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Abstract

We discuss some of the practical challenges that one faces in using stochastic thermodynamics to
infer directionality of molecular machines from experimental single-molecule trajectories.
Because of the limited spatio-temporal resolution of single-molecule experiments and because
both forward and backward transitions between same pairs of states cannot always be detected,
differentiating between the forward and backward directions of, e.g., an ATP-consuming
molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple
extension of a Markov-state model that is commonly used to analyze single-molecule transition-
path measurements, we illustrate how irreversibility can be hidden from such measurements, but
in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule
trajectories are considered.
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1. Introduction

Nonequilibrium phenomena have direction or “arrow of time”: that is, a movie of a
nonequilibrium process played backwards will look statistically different from the original
movie. The directionality or time-irreversibility of life is evident at the macroscopic scale. If,
however, we zoom in on the microscopic motion of molecules that constitute a living organism,
such directionality becomes far from evident. For example, the Maxwell-Boltzmann distribution
of molecular velocities — a fingerprint of equilibrium and thus of time-reversible state of matter
—not only enables us to discuss our body’s temperature but also ensures the validity of the
Arrhenius law that biochemists unabashedly use to describe the rates of elementary steps in
nonequilibrium biochemical networks.

The question of whether specific components of biomolecular machinery undergo
equilibrium or nonequilibrium dynamics has been the subject of some controversy. For
example, while a molecular motor walking along its track clearly steps more often in one
direction than the other, it has been argued that individual steps are time-reversible and follow
the same (average) path in the forward and backward direction®. Yet we know that such
microscopic reversibility must be violated at some length scale to give rise to directional
persistence. For example, according to the “scallop theorem”, a bacterium could not swim? if its
movements were time-reversible (at least in incompressible fluids). Another obvious example is
cell division.

The problem of detecting directionality at a molecular level is two-fold: first, adequate
experimental tools are needed. Because molecular machines usually operate under

nonequilibrium steady-state conditions (that is, concentrations of various molecules in the cell



do not change in time), single-molecule experiments are usually required to study their
dynamics®. Despite single-molecule experiments becoming nearly routine tools of molecular
biology, only a small number of studies* > have attempted to address the question of
directionality of biochemical phenomena and/or employed nonequilibrium models® to describe
single-molecule data except when directionality is self-evident (e.g. the rotation or walking of a
molecular motor along its track). Second, proper data analysis is needed. There have been
many recent efforts to identify and quantify non-equilibrium effects in living systems’18, yet,
this has proven difficult even in mesoscopic systems’, where the dynamics of the system can
often be observed directly and quite accurately, e.g., with a fast camera. Inferring and
guantifying irreversible behavior at smaller, molecular scales poses additional difficulties, as the
time- and length-scales of the probes employed by single-molecule experiments often overlap
with the time- and length-scales of the phenomena probed?!®. In this Perspective, we argue
that those limitations are especially important in single-molecule studies that probe
nonequilibrium steady-state phenomena, describe challenges faced when applying ideas of
stochastic thermodynamics?® 2! to single-molecule data, and outline promising theoretical and

experimental approaches to overcoming these challenges.

2. Limitations of single-molecule measurements in application to active molecular processes.
2.1. Single-molecule measurements report on projected dynamics. Single-molecule
experiments have the ability to probe conformational changes in individual molecules in real
time. Such measurements, however, often suffer from limited spatial and temporal resolution,

and they inevitably entail a coarse-grained view of the process: in fluorescence resonance



energy transfer (FRET) studies?>?4, for example, the ability to resolve a microscopic state of a
molecule is limited by the number of individual photons that can be detected while the
molecule resides in this state; moreover, experimentalists usually only have a limited number of
distinct photon colors (usually two) available in order to differentiate among multiple states.
Likewise, in single-molecule force spectroscopy studies the dynamics of the molecular
coordinate of interest, such as the distance between two residues in a protein, have to be
inferred from the displacement of a sluggish force probe?>-30,

These limitations are especially important when single-molecule techniques are applied
to molecular machines? that operate away from equilibrium3!. Sometimes the ensuing
directionality (i.e., time irreversibility) in their motion is immediately evident from data: for
example, a molecular motor can be observed walking in a particular direction3?. But there are
also many cases where this directionality is more subtle. For example, the dynamics of HSP90 is
driven by ATP hydrolysis, yet the motion is periodic and observed along a one-dimensional
reaction coordinate — thus its time irreversibility is not straightforward to discern® 33. To
illustrate the difficulties that arise from limited spatio-temporal resolution, consider a minimal
hypothetic 3-state kinetic scheme of the type that has, for example, been used to describe the

operation of the disaggregation machine ClpB3* (Fig. 1).



Figure 1. Transitions between, say, closed (A) and open (B) conformations of a protein complex
(bottom) may be driven by acycle 1 - 2 — 3 — 1, yet if all of its states cannot be resolved
experimentally then it may be difficult to differentiate between a nonequilibrium process (top, left) and
an equilibrium one (top, right) even if hidden Markov analysis is used. Here we have assumed that states

2 and 3 correspond to a single observable state B.

The observed process is a conformational rearrangement between two mesoscopic states A
and B, but the microscopic underlying process is described by a 3-state kinetic scheme driven
by, e.g., coupling to ATP hydrolysis. According to Kolmogorov’s cycle criterion®, the dynamics
of the system is time-reversible only if, for the cycle 1 - 2 — 3 — 1, the product of the forward
rate coefficients is the same as the product of the backward rate coefficients, i.e. when the
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is equal to 1. Here k;_,; denotes the (pseudo-)first-order rate coefficient for the transition from
i to j. If this transition is coupled to, e.g., ATP hydrolysis then k;_,; would be proportional to the
ATP concentration such that eX = 1 only when the concentrations of molecules participating in
the process assume their equilibrium values. The quantity X (which, in the language of
stochastic thermodynamics, is sometimes called the affinity of thecycle1 - 2 - 3 - 1)
quantifies the thermodynamic force driving the process®!. When X > 0, the steady state of the
system entails overall motion in the clockwise direction. This directional motion can be further
characterized by a nonzero flux J, which is equal to the total number of overall cycles
completed per unit time.

The degree of irreversibility of the dynamics is usually quantified by the mean entropy
production rate, which is a measure of both the heat dissipated to the environment and of how
statistically different the forward process is from its time reverse?® 21, For Markovian dynamics,

the entropy production rate is given by?% 21
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where P[x(t)] is the probability of a forward path x(t), t € [0, t], P[x(t — t)] the probability
of its time reverse, Boltzmann’s constant is set to 1, and the angular brackets indicate averaging
over the ensemble of trajectories. For continuous-time Markov jump dynamics, the entropy

production is generally given by?°
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where P; is the steady-state probability of finding the system in state i. In the case of a single

cycle as in Fig. 1, this becomes



(S)=JX, (4)

We note that, more generally, Kolmogorov’s cycle criterion demands that the product of the
forward rates is equal to the product of the backward rates (and thus X = 0) for any cycle
present in the system in order for its dynamics to be time-reversible.

We now suppose that the details about transitions between the three microscopic
states are hidden from the observer, who only has access to two coarser states A and B. In Fig.
1, it is assumed that the observer cannot differentiate between states 2 and 3, which are
therefore lumped to a state B. What can we say about the underlying process (and particularly
about it’s irreversible, driven nature) by observing transitions between A and B3¢ 37?

It is intuitively obvious that the direction of the process is much easier to discern from
the sequence of the “microscopic” 3 states that it visits than from the corresponding coarse
two-state sequence: for example the sequence 123123123123123... is obviously irreversible
(i.e. distinct from its temporal reverse 321321321321... ) while the corresponding sequence
ABABABABAB... is reversible. For an arbitrary random sequence of states A and B, any
transition from A to B is followed by a transition from B to A, and so the corresponding
unidirectional fluxes (i.e., mean numbers of transitions per unit time), /4,5, and Jz_,,4, are
identical, with zero overall flux J. Using these fluxes, one can introduce the rate coefficients
kag = Jasp/Pas kgsa = Jg—a/Ps, Wwhere Py gy is the fraction of time spent in A(B) and model
the two-state trajectory with jump rates k,_,5 and kg_, 4 — at this level of description the
process is manifestly reversible, and the measured entropy production rate is zero. Any
information about the irreversible character of the original process is lost. This argument,

however, does not imply that the irreversible character of the true dynamics cannot be



recovered from the coarse-grained two-state trajectory, only that the Markov description of
this trajectory based on the average fluxes or average dwell times in each state does not
suffice: non-Markov effects (i.e. memory) must be included in the model3® 38 3% Given the
experimental limitations further outlined below, however, experimental detection of memory
effects is far from straightforward.

The fact that the Markovian kinetic scheme A 2 B is fundamentally time-reversible has
further implications. Usually, the Markov approximation is justified for the observables that are
slow, slower than all “hidden” degrees of freedom that equilibrate much faster. In application
to the kinetic scheme in Fig. 1 (top, left), the states 2 and 3 that constitute the compound state
B could be lumped together and the scheme could be reduced to the two-state scheme (Fig. 1,
bottom) if the interconversion dynamics 2 2 3 within B is fast. But the detailed balance may
still be violated by the full kinetic model, while it is not violated by the reduced two-state model
—in this case irreversibility of the true dynamics is hidden from observation®®. We will see

another example of this kind in Section 3.2.

2.2. Only some transitions are observable. In interpreting single-molecule measurements, it is
often beneficial to consider the combined dynamics of the molecule of interest and of the
experimental probe. Here we illustrate this idea for a FRET experiment*-*3 (further discussed
below), in which the internal state of the molecule (1, 2 or 3 in Fig. 2) is inferred indirectly from
the colors and arrival times of photons emitted by two fluorescent labels called donor (D) and
acceptor (A). Photon-by-photon analysis of such an experiment, which is especially important

when there is no clear separation between photophysical and biochemical timescales, can be



accomplished by considering the combined states of the system specified by the molecule’s
state and the state of the donor and the acceptor®!, each of which can either be in the ground
(D,A) or excited state (D*,A*). In the resulting kinetic network of combined photophysical and
molecular states (Fig. 2), some transitions are observable directly while others are not. For
example, transitions such as 1D*A— 1DA or 3DA*—3DA are detected because the donor or
acceptor emits a photon of a specific color. A FRET transition such as 1D*A—1DA*, in which
excitation energy is transferred from the donor to the acceptor, is, however, unobservable
directly: it can only be deduced from subsequent emission of a photon by the acceptor.
Likewise, a transition in which the donor is excited by absorbing a photon from a light source is
unobservable.

Detection of directionality and estimation of entropy production in such “partially
observed” kinetic networks has been the subject of considerable recent interest in stochastic
thermodynamics. A particularly promising approach to this problem3® 4 focusing on the
waiting times between observed transitions (here, photon emission events) rather than on
dwell times in network states or first passage times to network states, can be used to infer
guantities such as the entropy production. Unfortunately, the use of such an approach requires
that, if transitions from one network state to another are observed, the reverse transitions are
also observed3®, which, strictly speaking, is not true for FRET experiments: For example, while
emission of a photon is observed, the reverse transition (i.e. photoexcitation) is not.

We therefore conclude that inferring directionality of molecular phenomena from
single-molecule data poses both fundamental and practical open problems: on a fundamental

side we need to understand how much information about directionality of the underlying



process is retained in projected/partially observed dynamics; on a practical side, we need
workable tools for estimating the entropy production and related quantities from such partially
observed dynamics. While progress toward these goals has been achieved in the field of
stochastic thermodynamics, it is not clear whether such existing approaches are directly

applicable to single-molecule FRET data given their limitations described above.
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Figure 2. A combined network representing dynamics of a molecule (here with 3 internal states) along
with the photophysics of the two fluorescent dyes (donor D and acceptor A) that report on the
molecule’s state. Some of the possible transitions within such a network are shown, including laser
excitation, FRET (transfer of excitation from excited donor D* to acceptor), and emission by either donor
or acceptor, are shown. Note that the arrow lengths do not necessarily correspond to the respective

transition rates.

3. Directionality of molecular processes from transition paths.



3.1. Transition paths: definition and importance. In what follows, we focus on the more
specific problem of inferring directionality of molecular processes via measurements of
transition paths. Transition paths have recently become a subject of considerable interest in
single-molecule biophysics?® 2°. A transition path is a short segment of a molecular trajectory
that accomplishes a successful conformational transition (Fig. 3). More precisely, one considers
the dynamics along a molecular reaction coordinate x of interest (such as the distance between
two parts of a biopolymer labeled with two fluorescent dyes of different colors, Fig. 3) and
associates the state A with all configurations with x < x4, B with configurations with x > x5,
and a “transition region” with x, < x < xp. Here x, p are the transition region boundaries
that can (in principle) be chosen arbitrarily. A transition path enters the transition region
through one boundary and exits through the other without escaping the transition region in
between. The transition-path time thus does not include the time spent outside the transition
region or the temporal duration of failed attempts to cross the transition region; it is the
temporal duration of the successful transition itself. Importantly, while within the standard
picture of chemical kinetics the transitions are deemed to be instantaneous, a kinetic
description that accounts for transition path times is more general than a kinetic model with

instantaneous jumps between states3® 4> 46,



transition path transition path

Lo s s = = L0 -0 0=00=0- 00000 O Cf = - = —
B TR: A TR B ¢

Figure 3. Transition paths are segments of a molecular trajectory that traverse a specified transition
region staying continuously in this region (shown in blue). Experimentally, the transition region can be
defined by requiring that the molecular reaction coordinate of interest x belongs to a specified interval
(x4,xg). Such a coordinate, however, is often not directly observable. In 2-color FRET experiments, for
example, the molecular trajectory x(t) is deduced from the arrival times of photons of two colors; in
general, there is no one-to-one correspondence between the current value of x and the color of the
photon emitted, and extraction of transition path times from photon sequences usually involves
maximum likelihood analysis using a discrete model in which the continuous trajectory is replaced by

dynamics with only 3 states, A, B, and a “transition-region” intermediate TR.

Transition paths encapsulate the transition mechanisms that biochemists and
biophysicists strive to glean from experimental data. For instance, transition path times contain
information about whether or not the dynamics of the experimental observable is Markovian3®
38, 47’ or

47,48 whether transition involves multiple pathways that are unobservable directly

whether an on-pathway transient intermediate is visited by transition paths*> . For



nonequilibrium systems, examination of transition paths informs one about (ir)reversibility of
the process in question3% >4, For example one may ask whether the pathway taken by a
molecular motor during a forward step is different from that taken during a backward step,
regardless of whether the motor is making more steps in one direction than the other thereby
undergoing overall unidirectional motion?®. At the same time, the relatively short temporal
duration of transition paths illustrates the challenge encountered when there is no clear time-
scale separation between the dynamics of the probes employed (e.g. photophysics of the FRET
donor-acceptor pair) and the intrinsic biochemical dynamics that one desires to measure (see

Section 2.2).

3.2. Experimental limitations in transition path measurements. The detailed molecular
trajectory of interest, x(t), is often inaccessible experimentally (at least with an unlimited
spatio-temporal resolution) but, instead, is deduced from a different experimental observable.
In 2-color FRET experiments, for example, one infers x(t) from the arrival times of photos
emitted by two fluorescent dyes. The time resolution is then obviously limited by the inter-
photon lag times, but there is a further complication: in general, there is no one-to-one
mapping between the color of the photon emitted at time t and the value x(t), because the
latter only determines the probabilities of detecting photons of different colors. Inferring
whether the molecule is in states A, B, or is on a transition path, therefore, usually requires
additional severe approximations and assumptions. So far, this problem has been tackled by
replacing the continuous dynamics x(t) with a discrete model that only includes 3 states: A, B,

and the fictitious “transition region” state (TR), as shown in Fig.3°% %>, The model further



assumes that the dynamics of this 3-state model is Markovian, and thus hidden-Markov analysis
of photon sequences allows one to map them onto to 3-state trajectories and to approximate
the transition path time as the lifetime of the state TR** >, We note that, by construction, this
model describes an equilibrium system satisfying detailed balance, as it lacks cycles. As argued
above, nonequilibrium dynamics can be captured within such a model only if the Markov
assumption is relaxed and memory effects are included.

We now illustrate how nonequilibrium effects are manifested in the observed
transition-path dynamics using a simple nonequilibrium extension of the model used to
describe experimental measurements®>, in which the “transition-region” state is comprised of
two microscopic states, 1 and 2 (Fig. 4), which cannot be differentiated experimentally. The
transition between the metastable states A and B can thus proceed via two parallel pathways.
As a result of lumping two microscopic states into one coarser observable state TR, the

dynamics of the resulting 3- system that consists of states A, B, and TR, is no longer Markovian,

and the distributions of transition path times reflect this fact.



Figure 4. A two-pathway model, with the transition region (TR) comprised of two states, 1 and 2,
predicts broad distributions of transition path times and a breakdown of forward/backward symmetry of

transition paths when the system does not satisfy detailed balance.

The distributions of transition-path times from A to B and from B to A are generally given by>°
2 2
Pasp(t) = a_fl [k1G11(t) + ko Go1 ()] + oy [k1G12(t) + Ky G (0)]

2 2
Pp-a(t) = i1 [k1G11(t) + k2 Go1 (D)) + a_f1 [k1G12() + k2 Gop(8)] (5)
where k; ;) is the rate of escape from the corresponding intermediate to either side (Fig. 4),

and where

(@6 o) =ee[" 7 al, )

is the “transition region Green’s function”3°. We will first consider the case where there are no
transitions within the transition region (y = 0 in Fig. 4). For transition paths proceeding via
intermediate 1 (2) the (conditional) distribution of the transition path time is exponential,
P1c2)(8) = 2ky(2)G11(8) = 2k1(2)9_2k1(2)t; (7)

For the transitions from A or B into the transition region, the clockwise transitions take place
with a rate ka and counterclockwise transitions with a rate k, the parameter a being a measure
of the nonequilibrium driving force. As a result, for the cycle A > 1 - B — 2 = A the rate of
the forward rate coefficients differs from that of the backward ones, with an overall driving
force,

eX = a?, (8)

and with equilibrium attained only when a = 1.



The distributions of transition path times from A to B and B to A are linear combinations
of the contributions from each pathway. Using the fact that the probability to accomplish a
transition from A to B via the pathway 1lis a/(a + 1) etc., the distributions of transition path
times in each direction are

ap; (t) + p(t)
a+1

Pa-s ) =

p1(t) + ap,(t)
a+1

Pp-a @)=

(9)
a result that also follows directly from Egs. 5-6. From Eqs. 7 and 9 several observations follow.
First, unless one has k; = k,, the distributions of transition path times are always broader than
exponential. Specifically, the coefficients of variation C4_,z and Cg_,4, equal to the ratios of the

distribution variances to their means, e.g.,

Copy = |(azp)=(tan” in Y= [ dtt"pasp(t), (10)
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are greater than 1, a value expected for a single-exponential distribution. As was shown
recently3® 47, such a broad distribution is impossible for any linear Markov kinetic scheme and,
in particular, for the single-intermediate pathway model (Fig. 3) commonly used to infer
experimental transition path times TR>® 5>, Thus, the analysis of experimental transition path
times with a broad distribution in terms of a single pathway mechanism would be internally
inconsistent. On the other hand, we note that experimental observation of such a broad
distribution would suggest that more than one pathway exists even if the two intermediate
states, 1 and 2, have the same FRET signature and thus cannot be distinguished directly.

Second, the forward/backward symmetry is broken (p,_5(t) # pg_4(t)) when the system is



out of equilibrium, e.g. when a # 1 (Fig. 4). Again, such a situation cannot be captured if the
experimental distributions of transition path times p,_g(t) and pg_4(t) are interpreted in
terms of a single-intermediate model or any linear Markov model such as the one shown in Fig.
3 right. Third, notice that increased driving (larger a) implies greater irreversibility (Fig. 4). In
particular, in the limit of strong driving, « > 1, the A-to-B transition preferentially proceeds via
intermediate 1 and B-to-A transition proceeds via intermediate 2, with the corresponding
distributions approaching p4_5(t) = p1(t), Pg-a(t) = po(t). As will be seen below, however,

stronger driving does not necessarily imply greater asymmetry in transition path times.
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Figure 5. The distributions p,_,p(t) (red) and pp_, 4(t) (blue) of the transition path times from left to
right and from right to left in according to the kinetic scheme of Fig. 4. Here k; = 50k, k, = 10k, and
the values of the parameters a and y are indicated in each plot. The dashed black lines indicate the y —

oo limit, Eq. 11.

Consider now the possibility that the system can switch between pathways 1 and 2 while in
transit between A and B. This is captured by a nonzero rate y of switching between the two
intermediates (Fig. 4). Notice that even if @ = 1, nonzero switching in general breaks time-
reversibility, as the Kolmogorov criterion is violated for the cyclesA -1 -2 - Aand B -

1 - 2 — B. Would the nonequilibrium nature of the process be evident from observed
transition paths? Interestingly, for « = 1 the nonequilibrium character of the system does not
lead to asymmetry between the forward and the backward transition paths: it is evident from
Eqg. 5 that the forward/backward symmetry is preserved, p,_p(t) = pg_4(t), no matter how
strong the driving is (i.e. regardless of the switching rate y), as the contributions of the two
pathways into A-to-B and B-to-A transitions are the same and independent of y. However, the
non-Markov character of the observed dynamics would still be discoverable because the
distributions p4_5 (t) and pg_ 4(t), while identical in this case, would be nonexponential (cf.
Eq. 9 with a = 1), with a coefficient of variation exceeding 1 and thus incompatible with a

Markov model with linear topology*’.
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Figure 6. Mean entropy production rate (Eq. 3) for the 4-state system shown in Fig. 4 plotted as a

function of the switching rate y between two states 1 and 2 that form the transition region. Here k; =
50k, k, = 10k, and the values of the parameter @ are @ = 1 (solid line), @ = 2 (dashed line), and a =

3 (dot-dashed line).

Consider now the case where a # 1. In the limity < k, ka, k1, k, the distributions of the
transition path times approach the results of Eq. 9. The opposite limit where switching is the
fastest timescale of the system, y > k, ka, k4, k, is also easy to understand. In this case, many
switches take place while the system remains in the transition region, and the transition region
is effectively a single intermediate TR with apparent transition rates to each side equal to the
average rate (kq + k;)/2. Thus, the two-pathway scheme can be replaced with a single-

pathway one (Fig. 3), with an exponential distribution of transition path times given by

Pasp(t) = ppoa(t) = (ky + ky)e~*atka)t (11)



Forward/backward symmetry is therefore recovered for y — oo despite the nonequilibrium
character of the process®’. In this case the entropy production is increasing with the increasing
exchange rate y (Fig. 6), yet the observed distributions of the transition path time evolve from
two distinguishable distributions, Eq. 9, to two identical distributions, Eq. 11 (see Figure 5).
Moreover, the observed distribution approaches a single-exponential one, consistent with the
assumption that the transition region consists of a single intermediate state. The system
becomes increasingly indistinguishable from an inherently time-reversible, Markovian 3-state
system with linear topology as long as the two states 1 and 2 are indistinguishable
experimentally. Note, however, that even for high values of y, short-time behavior of p4_5(t)
and pg_ 4 (t) is always different (Fig. 5). Indeed, it follows from Egs. 5-6 that p4_,5(0) and
pPs-4(0) are independent of y. Therefore, given sufficiently high (and increasing with increasing
y) time resolution, it is still in principle possible to discern time-irreversible behavior of the

system.

4. Summary and future directions

To summarize, here we argue that it may be surprisingly difficult to determine, from a
trajectory observed at a single-molecule level, whether it represents an active (e.g., driven by
ATP hydrolysis) process or is a manifestation of equilibrium fluctuations of the observed
molecule. The reason is ultimately the low-dimensional character of most single-molecule
observables, which often forces an analysis of data in terms of simple models with linear
topology. When such models are assumed to obey Markovian dynamics, they, fundamentally,

are equilibrium models that cannot capture active processes. Therefore, a successive fit of data



to a linear hidden-Markov model does not necessarily imply that the true dynamics is
reversible.

A solution, on the experimental side, is a development of multidimensional techniques®
>8-60 On a data analysis side, irreversibility is often encoded in non-Markov effects. Such effects
— fundamentally — cannot be neglected, and they can be detected with appropriate data

analysis*® 61

. If discovering and quantifying directionality of the observed dynamics is the
objective, it may also be desirable to estimate entropy production, Eq.2, directly from raw
experimental time series (e.g. the photon sequence in Fig. 3) rather than after post-processing
the data using, e.g., hidden Markov models. In this regard, histogram entropy estimators and
compression-algorithm-based estimators appear promising!l 6263 although, to our knowledge,
they have not yet been applied to photon sequences. On a theory side, there have been recent
developments addressing the question of how measures of irreversibility such as the entropy

production can be deduced from partial observations such as some but not all transitions3® 44 —

application of those ideas to experimental trajectories is a promising new direction.
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