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1 | INTRODUCTION AND STATEMENT OF RESULTS

In this note, we prove a generalization of the following theorem due to Benoist and written here
in a form due to [9].

Theorem 1.1 ([2], Théoréme 1.4). Let X C PN be a geometrically irreducible quasiprojective vari-
ety over a field k. Define M,y C PN as the locus of hyperplanes H such that X;; := X n H is not
geometrically irreducible. Then codim My,y > dimX —1

This result is geometric, but has a cohomological reformulation: the top degree compactly sup-
ported cohomology groups of X and X; are isomorphic. In this note, we prove a similar result for
all cohomology of sufficiently high degree on X.

Theorem 1.2. Let X be a separated scheme of finite type over a separably closed field k, let ¢ : X —

P be a morphism, and let A = Z /£ Z for ¢ a prime power not divisible by the characteristic of k. Set
r =dimX Xpn X.
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Then for each ¢ > 1, there is a closed subscheme Z, C P" of dimension at most n — ¢ such that for
H e P"\ Z,and q > ¢ + r (respectively, g = ¢ + r), the Gysin map:

H{2 (@71 (H), A(=1) = HI(X, A)
is an isomorphism (respectively, surjective).

In the setting of Theorem 1.1, taking q = 2dim X, we see that M,y C Z4;, x—1> Which has
dimension < n —dim X + 1, recovering the assertion of loc. cit.
We remind the construction of Gysin maps in Section 2.

Remark. IfX, ¢, and H are defined over an arbitrary field k” with separable closure k, then our con-
struction shows that Z, is naturally defined over k’. Moreover, a Gysin map H _2(¢‘1(H ) Xspec(k)
Spec(k), A(-1)) - H f (0¢ Xspec(k) Spec(k), A) is compatible with the action of Gal(k/k’), so if
H & Z, is defined over k’ and q is as in Theorem 1.2, the Gysin map is an isomorphism or surjec-
tion of Galois representations.

The main new tool in the proof of this result is Beilinson and Saito’s works [1, 10] on the singular
support of constructible sheaves in arbitrary characteristic. In Section 2, we will use their work
to prove a result, Theorem 2.2, that is at the core of the argument; we will also collect a couple
lemmas we will need. In Section 3, we will use these tools to prove Theorem 1.2.

1.1 | Pastresults

Theorem 1.2 generalizes a number of results beyond Theorem 1.1. Poonen-Slavov [9] establish
the ¢ = 2 dim X case of Theorem 1.2 under the additional assumption that ¢ has equidimensional
fibers. If ¢ is the immersion of a normal projective complex variety and ¢ = 1, Theorem 1.2 is
Corollary 7.4.1 of [5], and is proven as a special case of the paper’s Lefschetz hyperplane theorem
for intersection homology.

And if ¢ is the closed immersion of a smooth projective variety, this result is known; by [11,
Theorem 2.1], there exists an isomorphism Hg_z(qb_l(H), A(-1)) —» Hf(X, A)solongasqg>n+
s + 3, where s is the dimension of the singular locus of ¢$~!(H). So the locus where there exists
no isomorphism H, 3 _2(¢_1(H ), A(-1)) - Hg (X, A) is contained in the locus of hyperplanes such
that ¢~1(H) is singular in dimension at least ¢ — n — 2. This locus in turn has codimension at least
qg—n-—1.

2 | THE GYSIN MAP FOR BOUNDED COMPLEXES

2.1 | Notation and the basic setup

Let k be a separably closed field, let £ be a prime power not divisible by the characteristic of k,
and set A = Z/£7Z. A variety is a separated scheme of finite type over k. For the remainder of this

paper, sheaves will be constructible étale sheaves of A-modules, and for any variety V' we will use
D(V) to denote the bounded derived category of constructible sheaves of A-modules on V. Given
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a k-point H € P", let i : H — P" denote the corresponding inclusion, and let j : P* \ H — P"
be the inclusion of the complement. For the remainder of the paper, all functors will be derived;
for instance, we will use j, to denote the derived pushforward associated to j. Finally, we will use
the notation HY(F) to denote the hypercohomology of 7 € D(V) in degree q.

On the level of sheaves, the map in Theorem 1.2 is induced by applying RI to a composition
of two arrows in D(P"). Given a bounded complex of sheaves 7 on P", the two maps we will use
are:

« the counit map i,i'F — F, which appears in the localization triangle:
WF > F > . F 5,
+ the Gysin map i*F(—1)[-2] — i'F, as discussed in [4].
Applying RT to these two maps produces maps:
HI(H,i'F) - HI(F)
and:
HI™2(H, i*F(-1)) » HY(H,i'F),

respectively. Our main effort will be proving that these maps are isomorphisms or surjections
assuming certain hypotheses on 7 and H.

2.2 | The counit map
Of the two maps above, the counit map is the easier one to understand, as its cone is j, j*F.

Lemma 2.1. Let F € D(P"). Fix an integer r. Suppose that for all p, the sheaf HP(F) has support
of dimension at most r — p. Then the sheaf HP(j, j*F) has support of dimension at most r — p and
we have H1(P", j,.j*F) = 0forq > r.

Proof. Let F and r satisfy the hypotheses of the lemma. For each p, the support of HP(j*F) =
J¥HP(F) has dimension at most r — p. Since P" \ H is affine, we then have that affine vanishing
[8, Theorem VI.7.3] implies that R%j, (HP(j*F)) is supported in dimension at most r — p — s and
HS(HP(j*F)) = 0if s + p > r. The results follow by applying a spectral sequence to the filtered
complex TP F. O

Remark. The hypothesis of the lemma is equivalent to asking that F sit in perverse degrees < r.
From this perspective, the claim follows from right exactness of affine pushforwards with respect
to the perverse ¢-structure.

2.3 | The Gysin map

The following result is the most nonstandard ingredient of the proof of Theorem 1.2.
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Theorem 2.2. Let F be an object of D(P™), let ® C P" X P" be the universal hyperplane, and let 7,
7, denote the projections. Then there is a closed subscheme Z C ® of dimension < n — 1 such that
for H € P", the cone of the Gysin map:

*P(=1[-2] = i'F,
associated toi : H — P" is supported on w,(Z N 71'2_1(H)).
In the proof of Theorem 1.2, we will use the following corollary of this theorem.

Corollary 2.3. With F asin Theorem 2.2, for any positive integer c there is a closed subscheme Z, C
P" of dimension at most n — c¢ such that for any H € P" \ Z, the cone of the Gysin map associated
toi : H — P" is supported on a subscheme of dimension at most ¢ — 2.

Proof. Take Z asin Theorem 2.2. Let Z, C P" be the closed subscheme where the fibers of the pro-
jectionZ — P" have dimension > ¢ — 1. Asdim Z = n — 1, we have dim Z. < n—c,anditsatisfies
the conclusion by definition of Z. O

The theory of singular support for étale sheaves was developed by Beilinson [1] and Saito [10].
We use it in the following form. Note that in what follows, givenamap f : U - Y, weusedf to
denote the map on cotangent sheaves df : f*(T*Y) - T*U.

Theorem 2.4 (Theorem 1.3, [1]). Let X be a smooth variety of dimension n and let F be a bounded
constructible complex on it.

Then there exists a closed, conical subscheme SS(F) C T*X of dimension n such that for every pair
h: U - Xsmoothand f : U — Y a morphism to a smooth variety Y such that d f~1(dh(SS(F)))
is contained in the zero section Y C T*Y, the map f is locally acyclic with respect to h*(F) (in the
sense of [3], 2.12).

Remark. The most serious part of the theorem is the calculation of the dimension of SS(F).
Local acyclicity in turn guarantees that the Gysin map is an isomorphism:

Lemma 2.5. Suppose X is smooth and leti : D — X be the embedding of a smooth divisor. Suppose
F € D(X) has the property that the intersection:

SS(F)|p nN;/D C T*Xg((D

is contained in the zero section.
Then the Gysin map:

FF(-D[-2] - i'F

is an isomorphism.
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1902 | RASKIN AND SMITH

Proof. This result is local on X, so we may assume there is a smooth map f : X — Al with D =
f71(0). By Theorem 2.4, f is locally acyclic with respect to F; indeed, by Lemma 4.7 of [ 7], the pair
(f, F) is strongly locally acylic. Then, by Theorem 6.8 of [7], the Gysin map i*F(—1)[-2] — i'F is
an isomorphism. O

Proof of Theorem 2.2. Recall that @ is canonically isomorphic to PT*P". Let Z = PSS(F) as in
Theorem 2.4. By the theorem, it has dimension n — 1.

Fix H € P", and let B C H be the subscheme 7,(Z N Ty 1(H)). By construction, the closed
embedding H \ B — P" \ B satisfies the hypotheses of Lemma 2.5, so the cone of the Gysin map
is supported on B as desired. O

3 | PROOF OF THEOREM 1.2

In this section, we continue to use notation from the previous section.

Let ¢ : X — P" be a morphism of separated schemes of finite type over k. In this section, we
establish Theorem 1.2 for the map ¢. Let Ay denote the constant sheaf on X with fiber A, and set
r=dimX Xpn X.

We first note that RP¢, Ay is supported at points over which ¢ has fiber dimension at least g,
because the stalk of RP¢, Ay at a point x is just H f (¢~1(X), A) by [12, Lemma OF7L]; equivalently,
RP¢ Ay is supported on a locus over which X Xp» X — P" has fiber dimension p. As a conse-
quence, HP(¢$,Ax) has support in dimension at most r — p. So by Lemma 2.1, we have that for any
inclusion of a hyperplane i : H — P", the hypercohomology groups H1(P", j, j*¢,Ax) vanish for
q > r. So we have that the counit map HY(H, i'¢,Ay) — HZ (X, A) is an isomorphism if g > r + 2
and is a surjection ifqg = r + 1.

‘We now show that the Gysin map induces an isomorphism or surjection on cohomology. Fixing
¢ > 1, let Z, be the exceptional set in Corollary 2.3 relative to the complex of sheaves ¢ Ay. Fix
some k-point H € P" \ Z,, and let Q € D(H) denote the cone of the morphism:

"¢ Ax(—D[-2] > i'$,Ay.

By Corollary 2.3, Q is supported on a closed subscheme B of dimension at most ¢ — 2. More-
over, HP(j, j*¢,Ax) has support of dimension at most min(r — p, n) by Lemma 2.1. Since we also
have that RP¢, Ay is supported in dimension min(r — p, n), the distinguished triangle i,i'¢, Ay —
$Ax = j.j d Ay — gives the bound on the dimension of the support of HP (i)i'¢, Ay ):

dim supp(HP(i)i'¢Ax)) < min(r — p + 1, n).

Likewise, from the distinguished triangle j,j*¢Ax — ¢ Ax — i,i*Axy —, the sheaf
HP(i*¢, Ax(—1)[—2]) is supported on a set of dimension at most min(r — p + 2,n — 1). From
these two observations and the defining triangle for Q, we see that HP(Q) is supported on
a subscheme of dimension at most min(r — p + 1,c —2). Therefore, H P(H, HP(Q)) =0
for g—p>2min(r —p+1,c—2). Observe that if g—p<2min(r —p+1,c—2), then
2@q—p)<2(r—p+1)+2(c—2), so g<r+c—1. Therefore, whenever g >r+c—1,
HI~P(H, HP(Q)) = 0. Applying the Grothendieck spectral sequence, we find that H4(H,Q) =0
forg>r+c—-1.
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From this, we conclude that the Gysin map:
HE2($7 (H), A1) = HI7(H, 1§, Ay (—1)) — HI(H, i'$,Ay)

is an isomorphism for g > r + ¢ and a surjection if ¢ = r + c¢. Combining this with the counit map
above, and noting ¢ > 1, we have that the map on cohomology:

H{ (@7 (H), A(=1)) > HI(X, A)
is an isomorphism for g > r + ¢ and a surjection if g = r + ¢, proving Theorem 1.2 for X.

Remark. In the above setting, note that ¢,(Ay) € D(P") is in perverse degrees < r. The argu-
ment shows that, suitably understood, the conclusion of Theorem 1.2 holds for any 7 € D(P") a
bounded complex of constructible sheaves in perverse degrees < r.
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