 4. Thus, in an iso-area setting, UGS cannot
improve the overall execution time of GNN training in a
ReRAM-based PIM architecture. Furthermore, the Col-P
method achieves similar levels of sparsity as other methods
(such as [20] and [22]); hence, we choose Col-P as a
representative crossbar-aware pruning technique to evaluate the
effectiveness of LT-CAP.

As shown in Figure 10(a), the LT-CAP based pruned model
is able to reduce the execution time by 27.1%, 21.4%, 50%,
38.6%, 25%, and 25% for configurations C1-C6 respectively
compared to their unpruned versions. This improvement is
determined by the reduction in pipeline stage delay for each
configuration. Enabling GraphDiet on the pruned model results
in a further execution time reduction of 55%, 33%, 76%, 71%,
53.3%, and 53% for configurations C1-C6 respectively. The
performance improvement achieved on top of the LT-CAP
based pruned model is due to the reduction in end-to-end
pipeline depth.

Overall, as shown in Figure 10(a), the SlimGNN-enabled
training improves execution time by ~57% on average
compared to the unpruned model running on an iso-area
ReRAM-based PIM architecture. Figure 10(b) depicts the
energy consumption (normalized with respect to unpruned) for
GNN training, respectively, for Unpruned, UGS, Col-P, LT-
CAP, and SlimGNN. Figure 10(b) shows that the SlimGNN-
enabled model reduces energy consumption by 62%, 54.21%,
95%, 87.5%, 68.8%, and 68% on average for C1-C6, compared
to the Unpruned, UGS, and LT-CAP models running on the
same ReRAM-based architecture, respectively. Reddit dataset
in configurations C3 and C4 has the highest reduction in energy
and execution time as it achieves high sparsity and has

significantly more node-level features compared to other
datasets.

Also, as shown in Figure 10(b), our proposed standalone LT-
CAP method and the SlimGNN framework (LT-CAP +
GraphDiet) consumes 27.16% and 46.55% less energy on
average compared to the Col-P method, respectively. This
happens because Col-P prunes only individual rows and/or
columns of the crossbar which leads to only a marginal energy
reduction as rows/ columns/portions of crossbars consume
negligible energy compared to the crossbar’s peripherals such
the Analog-to-Digital Converter (ADC). Unlike existing Col-P
methods, LT-CAP prunes entire blocks of weights, which
would have otherwise been mapped to an entire crossbar. This
enables us to power gate or turn ‘off’ both the crossbar and its
associated peripherals, which results in higher energy savings.

In general, the reduced energy consumption results from the
improved execution time and reduced crossbar requirements
enabled by SlimGNN in all configurations. Additionally,
SlimGNN-enabled model on the ReRAM-based architecture is
~12.8 × faster in terms of execution time compared to a Nvidia
V100 GPU on an average for the GNN models considered in
this work. This happens as ReRAMs are significantly faster
than GPUs for large scale MVM operations [7] [11]. Overall,
SlimGNN can accelerate training by up to 4.5 × while
consuming up to 6.6 × less energy than the unpruned
implementation (Unpruned) on an iso-area ReRAM-based PIM
architecture.

Lifetime of SlimGNN-enabled ReRAM Architectures: It is
well known that ReRAM crossbar arrays suffer from low write
endurance [35]. Prior work has proposed Low-rank Training
(LRT) and optimized weight update techniques to address the
low-write endurance challenge of ReRAM-based architectures
and prolong their overall lifetime [35] [36]. Incorporating
SlimGNN improves the endurance of the ReRAM-based
architecture further. As GraphDiet reduces the number of input
subgraphs, it also helps to reduce the number of weight updates
occurring during training. ReRAM-write endurance has been
shown to be between 104 − 10)* writes [35] [36]. Hence, for
our analysis we consider a worst-case scenario of 104 writes.
By incorporating LRT, the write endurance is enhanced by a
factor of ~300 [35]. As an example, to train on the Reddit
dataset (in C3 and C4) for 200 epochs, we need ~12k weight
updates for the SlimGNN-enabled model. Thus, by
incorporating SlimGNN and LRT, we can train the model for

 (a) (b)
Fig. 10: Normalized (a) execution time and (b) energy consumption for the unpruned, UGS, Col-P, LT-CAP and SlimGNN-enabled GNN (normalized with
respect to the execution of the unpruned model on the ReRAM-based PIM architecture).

0

0.2

0.4

0.6

0.8

1

C1 C2 C3 C4 C5 C6

N
or

m
.

Ex
ec

ut
io

n
Ti

m
e

Unpruned UGS Col-P LT-CAP SlimGNN

0

0.2

0.4

0.6

0.8

1

C1 C2 C3 C4 C5 C6

N
or

m
. E

ne
rg

y
C

on
su

m
pt

io
n

Unpruned UGS Col-P LT-CAP SlimGNN

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

12

up to 22,000 times on the proposed ReRAM-based system.
Similar trends were also observed for the other two datasets.
Thus, SlimGNN-enabled ReRAM based architectures have
adequately high lifetime.

D. Transferability of Pruned Model to other Datasets
In this work, we also demonstrate that the pruned model

obtained using one dataset in the pre-processing phase can be
used to train in-field with another dataset with negligible
accuracy loss. Figure 11 shows the result of this experiment. In
Figure 11, the model is pre-processed with a ‘source’ dataset
and then the pruned model is used to train on a ‘target’ dataset.
The combinations are referred as Ci-Cj in Figure 11, where Ci
represents the configuration for pre-processing (with ‘source’
dataset) and Cj represents the configuration used for in-field
training (with ‘target’ dataset). Both Ci and Cj are elaborated in
Table III of the manuscript. For the sake of brevity, in Figure
11 we show the results of training the offline pruned model
generated using the Reddit dataset as the source (configurations
C3 and C4) on the PPI, Amazon2M and ogbn_proteins datasets
as targets (configurations C1, C5 and C6) for in-field training.
Similarly, we have also used a pruned model generated using
the Amazon2M dataset as the source (configuration C5) to train
the PPI and Reddit datasets (in C1 and C3) as shown in Figure
11. As shown in Figure 11, the pruned models are transferrable
across datasets. For example, the crossbar-aware pruned (LT-
CAP) GCN model generated with the Reddit dataset in the pre-
processing step can be used for in-field training with the
Amazon2M dataset (referred as C3-C5 in Figure 11) without
noticeable accuracy loss.

The transferability of Lottery-ticket pruned (LTP) models
across datasets happens because: (a) model behavior is often
transferable between datasets. This idea is similar to transfer
learning, where a model trained on one dataset can be reused
with slight changes for another dataset. The LTP pruned
networks also exhibit this transferability property [37]; (b) The
transferred tickets act as a regularizer and prevent overfitting
while training [37]; and (c) winning tickets learn generic
inductive biases which improve training. Hence, LT-CAP-
based models (which are based on LTP) can also be used with
other datasets. Overall, we observe less than 1% accuracy drop
on average for the pruned model during in-field training
compared to their respective unpruned versions for all source-
target dataset combinations considered in this work. This
further demonstrates that the offline pruned model generated

using one dataset can be transferred to another dataset for in-
field training with negligible accuracy drop compared to their
unpruned versions.

VI. CONCLUSION

ReRAMs enable the design of high-performance and energy-
efficient architectures for accelerating GNN training. The end-
to-end execution time for GNN training on ReRAM-based PIM
architectures is determined by the number of subgraphs (size of
input workload) and the model parameters. In this work, we
propose incorporating GraphDiet on ReRAM-based PIM
architectures to reduce the number of input subgraphs without
sacrificing the model accuracy. To compliment GraphDiet, we
leverage a block-based GNN model pruning, which helps to
further improve the performance and energy efficiency.
GraphDiet and GNN model pruning together constitute the
SlimGNN framework, which enables high performance GNN
training on ReRAM-based PIM architectures. Overall,
SlimGNN accelerates training by up to 4.5 × while using 6.6 ×
less energy when compared to its unpruned counterpart on
ReRAM-based 3D PIM platforms.

REFERENCES
[1] R. Ying et al., "Graph Convolutional Neural Networks for Web-Scale

Recommender Systems," in ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, London, 2018.

[2] W. Fan et al., "Graph Neural Networks for Social Recommendation," in
The World Wide Web Conference, San Fransisco, CA, 2019.

[3] T. N. Kipf and M. Welling, "Semi-Supervised Classification with Graph
Convolutional Networks," in International Conference on Learning
Representations (ICLR), Toulon, 2017.

[4] T. Geng et al, "AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing," in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[5] D. Xu et al., "Edge Intelligence: Architectures, Challenges, and
Applications," in arXiv:2003.12172v2.

[6] A. I. Arka et al., "Performance and Accuracy Tradeoffs for Training
Graph Neural Networks on ReRAM-Based Architectures," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29,
no. 10, pp. 1743-1756, 2021.

[7] A. Shafiee et al, "ISAAC: a convolutional neural network accelerator
with in-situ analog arithmetic in crossbars.," in International Symposium
on Computer Architecture (ISCA), Seoul, Korea, 2016.

[8] L. Song et al, "PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning," in IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Austin, TX, 2017.

[9] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme
for partitioning irregular graphs.," SIAM Journal on Scientific
Computing, 1998.

[10] M. Paul, S. Ganguli and G. K. Dziugaite, "Deep Learning on a Data Diet:
Finding Important Examples Early in Training," in Advances in Neural
Information Processing Systems 34 (NeurIPS 2021), 2021.

[11] D. Fujiki, S. Mahlke and R. Das, "In-memory Data Flow Processor," in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Portland, OR, 2017.

[12] B. K. Joardar et al., "AccuReD: High Accuracy Training of CNNs on
ReRAM/GPU Heterogeneous 3D Architecture," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[13] L. Song et al., "GraphR: Accelerating Graph Processing Using ReRAM,"
in IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2018.

Fig. 11: Transferability of pruned models generated using a dataset in
a configuration to other datasets.

0

20

40

60

80

100

C3-C1 C3-C5 C4-C6 C5-C1 C5-C3

A
cc

ur
ac

y
(%

)

Source-Target Dataset

Unpruned Pruned

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

13

[14] L. Zheng et al, "Spara: An Energy-Efficient ReRAM-Based Accelerator
for Sparse Graph Analytics Applications," in IEEE International
Parallel & Distributed Processing Symposium (IPDPS), New Orleans,
LA, 2020.

[15] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory," in
International Symposium on Computer Architecture (ISCA), South
Korea, 2016.

[16] T. Yang et al., "PIMGCN: A ReRAM-Based PIM Design for Graph
Convolutional Network Acceleration," in Design Automation
Conference (DAC), 2021.

[17] S. Han, J. Pool, J. Tran and W. Dally, "Learning both weights and
connections for efficient neural networks," Advances in Neural
Information Processing Systems (NeurIPS), pp. 1135-1143, 2015.

[18] H. Li et al., "Pruning Filters for Efficient Convnets," in International
Conference on Learning Representations (ICLR), 2017.

[19] W. Wen et al., "Learning Structured Sparsity in Deep Neural Networks,"
Advances in Neural Information Processing Systems (NeurIPS)), pp.
2082-2090, 2016.

[20] L. Liang et al., "Crossbar-Aware Neural Network Pruning," IEEE
Access, vol. 6, pp. 58324-58337, 2018.

[21] J. Meng et al., "Structured Pruning of RRAM Crossbars for Efficient In-
Memory Computing Acceleration of Deep Neural Networks," IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5,
p. 15.

[22] C. Chu et al., "PIM-Prune: Fine-Grain DCNN Pruning for Crossbar-
Based Process-In-Memory Architecture," in IEEE Design & Automation
Conference, 2020.

[23] J. Frankle and M. Carbin, "The lottery ticket hypothesis: Finding sparse,
trainable neural networks," in International Conference on Learning
Representations (ICLR), 2019.

[24] T. Chen et al., "A Unified Lottery Ticket Hypothesis for Graph Neural
Networks," in International Conference on Machine Learning (ICML),
2021.

[25] W. L. Chiang et al., "Cluster-GCN: An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks," in ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, 2019.

[26] C. Coleman et al., "Selection via Proxy: Efficient Data Selection for
Deep Learning," in International Conference on Learning
Representations (ICLR), 2020.

[27] H. You, Z. Lu, Z. Zhou, Y. Fu and Y. Lin, "Early-Bird GCNs: Graph-
Network Co-Optimization Towards More Efficient GCN Training and
Inference via Drawing Early-Bird Lottery Tickets," in AAAI Conference
on Artificial Intelligence, 2022.

[28] A. Tripathy, K. Yelick and A. Buluc, "Reducing Communication in
Graph Neural Network Training," in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020.

[29] W. Hu et al., "Open Graph Benchmark: Datasets for Machine Learning
on Graphs Weihua," in Neural Information Processing Systems
(NeurIPS), 2020.

[30] P. Chen, X. Peng and S. Yu, "NeuroSim: A Circuit-Level Macro Model
for Benchmarking Neuro-Inspired Architectures in Online Learning,"
EEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 12, pp. 3067-3080, 2018.

[31] N. Agarwal, T. Krishna, L. Peh and N. Jha, "GARNET: A detailed on-
chip network model inside a full-system simulator," in International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2009.

[32] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, "Deep
learning with limited numerical precision," in International Conference
on Machine Learning, 2015.

[33] T. Na, J. Ko, J. Kung and S. Mukhopadhyay, "On-chip training of
recurrent neural networks with limited numerical precision,"
Proceedings of the International Joint Conference on Neural Networks,
pp. 3716-3723, 2017.

[34] B. K. Joardar et al., "Learning to Train CNNs on Faulty ReRAM-based
Manycore Accelerators," ACM Transactions on Embedded Computing
Systems, pp. 1-23, 2021.

[35] K. Prabhu et al., "CHIMERA: A 0.92-TOPS, 2.2-TOPS/W Edge AI
Accelerator With 2-MByte On-Chip Foundry Resistive RAM for
Efficient Training and Inference," IEEE Journal of Solid-State Circuits
(JSSC), vol. 1, pp. 9-10, 2022.

[36] W. Wen, Y. Zhang and J. Yang, "ReNEW: Enhancing Lifetime for
ReRAM Crossbar Based Neural Network Accelerators," in International
Conference on Computer Design (ICCD), 2019.

[37] A. Morcos, Y. Haonan, M. Paganini and Y. Tian, "One ticket to win them
all: Generalizing lottery ticket initializations across datasets and
optimizers," Advances in Neural Information Processing Systems, vol.
32, no. NeurIPS, 2019.

 Chukwufumnanya O. Ogbogu
(Graduate Student Member, IEEE)
received his B.S. degree in Electrical and
Electronic Engineering from Obafemi
Awolowo University, Nigeria, in 2019.
He is currently pursuing the Ph.D. degree
with the School of Electrical Engineering
and Computer Science, Washington State

University, Pullman, WA, USA. His current research interests
include; low-power VLSI design, machine learning, hardware
accelerators for deep learning, emerging non-volatile
memories.

 Aqeeb Iqbal Arka (Graduate Student
Member, IEEE) received his B.Sc. degree
in Electrical and Electronics Engineering
from Bangladesh University of Engineering
and Technology in 2016 and his Ph.D. in
Electrical and Computer Engineering from
Washington State University in 2022. His
research interests include design of

manycore accelerators for machine learning and HPC
workloads and novel 3D integration techniques for designing
high-performance manycore systems.

 Lukas Pfromm (Student Member, IEEE)
is an undergraduate student currently
pursuing a B.Sc. degree in Electrical
Engineering at Oregon State University,
Corvallis, OR, USA. He has taken special
interest in the area of digital circuit design
and hopes to continue his education at
graduate level.

 Biresh Kumar Joardar (M’20) is an
assistant professor at University of
Houston. He finished his PhD from
Washington State University in 2020.
Following that, he was a Post-doctoral
Computing Innovation Fellow (CI-
Fellow) at the Department of Electrical
and Computer Engineering at Duke

University. His current research interests include machine
learning accelerators, and hardware reliability. He received the
‘Outstanding Graduate Student Researcher Award’ at

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

14

Washington State University in 2019. His works have been
nominated for Best Paper Awards at prestigious conferences
such as DATE and NOCS. He is a member of the IEEE.

 Janardhan Rao Doppa (Senior
Member, IEEE) is the Huie-Rogers
Endowed Chair Associate Professor at
Washington State University. He
received his PhD in computer science
from Oregon State University. His
research interests are at the intersection
of machine learning and computing
systems design. He won NSF CAREER

award, Outstanding Paper Award from AAAI conference
(2013), Best Paper Award from ACM Transactions on Design
Automation of Electronic Systems (2021), IJCAI Early Career
Award (2021), Best Paper Award from Embedded Systems
Week Conference (2022), Outstanding Junior Faculty in
Research Award (2020) and Reid-Miller Teaching
Excellence Award (2018) from the College of Engineering,
Washington State University.

 Krishnendu Chakrabarty received
the Ph.D. degrees from the University
of Michigan, Ann Arbor, in 1995. He is
now the John Cocke Distinguished
Professor and Department Chair of
Electrical and Computer Engineering
(ECE) at Duke University. His current
research projects include: design-for-
testability of integrated circuits and

systems (especially 3D integration and system-on-chip); AI
accelerators; microfluidic biochips; hardware security; machine
learning for healthcare; neuromorphic computing systems. He
is a Fellow of ACM, IEEE, and AAAS, and a Golden Core
Member of the IEEE Computer Society.

 Partha Pratim Pande is a professor
and holder of the Boeing Centennial
Chair in computer engineering at the
school of Electrical Engineering and
Computer Science, Washington State
University, Pullman, USA. He is
currently the director of the school. His
current research interests are novel
interconnect architectures for manycore

chips, on-chip wireless communication networks,
heterogeneous architectures, and ML for EDA. Dr. Pande
currently serves as the Editor-in-Chief (EIC) of IEEE Design
and Test (D&T). He is on the editorial boards of IEEE
Transactions on VLSI (TVLSI) and ACM Journal of Emerging
Technologies in Computing Systems (JETC) and IEEE
Embedded Systems letters. He was the technical program
committee chair of IEEE/ACM Network-on-Chip Symposium
2015 and CASES (2019-2020). He also serves on the program
committees of many reputed international conferences. He has
won the NSF CAREER award in 2009. He is the winner of the
Anjan Bose outstanding researcher award from the college of
engineering, Washington State University in 2013. He is a
fellow of IEEE

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3227879

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:50:09 UTC from IEEE Xplore. Restrictions apply.

