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Many-body dynamical delocalization in a kicked
one-dimensional ultracold gas

Jun Hui See Toh

Chuanwei Zhang?™ and Subhadeep Gupta®1

Contrary to a driven classical system that exhibits chaotic
behaviour and diffusive energy growth, a kicked quantum
system can exhibit the emergence of dynamical localization,
which limits energy absorption and leads to the breakdown of
ergodicity’“. The evolution of dynamically localized states in
the presence of many-body interactions has long remained an
open question®”. Here we experimentally study an interacting
one-dimensional ultracold gas periodically kicked by a pulsed
optical lattice and observe the interaction-driven emergence
of dynamical delocalization and many-body quantum chaos.
The observed dynamics feature sub-diffusive energy growth
over abroad parameter range of interaction and kick strengths.
These results shed light on interaction-driven transport phe-
nomena in quantum many-body systems, in a regime where
theoretical approaches are extremely challenging and provide
conflicting predictions.

The classical kicked rotor is a textbook paradigm to explore
chaos phenomena, displaying a diffusively growing kinetic
energy proportional to time or kick number, above a critical kick
strength®. Dynamical localization in the quantum kicked rotor
(QKR)"? arises from quantum interference, and can be explained
by mapping>'® the Floquet dynamics of the QKR to a disordered
Anderson model" in the momentum-space lattice. In the past three
decades, single-particle QKRs have been experimentally studied
extensively with cold neutral atoms and dynamical localization has
been observed*'*'%,

Understanding the role of many-body interactions in a disor-
dered quantum system has been a long-standing challenge since the
discovery of Anderson localization'. In recent years, many-body
localization in disordered lattices in position space has been exten-
sively studied both experimentally and theoretically by incorpo-
rating methods developed in quantum information science'*-?'.
Despite the equivalence of dynamical localization®° to Anderson
localization' for a single particle, the infinite long-range interac-
tion in the momentum-space lattice is fundamentally different from
the short-range interaction in position-space Anderson lattices'~*,
posing a major obstacle for understanding many-body effects in
dynamical localization®”*-*’. In fact, conflicting theoretical predic-
tions exist: although mean-field calculations for interacting Bose-
Einstein condensates (BECs) predict delocalization in momentum
space with a sub-diffusive character™ (that is, weaker-than-linear
growth of system energy), the low-energy approximation based on
Luttinger liquid theory of a kicked one-dimensional (1D) Lieb-
Liniger gas shows the persistence of dynamical localization’.

Here we perform the first experimental study of many-body
effects in the dynamical localization of a QKR and report the
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observation of an interaction-driven transition between dynami-
cally localized and delocalized states. In our periodically kicked 1D
bosonic system with contact interactions, the delocalization is evi-
dentasa clear onset of sub-diffusive energy growth with kick number
as the interaction is strengthened through tight transverse confine-
ment. The sub-diffusive behaviour persists over a range of inter-
action strengths and kick parameters. Our theoretical modelling
with mean-field and Hartree-Fock-Bogoliubov (HFB) approaches
reasonably capture the observed dynamics in the deep delocaliza-
tion and localization regions. However, the mean-field theory fails
across the phase transition boundary, potentially due to strong com-
petition between the disorder potential and interaction-induced
infinite long-range coupling in the momentum-space lattice, which
is extremely challenging to model in theory.

We initiate our experiments (Methods and Supplementary
Information provide more experimental and theoretical details)
by preparing an essentially pure three-dimensional (3D) BEC con-
taining 1.5 X 10°atoms of "*Yb with chemical potential hx1.1kHz
in an optical dipole trap (ODT) and subsequently loading it into a
two-dimensional optical lattice where the atoms reside in a set of 1D
tubes with negligible intertube tunnelling (Fig. 1a). The starting BEC
fraction in the tubes is higher than 85%. The kicks are implemented
by a pulsed one-dimensional optical lattice along the axial direction
of the tubes. Each of the three orthogonal lattices is formed from
retro-reflected laser beams (~100 pm waist) and has a spatial period
of 1,073nm/2=m/k, with corresponding recoil energy E, .. =hw,.,
where wrec = k?/2m=2nx1kHz; m is the atom mass; k, is the
wavenumber; 7 is the reduced Planck constant. The kick parameters
are tunable through the kick period T, pulse width ¢, and poten-
tial depth s.E,... Each of the two transverse lattices has depth s E,...
For the typical s, =106 used in this work, the transverse trap fre-
quency (for the central tube) is @1 = 21/s1 ®rec=2n%20.5kHz.
The transverse oscillator length is a1 = v/ hi/mw, ~53nm, and the
axial frequency is w,=2nx64Hz. From the Thomas-Fermi (TF)
radii of the 3D trap and the measured axial size in the 1D tubes,
we estimate a peak particle number of N,,,,, =650 and an initial 1D
peak density of #1;p=24um™" for the central tube.

We monitor the system by diabetically turning off all the optical
potentials after a desired number (n,) of kicks and then taking a
time-of-flight absorption image from which we extract the atomic
momentum distribution in both axial and transverse directions. The
measured transverse distribution is consistent with the transverse
ground-state energy (Fig. 1b). The 1D geometry with o, > ®,,. sup-
presses two-body scattering from the axial to the transverse direc-
tions, as evident in the negligible growth of transverse energy (E, )
during the kicking process (Fig. 1b) for s, >20. As interactions are
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Fig. 1| Experimentally realizing the interacting 1D QKR system.

a, Experimental schematic showing BECs in 1D tubes with periodic kicking
pulses applied along the axial (2) direction. b, Average transverse energy
(E,) for various s, values for no kick (circles) and 100 kicks with s,=80
and (t,, T)=(2,105) ps (diamonds). The solid line indicates the calculated
energy for the transverse ground state and the dashed line indicates that
for 10% occupation of the first transverse excited state. The error bars
show 1standard error of the mean (s.e.m.; not visible when smaller than the
marker size). c-h, Time-of-flight atom absorption images after O (¢, e and
g) and 100 (d, f and h) kicks for s, =0 (3D case) and s, =35 and 106. For
d, fand h,5,=80 and (t, T) =(2,105) ps. The imaging axis is along the x
direction and each image spans the momentum range 10hk, x 10hk,.

increased by raising s, the axial (z) momentum width after many
pulses also increases (1,=0, 100; Fig. 1c-h), providing a key signa-
ture for examining the many-body QKR.

Even though condensation is not possible in the homogeneous
1D case’*™, axial harmonic confinement supports BEC'. For our
experimental parameters, the system is quasi-1D where the gas is
kinematically 1D with the two-body scattering length a,=5.55nm
(xa,), retaining its 3D value. The correlation length I. = %/\/mgnip
is much larger than the mean interparticle separation 1/#;p, which
makes the ground state of the initial system a true TF condensate™.
Here g = 2h%ay/(ma’, ) is the mean-field interaction constant.

We model the many-body dynamics of bosons with the
mean-field theory, where the QKR wavefunction @ is governed by
the nonlinear Gross-Pitaevskii (GP) equation:

2
ko ®(0,7) = | — %ag — Kcosf 8(r—np)
np (1)

1
+ SwR0 + gl (0,7 | (6,7)

where 0=2k;z and t=t/T are dimensionless parameters, and
k=8w,.Tisthe dimensionless effective Planck constant. The dimen-
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sionless kick strength K and interaction constant g are defined as
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The dimensionless axial frequency is w,=®,T and the dimen-
sionless initial peak density is nip = |®(0, 0)|2 = n1p/2k., where
the wavefunction is normalized as [d6|®(0,7)|*=N,y,,,. We control
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the interaction strength gn,;, through the transverse confinement of
the 1D tubes; throughout this Letter, the quoted interaction strength
is an average value that takes into account the variation in the atom
number in different tubes. When the two-dimensional lattice is off,
the BEC resides purely in the ODT and has the weakest interaction
strength. In this case, the system is 3D and we obtain an effective 1D
interaction strength gn®% by adjusting a, (equation (2)) to match
the measured chemical potential of the BEC in the ODT.

We first discuss QKR experiments on a 3D system, implemented
by applying the pulsed lattice on the BEC trapped in the ODT with
no transverse lattice. Here we always observe dynamical localization
(Fig. 2a,c,e,g), consistent with weak interactions. Following some
initial coherent dynamics, the momentum distribution and mean
energy (E,) quickly saturate. Compared with the exponentially
localized function e/, the observed momentum profile exceeds
the expected dynamical localization length &=K*/4%*=0.25 (in
units of fik; ) for a non-interacting system, but is better contained by
£=0.92 corresponding to the observed saturated value (E,) =1.7E,,
(Fig. 2c-f, dashed and dotted lines). Although the momentum
distribution is clearly localized at long times, its asymptotic shape
has peaks at +2#k,. The exponential functions serve only to allow
comparison against the non-interacting case, with the observed
deviations stemming from the small but non-zero g and the nar-
row initial momentum width compared with 2#k;. In striking con-
trast to the 3D case, many-body dynamical delocalization is evident
for higher interaction strengths available in the 1D geometry, with
sub-diffusive energy growth (Fig. 2b,d,f,g).

Figure 3 showsa study of the delocalization behaviour for different
kick strengths K (tuned through s,) and interaction strengths (tuned
through s,). The dynamics are strongly dependent on K (Fig. 3a),
with the earliest onset of delocalization for (gn,,, K)=(18.7,5.3)
exhibiting substantial energy growth even within the first ten
pulses. We note that this timescale (1 ms) is more than ten times
shorter than the axial oscillation period, indicating that harmonic
confinement along the tube is not a prerequisite for the observed
delocalization. As K is lowered, the onset time of delocalization is
delayed, extending to nearly 100 pulses for the lowest K. This is also
evident in Fig. 3b which corresponds to a vertical cut of the data
in Fig. 3a (fixed n,=15 and gn,;,=18.7) and shows the monotonic
growth of the mean axial energy with K.

We investigate the dependence of delocalization behaviour on
the interaction strength by changing the external confinement
through s,, which changes a, and hence g and #n,,. As shown in
Fig. 3¢, we find stronger delocalization with higher gn,;, for fixed
K=2.6, with only the lowest gn<l = 3.9 case remaining localized.
This is also evident in Fig. 3d, which corresponds to a vertical cut of
the data in Fig. 3¢ (fixed n,=100 and K=2.6) and shows the mono-
tonic growth of the mean axial energy with gn,,.

To compare with earlier theoretical results of interaction-driven
sub-diffusive energy evolution in the QKR®*, we fit our delocaliza-
tion data using power-law functions E,;z* to (E,) (Fig. 3a,c, black
solid lines). The finite trap depth results in atom loss for (E,) above
10E,.. (Methods and Supplementary Information provide more
experimental and theoretical details) and the axial oscillation
period introduces an additional timescale to the QKR. Restricting
attention to the delocalization data with (E,) below 10E,.. and evolu-
tion time below the axial period, our fit results for a lie in the range
of 0.36-0.80. This observed sub-diffusivity is intermediate between
classical chaotic behaviour and single-particle quantum mechanics
and signals the fundamentally distinct dynamics of a driven quan-
tum many-body system. Our « values are somewhat larger than
the predictions of 0.3-0.4 elsewhere** and more consistent with the
0.4-0.8 range predicted in another study®. Furthermore, we do not
observe any obvious trend of a with K or gn,;, which is also con-
sistent with the numerical findings discussed elsewhere®. However,
we do clearly observe a trend for the onset time of delocalization,
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Fig. 2 | Momentum and energy evolution for dynamically localized and
delocalized rotors. a,b, Sequences of absorption images for localized (a)
and delocalized (b) cases with k=5.26, K=5.3 and (t,, T) =(2,105) ps.
¢,d, Axial momentum distributions after kick numbers n,=1, 3,10, 17,
corresponding to the data in a (¢) and b (d), respectively. The dashed and
dotted lines are exponential functions (see the main text). e,f, The same
data as those in ¢ (e) and d (f), shown on a logarithmic scale. g, Evolution
of the axial kinetic energy corresponding to a and b. The solid line is a
power-law fit to the delocalized data, returning an exponent value of 0.36.
The error bars show 1s.e.m. (not visible when smaller than the marker size).
The gn%f = 3.9 data are obtained in the 3D system.

which decreases with an increase in either K or gn,, (Methods
and Supplementary Information provide more experimental and
theoretical details).

We carry out numerical mean-field simulations of the dynamics
(Fig. 3a,c, solid lines), starting from the TF ground state obtained
by the imaginary time evolution of the GP equation (Methods and
Supplementary Information provide more experimental and theo-
retical details). We find that for a given interaction strength gn,,, the
system enters a dynamically delocalized phase with mean energy
increasing with pulse number when K is larger than a critical value
K.. As gn,, increases, K, decreases, implying that dynamical delocal-
ization is easier for stronger interactions. The variation in K, marks
the boundary (Fig. 3e, solid line) between the localized and delo-
calized phases in the K-gn,, parameter space. We see reasonable
agreement between theory and experiment in the system time evo-
lution for points deep in the delocalization and localization regimes.
However, notable deviations between the two exist for points near
the phase boundary.
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The delocalization physics may be understood more intuitively
in momentum space, where the non-interacting QKR can be
mapped to a one-dimensional lattice with onsite disorders’. In
momentum space, the real-space contact interaction introduces
onsite nonlinear terms as well as infinite long-range nonlinear
cross-hopping terms to the disordered lattice, which are respon-
sible for dynamical delocalization (Methods and Supplementary
Information provide more experimental and theoretical details).
The observed failure of the mean-field approach near the
phase boundary is, therefore, unsurprising since the dynamics
near K. are very sensitive to the competition between disor-
der and interaction-induced infinite long-range coupling in the
momentum-space lattice. We also note that the finite momentum
width of the initial state and interaction-induced scattering between
the different momenta may lead to density peaks away from the
recoil momenta (2jk; with integer j), which can happen at a small
kick number for large K (Fig. 2).

Initially, our system is a true TF condensate with negligible
fluctuations. As the kick number increases, the delocalization of
the interacting system is accompanied by a rapid proliferation of
non-condensate particles. The mean-field GP approach is valid only
when quantum depletion is low, that is, the non-condensate fraction
is much smaller than the condensed fraction. Going beyond the
mean field, we examine the excitation properties by employing the
HFB>** (Methods and Supplementary Information provide more
experimental and theoretical details) approximation to calculate the
evolution of the non-condensate particle number (), where v
represents the quantum fluctuation beyond the condensate @(6,7).
The dashed line in Fig. 3¢ represents the boundary between the sta-
ble and unstable regimes, where the unstable regime is evident as an
exponential increase in the non-condensate particles with n,. The
two-phase boundaries (Fig. 3e, solid and dashed lines) are close to
each other, suggesting that the dynamical delocalization is accom-
panied by BEC instability.

We find that the interaction-driven delocalization is a general
feature of our system (Methods and Supplementary Information
provide more experimental and theoretical details) as we observe
it for various values of kick period T ranging from 20 to 125ps.
Furthermore, apart from using transverse confinement, we have
also controlled the interaction strength by varying the number of
atoms loaded into the tubes and observed similar interaction-driven
delocalization.

Our results experimentally realize the interacting QKR, a
long-sought quantum-mechanical paradigm system. The com-
bined experimental and theoretical study of many-body localized
and delocalized phases in momentum space spotlight the emer-
gence of many-body quantum chaos (that is, many-body effects on
a quantum system where the corresponding classical system may
exhibit chaos) and constitute the first study of the effects of interac-
tions on dynamical localization, an area where current theoretical
results are in conflict’”. Direct extensions of these studies include
further characterizations of the boundary between localized and
delocalized phases where we observe the mean-field theory to fail,
of the onset time of delocalization and of the sub-diffusive delo-
calization exponent®*. It will also be interesting to extend the
current implementation carried out with y = 1/(I.7i;p)* < 1 into
the y>1 Tonks-Girardeau regime’*, where beyond-mean-field
theories predict many-body dynamical localization with momen-
tum profile distinct from their spatially localized counterpart™**’.
Our technique of tight confinement to tune interactions in the syn-
thetic momentum space can also be extended towards studies of the
momentum-space Josephson effect™, interaction-driven transport
in higher synthetic dimensions’-** and topological phases with
interactions in coupled momentum-space lattices®.

During the course of this work, we became aware of related
results from another experimental group®. Although this other
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Fig. 3 | Tuning the onset of many-body quantum chaos with interaction and kick strengths. For all the data in this figure, (t, T)=(2,105) ps and k=5.26.
a, Evolution of (E,) with pulse number for three different kick strengths and fixed gn,; =18.7. The yellow vertical bar indicates the axial oscillation period.
The coloured solid lines are the corresponding numerical simulations using the GP equation. The black solid lines are power-law fits to the delocalized

data, which return the exponent values of {0.36,0.79,0.67} for K={5.3,2.6,1.3}. b, (E,) after 15kicks for various K values and fixed gn,, =18.7. ¢, Evolution
of (E,) with pulse number for four different interaction strengths with K=2.6. To preserve a similar axial trapping frequency for low s,, the ODT is kept on
for the data in € and d, except for the gn,, =18.7 data (orange circles). The gn%f = 3.9 data are obtained in the 3D system. The power-law fits (black solid
lines) to the delocalized data return exponent values of {0.79,0.67,0.793 for gn,, ={18.7,14.3,11.4}. d, (E,) after 100 kicks for various gn,, values and fixed
K=2.6, where the yellow vertical bar marks the intertube tunnelling time of 21ms (n,=200). e, Phase diagram of the localization-delocalization behaviour
of the system for k=5.26, where the lines indicate the phase boundaries by solving the GP (solid) and HFB (dashed) equations. The filled markers

correspond to the data from a and ¢ as well as Fig. 2g. All the error bars in a-d show 1s.e.m. (not visible when smaller than the marker size). The statistical

errors on the fitted exponents are <13%.

work also realizes an interacting QKR using atomic BECs subjected
to a series of pulsed optical standing waves, it is implemented in a
substantially different parameter regime and utilizes complemen-
tary experimental techniques®. It uses ’Li atoms—about 25 times
lighter than the '*Yb atoms used in the present work—leading to
an order-of-magnitude faster kicked-rotor timescales. Secondly,
atomic interactions are tuned using a magnetic Feshbach reso-
nance”, in contrast to the tuning through density variation used
in the present work. Finally, all the experiments in that study” are
performed using a 3D condensate rather than the 1D system used
in the present work. Despite these differences, both experiments
demonstrate interaction-induced dynamical delocalization, with a
sub-diffusive temporal evolution of energy. Taken together, these
results establish a new testbed for investigating interaction-driven
transport phenomena and many-body quantum chaos.
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Methods

Experimental setup. The experiments discussed in this work were performed

in an apparatus discussed in earlier work*'~*’ and augmented with a set of three
mutually orthogonal and independently controlled optical lattices. We prepare a
BEC containing 1.5 X 10°atoms of '7*Yb atoms in a crossed ODT** with trapping
frequencies {w,,, @, ..} =21 X {145, 16,53} Hz, chemical potential hx 1.1kHz
and the corresponding TF radii of {2.4,22,6.6} pm. The BEC is then transferred
into a two-dimensional optical lattice formed by two pairs of counterpropagating
laser beams where the atoms reside in a set of 1D tubes (Fig. 1a). The lattice and
kick optical potentials are derived from a home-built external cavity diode laser
operated at a wavelength of 1=1,073 nm, and amplified by a 50 W amplifier
(Nufern NUA-1064-PD-0050-D0). The total laser power for the lattice beams is
distributed between three paths—two for the two-dimensional transverse optical
lattice and one for the axial kicking lattice. To suppress optical interference
between the different paths from affecting the atoms, for each pair of paths, we
maintain orthogonal linear polarizations and use acousto-optic modulators to
establish frequency separation greater than 40 MHz. The laser beams forming
the two-dimensional transverse lattice are intensity stabilized at the 2% level. We
calibrate the depth of our lattices using single-pulse Kapitza-Dirac diffraction, a
procedure that also provides an experimental measurement of our lattice-beam
waists to be {w,, w,, w;} ={121,101,99} pm, which are much larger than the BEC size.

Loading and characterizing the 1D gas. To transfer the BEC from the ODT to
1D confinement, the transverse lattice is ramped up exponentially in 100 ms with
an exponential time constant of 20 ms. To assess the adiabaticity of this process,
we performed tests in which the forward (loading) ramp is immediately followed
by a reverse ramp back to the ODT after which we compare the final BEC fraction
with the initial value. Starting from an essentially pure BEC, we obtain about 70%
BEC fraction after the forward and reverse ramps, suggesting that the BEC fraction
is about 85% in the two-dimensional lattice. We believe this number to be a lower
bound because the recovered BEC fraction is probably also limited by the lack of
coherence between the tubes, as tunnelling is strongly suppressed beyond s, ~20.

The atoms are loaded into about 570 horizontal tubes, as determined by the
initial TF radii in the 3D trap. We measure an initial (tube-averaged) axial size of
27 pm for s, =106. The peak density of the central tubes is about 71;p=24pm™".
Once the BEC is loaded into the two-dimensional lattice, we exponentially ramp
down the ODT in 50 ms with a time constant of 10 ms, before pulsing on the kick
laser along the axial direction of the tubes. To obtain the momentum distribution,
we diabetically turn off all the optical potentials and take an absorption image of
the atoms after a long time of flight set to a value between 15 and 43 ms.

The observed growth rate of the axial momentum distribution in the absence
of kicking pulses determines the background heating rate in the system. For
s, =106, we measure a kinetic-energy growth rate of 6E,..s™'. All the QKR
experiments reported in this work occur within 100 ms, a timescale during which
this background heating is negligible. The calculated photon-scattering rate from
the transverse lattice is <0.1s™ for s, =106, suggesting that the observed residual
heating is from technical noise.

Kicking-pulse implementation. The kick pulses are generated by triggering a
function generator (Stanford Research Systems DS345) to produce a desired sequence
of voltage pulses, which, in turn, controls the radio-frequency switch driving the
acousto-optic modulator for the kicking-lattice laser beam. By integrating over the
observed axial momentum distribution of the atoms in the time-of-flight absorption
image, we calculate the kinetic energy delivered to the system by the kicks.

Nonlinear Anderson model in the momentum-space lattice. The QKR is a Floquet
system with wavefunction @(0,7) =e “*¢p(0, 7), where ¢(0,7) =p(6,7+1)
is the periodic part and e is the quasienergy. The 5-kick leads to

_ ,iK cos(0)/k
¢)+ (9) =e€ ®)/ d)— (9) where ¢,(0) and ¢p_(0) are the wavefunctions
immediately after and before the kick, respectively. In the momentum-space lattice,
the free evolution between kicks is described as
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where (1) is the jth Fourier component of the wavefunction ¢ (6, 7) (that is, at
momentum site j) and M= Zk, /21 (Z is the system size). The first term on the
right-hand side corresponds to the single-particle evolution, which leads to
momentum-space dynamical localization in the non-interacting QKR. The second
and third terms correspond to diagonal (onsite attraction) and off-diagonal
(infinite long-range hopping) interactions, respectively.

If only the diagonal interaction is considered, the free evolution yields
¢_j = ¢y jexplile —k7/2 — g2N,om — |,;1)/4nMK]) and the nonlinear Anderson
model becomes

Vidy + 3 Ky
J'#0

= og; @

which has the same form as that for the non-interacting QKR, except that the
onsite disorder is nonlinear with V;=tan[e/2 — j°/4 — gN,,../4nMEk

+81 0 by (K + 850) */8zMK]. Here ¢; = (¢—; + ¢-+7)/2, hopping rates

K
K;j

9 tan [ 5E

= \/ﬁ [ doe cos(0)] and energy @ =—K,,. In the presence of
infinite long-range hopping in the momentum space, the dynamics are much more
complex, without an explicit relation between ¢_ and ¢,. Such infinite long-range
hopping destroys the quantum interference in the momentum space, leading to

dynamical delocalization.
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