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Abstract
Let ! ∶ # → ℙ& be a morphism of varieties. Given a
hyperplane' in ℙ&, there is a Gysin map from the com-
pactly supported cohomology of !−1(') to that of#. We
give conditions on the degree of the cohomology under
which this map is an isomorphism for all but a low-
dimensional set of hyperplanes, generalizing results due
to Skorobogatov, Benoist, and Poonen-Slavov. Our argu-
ment is based on Beilinson’s theory of singular supports
for étale sheaves.
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1 INTRODUCTION AND STATEMENT OF RESULTS

In this note, we prove a generalization of the following theorem due to Benoist and written here
in a form due to [9].

Theorem 1.1 ([2], Théorème 1.4). Let # ⊂ ℙ* be a geometrically irreducible quasiprojective vari-
ety over a field +. Define ,bad ⊆ ℙ̌* as the locus of hyperplanes ' such that #' ∶= # ∩ ' is not
geometrically irreducible. Then codim,bad ⩾ dim# − 1
This result is geometric, but has a cohomological reformulation: the top degree compactly sup-

ported cohomology groups of # and #' are isomorphic. In this note, we prove a similar result for
all cohomology of sufficiently high degree on #.
Theorem 1.2. Let# be a separated scheme of finite type over a separably closed field +, let ! ∶ # →ℙ& be a morphism, and letΛ = ℤ∕!ℤ for ! a prime power not divisible by the characteristic of +. Set4 = dim# ×ℙ& #.
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Then for each 6 ⩾ 1, there is a closed subscheme 76 ⊂ ℙ̌& of dimension at most & − 6 such that for' ∈ ℙ̌& ⧵ 76 and : > 6 + 4 (respectively, : = 6 + 4), the Gysin map:
':−26 (!−1('),Λ(−1))→ ':6 (#,Λ)

is an isomorphism (respectively, surjective).

In the setting of Theorem 1.1, taking : = 2dim#, we see that ,bad ⊂ 7dim#−1, which has
dimension ⩽ & − dim# + 1, recovering the assertion of loc. cit.
We remind the construction of Gysin maps in Section 2.

Remark. If#,!, and' are defined over an arbitrary field +′with separable closure +, then our con-
struction shows that76 is naturally defined over +′. Moreover, a Gysinmap':−26 (!−1(') ×Spec(k′)Spec(+),Λ(−1))→ ':6 (# ×Spec(k′) Spec(k),Λ) is compatible with the action of Gal(k∕k′), so if' ∉ 76 is defined over +′ and : is as in Theorem 1.2, the Gysin map is an isomorphism or surjec-
tion of Galois representations.

Themain new tool in the proof of this result is Beilinson and Saito’s works [1, 10] on the singular
support of constructible sheaves in arbitrary characteristic. In Section 2, we will use their work
to prove a result, Theorem 2.2, that is at the core of the argument; we will also collect a couple
lemmas we will need. In Section 3, we will use these tools to prove Theorem 1.2.

1.1 Past results

Theorem 1.2 generalizes a number of results beyond Theorem 1.1. Poonen–Slavov [9] establish
the : = 2dim# case of Theorem 1.2 under the additional assumption that ! has equidimensional
fibers. If ! is the immersion of a normal projective complex variety and 6 = 1, Theorem 1.2 is
Corollary 7.4.1 of [5], and is proven as a special case of the paper’s Lefschetz hyperplane theorem
for intersection homology.
And if ! is the closed immersion of a smooth projective variety, this result is known; by [11,

Theorem 2.1], there exists an isomorphism ':−26 (!−1('),Λ(−1))→ ':6 (#,Λ) so long as : ⩾ & +> + 3, where > is the dimension of the singular locus of !−1('). So the locus where there exists
no isomorphism':−26 (!−1('),Λ(−1))→ ':6 (#,Λ) is contained in the locus of hyperplanes such
that !−1(') is singular in dimension at least : − & − 2. This locus in turn has codimension at least: − & − 1.
2 THE GYSINMAP FOR BOUNDED COMPLEXES

2.1 Notation and the basic setup

Let + be a separably closed field, let ! be a prime power not divisible by the characteristic of +,
and set Λ = ℤ∕!ℤ. A variety is a separated scheme of finite type over +. For the remainder of this
paper, sheaves will be constructible étale sheaves of Λ-modules, and for any variety ? we will use@(?) to denote the bounded derived category of constructible sheaves of Λ-modules on ?. Given
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1900 RASKIN and SMITH

a +-point ' ∈ ℙ̌&, let A ∶ ' → ℙ& denote the corresponding inclusion, and let B ∶ ℙ& ⧵ ' → ℙ&
be the inclusion of the complement. For the remainder of the paper, all functors will be derived;
for instance, we will use B∗ to denote the derived pushforward associated to B. Finally, we will use
the notation ℍ:() to denote the hypercohomology of  ∈ @(?) in degree :.
On the level of sheaves, the map in Theorem 1.2 is induced by applying EΓ to a composition

of two arrows in @(ℙ&). Given a bounded complex of sheaves  on ℙ&, the two maps we will use
are:∙ the counit map A!A! →  , which appears in the localization triangle:

A!A! →  → B∗B∗ +1→,
∙ the Gysin map A∗(−1)[−2]→ A! , as discussed in [4].
Applying EΓ to these two maps produces maps:

ℍ:(', A!)→ ℍ:()
and:

ℍ:−2(', A∗(−1))→ ℍ:(', A!),
respectively. Our main effort will be proving that these maps are isomorphisms or surjections
assuming certain hypotheses on  and'.
2.2 The counit map

Of the two maps above, the counit map is the easier one to understand, as its cone is B∗B∗ .
Lemma 2.1. Let  ∈ @(ℙ&). Fix an integer 4. Suppose that for all H, the sheafH() has support
of dimension at most 4 − H. Then the sheafH(B∗B∗) has support of dimension at most 4 − H and
we have ℍ:(ℙ&, B∗B∗) = 0 for : > 4.
Proof. Let  and 4 satisfy the hypotheses of the lemma. For each H, the support of H(B∗) ≅B∗H() has dimension at most 4 − H. Since ℙ& ⧵ ' is affine, we then have that affine vanishing
[8, Theorem VI.7.3] implies that E>B∗(H(B∗)) is supported in dimension at most 4 − H − > and'>(H(B∗)) = 0 if > + H > 4. The results follow by applying a spectral sequence to the filtered
complex J⩾H . □

Remark. The hypothesis of the lemma is equivalent to asking that  sit in perverse degrees ⩽ 4.
From this perspective, the claim follows from right exactness of affine pushforwards with respect
to the perverse K-structure.
2.3 The Gysin map

The following result is the most nonstandard ingredient of the proof of Theorem 1.2.
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Theorem 2.2. Let  be an object of@(ℙ&), letΦ ⊂ ℙ& × ℙ̌& be the universal hyperplane, and let M1,M2 denote the projections. Then there is a closed subscheme 7 ⊂ Φ of dimension ⩽ & − 1 such that
for' ∈ ℙ̌&, the cone of the Gysin map:

A∗(−1)[−2]→ A! ,
associated to A ∶ ' → ℙ& is supported on M1(7 ∩ M−12 (')).
In the proof of Theorem 1.2, we will use the following corollary of this theorem.

Corollary 2.3. With  as in Theorem 2.2, for any positive integer 6 there is a closed subscheme 76 ⊂ℙ̌& of dimension at most & − 6 such that for any ' ∈ ℙ̌& ⧵ 76 the cone of the Gysin map associated
to A ∶ ' → ℙ& is supported on a subscheme of dimension at most 6 − 2.
Proof. Take 7 as in Theorem 2.2. Let 76 ⊂ ℙ̌& be the closed subschemewhere the fibers of the pro-
jection7 → ℙ̌& have dimension⩾ 6 − 1. As dim7 = & − 1, we have dim76 ⩽ & − 6, and it satisfies
the conclusion by definition of 7. □

The theory of singular support for étale sheaves was developed by Beilinson [1] and Saito [10].
We use it in the following form. Note that in what follows, given a map N ∶ O → P, we use QN to
denote the map on cotangent sheaves QN ∶ N∗(R∗P)→ R∗O.
Theorem 2.4 (Theorem 1.3, [1]). Let # be a smooth variety of dimension & and let  be a bounded
constructible complex on it.
Then there exists a closed, conical subscheme SS() ⊂ R∗# of dimension & such that for every pairℎ ∶ O → # smooth and N ∶ O → P a morphism to a smooth variety P such that QN−1(Qℎ(SS()))

is contained in the zero section P ⊂ R∗P, the map N is locally acyclic with respect to ℎ∗() (in the
sense of [3], 2.12).

Remark. The most serious part of the theorem is the calculation of the dimension of SS().
Local acyclicity in turn guarantees that the Gysin map is an isomorphism:

Lemma 2.5. Suppose# is smooth and let A ∶ @ → # be the embedding of a smooth divisor. Suppose ∈ @(#) has the property that the intersection:
SS()|@ ∩ *∗#∕@ ⊂ R∗# ×# @

is contained in the zero section.
Then the Gysin map:

A∗(−1)[−2]→ A!
is an isomorphism.
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1902 RASKIN and SMITH

Proof. This result is local on #, so we may assume there is a smooth map N ∶ # → U1 with @ =N−1(0). By Theorem 2.4, N is locally acyclic with respect to ; indeed, by Lemma 4.7 of [7], the pair(N,) is strongly locally acylic. Then, by Theorem 6.8 of [7], the Gysin map A∗(−1)[−2]→ A! is
an isomorphism. □

Proof of Theorem 2.2. Recall that Φ is canonically isomorphic to ℙR∗ℙ&. Let 7 = ℙSS() as in
Theorem 2.4. By the theorem, it has dimension & − 1.
Fix ' ∈ ℙ̌&, and let V ⊂ ' be the subscheme M1(7 ∩ M−12 (')). By construction, the closed

embedding ' ⧵ V → ℙ& ⧵ V satisfies the hypotheses of Lemma 2.5, so the cone of the Gysin map
is supported on V as desired. □

3 PROOF OF THEOREM 1.2

In this section, we continue to use notation from the previous section.
Let ! ∶ # → ℙ& be a morphism of separated schemes of finite type over +. In this section, we

establish Theorem 1.2 for the map !. Let Λ# denote the constant sheaf on # with fiber Λ, and set4 = dim# ×ℙ& #.
We first note that EH!!Λ# is supported at points over which ! has fiber dimension at least H2 ,

because the stalk of EH!!Λ# at a point W is just'H6 (!−1(#),Λ) by [12, Lemma 0F7L]; equivalently,EH!!Λ# is supported on a locus over which # ×ℙ& # → ℙ& has fiber dimension H. As a conse-
quence,H(!!Λ#) has support in dimension at most 4 − H. So by Lemma 2.1, we have that for any
inclusion of a hyperplane A ∶ ' → ℙ&, the hypercohomology groups ℍ:(ℙ&, B∗B∗!!Λ#) vanish for: > 4. So we have that the counit map ℍ:(', A!!!Λ#)→ ':6 (#,Λ) is an isomorphism if : ⩾ 4 + 2
and is a surjection if : = 4 + 1.
We now show that the Gysinmap induces an isomorphism or surjection on cohomology. Fixing6 ⩾ 1, let 76 be the exceptional set in Corollary 2.3 relative to the complex of sheaves !!Λ# . Fix

some +-point' ∈ ℙ̌& ⧵ 76, and let X ∈ @(') denote the cone of the morphism:
A∗!!Λ#(−1)[−2]→ A!!!Λ# .

By Corollary 2.3, X is supported on a closed subscheme V of dimension at most 6 − 2. More-
over,H(B∗B∗!!Λ#) has support of dimension at mostmin(4 − H,&) by Lemma 2.1. Since we also
have that EH!!Λ# is supported in dimensionmin(4 − H,&), the distinguished triangle A!A!!!Λ# →!!Λ# → B∗B∗!!Λ# → gives the bound on the dimension of the support ofH(A!A!!!Λ#):

dim supp(H(A!A!!!Λ#)) ⩽ min(4 − H + 1,&).
Likewise, from the distinguished triangle B!B∗!!Λ# → !!Λ# → A∗A∗Λ# →, the sheafH(A∗!!Λ#(−1)[−2]) is supported on a set of dimension at most min(4 − H + 2,& − 1). From

these two observations and the defining triangle for X, we see that H(X) is supported on
a subscheme of dimension at most min(4 − H + 1, 6 − 2). Therefore, ℍ:−H(',H(X)) = 0
for : − H > 2min(4 − H + 1, 6 − 2). Observe that if : − H ⩽ 2min(4 − H + 1, 6 − 2), then2(: − H) ⩽ 2(4 − H + 1) + 2(6 − 2), so : ⩽ 4 + 6 − 1. Therefore, whenever : > 4 + 6 − 1,ℍ:−H(',H(X)) = 0. Applying the Grothendieck spectral sequence, we find that ℍ:(',X) = 0
for : > 4 + 6 − 1.
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EXCEPTIONAL LOCI IN LEFSCHETZ THEORY 1903

From this, we conclude that the Gysin map:

':−26 (!−1('),Λ(−1)) ≅ ℍ:−2(', A∗!!Λ#(−1))→ ℍ:(', A!!!Λ#)
is an isomorphism for : > 4 + 6 and a surjection if : = 4 + 6. Combining this with the counit map
above, and noting 6 ⩾ 1, we have that the map on cohomology:

':−26 (!−1('),Λ(−1))→ ':6 (#,Λ)
is an isomorphism for : > 4 + 6 and a surjection if : = 4 + 6, proving Theorem 1.2 for #.
Remark. In the above setting, note that !!(Λ#) ∈ @(ℙ&) is in perverse degrees ⩽ 4. The argu-
ment shows that, suitably understood, the conclusion of Theorem 1.2 holds for any  ∈ @(ℙ&) a
bounded complex of constructible sheaves in perverse degrees ⩽ 4.
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