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Abstract 

We discuss some of the practical challenges that one faces in using stochastic thermodynamics to 
infer directionality of molecular machines from experimental single-molecule trajectories. 
Because of the limited spatio-temporal resolution of single-molecule experiments and because 
both forward and backward transitions between same pairs of states cannot always be detected, 
differentiating between the forward and backward directions of, e.g., an ATP-consuming 
molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple 
extension of a Markov-state model that is commonly used to analyze single-molecule transition-
path measurements, we illustrate how irreversibility can be hidden from such measurements, but 
in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule 
trajectories are considered.        
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1. Introduction 

Nonequilibrium phenomena have direction or “arrow of time”: that is, a movie of a 

nonequilibrium process played backwards will look statistically different from the original 

movie. The directionality or time-irreversibility of life is evident at the macroscopic scale.  If, 

however, we zoom in on the microscopic motion of molecules that constitute a living organism, 

such directionality becomes far from evident. For example, the Maxwell-Boltzmann distribution 

of molecular velocities – a fingerprint of equilibrium and thus of time-reversible state of matter 

– not only enables us to discuss our body’s temperature but also ensures the validity of the 

Arrhenius law that biochemists unabashedly use to describe the rates of elementary steps in 

nonequilibrium biochemical networks.   

The question of whether specific components of biomolecular machinery undergo 

equilibrium or nonequilibrium dynamics has been the subject of some controversy. For 

example, while a molecular motor walking  along its track clearly steps more often in one 

direction than the other, it has been argued that individual steps are time-reversible and follow 

the same (average) path in the forward and backward direction1. Yet we know that such 

microscopic reversibility must be violated at some length scale to give rise to directional 

persistence. For example, according to the “scallop theorem”, a bacterium could not swim2 if its 

movements were time-reversible (at least in incompressible fluids). Another obvious example is 

cell division.  

The problem of detecting directionality at a molecular level is two-fold: first, adequate 

experimental tools are needed. Because molecular machines usually operate under 

nonequilibrium steady-state conditions (that is, concentrations of various molecules in the cell 



do not change in time), single-molecule experiments are usually required to study their 

dynamics3.  Despite single-molecule experiments becoming nearly routine tools of molecular 

biology, only a small number of studies4, 5 have attempted to address the question of 

directionality of biochemical phenomena and/or employed nonequilibrium models6 to describe 

single-molecule data except when directionality is self-evident (e.g. the rotation or walking of a 

molecular motor along its track).  Second, proper data analysis is needed. There have been 

many recent efforts to identify and quantify non-equilibrium effects in living systems7-18, yet, 

this has proven difficult even in mesoscopic systems7-9, where the dynamics of the system can 

often be observed directly and quite accurately, e.g., with a fast camera. Inferring and 

quantifying irreversible behavior at smaller, molecular scales poses additional difficulties, as the 

time- and length-scales of the probes employed by single-molecule experiments often overlap 

with the time- and length-scales of the phenomena probed19.   In this Perspective, we argue 

that those limitations are especially important in single-molecule studies that probe 

nonequilibrium steady-state phenomena, describe challenges faced when applying ideas of 

stochastic thermodynamics20, 21 to single-molecule data, and outline promising theoretical and 

experimental approaches to overcoming these challenges.  

 

2. Limitations of single-molecule measurements in application to active molecular processes. 

2.1. Single-molecule measurements report on projected dynamics. Single-molecule 

experiments have the ability to probe conformational changes in individual molecules in real 

time. Such measurements, however, often suffer from limited spatial and temporal resolution, 

and they inevitably entail a coarse-grained view of the process: in fluorescence resonance 



energy transfer (FRET) studies22-24, for example, the ability to resolve a microscopic state of a 

molecule is limited by the number of individual photons that can be detected while the 

molecule resides in this state; moreover, experimentalists usually only have a limited number of 

distinct photon colors (usually two) available in order to differentiate among multiple states. 

Likewise, in single-molecule force spectroscopy studies the dynamics of the molecular 

coordinate of interest, such as the distance between two residues in a protein, have to be 

inferred from the displacement of a sluggish force probe25-30.        

 These limitations are especially important when single-molecule techniques are applied 

to molecular machines3 that operate away from equilibrium31.  Sometimes the ensuing 

directionality (i.e., time irreversibility) in their motion is immediately evident from data: for 

example, a molecular motor can be observed walking in a particular direction32. But there are 

also many cases where this directionality is more subtle. For example, the dynamics of HSP90 is 

driven by ATP hydrolysis, yet the motion is periodic and observed along a one-dimensional 

reaction coordinate – thus its time irreversibility is not straightforward to discern4, 33. To 

illustrate the difficulties that arise from limited spatio-temporal resolution, consider a minimal 

hypothetic 3-state kinetic scheme of the type that has, for example, been used to describe the 

operation of the disaggregation machine ClpB34 (Fig. 1).   

 



 

 

Figure 1. Transitions between, say, closed (A) and open (B) conformations of a protein complex 

(bottom) may be driven by a cycle 1 → 2 → 3 → 1, yet if all of its states cannot be resolved 

experimentally then it may be difficult to differentiate between a nonequilibrium process (top, left) and 

an equilibrium one (top, right) even if hidden Markov analysis is used. Here we have assumed that states 

2 and 3 correspond to a single observable state B.    

 

The observed process is a conformational rearrangement between two mesoscopic states A 

and B, but the microscopic underlying process is described by a 3-state kinetic scheme driven 

by, e.g., coupling to ATP hydrolysis. According to Kolmogorov’s cycle criterion35, the dynamics 

of the system is time-reversible only if, for the cycle 1 → 2 → 3 → 1, the product of the forward 

rate coefficients is the same as the product of the backward rate coefficients, i.e. when the 

ratio  
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is equal to 1. Here ($→&  denotes the (pseudo-)first-order rate coefficient for the transition from 

) to *. If this transition is coupled to, e.g., ATP hydrolysis then ($→&  would be proportional to the 

ATP concentration such that %! = 1 only when the concentrations of molecules participating in 

the process assume their equilibrium values. The quantity + (which, in the language of 

stochastic thermodynamics, is sometimes called the affinity of the cycle 1 → 2 → 3 → 1) 

quantifies the thermodynamic force driving the process31. When + > 0, the steady state of the 

system entails overall motion in the clockwise direction. This directional motion can be further 

characterized by a nonzero flux ., which is equal to the total number of overall cycles 

completed per unit time.  

The degree of irreversibility of the dynamics is usually quantified by the mean entropy 

production rate, which is a measure of both the heat dissipated to the environment and of how 

statistically different the forward process is from its time reverse20, 21.  For Markovian dynamics, 

the entropy production rate is given by20, 21 

〈0̇〉 = lim
'→(

)
* 〈

+[-(/)]
+[-(*2/)]〉 ,	 (2)  

where 7[9(;)] is the probability of a forward path 9(;), ; ∈ [0, ?], 7[9(? − ;)]	the probability 

of its time reverse, Boltzmann’s constant is set to 1, and the angular brackets indicate averaging 

over the ensemble of trajectories.  For continuous-time Markov jump dynamics, the entropy 

production is generally given by20 

〈0̇〉 =
)
3∑ B($→&7$ − (&→$7&C ln

"%→&+%
"&→%+&$4&  , (3) 

where 7$  is the steady-state probability of finding the system in state ). In the case of a single 

cycle as in Fig. 1, this becomes  



〈0̇〉 = .+, (4) 

We note that, more generally, Kolmogorov’s cycle criterion demands that the product of the 

forward rates is equal to the product of the backward rates (and thus + = 0) for any cycle 

present in the system in order for its dynamics to be time-reversible. 

We now suppose that the details about transitions between the three microscopic 

states are hidden from the observer, who only has access to two coarser states A and B. In Fig. 

1, it is assumed that the observer cannot differentiate between states 2 and 3, which are 

therefore lumped to a state B. What can we say about the underlying process (and particularly 

about it’s irreversible, driven nature) by observing transitions between A and B36, 37? 

It is intuitively obvious that the direction of the process is much easier to discern from 

the sequence of the “microscopic” 3 states that it visits than from the corresponding coarse 

two-state sequence: for example the sequence 123123123123123… is obviously irreversible 

(i.e. distinct from its temporal reverse 321321321321… ) while the corresponding sequence 

ABABABABAB… is reversible.  For an arbitrary random sequence of states A and B, any 

transition from A to B is followed by a transition from B to A, and so the corresponding 

unidirectional fluxes (i.e., mean numbers of transitions per unit time), .5→6,  and .6→5, are 

identical, with zero overall flux .. Using these fluxes, one can introduce the rate coefficients 

(5→6 = .5→6/75, (6→5 = .6→5/76, where 75(6) is the fraction of time spent in A(B) and model 

the two-state trajectory with jump rates (5→6	and (6→5 – at this level of description the 

process is manifestly reversible, and the measured entropy production rate is zero. Any 

information about the irreversible character of the original process is lost. This argument, 

however, does not imply that the irreversible character of the true dynamics cannot be 



recovered from the coarse-grained two-state trajectory, only that the Markov description of 

this trajectory based on the average fluxes or average dwell times in each state does not 

suffice: non-Markov effects (i.e. memory) must be included in the model36, 38, 39. Given the 

experimental limitations further outlined below, however, experimental detection of memory 

effects is far from straightforward.  

The fact that the Markovian kinetic scheme F ⇄ H is fundamentally time-reversible has 

further implications. Usually, the Markov approximation is justified for the observables that are 

slow, slower than all “hidden” degrees of freedom that equilibrate much faster. In application 

to the kinetic scheme in Fig. 1 (top, left), the states 2 and 3 that constitute the compound state 

B could be lumped together and the scheme could be reduced to the two-state scheme (Fig. 1, 

bottom) if the interconversion dynamics 2 ⇄ 3 within B is fast. But the detailed balance may 

still be violated by the full kinetic model, while it is not violated by the reduced two-state model 

– in this case irreversibility of the true dynamics is hidden from observation40.  We will see 

another example of this kind in Section 3.2.          

 

2.2. Only some transitions are observable. In interpreting single-molecule measurements, it is 

often beneficial to consider the combined dynamics of the molecule of interest and of the 

experimental probe. Here we illustrate this idea for a FRET experiment41-43 (further discussed 

below), in which the internal state of the molecule (1, 2 or 3 in Fig. 2) is inferred indirectly from 

the colors and arrival times of photons emitted by two fluorescent labels called donor (D) and 

acceptor (A).  Photon-by-photon analysis of such an experiment, which is especially important 

when there is no clear separation between photophysical and biochemical timescales, can be 



accomplished by considering the combined states of the system specified by the molecule’s 

state and the state of the donor and the acceptor41, each of which can either be in the ground 

(D,A) or excited state (D*,A*). In the resulting kinetic network of combined photophysical and 

molecular states (Fig. 2), some transitions are observable directly while others are not. For 

example, transitions such as 1D*A→ 1DA or 3DA*→3DA are detected because the donor or 

acceptor emits a photon of a specific color. A FRET transition such as 1D*A→1DA*, in which 

excitation energy is transferred from the donor to the acceptor, is, however, unobservable 

directly: it can only be deduced from subsequent emission of a photon by the acceptor. 

Likewise, a transition in which the donor is excited by absorbing a photon from a light source is 

unobservable.  

Detection of directionality and estimation of entropy production in such “partially 

observed” kinetic networks has been the subject of considerable recent interest in stochastic 

thermodynamics.   A particularly promising approach to this problem36, 44, focusing on the 

waiting times between observed transitions (here, photon emission events) rather than on 

dwell times in network states or first passage times to network states, can be used to infer 

quantities such as the entropy production. Unfortunately, the use of such an approach requires 

that, if transitions from one network state to another are observed, the reverse transitions are 

also observed36, which, strictly speaking, is not true for FRET experiments: For example, while 

emission of a photon is observed, the reverse transition (i.e. photoexcitation) is not.       

 We therefore conclude that inferring directionality of molecular phenomena from 

single-molecule data poses both fundamental and practical open problems: on a fundamental 

side we need to understand how much information about directionality of the underlying 



process is retained in projected/partially observed dynamics; on a practical side, we need 

workable tools for estimating the entropy production and related quantities from such partially 

observed dynamics. While progress toward these goals has been achieved in the field of 

stochastic thermodynamics, it is not clear whether such existing approaches are directly 

applicable to single-molecule FRET data given their limitations described above. 

 

Figure 2.  A combined network representing dynamics of a molecule (here with 3 internal states) along 

with the photophysics of the two fluorescent dyes (donor D and acceptor A) that report on the 

molecule’s state. Some of the possible transitions within such a network are shown, including laser 

excitation, FRET (transfer of excitation from excited donor D* to acceptor), and emission by either donor 

or acceptor, are shown. Note that the arrow lengths do not necessarily correspond to the respective 

transition rates.  

 

3. Directionality of molecular processes from transition paths.   
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3.1. Transition paths: definition and importance. In what follows, we focus on the more 

specific problem of inferring directionality of molecular processes via measurements of 

transition paths. Transition paths have recently become a subject of considerable interest in 

single-molecule biophysics23, 25. A transition path is a short segment of a molecular trajectory 

that accomplishes a successful conformational transition (Fig. 3). More precisely, one considers 

the dynamics along a molecular reaction coordinate 9	of interest (such as the distance between 

two parts of a biopolymer labeled with two fluorescent dyes of different colors, Fig. 3) and 

associates the state A with all configurations with 9 < 95, B with configurations with 9 > 96, 

and a “transition region” with  95 < 9 < 96. Here  95,6 are the transition region boundaries 

that can (in principle) be chosen arbitrarily. A transition path enters the transition region 

through one boundary and exits through the other without escaping the transition region in 

between. The transition-path time thus does not include the time spent outside the transition 

region or the temporal duration of failed attempts to cross the transition region; it is the 

temporal duration of the successful transition itself. Importantly, while within the standard 

picture of chemical kinetics the transitions are deemed to be instantaneous, a kinetic 

description that accounts for transition path times is more general than a kinetic model with 

instantaneous jumps between states38, 45, 46.       

 



 

Figure 3. Transition paths are segments of a molecular trajectory that traverse a specified transition 

region staying continuously in this region (shown in blue). Experimentally, the transition region can be 

defined by requiring that the molecular reaction coordinate of interest  % belongs to a specified interval 

(%!, %"). Such a coordinate, however, is often not directly observable. In 2-color FRET experiments, for 

example, the molecular trajectory %()) is deduced from the arrival times of photons of two colors; in 

general, there is no one-to-one correspondence between the current value of % and the color of the 

photon emitted, and extraction of transition path times from photon sequences usually involves 

maximum likelihood analysis using a discrete model in which the continuous trajectory is replaced by 

dynamics with only 3 states, A, B, and a “transition-region” intermediate TR.   

 

Transition paths encapsulate the transition mechanisms that biochemists and 

biophysicists strive to glean from experimental data. For instance, transition path times contain 

information about whether or not the dynamics of the experimental observable is Markovian38, 

47, 48, whether transition involves multiple pathways that are unobservable directly38, 47, or 

whether an on-pathway transient intermediate is visited by transition paths49, 50. For 
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nonequilibrium systems, examination of transition paths informs one about (ir)reversibility of 

the process in question39, 51-54. For example one may ask whether the pathway taken by a 

molecular motor during a forward step is different from that taken during a backward step, 

regardless of whether the motor is making more steps in one direction than the other thereby 

undergoing overall unidirectional motion1.  At the same time, the relatively short temporal 

duration of transition paths illustrates the challenge encountered when there is no clear time-

scale separation between the dynamics of the probes employed (e.g. photophysics of the FRET 

donor-acceptor pair) and the intrinsic biochemical dynamics that one desires to measure (see 

Section 2.2).     

 

3.2. Experimental limitations in transition path measurements. The detailed molecular 

trajectory of interest, 9(;), is often inaccessible experimentally (at least with an unlimited 

spatio-temporal resolution) but, instead, is deduced from a different experimental observable. 

In 2-color FRET experiments, for example, one infers 9(;) from the arrival times of photos 

emitted by two fluorescent dyes. The time resolution is then obviously limited by the inter-

photon lag times, but there is a further complication: in general, there is no one-to-one 

mapping between the color of the photon emitted at time ; and the value 9(;), because the 

latter only determines the probabilities of detecting photons of different colors. Inferring 

whether the molecule is in states A, B, or is on a transition path, therefore, usually requires 

additional severe approximations and assumptions. So far, this problem has been tackled by 

replacing the continuous dynamics 9(;) with a discrete model that only includes 3 states: A, B, 

and the fictitious “transition region” state (TR), as shown in Fig.350, 55.  The model further 



assumes that the dynamics of this 3-state model is Markovian, and thus hidden-Markov analysis 

of photon sequences allows one to map them onto to 3-state trajectories and to approximate 

the transition path time as the lifetime of the state TR43, 56.  We note that, by construction, this 

model describes an equilibrium system satisfying detailed balance, as it lacks cycles. As argued 

above, nonequilibrium dynamics can be captured within such a model only if the Markov 

assumption is relaxed and memory effects are included.  

We now illustrate how nonequilibrium effects are manifested in the observed 

transition-path dynamics using a simple nonequilibrium extension of the model used to 

describe experimental measurements55, in which the “transition-region” state is comprised of 

two microscopic states, 1 and 2  (Fig. 4), which cannot be differentiated experimentally.  The 

transition between the metastable states A and B can thus proceed via two parallel pathways. 

As a result of lumping two microscopic states into one coarser observable state TR, the 

dynamics of the resulting 3- system that consists of states A, B, and TR, is no longer Markovian, 

and the distributions of transition path times reflect this fact.   
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Figure 4. A two-pathway model, with the transition region (TR) comprised of two states, 1 and 2, 

predicts broad distributions of transition path times and a breakdown of forward/backward symmetry of 

transition paths when the system does not satisfy detailed balance.   

 

The distributions of transition-path times from A to B and from B to A are generally given by39 

J5→6(;) =
38
89) [()K))(;) + (3K3)(;)] +

3
89) [()K)3(;) + (3K33(;)]  

  J6→5(;) =
3

89) [()K))(;) + (3K3)(;)] +
38
89) [()K)3(;) + (3K33(;)] (5) 

where ()(3) is the rate of escape from the corresponding intermediate to either side (Fig. 4), 

and where  

 MK))(;) K)3(;)
K3)(;) K33(;)

N = exp RM
−2() − S S

S −2(3 − S	
N ;T (6) 

is the “transition region Green’s function”39. We will first consider the case where there are no 

transitions within the transition region (S = 0 in Fig. 4). For transition paths proceeding via 

intermediate 1 (2) the (conditional) distribution of the transition path time is exponential, 

J)(3)(;) = 2()(3)K))(;) = 2()(3)%
23"!(#)/,  (7)  

For the transitions from A or B into the transition region, the clockwise transitions take place 

with a rate (U and counterclockwise transitions with a rate (, the parameter U being a measure 

of the nonequilibrium driving force. As a result, for the cycle F → 1 → H → 2 → F the rate of 

the forward rate coefficients differs from that of the backward ones, with an overall driving 

force,  

%! = U3, (8)  

and with equilibrium attained only when U = 1.	  



The distributions of transition path times from A to B and B to A are linear combinations 

of the contributions from each pathway. Using the fact that the probability to accomplish a 

transition from A to B via the pathway 1 is U/(U + 1)  etc., the distributions of transition path 

times in each direction are 

J5→6(;) =
UJ)(;) + J3(;)

U + 1
		

J6→5(;) =
J)(;) + UJ3(;)

U + 1
	, 

(9) 

a result that also follows directly from Eqs. 5-6. From Eqs. 7 and 9 several observations follow. 

First, unless one has () = (3, the distributions of transition path times are always broader than 

exponential. Specifically, the coefficients of variation W5→6 and W6→5, equal to the ratios of the 

distribution variances to their means, e.g., 

W5→6 = X
〈/)→*# 〉2〈/)→*〉#

〈/)→*〉#
, 〈;5→6

< 〉 = ∫ Z;;<J5→6(;)
(
= , (10) 

are greater than 1, a value expected for a single-exponential distribution.  As was shown 

recently38, 47, such a broad distribution is impossible for any linear Markov kinetic scheme and, 

in particular, for the single-intermediate  pathway model (Fig. 3) commonly used to infer 

experimental transition path times TR50, 55. Thus, the analysis of experimental transition path 

times with a broad distribution in terms of a single pathway mechanism would be internally 

inconsistent. On the other hand, we note that experimental observation of such a broad 

distribution would suggest that more than one pathway exists even if the two intermediate 

states, 1 and 2, have the same FRET signature and thus cannot be distinguished directly.  

Second, the forward/backward symmetry is broken (J5→6(;) ≠ J6→5(;)) when the system is 



out of equilibrium, e.g. when U ≠ 1 (Fig. 4). Again, such a situation cannot be captured if the 

experimental distributions of transition path times  J5→6(;)  and J6→5(;) are interpreted in 

terms of a single-intermediate model or any linear Markov model such as the one shown in Fig. 

3 right. Third, notice that increased driving (larger U) implies greater irreversibility (Fig. 4). In 

particular, in the limit of strong driving, U ≫ 1, the A-to-B transition preferentially proceeds via 

intermediate 1 and B-to-A transition proceeds via intermediate 2, with the corresponding 

distributions approaching J5→6(;) → J)(;), J6→5(;) → J3(;).  As will be seen below, however, 

stronger driving does not necessarily imply greater asymmetry in transition path times.     
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Figure 5. The distributions *!→"()) (red) and *"→!()) (blue) of the transition path times from left to 

right and from right to left in according to the kinetic scheme of Fig. 4.   Here +$ = 50+	, +% = 10+, and 

the values of the parameters 0 and 1 are indicated in each plot. The dashed black lines indicate the 1 →

∞  limit, Eq. 11.   

 

Consider now the possibility that the system can switch between pathways 1 and 2 while in 

transit between A and B. This is captured by a nonzero rate S of switching between the two 

intermediates (Fig. 4).  Notice that even if U = 1, nonzero switching in general breaks time-

reversibility, as the Kolmogorov criterion is violated for the cycles F → 1 → 2 → F and H →

1 → 2 → H. Would the nonequilibrium nature of the process be evident from observed 

transition paths? Interestingly, for U = 1 the nonequilibrium character of the system does not 

lead to asymmetry between the forward and the backward transition paths: it is evident from 

Eq. 5 that the forward/backward symmetry is preserved, J5→6(;) = J6→5(;), no matter how 

strong the driving is (i.e. regardless of the switching rate S), as the contributions of the two 

pathways into A-to-B and B-to-A transitions are the same and independent of S. However, the 

non-Markov character of the observed dynamics would still be discoverable because the 

distributions J5→6(;) and J6→5(;), while identical in this case, would be nonexponential (cf. 

Eq. 9 with U = 1), with a coefficient of variation exceeding 1 and thus incompatible with a 

Markov model with linear topology47.    

 



 

Figure 6. Mean entropy production rate (Eq. 3) for the 4-state system shown in Fig. 4 plotted as a 

function of the switching rate 1 between two states 1 and 2 that form the transition region.  Here +$ =

50+	, +% = 10+, and the values of the parameter 0 are 0 = 1 (solid line), 0 = 2 (dashed line), and 0 =

3 (dot-dashed line). 

 

Consider now the case where U ≠ 1.	In the limit S ≪ (, (U, (), (3  the distributions of the 

transition path times approach the results of Eq. 9. The opposite limit where switching is the 

fastest timescale of the system, S ≫ (, (U, (), (3 is also easy to understand.  In this case, many 

switches take place while the system remains in the transition region, and the transition region 

is effectively a single intermediate TR with apparent transition rates to each side equal to the 

average rate  (() + (3)/2. Thus, the two-pathway scheme can be replaced with a single-

pathway one (Fig. 3), with an exponential distribution of transition path times given by 

 J5→6(;) = J6→5(;) = (() + (3)%2
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Forward/backward symmetry is therefore recovered for S → ∞	despite the nonequilibrium 

character of the process57. In this case the entropy production is increasing with the increasing 

exchange rate S (Fig. 6), yet the observed distributions of the transition path time evolve from 

two distinguishable distributions, Eq. 9, to two identical distributions, Eq. 11  (see Figure 5). 

Moreover, the observed distribution approaches a single-exponential one, consistent with the 

assumption that the transition region consists of a single intermediate state.  The system 

becomes increasingly indistinguishable from an inherently time-reversible, Markovian 3-state 

system with linear topology as long as the two states 1 and 2 are indistinguishable 

experimentally.  Note, however, that even for high values of S, short-time behavior of J5→6(;) 

and J6→5(;) is always different (Fig. 5). Indeed, it follows from Eqs. 5-6 that J5→6(0) and 

J6→5(0) are independent of S. Therefore, given sufficiently high (and increasing with increasing 

S) time resolution, it is still in principle possible to discern time-irreversible behavior of the 

system. 

 

4. Summary and future directions 

To summarize, here we argue that it may be surprisingly difficult to determine, from a 

trajectory observed at a single-molecule level, whether it represents an active (e.g., driven by 

ATP hydrolysis) process or is a manifestation of equilibrium fluctuations of the observed 

molecule. The reason is ultimately the low-dimensional character of most single-molecule 

observables, which often forces an analysis of data in terms of simple models with linear 

topology. When such models are assumed to obey Markovian dynamics, they, fundamentally, 

are equilibrium models that cannot capture active processes. Therefore, a successive fit of data 



to a linear hidden-Markov model does not necessarily imply that the true dynamics is 

reversible.  

A solution, on the experimental side, is a development of multidimensional techniques4, 

58-60. On a data analysis side, irreversibility is often encoded in non-Markov effects. Such effects 

– fundamentally – cannot be neglected, and they can be detected with appropriate data 

analysis48, 61. If discovering and quantifying directionality of the observed dynamics is the 

objective, it may also be desirable to estimate entropy production, Eq.2, directly from raw 

experimental time series (e.g. the photon sequence in Fig. 3) rather than after post-processing 

the data using, e.g., hidden Markov models.  In this regard, histogram entropy estimators and 

compression-algorithm-based estimators appear promising11, 62, 63, although, to our knowledge, 

they have not yet been applied to photon sequences. On a theory side, there have been recent 

developments addressing the question of how measures of irreversibility such as the entropy 

production can be deduced from partial observations such as some but not all transitions36, 44 – 

application of those ideas to experimental trajectories is a promising new direction.  
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