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Compression algorithms reveal memory effects and static disorder in 
single-molecule trajectories 

 
Kevin Song1, Dmitrii E. Makarov2,3,* and Etienne Vouga1 

Abstract 
A key challenge in single-molecule studies is deducing underlying molecular kinetics from low-
dimensional data, as distinct physical scenarios can exhibit similar observable behaviors such as 
anomalous diffusion. We show that information-theoretic analysis of single-molecule time series 
can reliably differentiate Markov (memoryless) from non-Markov dynamics and static from 
dynamic disorder. This analysis is based on the idea that non-Markov time series can be 
compressed, using lossless compression algorithms, and transmitted within shorter messages 
than appropriately constructed Markov approximations. In practice, this method detects 
differences between Markov and non-Markov trajectories even when they are much smaller than 
the errors of the compression algorithm. 
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Single-molecule studies that track molecular conformations in real time have opened a new 
window on biomolecular folding, function of molecular machines, and other cellular phenomena. 
A critical limitation of such experiments, however, is that they report on low-dimensional 
observables, which are projections of high-dimensional molecular motion. Such projected 
dynamics are known to be complex and often intractable; in particular, they are usually non-
Markov processes exhibiting memory[1]. Yet to describe the time evolution of experimental 
observables !(#), phenomenological Markovian models, such as biased diffusion or random walk 
along ![2-4], are commonly invoked. Signatures of non-Markovian dynamics such as 
“anomalous” diffusion[5,6] have been reported (see, e.g., refs.[7-13] ),  but the challenge, then, is 
to select the correct dynamical model out of the multitude of possibilities[5,14]. Data-driven 
Bayesian inference models of single-molecule time series have enjoyed considerable success in 
recent years[15-20], but such studies published so far required physical insight in order to 
constrain the space of possible models, and they, too, often assume that the observed dynamics 
is a one-dimensional random walk even if the number of discrete states is not specified a priori. 
Moreover, Bayesian techniques, which sample full posteriors, come at added computational cost. 
Is it possible to tell whether the observed experimental trajectory !(#) can be explained by a 
Markov process, or whether a non-Markov model, or a model of a higher dimensionality, is called 
for by the data? When the experimental observable ! is a continuous variable, several 
“Markovianity criteria” have been found[21-24], but they provide only a necessary and not 
sufficient Markovianity condition; and, for non-Markov processes, they do not quantify the 
memory length of the process. Other statistical Markovianity tests have recently been proposed 
for continuous-time jump processes[25]. For single-molecule measurements yielding discrete 
states, Markovianity of trajectories (or even of candidate hidden-state models) can be assessed 
by testing for exponentiality of dwell time distributions[26], but, again such exponentiality is only a 
necessary condition: it is easy to construct an example of non-Markov random walk with 
exponential dwell time distributions. Here we explore a different approach to the problem, which 
is based on Shannon’s classic work[27] where he estimated the information content of printed 
English. We adapt Shannon’s idea to the analysis of single-molecule trajectories (Fig. 1) and 
show that this method can readily detect memory and static disorder in single-molecule data. 

 

 

Figure 1. (a) Compression applied to molecular trajectories and letter sequences. Two “molecular 
motor” trajectories. In the first (red) the motor keeps on stepping forward each time. In the 2nd, the 
motor takes a random step at every direction. Intuitively, the first trajectory can be completely described 
by “take & steps forward”, while a complete description of the second requires us to record every step. In 
information theory language, the 1st trajectory/string are characterized by low entropy/information, and 
the 2nd by a much higher one. (b) Memory makes character strings/trajectories compressible. A 
compression algorithm applied to the string will discover that each “a” is always followed by next 4 letters 
of alphabet. Thus memory of “a” here persists over next 4 characters. The algorithm may then take 
advantage of memory and shorten the string by simply not recording “bcde”. 

We first describe how Shannon’s method is applied to text—the applications to single-molecule 
data will follow. A text can be described as a sequence of letters, …((# − 1), ((#), ((# + 1)…, where 
( ∈ {!.!. .! 0!}. Let us assume for a moment that each letter occurs independently of the others, 
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with some probability 2((). While ASCII encoding of the letters requires 7 bits per symbol, we can 
use more bits for rare letters and fewer for common letters to compress the text, with the 
theoretical compression limit given by Shannon’s entropy 

ℎ(#) = −52(() log% 2(()
&

'()
 (1) 

bits per character (where & is the alphabet size). 

Of course, the assumption of letter independence is unrealistic. A better model would account for 
the tendency of some letters to appear together: for example, a “t” is more likely to be followed by 
“h” than by “x”. Such pairwise correlations can be included within a model that treats the text as a 
1st order Markov process, allowing its further compression. In this model, one measures the 
frequency 2((9) with which a pair of letters (9 occurs in the language and computes the 
conditional probability :(( → 9) = 2((9)/2(()	of seeing 9 after (. Then the optimal compressed size 
(per letter) is given by the first-order entropy rate ℎ()):	 

ℎ()) = −52(():(( → 9)	log% :(( → 9) ,
',+

 (2) 

Higher-order models of text are constructed similarly: for a sequence of ? consecutive letters @ =
((A), ((A + 1),… , ((A + ? − 1) and any	9, one can compute the conditional probability :(@ → 9) =
2(@9)/2(@)	that the sequence @ is followed by the letter 9. The entropy rate of this kth-order 
Markov model is  

ℎ(,) = −52(@):(@ → 9)	log% :(@ → 9) ,
+,-

 (3) 

A key observation is that ℎ(,.)) ≤ ℎ(,): knowing more history helps us guess the next character, 
so the amount of new information revealed by the next character is lower. The true entropy rate of 
a non-Markov process is the limit ℎ = lim

,→0
ℎ(,), which is bounded above by kth-order entropy ℎ(,).  

This analysis (1) establishes that an English text is not a Markov process, i.e., that ℎ < ℎ()), (2) 
quantifies the extent of the memory from observing how fast ℎ(,) converges to ℎ (3) constructs a 
k-th order Markov model of the English language and (4) provides a theoretical limit of how much 
the text can be compressed. Here we examine whether similar considerations can be applied to 
molecular trajectories (Fig.1), which are viewed as discrete time series ((0), ((Δ#), ((2Δ#)… where 
the molecular state ( is sampled at time intervals Δ#. Specifically we consider several models that 
are commonly used to describe single-molecule phenomena (summarized in Figure 2), with their 
dynamics sampled using kinetic Monte Carlo (see, e.g., refs.[28-30] ). We note in passing that 
earlier related work has explored construction of  ?-th order Markov models from single-molecule 
time series[31] and that the idea that a k-th order Markov process maximizes the entropy rate 
given the known transition probabilities :(@ → 9)	can also be used to derive a k-th order master 
equation describing the process[32]. 

Direct application of Shannon’s method to single-molecule data, however, is often not feasible: 
evaluating Eq. 3 is computationally prohibitive unless ? is small, and estimation of transition 
probabilities :(@ → 9) involving long sequences @ from data becomes increasingly inaccurate 
given finite amounts of data[33], rendering such an entropy estimator unsuitable for long memory. 
Likewise, direct inspection of transition probabilities :(@ → 9) and, particularly, whether they 
depend only on the last symbol in the string @ can inform one about the validity of the 1st order 
Markov assumption[34] but becomes prohibitive for high-order Markov models. Instead, here we 
explore an approach that does not require construction of high-order Markov models of the 
process: we estimate the entropy rate ℎ as the size of the output (per time step) of a lossless 
compression algorithm applied to the trajectory ((#). Specifically, dictionary-type compression 
algorithms look for repeats of earlier (i.e. occurring at shorter time #) sequences in the data. If 
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repeating data are found (Fig 1b), the algorithm replaces later repeated sequences by references 
to the earlier occurrences, thereby reducing the algorithm’s output size relative to the original 
trajectory (in what follows, we report results using LZMA2 lossless encoding[35]). 

In applying this idea to realistic trajectories, however, one should consider the errors introduced 
by the compression algorithm applied to trajectories of finite length. Although for an ergodic, 
stationary ((#), the size of the algorithm’s output per time step is known to converge 
asymptotically to the theoretical entropy rate ℎ of the process[36], molecular trajectories are 
usually not long enough to ensure such convergence in practice. As a consequence, the results 
may depend on the trajectory length and on the specific compression algorithm used.  To 
circumvent this, we estimate the errors introduced by the compression algorithm in the following 
way: we generate a synthetic 1st-order Markov process according to the trajectory-derived 
transition probabilities :(( → 9), calculate its exact entropy rate ℎ())	according to Eq. 2 as well as 
estimate its entropy rate ℎG())	using the compression algorithm (throughout the rest of the paper 
tilde over an entropy rate indicates a raw compression-derived value). Assuming that the 
compression method introduces the same error to the original process as to its 1st order Markov 
model that has exactly the same transition probabilities :(( → 9), we then correct the raw 
compression-derived entropy rate ℎG to estimate the entropy rate as  

ℎ ≈ ℎG − ℎG()) + ℎ()) (4) 

While plausible, this correction is empirical; while remarkably effective in the examples studied 
below, we do not know how general it is. Note that, because of statistical errors in estimating the 
transition probabilities :(( → 9), the estimated value ℎ()) in general differs from that of the “exact” 
1st-order entropy rate of the process; for most of the cases studied here, however, this difference 
is negligible when compared with the errors introduced by the compression algorithm 
(Supplementary Material, Fig. S9). In other words, the statistical errors resulting from the last term 
in Eq. 4 are almost always immaterial (See however Fig. S8 for an exception; See Fig. S9 for a 
study of statistical errors as a function of the trajectory length). Further note that, for the purpose 
of detecting non-Markov behavior, the absolute value of ℎ and the value of the last term in Eq. 4 
are immaterial: the difference between the compressor-derived entropy rates ℎ ≈ ℎG − ℎG())	already 
informs us about memory effects. Application of Eq.4, however, provides a much more stringent 
test of the method’s ability not only to detect memory but also to estimate the actual entropy rate 
ℎ. We find that, while the raw compressor-estimated vales show strong dependence on the 
trajectory length, on the specific compression algorithm used, or on change in the representation 
of the data (e.g. applying compression to the sequence of steps I(#) = ((#) − ((# − 1) instead of 
the original trajectory ((#)), the entropy rates corrected using Eq. 4 remain virtually the same 
(Supplementary Material, Figures S2,S6,S9). 

Another issue that may affect the utility of the method in application to experimental rather than 
simulated trajectories is that the latter are usually partially degraded by noise. Interestingly, noise 
or loss of spatial resolution by itself may introduce additional memory not present in the noiseless 
dynamics, an effect that deserves a more extensive future study. In an example considered in 
Supplementary Material, Figure S7, noise effect on the estimated difference ℎG − ℎG()) is less 
significant than on the absolute values, and thus the compression algorithm still correctly detects 
non-Markovianity of the underlying process. 



 

 

5 

 

 

Figure 2. A summary of models studied here. (a) Single-file diffusion on a ring lattice with J = 10 sites 
and K = 5 particles. Each particle (filled circle) can only move to an adjacent, vacant lattice (empty 
circle). The observer monitors the position of a single tagged particle (red). (b) A random walker with 
internal states. At each location (, the walker can be found in two experimentally indistinguishable states ( 
and (′, with jumps to the neighboring locations occurring with a higher rate ?1  (lower rate ?2) for (	((!). 
Switches between the two internal states occur stochastically with a rate N. (c) A static disorder model. 
Each site is randomly chosen to be fast or slow. Transitions leaving slow sites (gray) occur with rate ?2, 
while transitions leaving fast sites (white) occur with rate ?1 . (d) Self-avoiding random walk (red) and non-
self-avoiding walk (blue-green) on a square lattice.  

Single-file diffusion. A classic example of a random walk with long memory, single-file 
diffusion[37,38] (Fig 2a), has applications as the prototype of diffusion in crowded environment of 
a biological cell[5,39], passage of multiple solute particles across a biological channel[40], and 
non-Markovian barrier-crossing[41]. Here we use a discrete-time lattice formulation, in which K 
particles occupy discrete positions on a ring with J sites. A particle can move to an adjacent site if 
it is unoccupied, and each step of the single-file diffusion process consists of one such move 
chosen uniformly at random. An observer monitors the location ((#) of a single tagged particle 
(red in Fig. 2a) as a function of the number # of successive steps. 

It is instructive to consider the case with J = 3 and K = 2, because its true (infinite-order) entropy 
rate ℎ, as well as the first and second order entropy rates, can be calculated analytically and are 
given by ℎ = 1 bits/step, ℎ()) = 1.5, ℎ(%) = 1.25 bits/step (Supplementary Material S1). When 
using transition probabilities :(( → 9), :((9 → A) estimated numerically from a sampled trajectory 
instead of their exact values, we obtain nearly identical estimates for ℎ()) and ℎ(%) 
(Supplementary Material S1). The true entropy rate, however, must be ℎ = 1 bit/step, because 
the vacant site (dashed circle in Fig. 2a and Supplementary Material[42], Fig. S1) moves in a 
Markovian fashion with two equiprobable outcomes, and there is a bijective mapping between the 
positions of the vacancy and the tagged particle. 

Corresponding compression-based estimates obtained using a simulated trajectory of P = 103 
Monte Carlo steps are ℎG())= 1.62 and ℎG =	1.08 bits/step. Using Eq. 4, the corrected compression-
estimated values of the entropy rates are ℎ()) = 1.5 and ℎ =	0.96 bits/step, in better agreement 
with the theoretical values. 

For a larger numbers of walkers and sites, the exact entropy rate ℎ	is unknown. Figure 3 shows 
the compression-based estimate of ℎ for K = 7 walkers as a function of the number of sites J;  ℎ 
is always lower than the 1st-order entropy rate ℎ()). In addition, we have also applied the 
compression method to higher-order Markov models of the same process (? = 2, 3), with the 
estimated values ℎ(%) and ℎ(4) also shown. When K ≈ J, ℎ is significantly lower than its finite-
order estimates ℎ(,), ? ≤ 3. This indicates strongly non-Markovian character of single-file 
diffusion not captured by including memory of past ? ≤ 3 states of the particle. As P increases, 
however, the “clashes” between walkers become increasingly unlikely, and each walker diffuses 
freely in the limit J ≫ K, thus undergoing Markovian dynamics. Accordingly, the true entropy rate 
estimate ℎ and its ?-order Markovian estimates ℎ(,)converge to the same value as J increases. 
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Importantly, the compressor-estimated entropy rates follow the correct relative order ℎ()) > ℎ(%) >
ℎ(4). 

 

Figure 3. Compression-derived (and corrected using Eq. 4) entropy rates of a tracer particle undergoing 
single-file diffusion on a ring lattice shown as a function of the number J of lattice sites for a fixed 
number of random walkers, K = 7. 

Coarse-grained systems. A fundamental source of dynamical memory is coarse-graining1.  An 
experiment cannot resolve the individual microscopic states of the molecule, so multiple 
microscopic states are effectively lumped into collective observable states. An example of coarse-
graining is given in Figure 2b (additional examples are discussed in the Supplementary 
Material[42]). In Figure 2b, a random walker can be in one of two internal states; in one, the walk 
is fast (quantified by a jump rate ?1) and in the other it is slow (jump rate ?2). The walker switches 
between the states stochastically[43], with a switching rate N. Models of this type have been used 
to describe the dynamics of biomolecular motors[4,43-45] . The kinetic scheme (Fig. 2b) 
describing the system consists of “fast” (enumerated by () and “slow” (enumerated by (′) tracks, 
with the walker randomly switching between the two. The time evolution of the probabilities 2((, #) 
and 2((!, #) to occupy sites ( and (′ obeys the continuous-time master equation, 

T2((, #)

T#
= −2?12((, #) + ?12(( − 1, #) + ?12(( + 1, #) − N2((, #) + N2((!, #) (5a) 

		
T2((!, #)
T#

= −2?22((′, #) + ?22((′ − 1, #) + ?22((′ + 1, #) − N2((′, #) + N2((, #), 
(5b) 

 

which describes a Markov process. The two internal states ( and (!, however, correspond to the 
same observable position ( = 1,2, … of the walker. The states ( and (! are then indistinguishable 
experimentally and thus lumped to a single coarse state characterized by position (. Unless ?1 =
?2, the observed time evolution ((#) of this position is non-Markovian. 

The compression-derived entropy rates of this random walk are shown in Figure 4 as a function 
of the switching rate N and compared to the entropy rates of the first- and second-order Markov 
approximations. The true entropy rate is lower than that of the two approximations, indicating 
non-Markovianity of the dynamics. While significant statistical noise is observed in the raw 
compression-derived entropy rates (Fig. 4 inset), the corrected value of ℎ (Eq. 4) is considerably 
less noisy and is lower than ℎ()); moreover, in the slow switching limit N ≪ ?2 it approaches the 
expected limit ℎ = (ℎ1 + ℎ2)/2, where ℎ2 and ℎ1 are the entropy rates of Markov random walk with 
jump rates ?2 and ?1  – thus the compression method detects the non-Markovianity of the random 
walk reliably even when the simulations have not fully converged.  
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Static and dynamic disorder. The random walker with two internal states is an example of a 
model with dynamic disorder, where the (mean) lifetime of the random walker on a lattice site can 
be either long (1/(2?2)) or short V1/(2?1)W depending on a dynamical variable (the internal state 
of the walker). There are also static disorder models, where the lifetime of the walker is 
determined by a non-time-dependent variable, such as its spatial location. Given the same 
probabilities of being in the ”slow” and the “fast” states, one often uses these two types of models 
interchangeably, but the two models are not equivalent[46]. 

 

 

Figure 4. Left: Estimated entropy rate for the random walk with internal states (Fig. 2b). The ratio of the 
rates is  

,!
,"
= 10. In the limit N → ∞, the process becomes Markov, with an entropy rate equal to that of a 

1D random walk with a jumping rate of (?2 + ?1)/2, and thus ℎ →	ℎ()) (dash-dotted line). At low 
switching rates, N → 0, the entropy rate is seen to approach the expected value equal to the mean of the 
entropy rates of two Markovian processes, the slow one (with the jump rate ?2) and the fast one (jump 
rate ?1). Red line indicates the entropy rate for a random walk with static disorder averaged over random 
arrangements of slow and fast sites placed on a ring of size n=110. Yellow line indicates the entropy rate 
for a forgetful random walk. Right: Distribution of entropy rates for individual realizations of static 
disorder on the ring. Inset: Raw compression-derived entropy rates show significant noise, unlike their 
values corrected using Eq.4. 

Can the compression method differentiate between the two kinds of disorder? Entropy rate is a 
measure of information gained about the random walker: every time a new site is visited, the 
information gained consists of the direction of the step (1 bit of information for an unbiased walk) 
and of the time spent on this site. If the walker visits the same site again, less information will be 
gained in the case of static disorder, as information can already be inferred about this site’s dwell 
time from the time spent on this site in the previous visit. 

To probe this effect, we introduce two additional models. In the static disorder model, each lattice 
site is randomly assigned to have either long or short average dwell time (Fig 2c). Transitions that 
leave the former occur with rate ?2, and transitions that leave the latter occur with rate ?1. The 
fractions of “slow” and “fast” sites are chosen such that, on the average, the walker spends half of 
the time on slow sites and half of the time on fast ones.  In the “forgetful walker” model, every 
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time the walker transitions to a new state, the new state is randomly assigned to have rate ?1 or 
?2, regardless of its prior identity. Note that both models have the same 1st order Markov model 
as the 1st order Markov model of the process described by Eq. 5.  If the above argument is 
correct, the forgetful random walker should have higher entropy rate than the walker in the model 
where the site identity is frozen, and indeed this is the case (Fig. 4). It is also instructive that the 
forgetful walker and static disorder entropy rates are greater than the entropy rate of the random 
walker described by Eq.4 in the slow-switching limit, ?2, ?1 ≫ N. This is because, in this limit, the 
consecutive steps are highly correlated, with a slow/fast step being likely followed by another 
slow/fast step, resulting in lower information gained and higher compressibility.         

Self-avoiding (SA) random walks. A random walk that is not allowed to cross its prior path (here 
we consider a walk on a square lattice, Fig. 2d) offers an interesting example of a non-Markov 
process with infinite memory. A compression-based approach to the mathematically similar 
problem of computing the entropy of a polymer has been recently studied by Avinery, Kornreich 
and Beck[47]. Since the frequencies with which left, right, up, and down steps are observed in a 
SA walk are the same, the conditional probabilities for making a step in any of these directions 
are equal to 1/4, and thus the 1st order Markov model of the SA walk is simply the random walk 
with the self-avoidance condition removed (Supplementary Material S4), with an entropy rate of  
ℎ()) = log% 4 = 2 bits/step. Using transition probabilities estimated from walk trajectories, we find, 
numerically, a nearly identical first-order entropy rate, ℎ()) ≈ 2.00 bits/step, and ℎ(%) ≈ 1.58 for the 
2nd order entropy rate. As with single-file diffusion, these values agree with known theory 
(Supplementary Material Fig. S4). The true entropy rate can be estimated using the known 
asymptotic behavior of the total number of length-P	 SA walks[48],  [(P) ∝ ]5 as P → ∞, with 
2.625622 < ] < 2.679193 numerically estimated[49] for SA walks on the square lattice.  This 
gives ℎ ≈ log% ] ≈ 1.4.  The corresponding compression-estimated entropy rates (Supplementary 
Material[42]), ℎ(%) ≈ 1.53, and ℎ ≈ 1.42 bits/step, are again close to the above values.  

Reconstruction of the underlying models of single-molecule dynamics from experimental 
observables has received much recent attention (see, e.g., ref.[50] for a review) and remains a 
challenge in the field. Here we showed that compression-derived entropy rate estimates could 
differentiate between Markov and non-Markov trajectories, as well as between models with 
dynamic and static disorder, even when the statistical errors or systematic errors introduced by 
the compression algorithm exceeded the difference between the entropy rate of the true trajectory 
and the candidate model. Moreover, this approach provides a measure of how long memory is: 
when the estimated entropy rate  ℎ(,) of the ?-th order Markov model of the trajectory becomes 
close to the estimated true value ℎ, the number ? quantifies how many previous steps are 
remembered by the trajectory. 

The method described here assumed ergodicity of the underlying dynamics; whether it could be 
applied to systems that, e.g., display aging phenomena[51] is an open question. Another 
limitation is that the observed variable is viewed as discrete. Applying the method to the 
continuous case would require digitizing the observed variable by measuring it with a finite 
resolution. The resulting entropy rate is known as the “epsilon entropy” ℎ(`) (the parameter ` 
quantifying the resolution), which can be viewed as an approximation to the Kolmogorov-Sinai 
entropy[52,53]. To our knowledge, the practical utility in using ℎ(`) to differentiate between 
stochastic processes with and without memory has not yet been explored, and it will be the 
subject of our future work. 
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