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How highly connected can an orbifold be?

Christian Lange and Marco Radeschi

Abstract. On the one hand, we provide the first examples of arbitrarily highly con-
nected (compact) bad orbifolds. On the other hand, we show that n-connected n-orbi-
folds are manifolds. The latter improves the best previously known bound of Lytchak
by roughly a factor of 2. For compact orbifolds and in most dimensions, we prove
slightly better bounds. We obtain sharp results up to dimension 5.

1. Introduction

Orbifolds are a generalization of manifolds that incorporate local symmetries. They were
introduced by Satake under the name of V-manifolds [22, 23] and later rediscovered by
Thurston. Orbifolds for instance occur as quotient spaces of Lie group actions or foli-
ations [17], as collapsed limits of manifolds under Gromov–Hausdorff convergence [6]
and as moduli spaces, e.g., in Teichmüller theory.

Thurston [25] defined the notions of orbifold coverings and fundamental groups, and
showed that they behave as in the classical case. More generally, orbifold homotopy- and
(co)homology groups can be defined, after observing that every orbifold can be realized
as a quotient of an almost free action of a compact Lie group on a manifold, as the usual
homotopy and (co)homology groups of the associated Borel construction. In the special
case of the orbifold fundamental group, one recovers Thurston’s definition, because orb-
ifold coverings are in one-to-one correspondence with coverings of a model for the Borel
construction.

An orbifold is called good if it is covered by a manifold and bad otherwise. It is a
natural question to ask which measurable parameters tell good and bad orbifolds apart or
identify manifolds among orbifolds. Such identifiers can have also practical applications.
The fact that an orbifold which admits a Riemannian metric of constant curvature is always
good (see [18]) was for instance applied in [15] in the context of Alexandrov geometry.
In [17], Lytchak and Wilking completed the program initiated by Ghys [7] and Gromoll–
Grove [9] of classifying Riemannian foliations of spheres, and a large part of the work
amounted to showing that a compact 7-connected 8-orbifold is in fact a manifold. In the
context of Riemannian orbifolds all of whose geodesics are closed, the authors [2] applied
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a cohomology characterization of manifolds among orbifolds, see Proposition 2.1, in order
to show that odd-dimensional orbifolds all of whose geodesics are closed are covered by
spheres.

In terms of topological parameters, Davis asked whether a contractible orbifold is a
manifold [3], p. 28. A positive answer to this question was provided by Lytchak, who
actually showed that a .2n � 2/-connected n-dimensional orbifold is a manifold [16],
see also Section 2.2. In the same paper [16], Lytchak moreover asked whether arbitrarily
highly connected bad orbifolds exist.

In this paper we answer Lytchak’s question in the positive, and we improve his bound
by roughly a factor of 2.

On improving the bound, we have the following result.

Theorem A. An n-connected n-orbifold is a manifold for any n � 1. A 2n-connected
.2n C 1/-orbifold is a manifold for any n � 1.

Note that the even-dimensional part of this theorem is only a statement about non-
compact orbifolds: a simply connected, compact n-orbifold has a fundamental class and
can thus not be n-connected. In the compact case, we obtain a better bound by additionally
exploiting Lefschetz duality and the classification of homology spheres that are covered
by spheres [24].

Theorem B. A compact .2n � 2/-connected 2n-orbifold is a manifold for any n � 3. For
n � 3 not a power of 2, a compact .2n � 2/-connected .2n C 1/-orbifold is a manifold.

In particular, our argument simplifies the tricky part (i.e., Section 4) in the work [17]
of Lytchak and Wilking concerned with showing that a certain compact 7-connected
8-orbifold is a manifold. The results of Theorems A and B hinge on the fact, proved
in Proposition 4.5, that m-connected orbifolds have singular strata only in codimension
> 2b.m � 1/=2c.

On the constructive side, we answer Lytchak’s question about the existence of highly
connected bad orbifolds in the following way.

Theorem C. For any n � 4, there exist compact bn=2 � 1c-connected bad orbifolds in
dimension n.

Moreover, in low dimensions we present some specific constructions that yield higher
connectedness than provided by Theorem C. For instance, there exists a compact, 3-con-
nected, bad 4-orbifold. All our results are summarized in the following section.

1.1. Summary of the results

Given a dimension n, let .n/ be the maximum k such that there exists a bad, k-connected,
n-orbifold, and let c.n/ be the maximum k such that there exists a bad, k-connected,
compact n-orbifold. Then the statements we prove can be written as follows.

Theorem D (Bounds for .n/). The following hold:
(1) bn=2c � 1  .n/ < 2bn=2c for n � 4,
(2) .3/ D 1 and .4/ D .5/ D 3.
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Theorem E (Bounds for c.n/). The following hold:
(1) bn=2c � 1  c.n/ < 2b.n � 1/=2c for n � 5,
(2) c.2n C 1/ < 2n � 2 if 1 < n ¤ 2

k ,
(3) c.3/ D 1 and c.4/ D 3.

1.2. Structure of the paper

In Section 2 we recall some background about orbifolds. In particular, we recall a cohomo-
logical characterization of manifolds among orbifolds, see Proposition 2.1. In Section 3
we provide specific examples of highly connected orbifolds in low dimensions. More-
over, we prove Theorem C about the existence of arbitrarily highly connected orbifolds.
In Section 4, we prove our Theorems A and B. Finally, in Section 5 we prove Theorems D
and E.

Let us close the introduction with the following questions:

Question 1.1. What are the precise values of .n/ and c.n/?

Question 1.2. (When) does  D c hold?

2. Preliminaries

2.1. Orbifolds

An n-dimensional Riemannian orbifold is a metric length space O such that each point
in O has a neighborhood that is isometric to the quotient of an n-dimensional Rieman-
nian manifold M by an isometric action of a finite group Ä . Every such Riemannian
orbifold has a canonical smooth orbifold structure in the usual sense [14]. Conversely,
every smooth (effective) orbifold can be endowed with a Riemannian metric, and then the
induced length metric turns it into a Riemannian orbifold in the above sense. For a point p

in O, the isotropy group of a preimage of p in a Riemannian manifold chart is uniquely
determined up to conjugation in O.n/. Its conjugacy class is called the local group of O

at p and we also denote it as Äp . The point p is called regular if this group is trivial
and singular otherwise. More precisely, an orbifold admits a stratification into manifolds,
where the stratum of codimension k is given by

†k D πp 2 O j codimFix.Äp/ D kº:

In particular, †0 is the set of regular points.
Riemannian orbifolds for instance arise as a quotient of a Riemannian manifold M by

an effective, isometric and almost free (i.e., isotropy groups are finite) action of a compact
Lie group G. In fact, every Riemannian orbifold arises in this way. Namely, it can be
obtained as the quotient of its (orthonormal) frame bundle by the natural O.n/-action on it.
The homotopy type of the corresponding Borel construction BO

defD M ⇥G EG, which was
first considered by Haefliger [11], depends only on the orbifold O and not on the specific
representation of O as a quotient, see Proposition 1.51 in [1]. Hence, if O is a manifold,
we can take M D O, G D π1º and see that BO D M . The orbifold homotopy groups,
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cohomology groups, etc. of an orbifold O are defined as the corresponding invariants
of BO. In particular, an orbifold O is by definition k-connected, if BO is so.

The notion of an orbifold covering is defined in [25]. An alternative metric character-
ization of orbifold coverings is provided in [14].

In dimension 1, every orbifold is covered by R. In dimension 2, the so-called football
orbifolds (also known as spindle or complex weighted projective lines) provide exam-
ples of simply connected, bad, compact 2-orbifold, see Figure 1. In fact, any bad, simply
connected 2-orbifold is of this type [3].

Zp

Zq

Figure 1. A football orbifold is homeomorphic to S
2 and has two cyclic singularities of order p

and q. Its fundamental group is isomorphic to Zgcd.p;q/.

An orbifold (respectively, a Riemannian orbifold) is diffeomorphic to a manifold (re-
spectively, isometric to a Riemannian manifold) if and only if its cohomology groups are
non-trivial in only finitely many degrees. This statement appears in a more general form in
the work of Quillen, see Corollary 7.8 in [21]. In particular, it yields an alternative proof
for Davis’ question (see [3], p. 28) whether a contractible orbifold is a manifold. In the
special case of an orientable orbifold, an easier argument is provided in Proposition 3.3
of [2]. For the convenience of the reader, we present this argument here in a condensed
form.

Proposition 2.1. An orientable n-orbifold O is a manifold, i.e., all its local groups are
trivial, if and only if H

i
orb.O/ D H

i
.BOI Z/ D 0 for all i > n. This is the case if and only

if the cohomology is nontrivial only in finitely many degrees.

Proof. We only need to show the ‘if’ part. If O is not a manifold, then there exists some
Zp ⇢ SO.n/ which fixes some x 2 Fr.O/. In this case, the projection

Fr.O/Zp

defD Fr.O/ ⇥Zp ESO.n/ ! BZp

admits the section s.b/D Œx;bç. Thus, we obtain an inclusion H
⇤
.BZp/,!H

⇤
.Fr.O/Zp /.

Now consider the fibration

SO.n/=Zp ! Fr.O/Zp ! BO
defD Fr.O/SO.n/:
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Since O is orientable, ⇡1.BO/ acts trivially on H
⇤
.SO.n/=Zp/ (see Lemma 3.1 in [2]),

and thus the Leray–Serre spectral sequence satisfies

E
p;q
2 D H

p
.BOI H

q
.SO.n/=Zp//

and converges to H
pCq

.Fr.O/Zp /. Since SO.n/=Zp is a finite-dimensional manifold and
H

⇤
.Fr.O/Zp / is nontrivial in infinitely many degrees as we have seen above, the same

must be true for H
⇤
.BO/.

Remark 2.2. An orbifold can be homeomorphic to a manifold even if some of its local
groups are not trivial. The question when this happens is completely answered in [13].

2.2. Lytchak’s bound

We recall the following argument by Lytchak [16]. Suppose an n-orbifold O is k-connect-
ed for some k � 1. Then O is in particular orientable and so one can realize it as an almost
free G D SO.n/-quotient of a manifold M . The orbit map opWG ! M is then k-connected
as well. Thus for any l < k, the map H

l
.M/ ! H

l
.G/ is surjective. Since the orbit map

factorizes through ⇡pW G ! G=Gp , the map H
l
.G=GpI Z/ ! H

l
.GI Z/ is surjective for

l < k as well. If O is not a manifold, i.e., if Gp is nontrivial for some p, then G ! G=Gp

is a nontrivial covering map for this p, in which case the image of H
m

.G=GpI Z/ in
H

m
.GI Z/ D Z is a subgroup of index jGpj for m D dim G D n.n � 1/=2. Since the

free part of H
⇤
.GI Z/ is generated in degree  2n � 3, it follows that O is a manifold if

k � 2n � 2.
We remark that this argument can be improved for 4-orbifolds. Indeed, in this case

H
6
.GI Z/ is generated in degree 3, not just in degree  2n � 3 D 5.
Therefore, the above argument shows that a 4-orbifold O is a manifold if it is 4-con-

nected. In Section 4 we will see an alternative proof of this conclusion that works in any
dimension.

3. Examples and constructions

In this section we provide specific examples and general constructions for highly con-
nected orbifolds.

3.1. Low dimensional examples

An example of a compact, simply connected, bad 2-orbifold is shown in Figure 1 when p

and q are coprime. We will in particular see that compact, simply connected, bad orb-
ifolds exist in all dimensions. An example in dimension 3 is provided by the following
proposition.

Proposition 3.1. There exists a compact simply connected bad 3-orbifold.

Proof. There exists a 3-orbifold with underlying space S
3 whose singular set is the triva-

lent graph shown in Figure 2, see [25]. The edge weights specify the orders of the corre-
sponding cyclic local groups. The local groups at the two upper vertices are the orientation
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preserving symmetry group I of an icosahedron. The local groups at the two lower vertices
are the orientation preserving symmetry group O of a cube. We claim that this orbifold
is simply connected as an orbifold. To see this we first observe that it is the double of
the dashed 3-ball. By Seifert–Van Kampen, it suffices to show that this 3-ball is simply
connected as an orbifold. The latter is covered by two good orbifolds with fundamental
groups I and O, respectively. Their intersection is homotopy equivalent to R2

.2; 3/, an
open disk with two cyclic orbifold singularities of order 2 and 3, respectively. The fun-
damental group of this disk has two generators x and y represented respectively by a
loop around the cyclic singularity of order 2, and a loop around the cyclic singularity of
order 3. A presentation of this fundamental group is given by hx; y j x

2
; y

3i. The funda-
mental groups of the two good orbifold balls isomorphic to O and I are generated by x

and y as well and have presentations hx; y j x
2
; y

3
; .xy/

4i and hx; y j x
2
; y

3
; .xy/

5i,
respectively. Applying Seifert–Van Kampen again now proves the claim.

5

4

3 2 32

Figure 2. Compact simply connected bad 3-orbifold.

In dimension 4, higher connectedness can be achieved.

Proposition 3.2. There exists a compact 3-connected bad 4-orbifold.

Proof. If ⇢ is an irreducible representation of SU.2/ on a complex even-dimensional vec-
tor space Cn, then the induced action of SU.2/ on the unit sphere S

2n�1 ✓ Cn is almost
free but not free, and so the corresponding quotient S

2n�1
=SU.2/, which is also referred

to as a weighted quaternionic projective space, is a .2n � 4/-dimensional orbifold, [9],
p. 154. In particular, for n D 4 the quotient O D S

7
=SU.2/ is a compact 4-orbifold that

is not a manifold.
The SU.2/ action on S

7 induces a free action on the product S
7 ⇥ ESU.2/ ' S

7, thus
producing a principal SU.2/-bundle

S
7 ' S

7 ⇥ ESU.2/ ! S
7 ⇥SU.2/ ESU.2/ D BO

and the corresponding long exact sequence in homotopy yields

� � � ! ⇡i .S
7
/ ! ⇡

orb
i .O/ ! ⇡i�1.SU.2// ! � � �

Since S
7 is 6-connected and SU.2/ ä S

3 is 2-connected, the long exact sequence implies
that this orbifold is 3-connected.
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Note that by taking products with Rn, Proposition 3.2 provides examples of (non-
compact) 3-connected n-orbifolds for any n � 5. In dimension 5 we are only aware of
2-connected compact examples. In fact, the example in the following proposition can be
shown to be not 3-connected.

Proposition 3.3. There exists a compact 2-connected bad 5-orbifold.

Proof. Consider the maps ⇢1WSU.2/ ! SU.3/ given by inclusion, and ⇢2WSU.2/ ! SU.3/

given by the composition SU.2/ ! SO.3/ ! SU.3/. Finally, consider the action of SU.2/

on SU.3/ given by g � h D ⇢1.g/h.⇢2.g//
�1, which was proved to be almost free but not

free by Yeroshkin [28]. In particular, the biquotient O
defD SU.3/==SU.2/ is an orbifold, of

dimension dim O D dim SU.3/ � dim SU.2/ D 5.
As for the example in Proposition 3.2, there is a corresponding long exact sequence

� � � ! ⇡i .SU.7// ! ⇡
orb
i .O/ ! ⇡i�1.SU.2// ! � � �

Since both SU.3/ and SU.2/ are 2-connected, the long exact sequence in homotopy
implies that O is 2-connected as well.

Remark 3.4. The examples in Propositions 3.2 and 3.3 admit metrics with non-negative
sectional curvature. In addition to the examples above, we point out the existence of 4-
dimensional, 3-connected orbifolds with a cohomogeneity-1 action produced by Hitchin,
see [12], and by Goette–Kerin–Shankar, see Lemma 2.3 in [8]. It is an amusing fact that
these orbifolds have also played an important role in finding new examples of manifolds
with non-negative or positive sectional curvature. In fact, the orbifold from [12] was used
by Dearricott [4] and Grove–Verdiani–Ziller [10] to produce a new 7-manifold with pos-
itive sectional curvature, while the examples in Goette–Kerin–Shankar [8] were used in
the same paper to produce metrics with non-negative sectional curvature in a large class
of 2-connected 7-manifolds, including all the 7-dimensional exotic spheres.

3.2. Arbitrarily highly connected bad orbifolds.

Here we present a construction of arbitrarily highly connected orbifolds. It is based on the
existence of certain parallelizable lens spaces as well as a surgery construction by Milnor
that allows to kill homotopy groups.

Proposition 3.5. For any n � 4, there exist compact bn=2 � 1c-connected bad orbifolds
in dimension n.

Proof. The proof is constructive. We let M be either a stably parallelizable lens space
S

n�1
=Zp , whose existence is guaranteed by [5], or the parallelizable product S

n�2
=Zp ⇥

S
1 of such a lens space with S

1, depending on whether n is even or odd. Take W
defD

M ⇥ Œ0; 1ç, a compact parallelizable n-manifold with @W D M t M . By the corollary
of Theorem 2 in [19], it is possible to perform surgery and turn it into a bn=2 � 1c-
connected manifold W

0, with boundary @W
0 D M t M . Finally, let O be the orbifold

obtained by gluing two copies of X
defD Dn

=Zp to W
0 along their boundary. We claim

that O is bn=2 � 1c-connected as an orbifold. Since W
0 is simply connected, it follows that
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⇡
orb
1 .O/ D 1 by Seifert–Van Kampen. Let j WM t M ,! X t X be the inclusion. Since for

i D 1; : : :bn=2 � 1c we have that H
orb
i .W

0
/ D Hi .W

0
/ D 0 and that j⇤WH orb

i .M t M/ !
H

orb
i .X t X/ is an isomorphism for i < n � 1, cf. Proposition 3.5 in [13], Mayer–Vietoris

implies that H
orb
i .O/ D 0 for i D 1; : : : ; bn=2 � 1c. Now Hurewicz implies that O is

bn=2 � 1c-connected.

Remark 3.6. Killing homotopy groups via surgery becomes more delicate past degree
bn=2 � 1c since new surgery might reintroduce homology in lower degrees, and it involves
analyzing the intersection form in Hbn=2c.W / (when dimW is even) or the linking form in
Tor.Hbn=2c.W // (when dimW is odd), see Milnor [19] and Wall [26]. In these cases, how-
ever, one also needs vanishing conditions on @W such as Hbn=2c.@W / D Hbn=2cC1.@W /,
which are in general not satisfied in the examples above.

4. Stratification and obstructions

The first step in proving our obstruction results is to rule out the presence of 2-torsion in
sufficiently highly connected orbifolds. The following lemma generalizes a conclusion in
the proof of Lemma 3.2 in [17].

Lemma 4.1. Let O be a 2
a�1-connected n-orbifold for some a � 1. Then the local groups

of O contained in strata of codimension < 2
a have no 2-torsion.

Proof. In any case, O is simply connected, and so we can realize it as an SO.n/ quotient
of its frame bundle. Suppose a local group Äp of O contains a subgroup Ä0 of order 2 and
a fixed point subspace of codimension < 2

a. The image of SO.n/p ⇥ ESO.n/ ⇢ Fr.O/ ⇥
ESO.n/ under the projection Fr.O/ ⇥ ESO.n/ ! BO is a model for the classifying space
of Äp . If we pull back the tangent bundle T O via the map BÄ0 ! BÄp ,! BO, we get a
bundle isomorphic to V D EÄ0 ⇥Ä0 Rn.

Suppose that the non-zero element ◆ 2 Ä0 ⇢ SO.n/ has eigenvalue �1 of multiplicity
2m < 2

a. Then we can write 2m “in binary” as 2m D PN
j D1 2

ej , where 0 < e1 < e2 <

� � � eN < a. Furthermore, V is a bundle over RP 1 ä BÄ0 that decomposes as the sum of
2m canonical line bundles and n � 2m trivial line bundles. Thus the total Stiefel–Whitney
class is given by

.1 C w/
2m D

mY
j D1

.1 C w/
2

ej D
mY

j D1

.1 C w
2

ej
/ D 1 C w

2e1 C R;

where 1 is the generator of H
0
.RP 1I Z2/, w is the generator of H

1
.RP 1I Z2/ ä Z2,

and R is a multiple of w
2e1 C1. This implies that w2e1 .V / ¤ 0. However, since V is a pull-

back of T O, and O is 2
a�1-connected, we have w1.V / D � � � D w2a�1.V / D 0. Moreover,

since the Stiefel–Whitney classes wj .V /, j < 2
a, are generated by w1.V /; : : : ; w2a�1.V /

via Steenrod powers (see [20], p. 94), it follows that wj .V / D 0 for all j < 2
a. This is a

contradiction with w2e1 .V / ¤ 0, since by assumption 2
e1 < 2m < 2

a.

It turns out that the absence of 2-torsion has strong representation-theoretical impli-
cations as the following lemma shows. It for instance reflects the fact that any irreducible
subgroup of SO.3/ contains elements of order 2.



How highly connected can an orbifold be? 9

Lemma 4.2. A real representation without trivial components of a finite group G of odd
order has even dimension.

Proof. Assume that the statement is false. Then there exists a nontrivial odd-dimensional
irreducible real representation of G. Since it has odd dimension, its complexification
⇢W G ! U.V / (which we can turn to be unitary as G is finite) is irreducible as well.
Let �⇢W G ! R be the character of this representation: �⇢.g/ D tr.⇢.g//. The fact that G

has odd order implies that the map g 7! g
2 is a bijection of G. This allows us to compute

the Schur-indicator of ⇢:

◆⇢
defD 1

jGj
X
g2G

�⇢.g
2
/ D 1

jGj
X
g2G

�⇢.g/ D h�⇢; �⇢0i D 0:

Here ⇢0 denotes the trivial character, and the last relation holds by the Schur orthogonal-
ity relation since ⇢ nontrivial. Now the claim follows by contradiction since an irreducible
complex representation with trivial Schur indicator cannot be realized over the real num-
bers, see Theorem 4.5.6 in [27].

The conclusion of Lemma 4.2 will be essential in our proof as it allows us to skip every
second dimension. This will be necessary because later on we want to apply the follow-
ing proposition to turn a highly connected orbifold into a k-connected orbifold without
singular strata in codimension � k C 1.

Recall that given an orbifold O, a strong suborbifold is a subset † ⇢ O such that for
every p 2 † and every chart �W U ! V ⇢ O around p (i.e., U is a Riemannian manifold
with an isometric action of a finite group Ä , � is Ä-invariant and induces an isometry
U=Ä ' V ), the preimage �

�1
.† \ V / is a submanifold fixed set-wise by the group Ä .

Proposition 4.3. Let O be a simply connected n-orbifold with a closed strong suborbifold
† ⇢ O of codimension k. Then the pair .O; O n †/ is .k � 1/-connected in the orbifold
topology.

Proof. Write O as a quotient M=G, where M D Fr.O/ is the frame bundle of O (cf.
Section 2) and G D O.n/. Letting ⇡ W M ! M=G denote the projection, the fact that †

is a strong suborbifold implies that N
defD ⇡

�1
.†/ is a smooth submanifold of M of codi-

mension k, and O n † can be globally written as a quotient O n † D .M n N /=G. In
particular, one has

⇡
orb
i .O/ D ⇡i .M ⇥G EG/ and ⇡

orb
i .O n †/ D ⇡i ..M n N / ⇥G EG/:

One has a commutative diagram

M n N //

✏✏

.M n N / ⇥G EG //

✏✏

BG

M // M ⇥G EG // BG
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with horizontal maps being fibrations, which induces a commutative diagram with exact
rows

� � � // ⇡iC1.BG/ // ⇡i .M nN / //

✏✏

⇡
orb
i .O n†/ //

✏✏

⇡i .BG/ // ⇡i�1.M nN / //

✏✏

� � �

� � � // ⇡iC1.BG/ // ⇡i .M/ // ⇡orb
i .O/ // ⇡i .BG/ // ⇡i�1.M/ // � � �

Since N has codimension k in M , by standard transversality arguments the inclusion
M n N ! M is .k � 1/-connected. Thus ⇡i .M n N / ! ⇡i .M/ is an isomorphism for
i  k � 1. By the five lemma, ⇡

orb
i .O n †/ ! ⇡

orb
i .O/ is an isomorphism for i  k � 1

as well. This proves the result.

Since the orbifold strata of O are special examples of strong suborbifolds, the previous
proposition implies the following.

Corollary 4.4. Let O be a simply connected n-orbifold. Then the pair .O; O n †�k/ is
.k � 1/-connected in the orbifold topology, where †�k denotes the union of all strata of
codimension at least k.

Now we can prove our first obstruction theorem.

Proposition 4.5. Let O be an m-connected orbifold for some even m. Then there are no
singular strata in codimension  m.

Proof. Let O be an m-connected manifold, and let a be the smallest integer such that
m < 2

a. By Lemma 4.1, all local groups in strata of codimension < 2
a have odd order.

Lemma 4.2 then implies that all singular strata in codimension  2
a have even codimen-

sion.
Assume by contradiction that there exists a singular stratum of codimension  m < 2

a,
and let 2k � 2 denote the lowest codimension of a singular stratum.

Let †�2kC2 be the union of strata of codimension � 2k C 2. By Corollary 4.4 and the
fact that O is 2k-connected, the complement O

0 defD O n †�2kC2 is 2k-connected as well,
and it contains only singular strata of codimension 2k, which we call †.

By abuse of notation, we denote by † ✓ O
0 a connected component of †.

Introduce a Riemannian metric on O, and let D† denote an ✏ tubular neighbourhood
of †, with smooth boundary S†

defD @D†. We will need the following result.

Lemma 4.6. D† and S† are strong suborbifolds of O. Furthermore, letting bD† andbS† denote the classifying spaces of D† and S†, respectively, the map bS† ! bD†

induced by the inclusion S† ! D† is a S
2k�1-bundle, where 2k D codim.† ✓ O/.

Proof of Lemma 4.6. At any point p 2 †, consider a local chart ⇡pW QUp ! Up , where QUp is
a Riemannian manifold on which the local group Äp acts by fixing the (singleton) preim-
age Qp of p. By definition of strong suborbifold, the preimage

Q†p
defD ⇡

�1
p .† \ Up/
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is a submanifold of QUp , fixed (as a set) by the local group Äp . In particular, ⇡
�1
p .D†/ D

D. Q†p/ is preserved by the action of Äp , as well as @D. Q†p/ D ⇡
�1
p .S†/, and thus D†

and S† are strong suborbifolds of O.
Consider now the frame bundle �W Fr.O/ ! O, and recall that on each local chart Up ,

one has �
�1

.Up/ D QUp ⇥Äp SO.n/. In particular, we have

�
�1

.† \ Up/ D Q†p ⇥Äp SO.n/;

�
�1

.D† \ Up/ D D. Q†p/ ⇥Äp SO.n/;

�
�1

.S† \ Up/ D .@D. Q†p// ⇥Äp SO.n/ D @.D. Q†p/ ⇥Äp SO.n//:

Since the projection D. Q†p/ ! Q†p is a Äp-equivariant trivial disc bundle, with sphere
bundle @D. Q†p/ ! Q†p , there is an induced map

�
�1

.D† \ Up/ D D. Q†p/ ⇥Äp SO.n/ ! Q†p ⇥Äp SO.n/ D �
�1

.† \ Up/

which is again a disc bundle, with sphere bundle given by �
�1

.S† \ Up/.
In particular, we have that �

�1
.D†/ is a disk bundle over Q† D �

�1
.†/, with sphere

bundle �
�1

.S†/, and therefore the inclusion �
�1

.S†/ ! �
�1

.D†/ is, up to homotopy,
a sphere bundle with fiber S

2k�1. Finally, since the inclusion �
�1

.S†/ ! �
�1

.D†/ is
SO.n/-equivariant, it induces fibrations

�
�1

.S†/ //

✏✏

�
�1

.D†/

✏✏bS† �
�1

.S†/ ⇥SO.n/ ESO.n/ //

✏✏

�
�1

.D†/ ⇥SO.n/ ESO.n/

✏✏

bD†

BSO.n/ BSO.n/

where bD† and bS† are the classifying spaces of D† and S†, respectively, and the mapbS† ! bD†, being a free quotient of a sphere bundle, is again a sphere bundle.

We can now continue with the proof of Proposition 4.5. By Lemma 4.6, the sets D†

and † are strong suborbifolds of O and, letting bS† and bD† denote the classifying spaces
of S† and D†, respectively, the map bS† ! bD† induced by the inclusion S† ! D†

is a S
2k�1-bundle. By the assumption on the structure of the singular set, S† is a man-

ifold, and in fact bS†(D S†) has finite dimensional cohomology. On the other hand, by
Proposition 2.1 one has that H

⇤
.bD†/ D H

⇤
orb.D†/ is nonzero in infinitely many degrees.

From the Gysin sequence of S† ! D†, there exists an element e 2 H
2k
orb .D†/ with

a long exact sequence

� � � H
j
orb.S†/ ! H

j �.2k�1/
orb .D†/

[e�! H
j C1
orb .D†/ ! H

j C1
orb .S†/ ! � � �
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By choosing an index j such that H
�j
orb .S†/ D 0 and H

j �.2k�1/
orb .D†/ ¤ 0, it follows

that e ¤ 0. By then choosing j D 2k � 1, one gets

H
2k�1
orb .S†/ ! H

0
orb.D†/

[e�! H
2k
orb .D†/ ! H

2k
orb .S†/ ! � � �

i.e.,
0 ¤ e 2 ker.j ⇤

1 W H
2k
orb .D†/ ! H

2k
orb .S†//:

Apply now the Mayer–Vietoris sequence to the partition .D†; O
0 n †/ of O

0:

0 D H
2k
orb .O

0
/ ! H

2k
orb .D†/ ˚ H

2k
orb .O

0 n †/
j ⇤

1 �j ⇤
2�! H

2k
orb .S†/ ! � � �

But this is a contradiction, because of 0 ¤ .e; 0/ 2 ker.j ⇤
1 � j

⇤
2 /.

As a corollary of Proposition 4.5, one gets:

Proof of Theorem A. In dimension 1, no bad orbifolds exist. In dimension 2, any bad
orbifold is compact. Hence, we can assume that the dimension is at least 3.

By Proposition 4.5, a 2n-connected orbifold of dimension 2n or 2n C 1 does not have
singular strata in codimension  2n. But since by Lemmas 4.1 and 4.2 the codimension of
singular strata must be even, this implies that there are no singular strata in either case.

In the compact case, we can show more by exploiting Lefschetz duality.

Proposition 4.7. Any compact .2n � 2/-connected 2n-orbifold O, n � 3, is actually a
manifold.

Proof. By Proposition 4.5, the singular strata must have codimension � 2n � 1, and by
Lemmas 4.1 and 4.2, such codimension must be even. Therefore, if there are strata they
must have codimension 2n, i.e., every singular point is isolated. We denote the union of
these singular points by †. Since † is finite, for sufficiently small ✏ > 0 the ✏-balls around
these singular points are disjoint and every such ✏-ball is a quotient B✏=Äp of an ✏-ball
in a manifold chart by the action of the local group Äp at p. For such a small ✏, we set
U D B✏.†/ and V D O n †. By Proposition 4.3, O n U , which is homotopy equivalent
to V , is a compact .2n � 2/-connected manifold with boundary, and by excision and
Lefschetz duality,

H
orb
2n�i .V; V \ U / äH2n�i .V; V \ U / ä H2n�i .V; V \ U /

excäH2n�i .O n U; @.O n U //

LDäH
i
.O n U /

äH
i
.V / ä H

i
orb.V /

In particular, H
orb
i .V; V \ U / D 0 for i D 2; : : : ; 2n � 1. Via the long exact sequence in

homology for the pair .V; V \ U /, one gets for i D 2; : : : ; 2n � 1 that

0 D H
orb
i .V; V \ U / ! H

orb
i�1.V \ U / ! H

orb
i�1.V / D 0:
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Hence, each component of V \ U is homotopy equivalent to a homology .2n � 1/-sphere.
On the other hand, V \ U ' S

2n�1
=Äp , where the local group Äp acts freely on S

2n�1.
In particular,

Hi�1.S
2n�1

=Äp/ ä Hi�1.V \ U / ä H
orb
i�1.V \ U / D 0 8i D 2; : : : ; 2n � 1:

Based on work by Zassenhaus [29], it was shown in [24] that there are no homology
spheres in dimensions higher than 3 which are covered by a genuine sphere. Because of
.2n � 1/ > 3, this implies that Äp is trivial and so the claim follows.

A slight modification of the proof of Proposition 4.7 also shows the following state-
ment.

Proposition 4.8. Let n � 3 be an integer that is not a power of 2. Any compact .2n � 2/-
connected .2n C 1/-orbifold O is actually a manifold.

Proof. Let O be a compact .2n � 2/-connected .2n C 1/-orbifold. Since n is not a power
of 2, 2n is not a power of 2 either, and there exists an integer a such that 2

a�1 C 2 
2n  2

a � 2. In particular, O is also 2
a�1-connected, and by Lemma 4.1, all local groups

contained in strata  2
a � 1 have no 2-torsion. However, 2n C 1  2

a � 1, thus all local
groups of O have no 2-torsion. By Lemma 4.2, it follows that all singular strata have even
codimension and, by Proposition 4.5, the strata of codimension  2n � 2 are empty. Thus,
we can assume that the singular set is a disjoint union of embedded circles. For sufficiently
small ✏ > 0, the ✏-neighborhoods of these circles are disjoint, tubular neighborhoods and
homotopy equivalent to S

1 ⇥ B
2n

=Äp , where Äp is the local group at a respective circle.
For such an ✏ > 0, we set V D O n † and U D B✏.†/. By Proposition 4.3, the complement
O n B✏.†/, which is homotopy equivalent to V , is a compact .2n � 2/-connected manifold
with boundary. The same arguments using Lefschetz duality and excision as in the proof
of Proposition 4.7 give

H
i
.V / ä H

i
orb.V / ä H

orb
2nC1�i .V; V \ U /:

In particular,
H

orb
i .V; V \ U / D 0 for i D 3; : : : ; 2n.

Via the long exact sequence in homology for the pair .V; V \ U / one gets for i D
3; : : : ; 2n � 1 that

0 D H
orb
i .V; V \ U / ! H

orb
i�1.V \ U / ! H

orb
i�1.V / D 0;

i.e.,
Hi .V \ U / ä H

orb
i .V \ U / D 0 for i D 2; : : : ; 2n � 2.

On the other hand, we know that each component of V \ U is homotopy equivalent to
S

1 ⇥ S
2n�1

=Äp , where the local group Äp acts freely on S
2n�1. The homological com-

putation above together with the Künneth formula implies that S
2n�1

=Äp is a homology
.2n � 1/-sphere. Because of .2n � 1/ > 3 this again implies that Äp is trivial [24].
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5. Proof of Theorems D and E

The proofs of Theorems D and E amount to recollecting the results proved so far. Recall
that the inequality .n/ � k is equivalent to the statement “there is a k-connected bad
orbifold of dimension n”, while .n/ < k can be restated as “every k-connected n-orbifold
must be a manifold”. Similar equivalences hold for c in the compact case.

Proof of Theorem D. We prove each result separately.
(1) Given n � 4, the inequality .n/ � bn=2c � 1 is equivalent to Theorem C, while

the inequality .n/ < 2bn=2c is equivalent to Theorem A.
(2) By Proposition 3.1, .3/ � 1. On the other hand, by Theorem A, .3/ < 2. There-

fore .3/ D 1.
By Proposition 3.2, .4/ � 3, while crossing the example in Proposition 3.2 with R

shows that .5/ � 3. On the other hand, Theorem A gives .4/ < 4 and .5/ < 4, therefore
.4/ D .5/ D 3.

Proof of Theorem E. We prove each result separately.
(1) Given n � 4, the inequality c.n/ � bn=2c � 1 is equivalent to Theorem C. The

inequality c.n/ < 2bn=2c can be divided in two subcases:
• c.2n/ < 2n � 2 follows from the first statement of Theorem B (here we need 2n � 6);
• c.2n C 1/ < 2n follows from Theorem A.

(2) The inequality c.2n C 1/ < 2n � 2 if 1 < n ¤ 2
k is equivalent to the second

statement in Theorem B.
(3) By Proposition 3.1, c.3/ � 1. On the other hand, by Theorem A, c.3/ < 2.

Therefore c.3/ D 1.
By Proposition 3.2, c.4/ � 3. On the other hand, Theorem A gives c.4/ < 4, there-

fore c.4/ D 3.
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