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Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can support
novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here by mapping
the momentum space to the parameter space of a three-level system in a trapped ion, we experimentally
explore the transitions between different types of TDPs driven by spin-tensor-momentum couplings. We
observe the phase transitions between TDPs with different topological charges by measuring the Berry flux
on a loop surrounding the gap-closing lines, and the jump of the Berry flux gives the jump of the
topological charge (up to a 2z factor) across the transitions. For the Berry flux measurement, we employ a
new method by examining the geometric rotations of both spin vectors and tensors, which lead to a
generalized solid angle equal to the Berry flux. The controllability of a multilevel ion offers a versatile
platform to study high-spin physics, and our Letter paves the way to explore novel topological phenomena

therein.
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Introduction.—Topological states of matter, including
topological insulators, and semimetals, have attracted
increasing interest in the past decades [1-3]. Recent studies
on topological semimetals led to the observation of Weyl
[4-8] and Dirac [9,10] fermions in solid-state materials,
which possess twofold or fourfold degenerate points and
support relativistic spin-1/2 quasiparticles. The recent
remarkable discovery of triply degenerate points (TDPs)
[11-23] in fermionic systems provides an avenue for
exploring new types of quasiparticles possessing integer
spins while preserving Fermi statistics that have no counter-
parts in quantum field theory. The TDPs (i.e., threefold
band degeneracies in spin-1 systems) behave like magnetic
monopoles in momentum space whose topological charges
C are determined by the Berry flux emanating from the
degenerate points. Unlike the spin-1/2 particles, a full
characterization of higher spins (> 1) naturally involves
both the spin vectors F and high-rank spin tensors such as
Ny ={F..F;}/2 -6, /3 with {i, j} = {x.y,z}. These
spin vectors and tensors are equivalent to the so-called
Gell-Mann matrices, forming a basis of the SU(3) algebra.
Therefore, an important question is to explore the roles
played by spin tensors in driving the phase transition and
characterizing the topologies of the TDPs.
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Previous studies have predicted that spin-tensor momen-
tum couplings can induce transitions between TDPs with
different monopole charges C [17-20]. On the other hand,
the Berry flux and monopole charge cannot be solely
determined by the solid angle of spin vector and its
covering number on the Bloch sphere as in the spin-1/2
case. In fact, the spin-1 vector can go inside the Bloch
sphere, and the spin tensors must also be taken into account
to obtain the Berry flux [24-27].

Experimentally, TDPs with topological charge C =2
have been observed in various systems, including solid-
state topological semimetal molybdenum phosphide [21]
and phononic crystal [22], as well as in the synthetic
parameter space of a superconducting qutrit [23]. In
contrast to condensed matter systems where the realization
of required spin-momentum coupling and the measurement
of topological properties would be challenging, synthetic
quantum systems (e.g., cold atom [28,29], superconducting
qubit [30-33], nitrogen-vacancy center [34-37], trapped
ion [38] systems, etc.) with versatile control offer powerful
tools for the quantum simulation of topological phenomena
in parameter space. To date, the topological transitions
between TDPs with different monopole charges and the
crucial roles played by the spin tensors have not been
demonstrated experimentally.

© 2022 American Physical Society
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In this Letter, by mapping the momentum space to the
parameter space of a trapped ion, we experimentally
explore the topological transitions between different types
of TDPs and demonstrate the important roles played by the
spin tensors, where the Berry flux is measured through the
generalized solid angle traced out by the trajectories of both
spin vectors and tensors. We simulate a momentum-space
Hamiltonian

H=k- ¥+ ak N, + pk.N,.. (1)

which describes the pseudospin-1 particles with a TDP at
k =0 carrying topological charges depending on the
spin-tensor-momentum coupling strengths (a, ) [39].
We effectively tune (a,f) and observe the transitions of
the TDPs from C =2 to C = 1, 0 by measuring the spin
vectors and tensors. At the transitions, we observe sudden
jumps of both the spin vectors (represented by arrows) and
tensors (represented by ellipsoids) at the corresponding
gap-closing momenta. For the transition from C =2 to
C =0, the jump of topological charge is observed by
measuring the Berry flux on a small loop surrounding gap-
closing momenta. We adiabatically drive the system along
the small loop and detect the generalized solid angle traced
out by both the spin vector arrow and tensor ellipsoid,
leading to a geometric phase equal to the Berry flux.
Crucially, the Berry flux contains contributions from both
spin vectors and tensors.

Model and experimental setup.—We consider a three-
band spin-1 system with Hamiltonian given by Eq. (1). The
momentum space can be parametrized by the spherical
coordinates k = kg (sin @ cos ¢, sin@sin ¢, cos 0), and the
TDP appears at k, = 0 where all three bands degenerate at
zero energy. The bands open gaps for ky > 0 with mono-
pole charge C = (1/27) § Qy - dS given by the total Berry
flux on the sphere S surrounding the TDP [see Fig. 1(a)],
where Q, = V. x Ay and A, = (¥(k)|iVy|¥(k)) are the
Berry curvature and connection respectively, and |¥(k)) is
the eigenstate for the lowest band. The band gaps
close along certain lines (i.e., gap-closing points k. are
{0.,¢., VY ky}) as we change (a, ) across the phase
transitions where the topological charge of the TDP
changes.

A spin-1 quantum state is determined by the mean values
of both spin vectors (F;) and tensors (N,;), which are
geometrically represented by an arrow and an ellipsoid
[24-27], respectively. The ellipsoid’s orientation and size
[see Fig. 1(b)] are determined by the eigenvectors and
eigenvalues of the tensor matrix 7;; = (N,;) — (F))(F;) +
26;;/3 [39]. The Berry flux y = [Qy - dS; = §, Ay - dk
through an area S, surrounded by a loop £ [red lines in
Fig. 1(a)] can be measured by the geometric rotations of
both the arrow and ellipsoid for the lowest band, where
Yy =7rr+yr with
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FIG. 1. Berry flux distribution, state geometric presentation,
and experimental setup. (a) Berry flux distribution on momentum
sphere with a =0, = —1. Green dots are the gap-closing
points k. surrounded by red loops. (b) Spin tensor ellipsoid at
momentum represented by the blue cross on one of the loops in
(a). The longitudinal (transverse) direction of the ellipsoid is
given by the spin-vector arrow in blue (short-axis arrow in green).
Azimuthal angle ¢ of the tensor ellipsoid is given by the relative
angle between the green arrow and axis —x’, where x’ is the
rotated axis x with Euler angles (0, 0, ¢ ). (c) lllustration of the
experimental setup, energy levels, and transitions. A three-level

trapped *Be™ ion is driven by radio frequency and microwave
fields.

VE= % F cos Opdpp and y; = ?{ Fdpr  (2)
- c

the generalized solid angles for the spin vector and tensor
[27,39], respectively. The monopole charge (i.e., total
Berry flux through S) can be obtained by sampling S,
that covers S. Topological phase transition is characterized
by an abrupt change of the total Berry flux. Here F is the
length of the spin-vector arrow (F),(0F,¢r) are the
spherical angles of the spin-vector arrow, ¢7 is the relative
rotation angle of the spin-tensor ellipsoid with respect to
the spin-vector arrow [see Fig. 1(b)]. Therefore, the
monopole charges and topological phase transitions can
be characterized by the rotations of the spin-vector arrows
and spin-tensor ellipsoids which can be directly detected in
experiments. Notice that the Euler angles (¢, 0, ¢r)
depend on the reference spin axis which is set as z direction
here.

To simulate such a spin-1 system we map the momentum
space to the parameter space of a trapped ion, whose three
coupled internal states form a pseudospin-1 system. We
trap a single °Be* ion in a linear Paul trap [40] with ambient
magnetic field of 13.46 mT [see Fig. 1(c)]. Three states,
denoted as |w),|w>),|w3) respectively, in the ground
manifold 2s2S, s» are utilized (see the Supplemental
Material [39] for detailed definitions), which form the
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eigenstates of F . in a spin-1 system, as shown in Fig. 1(c).
Resonant transition frequencies between states |y;) and
ly;) are denoted as w;;, where w;, = 27 x 118.966 MHz
and w,3; = 27 x 991.570 MHz. To drive these transitions,
we apply impedance matched antennas [40] connected to
power-amplified signal sources to induce radio frequency
(RF) and microwave fields to the ion, respectively, where
the former is sourced by an arbitrary wave generator
(AWG) and the latter is sourced by a separate AWG,
frequency-mixed with a high frequency microwave source
of approximately 1 GHz. Such a configuration combining
the RF and microwave transitions enables us to directly
drive each transition within the ground state manifold
satisfying the selection rules, and thus would be readily
scalable to include more levels, particularly for demon-
strations where tailored connectivity is required [41]. By
programming the AWGs with the desired waveform, we
apply time-dependent drives with Rabi rate €2;;, detuning
0;j, and phase ¢;;, as depicted in Fig. 1. Thus in a rotating
wave approximation, we obtain the desired Hamiltonian
[Eq. (1)] with 815 = (a+ 1)k, = ko(a+ 1) cos @, 653 =
(a=1)k, =ko(a—1)cos8, Qpe?> = (1+p/2)k, — ik, =
(kosin@/v/2)e™ + p(kysin@/2v/2) cosp and Q,ze/?s =
(1=p/2)k, — ik, = (kosin0/v/2)e™ — B(kysin0/2+/2)x
cos ¢. Here, k, only modifies the magnitudes of the energy
bands without affecting the eigenstates; therefore, we focus
our discussions on a sphere with fixed k.

The experiment begins with a series of controlled
313 nm laser beam pulses [Fig. 1(c)] to Doppler cool
the ion motion and initialize it to |y,) to further couple to
the other states. We then apply a sequence of resonant RF
and microwave pulses to prepare the ion to the ground state
of the Hamiltonian for given parameters {a, 3, 0, ¢}, where
the amplitudes and durations of the control pulses can be
calculated via diagonalizing the Hamiltonian. To measure
the Berry flux within a loop, we subsequently apply an
adiabatic ramp of the parameters (6, ¢») along the loop of
interest on the sphere with fixed @ and p. We stop the
evolution at various points on the loop, and measure the
observables (F;), (N;) [39].

Observation of the topological phase transitions.—We
first set f = 0 and consider the transition from C = 2 to
C = 1 by increasing a. The first (second) band gap closes at
the north (south) pole 8, = 0 (8. = z) on the momentum
sphere respectively, as a changes across a.=1. We
measure the corresponding spin vectors (£;) and tensors
(N;;) of the ground state at & =0 for different a. As

depicted in Fig. 2, the measured value of (F,) for a < 1 is
approximately equal to —1 but dramatically jumps to
approximately O when a > 1 ((F,) and (F,) are always
approximately equal to 0), indicating a phase transition. As
also depicted in Fig. 2, we observe a dramatic change of
ellipsoid around the phase transition o = 1. Moreover, we
observe the spin vortex at the north pole for a > 1 [39],
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FIG. 2. Phase transition characterized by the jump of spin
vector and tensor. Error bars correspond to 1 standard deviation.
Insets: tensor ellipsoids and their projection on the x, y, and
z plane at @ = 0.95 (left with C = 2) and a = 1.05 (right with
C = 1), with g = 0. The red circles and lines are the projections
of the theoretical tensor ellipsoids. The experimental imperfec-
tion leads to a finite axis length of the ellipsoid along the
7 direction ~0.3, corresponding to a bias of 0.3 ~10% in
measuring N,«j.

which also signals the transition of the monopole
charge [18]. To illustrate the jump of monopole charge,
we examine latitude loops on the momentum sphere since
the Hamiltonian has cylindrical symmetry with respect to
the z axis, leading to y = 27 - <Fz> [39]. The tensor has
no contribution to the Berry flux where ¢4 is always 0 in
the case of # = 0. From Fig. 2, we observe (F,) approxi-
mately changes by 1 at the north pole § = 0, matching with
the expected 2z change of the Berry flux, and thus the
monopole charge C = (F_)|9=% changes by 1.

In general, both the vectors and tensors should contribute
to the Berry flux for a spin-1 model. To show this, we
examine the topological phase transition from C =2 to
C=0 and set ¢ =0, p# 0 for a different spin-tensor-
momentum coupling. We notice that at the vicinity of the
phase transition, the sudden change of the monopole
charge must be given by the sudden change of the Berry
flux near the nonanalytical point (i.e., the gap-closing
point). Therefore, measuring the Berry flux near the gap-
closing point can be used to probe the topological phase
transition directly. The first (second) band gap closes at
(0. @) = (37/4.0) and (3z/4.7) [(6c.9c) = (7/4.0)
and (z/4,7)] on the momentum sphere across the phase
transition point . = —2. We observe jumps of both spin
vectors and tensors at the transition [39].

To measure the change of monople charge, we consider
small loops [solid lines in Fig. 1(a)] on the momentum
sphere surrounding the gap-closing point. After the ground
state preparation of the initial Hamiltonian, we evolve the
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FIG. 3. Measured spin tensors at different position 7 along the
loop £ with a = 0, = —1.9. Blue circles and red triangles are
(]%) and (N..) respectively (more data can be found in the
Supplemental Material [39]). In the inset, green squares, yellow
circles, and purple triangles show the populations P;_g;5 3
respectively for the eigenstates of NZZ. Error bars correspond
to 1 standard deviation. Solid lines represent the corresponding
numerical simulations.

state by subsequently applying an adiabatic ramp of the
parameters along the loop L: 6 = (3z/4) — (3/4)rcost
and ¢ = 7 — \/3rsint with a nearly uniform gap, where
we ramp 7 from O to 2z with a constant rate. By
programming separate channels of the AWG and setting
v =2xt/T, we generate the desired time-dependent
Hamiltonian along the loop [39], with 7' the maximum
ramp time of 1 ms. We choose r = 0.2, and the ramp rate is
separately checked via a numerical simulation to ensure a
required level of adiabaticity and coherence [39]. We
observe a number of (F;), <Nij) at various 7 (see Fig. 3
for f = —1.9 as an example) by measuring the eigenstate
populations of these observables, from which we obtain the
spin-vector length F, the Euler angles ¢, O, ¢p. Finally,
we arrive at the Berry phase y = yr + yr. By repeatedly
measuring the Berry flux over a selection of 5, we observe
the Berry flux changes from O at |+ 2| > 0 to approx-
imately +x at | + 2| = 0, with a sharp transition by 27 at
p = =2 [see Fig. 4(a)]. Similarly, one could apply meas-
urement of the Berry flux on the loop around
0.=3r/4,¢. =0, and the Berry flux should also change
by 2z. Thus, the monople charge must change by 2 across
the phase transition at . = —2, i.e., C changes from 2 to 0.

Ideally, we should consider an infinitely small loop r = 0
to obtain a sharp transition exactly at f = —2; however,
such an evolution requires an infinitely slow ramp rate and
measurement resolution, thus rendering it not feasible in
practice. Nevertheless, a finite size loop with r = 0.2 is
good enough to show the phase transition. For a finite but
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FIG. 4. Berry flux and trajectory of corresponding ellipsoids.
(a) Berry flux y through the loop £ versus f. Blue circles, red
triangles, and yellow squares are the experimental data of y, yr,
and yr respectively with r =0.2; the solid lines are the
corresponding numerical simulations in the adiabatic limit.
Purple and green dashed lines are the numerical simulations of
y and y7 with » = 0.01 respectively. Error bars correspond to 1
standard deviation. (b) Measurements of the tensor ellip-
soids along the adiabatic loop at f=-2.2, with 7=
{0,0.19,0.48,0.95,1.05,1.71,1.81,1.90} 7 starting from the
top left along the direction indicated by black arrows. The red
solid (green dashed) lines represent the direction of the short axis
of the ellipsoid from experimental data (numerical simulations),
showing the evolution of ¢7 and the rotation with respect to (F).

small loop, the Berry flux is also small unless there is a
nonanalytical gap-closing point within the loop, so we can
restrict the Berry flux to [—z, z], and the jump between +7x
gives the critical point. Such a jump for r = 0.2 can be seen

around f# = —1.98 in the numerical simulation, away from
which, the Berry flux changes smoothly, as shown in
Fig. 4(a).

We plot and observe relative rotations of the tensor
ellipsoid with respect to the spin vector along the loop £
with f = —2.2, as illustrated in Fig. 4(b), and the direction
of tensor ellipsoids are more sensitive to experimental
noises when the two transverse axes have similar length.
We find ¢ undergoes a sinelike oscillation along the loop
while F undergoes a cosinelike oscillation. Such rotation
gives a nontrivial spin-tensor contribution §, Fdgy ~
0.18z for the Berry flux around the phase transition. For
the phase transition with # # 0, both the spin vectors and

250501-4



PHYSICAL REVIEW LETTERS 129, 250501 (2022)

tensors contribute to the Berry flux, independent from the
choice of reference axis defining the Euler angles. Though
different choices (with quantum states related by gauge
transformations) will modify (¢7, 0r, ¢r) and thereby yp
and y7y, y remains invariant. For systems with certain
symmetries (e.g., the cylindrical symmetry), it is possible
to eliminate y; by proper choice of the reference axis [39].
By now we have demonstrated the topological phase
transition by measuring the sudden change of the Berry
flux. To visualize the monopole at k; = 0, we can measure
the total Berry flux on the sphere S based on generalized
solid angles. Alternatively, a distribution of spin polarization
(F) on the sphere can also be used to visualize a monopole,
as demonstrated in the Supplemental Material [39].

Conclusion.—In summary, we experimentally explore
the momentum-space spin-1 Hamiltonian and observe the
tensor-driven transitions between different types of TDPs
with a trapped ion. By examining the vector arrow and
tensor ellipsoid properties around the gap-closing points,
we experimentally observe the transitions between different
monopole charges of the TDP. Our Letter demonstrates the
feasibility of measuring Berry flux of high-spin systems
based on the generalized solid angle traced out by the spin
moments (vectors and tensors) which can apply to general
three-band systems, paving the way for exploring topo-
logical phenomena directly from the geometric rotations of
the spin moments in such systems. Moreover, our study can
be generalized to explore topological phenomena such as
triply degenerate points with larger monopole charges and
higher-order dispersions [19,20,42] as well as higher-fold
degenerate points [43], since we have full control of the
detunings, couplings of the three levels and our setup may
be readily scaled to more levels based on our experimental
techniques for 9Bet ion, which can be extended to more
ions with multiple levels therein [44—46].
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