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network was the best performer, the differences were negligible and the auto-generated networks
performed as well. There is always a trade-off between human, and computer resources for network
optimization and this work suggests that automated optimization, assuming resources are available,
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1 Introduction

Particle physics experiments are increasing their use of Machine Learning (ML) algorithms at
reconstruction level to maximize their physics output. These algorithms currently tend to use one
specific architecture, which means coming up with values for the number of layers of each type and
the number of nodes in each of these layers. The architecture is chosen “by hand”, and then the
algorithms are trained on both labeled simulated and unlabeled real particle physics data in the cases
of supervised learning and unsupervised learning, respectively. The process of choosing a specific
architecture is lengthy and often takes months of human effort. Though deep learning has been able
to bypass the process of manual feature engineering by learning representations in conjunction with
statistical models in an end-to-end fashion, neural network architectures themselves are typically
designed by experts in a painstaking, ad hoc manner. Neural architecture search (NAS) has been
boosted as the path forward for alleviating this pain by automatically identifying architectures that
are as good as hand-designed ones.

A group from Oak Ridge National Laboratory (ORNL) developed a package named Multi-node
Evolutionary Neural Networks for Deep Learning (MENNDL) [1, 2] which addresses the model
selection problem and eases the demands on data researchers. MENNDL leverages a large number
of compute nodes, which communicate over Message Passing Interface (MPI) to distribute the
task of finding the optimal architecture across the nodes of a supercomputer. In our previous
paper [3], we applied ML for improving neutrino interaction point (or “vertex’) reconstruction.
We developed the Convolutional Neural network (CNN) based ML model inside the collaboration



for the neutrino events using both TensorFlow and Caffe APIs. We showed that the ML-based
reconstruction improved the neutrino vertex reconstruction significantly compared to traditional
cut-based method. Moreover, we explored the Domain Adversarial Neural Network (DANN) based
ML model developed using Caffe API, where we used both the labeled simulated events and the
unlabelled real data to train the model. Following this procedure, we were able to remove the
possible biases coming from large simulated training sets.

The successful application of ML brings the following questions; is the developed algorithm
the optimal solution? Can the same architecture be used for similar kinds of datasets but generated
from antineutrino events? Do we need a systematic to take into account the possible bias coming
from the choice of the architecture? In order to investigate these questions, we performed a thorough
comparison between an algorithm that was tuned by hand over several months of researcher’s time
given an intimate knowledge of the detector’s performance and an algorithm that was tuned using
MENNDL over a few hours with a supercomputer at Oak Ridge. Exploring many topologies for
a specific physics problem may help us to understand the systematic related questions mentioned
above. The performances were compared using simulated antineutrino interactions in the MINERvVA
detector. These interactions provide a useful arena for a model comparison because there is a
detailed hit-level simulation of the detector and an important output that is needed for future physics
analyses: the spatial location of the neutrino interaction vertex in a complex detector geometry.
The comparison involves testing several different models using the MENNDL package for vertex
finding, where those models were optimized over different architectures. Although automated neural
architecture searches are widely used in industry, to the best of our knowledge this is the first time
one is being used to analyze neutrino/antineutrino physics data.

The paper is organized as follows: in section 2, we describe the MINERVA detector. Next
in section 3, we discuss the challenges in reconstructing the vertex of the neutrino interaction. In
section 4, we summarize the network topology of the domain-expert-designed model developed
by the MINERVA collaboration. In section 5, we discuss about NAS, followed by section 6 where
details of MENNDL are described. In section 7 we discuss the details of the simulation, and in
section 8 we discuss the results. Section 9 provides the conclusion.

2 MINERVA dectector

The MINERVA detector [4] consists of a nuclear target region where most of the interactions
considered in this paper take place, followed by a fine-grained tracker which measures the products
from the upstream interactions and also serves as an active target. There is electromagnetic
and hadronic calorimetery surrounding the nuclear targets and the tracking region, and a muon
spectrometer (the MINOS near detector [5]) is located downstream of the hadronic calorimeter
region. A right-handed Cartesian coordinate system is used in the MINERVA experiment. In this
coordinate system, the origin is located at the center of inner detector. Z-axis is along the beam line
parallel to the surface of the earth. X-Y plane being orthogonal to the beam line with Y-axis pointing
vertically upwards and X-axis, perpendicular to both of the other axes, horizontal pointing to beam
left. In this system the beam central axis is in the Y-Z plane and points slightly downward at 3.34°.
The Z-axis is chosen in a way that Z = 1200 cm at the front face of the MINOS near detector.



The nuclear target region of the detector is complex and consists of both active and passive
elements. The region is designed to have the same target material (iron or lead) located in several
different regions relative to the center of the neutrino beam and relative to the muon spectrometer
which is itself highly non-symmetric with respect to the neutrino beam axis. The nuclear target design
allows cross-checks of the cross section measurements between regions that have different geometric
acceptances. The longitudinal segmentation of the nuclear target region is shown in figure 1(a),
where the neutrino beam is incident from the left of the figure. The transverse segmentation of the
different passive nuclear targets is shown in figure 1(b).
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Figure 1. (a) Longitudinal segmentation. (b) Transverse segmentation: targets 1,2, 3, and 5 are shown, and tar-

get 4 consists entirely of lead. Target 3 is indicated by the figure at the right, and targets labeled 1, 2, and 5 on the
left alternate between the configurations in the left and middle of the diagram at the right (figures taken from [4]).
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Figure 2. Three orientation/views of the scintillator planes.

The active scintillator planes that provide the input to the ML algorithm consist of nested bars
with a triangular cross section whose base is 3.3 cm and height is 1.7cm. The transverse cross
section of the detector is hexagonal in shape, and the planes have three different orientations to allow
for stereoscopic track reconstruction: the scintillator bars are either vertical or they are oriented +60°
with respect to vertical. Two successive scintillator planes have strips oriented vertically followed by
one of either positive or negative 60° (figure 2). Each grey rectangle in figure 1(a) corresponds to two
scintillator planes where the sequential non-vertical bar directions alternate between +60° and —60°.



3 Analysis challenges in the MINERVA Experiment

The MINERVA experiment has a broad physics program designed to measure a wide range of
neutrino interaction channels. One of the primary themes in MINERVA’s physics program is to
measure how different neutrino interaction channels are modified by the nuclear environment where
an interaction happens. In order to do that, we use a detector that has several different thin (passive)
targets made of the nuclei we want to study (for example carbon, iron, lead), and then we need to
determine the target in which neutrino interaction took place. In order to determine the interaction
location, segmented scintillator planes are located both upstream and downstream of the thin targets.
The signals from the scintillator planes are then used to predict the start of the interaction. Neutrinos
are neutral particles and leave no trace in the scintillator. Nevertheless, charged particles produced
by the neutrino interactions do leave traces, emerging from the interaction vertex in all directions. In
general the higher the neutrino energy, the more energy can be transferred to the nucleus, and the
more energy that is transferred, the more final state charged particles can be produced. This sounds
like a straightforward problem that might not require a ML algorithm, but for high-momentum
transfers, there can be several charged particles leaving the interaction point in many directions.

Vertex finding is made challenging by vertex occlusion in passive material, particle re-
interactions, and hadronic shower cascades: these factors combine to significantly degrade vertex
finding accuracy, requiring very strict sample selection cuts and background subtraction estimation
procedures to accurately predict and subtract the large background. Supervised CNN could improve
on the state of the art of reconstruction algorithms. In a previous publication [3] we applied CNN
based supervised ML model to find the vertex. We considered specific events with high momentum
transfers or in other words, events originating from deep inelastic scattering (DIS) events. Using the
ML approach significantly improves the efficiency and accuracy of our vertex-finding algorithm. The
CNN-based method was the top performer, including in comparisons with a tracking algorithm based
on fitting clusters of hits with a Kalman filter [6]. In addition, we presented means to mitigate the
possible model biases coming from the large labeled training sample using the Domain Adversarial
Neural Network (DANN) [7] algorithm.

4 Network topology of the domain-expert designed ML model

Two CNN based supervised models using Caffe [8] and Tensorflow [9] application programming
interfaces (APIs) were developed. The structure of the models is the same in both APIs. A description
of the domain-expert-designed model (as it will be named throughout the paper) is given in [3]. The
network is made of three separate towers for X, U and V views where each tower comprises four
iterations of convolution and max pooling [10, 11] layers with ReLUs (Rectified Linear Unit) [12]
acting as the non-linear activations. Each pooling layer consists of a kernel which decreases the
dimension along the transverse axis by one. After the four iterations of convolution, ReLLU and
pooling, there is a fully connected layer with 196 semantic output features. The outputs for the three
views are concatenated and fed to another fully connected layer with 98 outputs which in turn is
input for a final fully connected layer with 67 outputs for the plane classifier, which is the input
to a Softmax [13] layer. Fully connected layer allows non-linear combinations of the discovered
features and operates at the end of the feature discovery layers to associate the discovered features to



desired outputs. Finally, we assign the network cost using a cross-entropy function [14], which is
subsequently minimized. Figure 3 shows the structure of the domain-expert-designed-Tensorflow
model diagrammatically. Here, the plane classifier identifies the plane where the true vertex is
located. To classify the data with the plane classifier, we use a total of 67 “planecodes”. This
includes two “overflow” classes — code O for events upstream of the detector, and code 66 for
everything downstream of the last considered plane.

5 Neural architecture search (NAS)

NAS [15-18] describes a family of automated architecture optimization algorithms (i.e. optimizing
the number and type of layers, hyperparameters of those layers, connectivity of layers, etc.). NAS
is distinct from hyperparameter optimization which is generally restricted to optimizer algorithm
choice and minor changes to layer hyperparameters of a fixed network architecture. In other words,
NAS forms a scaffolding for a neural network architecture and hyperparameter search performs
simple scalar adjustments or algorithm choices given an architecture. The idea of automatically
learning and evolving network topologies was first explored in [19]. More recently, the pioneering
works by [20] and [21] have led to a number of better, faster and cost-efficient NAS methods, thus
attracting a lot of attention to this field.

There any many approaches to NAS, but they must all define a search space, search strategy,
and a model evaluation strategy. The search space defines the components of the network and their
possible combinations and connections. The search strategy determines the method of optimization
in order to explore the search space, which significantly affects the efficiency of the search, as well
as the effectiveness of the final proposed architecture. The choice of the method of optimization
ensures the sufficient investigation of the search space and keeps the resulting architecture close to
the optimum. Finally, the evaluation strategy compares the intermediate results, thereby helping
the search strategy to choose the best option during the search process. Several techniques can be
employed for the search strategies, e.g., Bayesian optimization [22], evolutionary algorithms [23],
gradient descent [24], reinforcement learning [20], and meta-learning [25].

6 MENNDL

Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL) [1, 2] is a NAS algo-
rithm that utilizes evolutionary optimization for evolving the architecture and hyperparameters of
convolutional neural networks on high performance computers.

MENNDL uses a master-worker paradigm such that a master process is used to perform the
core evolutionary process and workers are used to evaluate the fitness of the generated networks.
The evolutionary process is asynchronous. Once a sufficient number of individual networks has
been evaluated, a new set of individuals are produced through selection, crossover, and mutation
and then queued to be evaluated. This ensures the computational resources used by the workers are
not left idle. MENNDL has previously shown success in automatically designing neural networks
for several scientific datasets [1, 2]. It is particularly useful for datasets that have very different
image characteristics than the photographic imagery typically used in machine learning literature
(e.g. ImageNet [26]). A key difference between MENNDL and other NAS methods is that it focuses
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Figure 3. The flow chart of the network structure of the domain-expert-designed-Caffe model.
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on exploring all possible hyperparameters for the potential layers along with the composition of
those layers, as opposed to most other methods which limit the range of hyperparameters to a small
set (e.g. DARTS only allows for a handful of potential kernel sizes [27]).

In this work, some modifications were made in order to handle the unique data used. In order to
handle the three views, the same three tower structure was used for the MENNDL networks, with each
tower having identical layer types and hyperparameters learned through the evolutionary process. The
maximum size of hyperparameters related to the width of the input image was set to the maximum
allowed by the two smaller views. MENNDL generated and evaluated approximately 10,000 networks
(models in the following) on the Titan Supercomputer using 500 nodes for 12 hours. Example
networks are shown in figure 4. From these networks, a subset was chosen for further training
and evaluation based on their validation accuracy. The events used for training and developing the
MENNDL networks are the simulated events generated using a neutrino flux peaked around 6 GeV.

It is noted that these models are primarily optimized over short run periods (only 5000 iterations)
using the neural network software library Caffe. The version of MENNDL used in this work is defined
in the 2017 paper [2], and thus the hyperparameters optimized by MENNDL in this work are limited to
those defining the layers and the architecture of the neural network. We can optimize the number of lay-
ers and the type of each layer along with layer specific hyperparameters (e.g. kernel size, number of fil-
ters, dropout rate, etc.). Solver hyperparameters such as learning rate are not optimized by MENNDL.

7 Details of simulation

We choose 9 models out of the 10,000 generated ones, based on their validation accuracy. Validation
loss and accuracy are the loss and accuracy on a validation set, which gives a measure of the quality
of the model. Next, we consider a data sample of size 1.66 million events, and divide that sample in
two: ~ 93% of the events are used for training whereas the remaining ~ 7% are used for validation
of the models. These events are the antineutrino events coming from the NuMI (Neutrinos at the
Main Injector) beam with a peak energy of around 6 GeV. We train the MENNDL models and the
domain-expert-designed-Caffe model using the simulated antineutrino events up to 20 iterations
(epochs). Note that, since we use a CNN-based model, we make images of the input events. We
present the data as two channel images using deposited energy and hit time to train the network.
Each event contains three images — one for each view (X, U, V) — that are fed into the separate
convolutional towers. We pre-process the images by normalizing the values of the total deposited
energy to unity on an event-by-event basis. Timing values are pre-processed by subtracting the event
time extracted by fitting a linear model to the anchor track and scaled by the largest absolute value of
all the relative times in the event. A detailed description of image processing is given in [3]. To study
the impact of the models on a physics analysis, we use another simulated data sample containing two
million events which is 10% of the total antineutrino statistics.

8 Results

The validation accuracy and loss curves of the 9 chosen MENNDL models are shown in figure 5.
Table 1 shows the number of trainable parameters of each of the MENNDL models along with
their corresponding time of execution. Among these 9 MENNDL models, we selected the model
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MENNDL Models | Total number of | Time of Validation loss | Validation
adjustable execution after 20 epochs | accuracy after
parameters (gpu-hour) 20 epochs (%)

MENNDL-1 415104 8*15.5 0.82 71.7

MENNDL-2 949248 8%23 0.87 70.1

MENNDL-3 2857568 8%16.75 1.00 67.9

MENNDL-4 2857920 8%20.5 0.85 68.5

MENNDL-5 1637712 8%20.75 0.73 74.4

MENNDL-6 1637712 8%20.75 0.74 74.2

MENNDL-7 2014224 8%20.5 0.85 70.0

MENNDL-8 3549240 8%20.5 0.94 66.2

MENNDL-9 2691616 8%20.5 0.86 70.6

Table 1. Total number of adjustable parameters and time of execution, validation loss and validation accuracy
for the nine MENNDL models are presented here. Validation loss, and accuracy for those nine MENNDL
models are also shown in figure 5. Time of execution has been reported in terms of gpu-hour. We used 8 gpus
(Tesla P100) and we used the same setup for all the models.

Models Validation loss | Validation Total number of
after 20 epochs | accuracy after parameters
20 epochs (%)
DED-Caffe 0.78 72.6 12115716
MENNDL-5 0.73 74.5 1637712

Table 2. The comparison between domain-expert-designed-Caffe and MENNDL models in terms of validation
loss, validation accuracy, and the total number of adjustable parameters.
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(MENNDL-5) with the highest validation accuracy for the further comparison with the domain-
expert-designed-Caffe model.

Figure 6 shows the comparison of the validation accuracy and validation loss between domain-
expert-designed-Caffe, and MENNDL-5 (indicated by the yellow line in figure 5) models. The red
dashed line corresponds to the MENNDL-5 model (henceforth named as MENNDL model) whereas
the black solid line corresponds to the domain-expert-designed-Caffe model. Figures 6(a) and 6(b)
show the loss and accuracy as the number of epochs increases. The MENNDL model took ~ 20 hours
to train whereas the time taken by the domain-expert-designed-Caffe model for the training is more
than 24 hours. MENNDL model was automated while the domain-expert-designed-Caffe model
required human intervention. We can see from the figure 6 that both models start to saturate at the
same number of epochs, and after 10 epochs of training they show similar accuracy and loss. Table 2
lists the validation loss and accuracy achieved by these two models after reaching the saturation
with the total number of adjustable parameters in each model. We also compared the number of
parameters of each model, which is shown in the third column of table 2. We see that model found
by MENNDL have almost 10 times fewer parameters than the model designed by hand, thus having
less expressivity than the more complex domain-expert-designed-Caffe model. This is expected due
to the process used by MENNDL, where the fitness of the model is evaluated after a limited number
of iterations. However, domain-expert-designed-Caffe model, and MENNDL model demonstrate
similar performance, validating the approach used by MENNDL [2].

Next, we test our models where we generate the ML-based predictions of the neutrino interaction
vertex of each event using these two models. The predictions generated from both the models are
incorporated in the MINERVA analysis framework.

Figure 7 shows the event distribution at target 2 of the MINERVA detector with respect to vertex
Z using antineutrino simulated data set in deep inelastic scattering (DIS) region. The variable vertex
Z is closely related to the actual position of the nuclear targets in the MINERVA detector. We use
the ML-based prediction for the reconstructed vertex position, where figures 7(a), and 7(b) represent
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Figure 7. The event distributions for two different machine learning models using target 2 of the MINERvVA
detector. Three nuclear targets (iron, lead and carbon) from the MINERVA detector were used in this study.
Events reconstructed from the source nuclear target (iron) are represented in red and other targets (lead and
carbon combined) are presented in purple. The number of events coming from the plastic scintillator upstream
(in this case the six planes between targets 1 and 2 which are closest to target 2) and downstream (in this
case the six planes between targets 2 and 3 which are closest to target 2) of the nuclear target are presented in
orange and magenta, respectively.
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the domain-expert-designed-Caffe and MENNDL models, respectively. As target 2 is composed of
iron and lead, the plots are made for the number of events in iron and lead separately. Here we show
the event distribution generated only in iron. In addition to the event distributions coming from the
nuclear target (iron), the number of events coming from the plastic scintillator upstream (in this
case the six planes between targets 1 and 2, which are closest to target 2) and downstream (in this
case the six planes between targets 2 and 3, which are closest to target 2) of the nuclear target are
also presented. The two event distributions are quite similar to each other, which signifies that both
models provided similar predictions for the interaction vertex. In figure 8, there is the ratio of the
two distributions in figure 7b and 7a, ratio which is always compatible with 1 given the error bars.
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Figure 8. Ratio of the different components from sub-figures 7(a) and 7(b).

We calculate the efficiency and the purity of the sample, where efficiency is the fraction of true
events reconstructed, and purity is the fraction of events where the reconstructed value was equal
to the underlying true generated value. For the calculation of the efficiency, the numerator is the
number of events in the source nuclear target passing the reconstructed sample selection cuts along
with the DIS cut (momentum transferred, Q> > 1 GeV?, and invariant mass of the hadronic state,
W > 2 GeV). The denominator is all true generated charged-current DIS events in the true fiducial
volume with true 6, < 17°. Purity is related to the efficiency. Purity is defined with the same
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numerator as for the efficiency which is divided by the number of events passing the reconstructed
sample selection cuts and reconstructed DIS cut.

Figure 9 shows the efficiency and purity versus true target number. We compared the domain-
expert-designed-Caffe and MENNDL models, and the difference between them varies between 0.8%
to 3.4% and from 1.0% to 2.1% for efficiency and purity, respectively.

9 Conclusion

In this paper, we explored the performance of a ML model obtained from the MENNDL package
developed by the ORNL group using the MINERVA simulated neutrino data. We further compared
the MENNDL model with a successful model which was manually developed by the MINERVA
collaboration for improving the vertex reconstruction precision for neutrino interactions. In this
work, we trained those models using antineutrino DIS events, generated predictions for the vertex
location of the antineutrino DIS events, and compared the performance of the two models in terms
of vertex position accuracy at the nuclear target region, efficiency, and purity. In terms of the
efficiency with respect to the true target location of DIS events, the differences between the two
models ranged between 0.8% to 3.4%, and for the purity those differences varied between 1.0% to
2.1%. Therefore, the MENNDL generated model performs similarly to the domain-expert-designed
model. We also see that the model found by MENNDL have almost 10 times fewer parameters
than the domain-expert-designed model. Hence, MENNDL model have lower capacity than the
comparatively more complex domain-expert-designed model. However, both models can achieve
similar performance. From this, we observe that MENNDL favors lower capacity models over more
complex ones. The domain-expert-designed model was carefully developed, but it was done manually,
and therefore it required a significant amount of time of persons with intimate knowledge of the
detector’s performance. On the other hand, the MENNDL models were generated and evaluated using
the package MENNDL where the models are trained over fewer iterations, therefore significantly
reducing the amount of specialized human input and time required. This technique is quite common
in industry for use in automated neural architectures but to the best of our knowledge, this is the first
time it has been used to analyze neutrino/antineutrino physics data. In the coming years, the current
running and future neutrino experiments will collect an unprecedented amount of information-dense
data. As a result, the implementation of a ML algorithm will become necessary to extract the
physics embedded in these data, and the MENNDL package will be of immense help in significantly
reducing the required human time and associated time needed to produce an optimized ML model.
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