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ABSTRACT
Fast growing global connectivity and urbanisation increases the
risk of spreading worldwide disease. The worldwide SARS-COV-2
disease causes healthcare system strained, especially for the inten-
sive care units. Therefore, prognostic of patients’ need for intensive
care units is priority at the hospital admission stage for efficient
resource allocation. In the early hospitalization, patient chest radio-
graphy and clinical data are always collected to diagnose. Hence, we
proposed a clinical data structured graph Markov neural network
embedding with computed radiography exam features (CGMNN)
to predict the intensive care units demand for COVID patients. The
study utilized 1,342 patients’ chest computed radiography with clin-
ical data from a public dataset. The proposed CGMNN outperforms
baseline models with an accuracy of 0.82, a sensitivity of 0.82, a
precision of 0.81, and an F1 score of 0.76.
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1 INTRODUCTION
A new respiratory infectious disease COVID-19 caused by a novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged in 2019, has spread worldwide [19]. According to Johns
Hopkins University’s statistical data, there is a total of 491,987,588
cases with 6,154,269 deaths among them till April 2022, which
has massively burdened healthcare systems around the world [16].
The pandemic is projected to cost a 16 trillion dollars lost in the
economy in the US alone [14]. According to studies around the
globe, the spectrum of COVID-19 infection symptoms ranges from
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moderate to risky [10, 22]. In a study conducted in Wuhan, China,
32% of patients were admitted to the intensive care unit (ICU),
and 46% of patients admitted to ICU died [22]. Yet, recent national
data from England illustrate an improvement in the survival rate
of patients admitted into ICU due to the better distribution of re-
sources [15]. Hence, early diagnosis of patient and prediction of
severity of COVID-19 is crucial to allocate supportive medical sup-
plies, estimate hospital admission, prognosticate the mechanical
ventilation usage, and plan to transition to ICU [20].

In clinical practice, chest Computed Radiography (CR) is often
included in the initial patient assessment as the primary exam to
evaluate patient condition [26]. Additional clinical information is
collected during the examination including patient symptoms. For
hospitalized patients, certain laboratory tests data are gathered for
diagnostic and prognosis prediction [19, 37]. In the review by Mar-
tin et al., the authors outlined the predictors of COVID-19 severity,
including common symptoms, clinical predictors, laboratory tests,
and end-organ dysfunction [19]. Among clinical predictors, body-
mass index (BMI), diabetes and hypertension are strong risk factors.
Furthermore, cancer and oxygen saturation level are other major
components linked to worse COVID-19 prognosis [19]. Biomarkers
of laboratory tests show great association with disease severity,
including coagulation defects, cardiac dysfunction, low blood lym-
phocyte percentage, liver injury, and non-specific biomarkers of
cellular injury. Specially elevated lactate dehydrogenase (LDH) are
associated with disease severity. In addition, renal dysfunctions
such as urine glucose and protein are suggested to be used for
COVID-19 severity prediction. A fast and accurate prognosis pre-
diction based on the CR exams and the collected clinical information
at the hospital admission stage could not only help the health care
system overcomes peak times of pandemic, but also give themedical
support to the patients that need it most.

COVID-19 is not the only worldwide pandemic happened in the
recent history. In the first two decades in the twenty-first century
alone, we have already experienced six major epidemics, includ-
ing swine flue pandemic in 2009, Zika virus disease epidemic in
2015 and more, which caused millions of tragic losses of lives and
great economic losses all over the world [6]. Due to environmental
changes, quick urbanization, and fast growing global connectivity
the potential threat of another fast spreading infectious disease
development in the near future is very high [6]. Therefore, an ac-
curate disease prognostic prediction system at early stage that can
classifies admitted patients for future need of ICU admission will
significantly improve the efficiency of health care systems and
reduce unnecessary labor cost. Such system is important for us
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to reduce patient immortality rate in current and possible future
pandemic outbreaks.

The goal of this study is to integrate all the available data —image
and non-image data— collected at the hospital admission stage, to
predict if the disease will progress and if a patient needs ICU admis-
sion during the course of the disease. For early prognosis prediction,
we propose a semi-supervised graph Markov neural network based
classification model. The model utilizes patients’ physical, symp-
toms, and laboratory data to construct the graph structure, and
embeds chest radiography features to the graph. The major contri-
butions of our study are i) developing a more accurate multi-modal
prognostic classifier that integrates clinical information and CR
images; and ii) introducing a graph Markov model that employs
Expectation–Maximization (EM) algorithm and combines the learn-
ing power of Statistical Relational Learning (SRL) methods and
the Graph Neural Network (GNN) to learn feature representations
from similar patients and local label distribution from unbalanced
datasets; iii) providing a practical early prognosis prediction tool
for hospitals ICU admission prediction that the unlabeled patients
(newly hospital admitted patients) can also contribute to the model
as well as the labeled patients (previously admitted to the ICU) even
in an unbalanced fashion.

2 RELATED STUDIES
In the past decades, deep learning —a sub-type of artificial intel-
ligence (AI)— has achieved state-of-the-art performance in classi-
fying diseases using medical images from different modalities [4,
5, 7, 29, 36] (image based approach). To further improve classifica-
tion accuracy, recently, combining non-imaging data with imaging
data has been studied [11]. Hence, multi-modal models have been
proposed using deep learning algorithms. In the following we dis-
cuss studies that used image based and multi-modal approaches to
analyze COVID-19 data.

2.1 Image based approaches
Since the beginning of the COVID-19 outbreak, several studies
have employed deep learning, specially convolutional neural net-
works (CNNs) for early diagnostic and detection of COVID-19 using
chest Computerized Tomography (CT) and chest CR exams. In the
study by Alazab et al., a CNN model is developed to detect pa-
tients infected by COVID-19 using X-ray images [2]. Ardakani
et al. studied 10 well known CNN models — including AlexNet,
VGG16, VGG19, SqueezeNet, GoogleNet, MobileNet-v2, ResNet-18,
ResNet50, ResNet101 and Xception — to detect COVID-19 infected
patients using CT images [3]. The results showed that ResNet and
Xception perform the best. TheMobileNet, VGG16, and ResNet mod-
els have also been used to diagnose COVID-19 using CR and CT
images in other studies [1, 9, 17, 18, 30, 38]. In the real world, large
labeled high quality datasets of acute worldwide spread disease are
not available. Therefore, many studies are seeking for a solution
for developing deep learning models that can work properly with
limited data. To address this problem, Zhao et al. employed transfer
learning (model was pretrained on CIFAR-10, ILSVRC-2012 and
ImageNet datasets) and trained a pretrained ResNet model using
CT images to detect COVID-19 [38]. In the study by Li et al. [28], a
pretrained siamese model (pretrained by the CheXpert dataset [23])

is used to predict the severity of the disease. The pretrained model
is trained by pairing COVID-19 CR images with random pooled
normal CR images from CheXpert.

2.2 Multi-modal based approaches
Multi-modal based models have been studied extensively in recent
years to improve the deep learning model performance. Few multi-
modal approaches have been proposed for COVID-19 diagnostic
and prognostic [12, 20, 25–27, 33, 35]. In the study by Wang et
al., an automatic multi-model prognosis system is developed to
identify high-risk patients. The proposed model, first, employs
DenseNet121 to segment lung areas from CT images as Regions of
Interest (ROIs) and feeds the ROIs to a fully connected deep neural
network, then, fuses the extracted features from the CT images with
clinical features [35]. In another study by Shi et al., patients are
grouped to severe and non-server groups. In this study, CT images’
features extracted by a V-Net model are combined with clinical
laboratory information to predict disease severity [33]. Kwon et al.,
proposed a model that combines CR images’ features generated by
a CNN model with clinical variables as input of a fully connected
layer to classify severity of COVID-19 [26]. In a study by Gong et
al., CT derived biomarkers (total opacity ratio and consolidation
ratio) are combined with health records and fed to a generalized
linear model for prognosis prediction [20].

These studies show that combining clinical data with images im-
proves prognostic accuracy. However, all the current models are su-
pervised classifiers and are required to be trained on a fully labeled
dataset. Mostly a large amount of data is required to train deep learn-
ing models to achieve a state-of-the-art performance. However, in
real practice, collecting a large amount of data with labels requires
tremendous time and resources. When acute world wide spread dis-
ease happens, it is unrealistic to leverage huge amounts of data with
labels. Furthermore, the majority of the current COVID-19 analysis
methods focus on detecting COVID-19 infected patients. Recent
COVID-19 disease detection and diagnostic methods have shown
promising results in identifying COVID-19 infected patients with
high accuracy [1–3, 9, 17, 18, 30, 38]. However, developing accurate
and effective automatic COVID-19 prognostic predictive models is
lacking behind. Therefore, we intend to tackle this problem in this
study and our goal is to identify COVID-19 patients who need to
be admitted to ICU from small sample size unbalanced datasets. We
propose a multi-modal semi-supervised prognostic graph Markov
neural network, which integrates image and non-image data and
incorporates distributions of similar patients’ features and local
labels.

3 METHOD
The intuition behind the proposed model is that regular GNN mod-
els only focus on extracting the node features via the graph struc-
ture but ignoring the local label distribution. The proposed model
aims to combine strength of the extracted node features and the
local label distribution to make better prediction. The overview
of our model’s structure is shown in Fig. 1. The blue table and
cubes represent image features extracted from patients’ CR exams
and the corresponding node feature vectors, respectively. The yel-
low table and edges represent the patient’s non-image information
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Figure 1: Overview of the model structure. A graph is built where patients are nodes and edges represent clinical information
similarity between patients. An EM approach is used to estimate the label of unlabeled nodes. As shown in the top left, the
chest CR exam’s features (blue blocks) are extracted by an autoencoder (green blocks) and are embedded in the graph as node
features. The patients’ labels (orange for labeled patients, gray for unlabeled patients) are used in the graph as node labels,
shown in the middle left. The patients’ non-image data (yellow blocks) are used to construct connections between patients
(yellow edges) and used in the graph as edges between nodes, shown in the bottom left. The graph is fed into the EM framework
to obtain graph representations (red blocks) for classification, shown in the right.

and the corresponding similarity network. The patients’ similar-
ity network is used as the structure of the graph when nodes are
patients (labelled and unlabeled). The image features are used as
nodes’ attributes and the patients’ distances (similarity) are used
as edges of the graph. The goal is to predict the label of the un-
labeled patients. The proposed model extracts a lower-dimension
representation for each node (patient) by learning both the node
feature representation (node attributes) and the local (neighboring
nodes) label distribution through the Expectation–Maximization
(EM) algorithm.

The following sections will go through the details about obtain-
ing the image features, constructing the node similarity graph, and
formulating the proposed model.

3.1 Attribute Encoder & Network Construction
To extract the chest CR exams’ features, we implemented an unsu-
pervised autoencoder model. The input dimension of the autoen-
coder model is 1024 × 1024, and the output latent space is reduced
to 𝑧 ∈ R1×𝑚 , where the optimal value of 𝑚 was determined by
experiments. The autoencoder model contains six building blocks
that each building block consists of a convolutional layer, a pooling

layer, and a normalization layer. To train the model, we use mean
squared error between the reconstructed input and the original in-
put as the loss function. The extracted features are used as the node
feature matrix for the proposed model. Let’s denote the feature
matrix, x𝑉 as x𝑉 = {x𝑣1, x𝑣2, ...x𝑣𝑛} ∈ R𝑛×𝑚 , where 𝑛 is number
of patients, and𝑚 is the patient feature dimensions.

The edges of the proposed graph Markov model represent simi-
larity between patients (nodes) that enable the model to aggregate
information through neighboring nodes. We defined the edges
based on the distances between patients in the clinical information
space. The hypothesis is patients who share similar background,
such as cancer history, age, Body Mass Index (BMI) and smoking
history, would more likely have a similar physical response to the
disease. We used the K nearest neighbors (KNN) to construct the
patients’ similarity network. Given the patients’ non-image clini-
cal data denoted as CI = {CI𝑖 ,CI𝑗 , ...CI𝑛}, we used the Euclidean
distance function as given bellow.

𝑑𝑖, 𝑗 =

√√
𝑟∑︁

𝑐=0
(CI𝑖𝑐 − CI𝑗 𝑐 )2, (1)
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where CI𝑖 is patient 𝑖 clinical data, 𝑖 and 𝑗 are two nodes (patients),
and 𝑟 is the dimension of non-image data. Then, we selected 𝐾
nearest neighbors of each patient to connect and form edges. In the
experiments we used 𝐾 = 3 that gives the best performance.

3.2 Disease Graph Markov Neural Network
(CGMNN)

The setup of our proposed model consists of a graph𝐺 = (𝑉 , 𝐸, x𝑉 ),
where 𝑉 is a set of nodes (patients), 𝐸 is a set of edges between
patients, and x𝑉 is the patient feature matrix. We defined each
patient as a node 𝑣 ∈ 𝑉 . The edges of graph were computed by KNN
using the Euclidean distance of patients’ clinical data as described
above. The labels of the patients are defined as if they went into the
ICU during their stay at hospital. The labeled patients are denoted
as 𝐿 with labels, 𝑦𝐿 . The goal of our model is to predict the labels
of y𝑈 for other unlabeled patients, 𝑈 = 𝑉 \𝐿.

The main idea of our proposed model, CGMNN, is to combine
the strength of Statistical Relational Learning (SRL) and the Graph
Neural Network (GNN) methods such that CGMNN can utilize both
the power of learned feature representations of patients’ chest CR
exams and the local distribution of patients’ labels [31]. CGMNN
models the joint distribution of sample labels given sample at-
tributes, 𝑝𝜙 (y𝑉 |x𝑉 ) through a conditional random field, where 𝜙 is
a model parameter. As the log-likelihood, log 𝑝𝜙 (y𝑉 |x𝑉 ) is difficult
to optimize, we used a variational Expectation–Maximization (EM)
framework to optimize the Evidence Lower Bound (ELBO) of the
log-likelihood [8],

log𝑝𝜙 (y𝐿 |x𝑉 ) ≤ E𝑞𝜃 (y𝑈 |x𝑉 ) [log𝑝𝜙 (y𝐿, y𝑈 |x𝑉 )
− log𝑞𝜃 (y𝑈 |x𝑉 )],

(2)

where 𝑞𝜃 can be any distribution across y𝑈 .
In the E-step, 𝑝𝜙 is fixed as target and 𝑞𝜃 (y𝑈 |x𝑉 ) is updated by

a graph convolutional neural network (GCN) with the following
objective function.

𝑂𝜃 = 𝑂𝜃,𝑈 +𝑂𝜃,𝐿 =
∑︁
𝑛∈𝑈
E𝑝𝜃 (y𝑛 |ŷ𝑁𝐵 (𝑛) ,x𝑉 ) [log𝑞𝜃 (y𝑛 |x𝑉 )]

+
∑︁
𝑛∈𝐿

log𝑞𝜃 (y𝜃 |x𝑉 ) .
(3)

In the M-step, 𝑞𝜃 is fixed instead and 𝑝𝜙 is updated by another
GCN with the following objective function.

𝑂𝜙 =
∑︁
𝑛∈𝑉

log𝑝𝜙 (ŷ𝑛 |ŷ𝑁𝐵 (𝑛) , x𝑉 ), (4)

where ŷ𝑁𝐵 (𝑛) is the estimated local labels for the neighbours of
node 𝑛. Let’s denote a neighbour node of node 𝑛, 𝑟 . For a labelled
node 𝑟 , 𝑦𝑟 is defined as the ground truth label, and for an unlabelled
node 𝑟 , 𝑦𝑟 is defined as a sample from 𝑞𝜃 (𝑦𝑟 |x𝑣). The optimized
𝑞𝜃 (y𝑛 |x𝑉 ) is passed through a softmax layer for classification. The
overall proposed model’s structure is shown in Figure 1.

4 DATA & EXPERIMENT
4.1 Data
We used a public COVID-19 dataset provided by Stony Brook Uni-
versity [13, 32]. All cases in the dataset are confirmed COVID-19
patients. We selected 1,343 patients’ (258 ICU admitted patients and
1085 no ICU history patients) CR exams with the corresponding
physical data, symptoms, and laboratory data (shown in Table 1).
Patients’ physical data distributions are shown in Figure 2.

4.2 Baseline models
We compared the proposed model, CGMNN, with the following
baseline models. We included models that employ only patients’
CR exams, only patients’ clinical information, and both patient’s
clinical and CR exams (multi-modal models):

ResNet. To compare the proposed model with a state-of-the-art
image based model, we followed the study by Alazab et al. and
trained ResNet model using only patients’ CR images. We employed
ImageNet pretrained ResNet50 to classify patients’ ICU admission
[24]. We used the binary-cross-entropy loss function.

RF. We compared the performance of the proposed model with
that of the random forest (RF) model using only patients’ clinical
information (including laboratory findings, symptom findings, and
physical findings). The depth of the random forest is 50, and the
random state is set to 5. Since RF models perform well using bal-
anced datasets, to achieve the best performance, we under-sampled
the non-ICU samples to have a balanced dataset.

DNN. We trained a shallow fully connected neural network
(DNN) model using only patients’ clinical information — includ-
ing laboratory findings, symptom findings and physical findings —
(single modality model), and using concatenation of patients’ CR
features (extracted by the autoencoder) with the clinical informa-
tion (multi-modal model). The single modality model contains two
hidden layers (the first layer dimension is 32, and the second layer
dimension is 16) and one output layer. The multi-modal model con-
tains three layers (the first layer dimension is 64, and the second
layer dimension is 32, and third layer dimension is 16). We used
the binary-cross-entropy loss function.

GCN. We included semi-supervised graph convolutional neural
networks (GCNs) as baseline models to compare their performance
with that of the proposed model. To extensively study the perfor-
mance of GCNs, we trained i) a GCN using physical information
to form the graph structure and embedding node features using
laboratory information and symptom information (single modal-
ity model); and ii) a GCN using physical information to form the
graph structure and embedding node features using laboratory in-
formation, symptom information, and CR features extracted from
autoencoder (multi-modal model). In experiments, we implemented
two layers of GCN with one dropout layer. We used the binary-
cross-entropy loss function.

ResDNN. We also compared the performance of the proposed
model with that of an end to end deep learning multi-modal classi-
fication model using patients’ CR image and clinical information
(include patients’ physical, symptom, and laboratory information).
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Figure 2: Patients’ physical information distribution over ICU and Non-ICU admissions.

Table 1: Non-image data of patients

Clinical
Information

Protein in urine, chronic obstructive pulmonary disease, lymphocytes, aspartate, alanine,
A1C, sodium, potassium, chloride, bicarbonate, blood urea nitrogen, creatinine, estimated
glomerular filtration rate, blood pH, troponin, D-dimer, erythrocyte sedimentation rate,
microscopic hematuria, systolic blood pressure, mean arterial pressure, procalcitonin,
ferritin, proteinuria

Symptom
Information

Cough, dyspnea, nausea, vomitting, diarrhea, abdominal pain, fever, temperature, pulse,
respiration, heart rate

Physical
Information

age, gender, kidney replacement therapy, kidney transplant, cancer, smoking status, BMI,
visit concept, ventilated

In this model patients’ CR images are fed into ImageNet pretrained
ResNet50 and patients’ clinical information is fed into a shallow
DNN. Features were late fused and fed to multi-layer perception
(MLP) for classification. To avoid overfitting, we employed Gaussian
Error Linear Unit activation function (GELU)[21] and normalization
to smooth out the concatenation between CR features and clinical
features. The loss function is binary-cross-entropy.

4.3 Experiment setup
We examined three variants of the proposed model as listed bellow.

• We computed similarity between patients and built the graph
structure using only patients’ physical information. CR im-
age features combinedwith laboratory and symptom data are
embedded as node features. We called this model CGMNN-
PI.

• We computed similarity between patients and built the graph
structure using patient’s physical and symptom data. CR
image features combined with laboratory data are embedded
as node features. We called this model CGMNN-PISI.
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Table 2: Performance of the methods using CR exams and clinical information

Model Data Graph Structure Accuracy Precision Sensitivity F1
ResNet CR - 0.75 0.81 0.52 0.63
RF CI - 0.71 0.83 0.71 0.74
DNN CI - 0.72 0.83 0.72 0.75
GCN CI PI 0.80 0.64 0.80 0.72
DNN CR+CI - 0.66 0.88 0.66 0.76
ResDNN CR+CI - 0.76 0.69 0.65 0.67
GCN CR+CI PI 0.80 0.64 0.80 0.72
CGMNN-PI CR+CI PI 0.81 0.82 0.80 0.74
CGMNN-PISILI CR PI+SI+CI 0.77 0.80 0.77 0.77
CGMNN-PISI CR+CI PI+SI 0.82 0.81 0.82 0.76
The bold font indicates the highest values

• We computed similarity between patients and built the graph
structure using all the clinical information (physical, labo-
ratory , and symptom information). CR image features are
embedded as node features. We called this model CGMNN-
PISILI.

In our study, we examined the performance of the proposed models
with different CR feature dimension including 512, and 1024. The
dimension of the CR features does not have a big effect on the
performance and we reported the results for the CR feature size of
1024. A comprehensive evaluation metric has been used to monitor
the bias-variance trade-off of the proposed model and baseline
models. We used PyTorch in Python to implement the autoencoder,
proposed CGMNN, and GCNmodels. The proposedmodel is trained
with 100 epochs. The baseline ResNet, DNN, and ResDNN models
are implemented with the Keras package in Python. RF model is
implemented with scikit-learn package in Python. To overcome
overfitting for the CNN-based models and feature extraction of
CR images (ResNet, ResDNN, and autoencoder), we applied data
augmentation including flip, rotation, and CLAHE [34] filtering to
the training dataset.

Before applying the CNN-based models, including the autoen-
coder, we performed image pre-processing and normalization. To
standardize model training for all the CNN-based models, CR im-
ages are trimmed and resized to 1024 × 1024. For resizing, we em-
ployed bi-linear interpolation. For the baseline models, we used
70% of the data of each class for training, and the remaining 30%
for validation and testing. To examined the effect of the percentage
of unlabeled samples on the performance of the proposed model,
we used different partition of the samples as labeled and unlabeled
nodes. In addition, we studied the performance of CGMNNusing dif-
ferent distance functions, including Euclidean distance, Minkowski
distance, and Manhattan distance, to compute similarity between
patients for building the graph. Moreover, in this study, we explored
the effect of changing 𝐾 for the KNN analysis to build the graph.
The results are reported in section 5.2.

5 RESULTS
5.1 Overall results
We compared the performance of the proposedmodel to those of the
five baseline models explained in section 4.2 in terms of Sensitivity,

Precision, Accuracy and F1 scores. The results of the proposed
model and the baseline models are shown in Table 2. The baseline
models can be divided into two major categories, single-modality
data models and multi-modality data models. Single-modality data
models consists of ResNet, RF and DNN that are based on either
clinical information or CR image features alone. Multi-modality
data models consists of GCN, DNN, and ResDNN that represent the
multi-modality data in the form of early fusion using a supervised
approach, or in the form of graph structure using a semi-supervised
approach. As shown in Table 2, the proposed models outperforms
the baseline models in almost all the performance metrics.

In general, as expected, the multi-modal models outperform the
single-modal models. Among the single-modal models the ResNet
model with the CR image features performs the best in accuracy,
0.75, but the worst in all other three metrics. It indicates that the
prediction from the ResNet model is very biased towards one of the
classes, which is a common phenomenon for a model that doesn’t
adapt well to the high-dimensional unbalanced data. In addition,
the results confirms our hypothesis that CR image features offer
more information about the patient’s prognosis compared to the
clinical information, but a proper model is needed to utilize the
power of both data. Note that for the RF model we used a balanced
subset of data for training and test. Using unbalanced data results
in a poor performance of the RF model (not shown here).

The multi-modal baseline models, GCN, DNN, and ResDNN, sim-
ilar to our proposed models incorporate both clinical and image
data. ResDNN and DNN models use early fusion as the integration
method. Compared to the DNN model, the ResDNN model has a
better performance in accuracy, 0.76, but the worse performance
in all other metrics. Similar to the results for the single modality
models, the high accuracy model suffers poor performance in pre-
cision, sensitivity and F1 score, which indicates the model doesn’t
adapt well to the unbalanced data. As shown in Table 2, the perfor-
mance improvement gained from introducing the extra modality
data in early fusion integration models is minor. Thus, a better
way to integrate these two data modalities is needed. With the
similar setup to build the graph as the proposed model, the GCN
model uses the clinical information or a combination of the clinical
information and the CR image features as the node features, and
builds the graph network based on the physical information. Unlike
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Figure 3: Ablation study for computing distance between pairs of nodes and selecting edges. K is the number of edges connected
to a node. We studied Euclidean distance, Minkowski distance and Manhattan distance.

Table 3: Performance of baseline model and GCMNN on different partitions of the dataset. For example, in Case.No1, 30% of the
dataset is labeled (training set for baseline models) and 70% of the dataset is unlabeled (test set for baseline models)

Data Graph Structure Case.No1 30% Case.No2 40% Case.No3 50% Case.No4 60% Case.No5 70%
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

ResNet CR - 0.454 0.51 0.494 0.54 0.611 0.64 0.685 0.70 0.749 0.63
RF CI - 0.336 0.33 0.411 0.24 0.471 0.30 0.601 0.59 0.711 0.74
DNN CI - 0.507 0.47 0.519 0.52 0.585 0.58 0.633 0.63 0.719 0.75
GCN CI PI 0.792 0.69 0.794 0.69 0.795 0.70 0.801 0.72 0.803 0.72
DNN CR + CI - 0.512 0.57 0.576 0.63 0.693 0.70 0.702 0.73 0.661 0.76
ResDNN CR + CI - 0.591 0.64 0.563 0.61 0.607 0.65 0.696 0.71 0.757 0.67
GCN CR + CI PI 0.802 0.72 0.801 0.71 0.793 0.70 0.801 0.72 0.803 0.72
CGMNN CR + CI PI 0.807 0.73 0.805 0.72 0.802 0.74 0.811 0.74 0.818 0.76
The bold font indicates the highest values

our proposed model, the GCN model employs graph convolution
to aggregate information and represent features. While our model
outperforms the GCN model, the GCN model shows the best accu-
racy, 0.80, among the baseline models, but it also shows a relatively
low precision, 0.64, and F1 score, 0.72. We observed that the GCN
model also suffers from the unbalanced data and provides a very
biased prediction results towards the majority class in the data.

We trained the proposedmodel on three different graph networks
built using: i) only physical information, called CGMNN-PI, ii) phys-
ical information plus symptom information, called CGMNN-PISI,
and iii) all three kinds of non-image data, called CGMNN-PISILI.
For the former two graph network (CGMNN-PI, CGMNN-PISI), a
combination of clinical information and CR image features is used
as the node features. For the later graph network (CGMNN-PISILI),
only the CR image features are used as the node features. Over-
all, the proposed model with the graph network constructed from
the physical information and symptom information performs the
best in terms of accuracy, 0.82, and sensitivity, 0.81; and compara-
ble in terms of precision and F1 score. The proposed models with
three different settings of node feature and graph network perform
relatively similar in terms of all the four performance metrics. Com-
pared to the most accurate baseline models, the proposed model
shows not only a better prediction accuracy, but also better scores

in precision, sensitivity and F1 scores, which indicates the proposed
model achieves a good fit on the unbalanced data. It demonstrates
that the proposed model performs better on the unbalanced data in
all terms compared to all the baseline models.

5.2 Ablation Study
To further examine the sensitivity and robustness of the proposed
model with respect to its hyperparameters, we conducted a series of
experiments. We investigated the effect of using different percent-
ages of labeled and unlabeled nodes, different values of 𝐾 for the
KNN algorithm in building graphs, and different distance functions
in the KNN algorithms.

To examine the effect of using different percentages of labeled
and unlabeled data on the performance of the proposed model,
we constructed the model with different partitions of labeled and
unlabeled nodes from 30% to 70% at a step of 10%. As shown in
Table 3, the performance of the proposed model is the best in terms
of accuracy and F1 score across all the different partition settings,
and its performance shows very little variation in these two metrics
at different partitions. This demonstrates the robustness and use-
fulness of the proposed model in real-world scenarios where not
many labeled data are available. The proposed model shows the best
performance at the partition of 70% of labeled and 30% unlabeled.
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As expected, all the CNN-based models and RF show underper-
form when less labeled data are available for training. When using
less than 60% of the data for training, CNN-based models failed to
predict ICU demands. The RF model also show poor performance
using less number of training data. The GCN-based semi-supervised
models show robust performance with changing the portion of un-
labeled data. However, the proposed model showed better results
compared with the GCN-based models. The more robust perfor-
mance of the semi-supervised graph-based models respect to the
portion of unlabeled data can be due to the contribution of the
unlabeled data to the learning process.

We also tested the performance of the proposed model using
different distance functions to compute edges and different 𝐾 val-
ues to build connections in the graph. The results are shown in
Figure 3. The performance of the proposed model does not change
significantly using different distance functions. However, the model
with the network constructed using the Euclidean distance function
achieves the best performance compared to the models constructed
using the Minkowski distance or the Manhattan distance. The im-
pact of the 𝐾 value on the performance of the proposed model with
a network constructed using Minkowski distance and Manhattan
distance is negligible. In the case of employing the Euclidean dis-
tance function, precision decreases as the value of 𝐾 increases and
the optimal 𝐾 value is 3. This can be caused by the KNN algorithm
connects patients who aren’t similar enough as 𝐾 increases, which
is equivalent to adding noise to the graph. Thus, the performance
of the proposed model deteriorates with the increase in 𝐾 .

6 CONCLUSION
In this study, we proposed a novel semi-supervised deep learning
model to predict disease prognosis using partially labeled and un-
balanced datasets. We experimentally investigated the proposed
model for early prediction of ICU admission for COVID-19 infected
patients. Our proposed deep learning model utilizes patients’ CR ex-
ams and clinical information, including laboratory tested biomark-
ers, disease symptoms, and patients’ physical information. The
proposed model takes advantage of the great potential of statis-
tical relational learning and GNN learning by employing graph
Markov neural network, when clinical information is used to build
the graph and CR features are embedded in the graph. Results show
that employing a clinical data structured graph with CR features
as the nodes’ attributes improves the classification performance
compared with employing only CR exams in a state-of-the-art deep
learning model and employing only clinical information in a ma-
chine learning model. We show that, in addition to clinical and
biomarker data, the CR exams can contribute to indicate COVID-19
severity and the need for ICU admission. Furthermore, the results
indicate that the proposed model can perform well even when only
a small portion of data is labeled, which is a more realistic scenario
analyzing medical data . Our results suggest that relational learning
deep learning based models can be employed to help overwhelmed
healthcare systems to make faster and more accurate prognosis.
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