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Abstract. 
 
Single-molecule and single-particle tracking experiments are typically unable to resolve fine 
details of thermal motion at short timescales where trajectories are continuous. We show that, 
when a diffusive trajectory !(#)	is sampled at finite time intervals &#, the resulting error in 
measuring the first passage time to a given domain can exceed the time resolution of the 
measurement by more than an order of magnitude. Such surprisingly large errors originate 
from the fact that the trajectory may enter and exit the domain while being unobserved, 
thereby lengthening the apparent first passage time by an amount that is larger than &#. Such 
systematic errors are particularly important in single-molecule studies of barrier crossing 
dynamics. We show that the correct first passage times, as well as other properties of the 
trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that 
reintroduces unobserved first passage events probabilistically. 
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Consider a particle undergoing stochastic dynamics, with its location !(#), as a function 

of time #, sampled at finite time intervals &#. We are interested in measuring the average time 

before the particle, starting at !(0) = !!, crosses some specified boundary * for the first time 

(i.e. the first passage time).  At first glance, it seems the error in such a measurement should be 

comparable to &#, but in fact it can be much greater! The reason is illustrated in Figure 1, 

showing a trajectory !(#)	that crosses *	while the sampled discrete version of the trajectory 

does not – as a result of such missed crossings the trajectory arrives at * at a later time, 

introducing an error much greater than &#. 

Our interest in this problem is motivated by recent single-molecule/single-particle-

tracking experiments, whose aim is to detect transient molecular phenomena such as 

conformational changes underlying the action of molecular machines1 or molecular 

intermediates and barrier-crossing dynamics in protein folding and binding2-7.   Of particular 

interest is the temporal span of short pieces of molecular trajectories spent in 

thermodynamically unfavorable regions of configuration space such as transition paths quickly 

traversing activation barriers8-10 or exit paths escaping the barrier region11: the distributions of 

transition path times and other (conditional) first passage times can, for example, inform one 

about molecular intermediates encountered along the way4, 12, 13 and about the topology of the 

underlying energy landscape14-16.  These times are often relatively short (e.g., microseconds or 

milliseconds), only 1-2 orders of magnitude longer than the experimental time resolution. For 

example, a typical transition path of a micron-sized bead hopping between two optical traps, 

which takes a few milliseconds17 to cross the activation barrier, will consist of only ~10 − 10" 

data points when observed with a fast camera with a typical sampling rate of 1/&# = 10# 



frames per second. As will be shown below, the relative error in measuring transition path 

times caused by missed crossings can be quite large in such systems.  

The purpose of this note is to explain and to quantify the errors in measuring 

conditional first passage times caused by a finite sampling rate, and to introduce a simple 

method that corrects for such errors by reintroducing first passage events probabilistically 

between times when the system’s location is unobserved. 

Figure 2 illustrates the effect of finite sampling rate on the conditional exit times from 

an interval (0, /). The mean exit time11, 18, 19  〈1(!! → /)〉$  is the average time it takes to 

escape the interval, starting from !! ∈ (0, /), through its boundary at ! = / conditional upon 

reaching this boundary before crossing the other boundary at ! = 0. Exit times have attracted 

recent attention as measures of barrier crossing dynamics11 and as “reaction coordinates” that 

include temporal information19. They are related to the much studied transition path times5, 8, 

20, 21: the mean transition path time from 0 to /, 〈#(0 → /)〉%&, is the average time it takes to 

traverse the interval (0, /) conditional upon entering the interval through the left 

boundary	and exiting through the right boundary	while staying continuously within the interval 

in between these two events. The exit times are more general than transition path times, and 

they can also be used to describe failed attempts to cross the interval11; by definition, we have 

〈#(0 → /)〉%& = lim
'!→!

〈1(!! → /)〉$ .		(1) 

Exit times shown in Fig. 2 were computed using the overdamped Langevin equation 

)"%
*

+,
+-
= −9.(!) + ;(#). (2) 

Here the potential 9(!) = <! describes the motion of a particle in the presence of a constant 

force < acting from right to left, = is the particle’s diffusivity, and ;(#) is a Gaussian-distributed 



random force, which has zero mean and which satisfies the fluctuation-dissipation theorem 

〈;(#);(#.)〉 = "()"%)#

*
	&(# − #.), where > is the temperature. Eq. 2 was integrated using the 

Euler-Maruyama scheme with a timestep of  &#! =	5 × 1012 3
#

*
 for 1.5 × 104! steps. To mimic 

single-particle tracking data, which yield subsampled versions of continuous-time trajectories, 

we then studied  coarser versions of the same trajectory sampled at multiples of the integration 

time step (i.e. defined as !(A&#), where A is an integer and &# =

&#!, 10&#!, 100&#!, 1000&#!, 2000&#!).  

The results are shown in Fig. 2 for three values for the force: zero force, “moderate” 

force < = C5>//,	and “high” force < = 5C5>//, where / is the length of the interval. As can 

be seen from Fig. 2, top, the exit times estimated from such subsampled trajectories are 

significantly longer than the corresponding theoretical values18; moreover, the error introduced 

by subsampling is much greater than the timestep &#.   

Finite sampling time introduces significant errors in computing another important 

characteristic of barrier crossing dynamics, the splitting probability (Figure 3, top). Splitting 

probability D(!! → /) = 1 − D(!! → 0), also known as committor or “pfold”22-27, is the 

probability that a trajectory starting from !! ∈ (0, /), will reach the boundary / before reaching 

0. Splitting probabilities can be measured experimentally28, 29 and are useful, for example, for 

reconstructing effective potentials governing the dynamics28, 30, 31 as well as coordinate-

dependent diffusivities32. It is instructive to note that, while the magnitude of the force has only 

a modest effect on the relative error in measuring the exit times (Fig. 2), its effect on the 

splitting probability is more dramatic. In particular, for the largest value of the force <	used 

here (note that it is directed from right to left), the splitting probabilities D(!! → /) measured 



near the right interval boundary (!! ≈ /) can be significantly lower than the theoretical values 

(Fig 3, top/right), because many trajectories that start near / and exit while unobserved during 

the time interval &# drift back left and into the interval before finally crossing at ! = 0; these 

paths will be misclassified as exiting left when the time step &#	is large. 

These results show that a finite sampling time may introduce significant errors into 

typical observables characterizing diffusive dynamics within a finite interval (such as a transition 

region in protein folding). The same problem also arises in the analysis of molecular dynamics 

trajectories: because of data storage limitations molecular configurations are usually not saved 

at every simulation timestep, with a timestep between stored configurations typically being 

orders of magnitude longer than the simulation timestep. 

While the errors introduced by finite time resolution could be surprisingly large, it is 

possible to correct for them. Specifically, suppose we suspect that a trajectory !(#) has crossed 

a boundary located at ! = 0 between two observations, where the particle was observed at 

!(#4) = !4 > 0	 and at !(#" = #4 + &#) = !" > 0, such that the discretized trajectory does not 

cross 0. The probability G6 	that an unobserved crossing has taken place can be determined by 

dividing the conditional probability  HI(!", #"|!4, #4)	that a trajectory arrives at !" at time #" 

having crossed ! = 0 at some time #. ∈ (#4, #") given that it originated at !4 at time #4, by the 

conditional probability H(!", #"|!4, #4) that the particle is found at !(#") = !" given that it has 

started at !(#4) = !4. For overdamped Langevin dynamics, Eq. 2, the latter probability is just 

the Green’s function of the diffusion equation, H(!", #"|!4, #4) = 4
√#8*9-

exp N− (,#1,$)#

#*9-
O. We 

note that this result is valid for sufficiently small value of the time step &# even in the presence 

of a nonzero potential 9(!), as diffusion dominates over the deterministic force −9′(!) at 



short times21; we expect, however, that this approximation to become less accurate (given the 

same &#) in the presence of larger forces. The former conditional probability is also easily 

estimated by using the reflection principle18: each trajectory !(#) that has crossed ! = 0 at 

time #. can be replaced by a statistically equivalent trajectory !Q(#) that is reflected with respect 

to the boundary ! = 0 after the first crossing event: !Q(#) = 	!(#), # < #′, !Q(#) = 	−!(#), # ≥ #′. 

Then we have HI(!", #"|!4, #4) = H(−!", #"|!4, #4) = 4
√#8*9-

exp N− (,#:,$)#

#*9-
O, and the crossing 

probability is   

G6 = ;<=!", # + &#>!4, #?
;=!", # + &#>!4, #? = exp N− ,$,#

*9-
O  (3) 

As seen from this equation, the crossing probability is typically non-negligible when the 

trajectory points are located within a distance of ~√=&# from the boundary.  Eq. 3 can be used 

to correct for sampling errors. For example, if we want to compute the first passage time to the 

boundary ! = 0, we generate a successful first passage event according to Eq. 3 every time a 

trajectory is close enough to ! = 0, even if the sampled trajectory has not crossed the 

boundary. Of course, the exact boundary crossing time is only known to within the sampling 

time &#, which determines the resulting error. More generally, in application to a trajectory 

sampled at time intervals &#,  this method reintroduces the crossing of a boundary * (e.g. * = 0 

or * = / in exit time calculations) during time step A with a probability of 

G6 = exp− [,(A9-)1B][,([A:4]9-)1B]
*9-

  whenever !(A&#) − * and !([A + 1]&#) − * have the same 

sign and thus the discretized trajectory has not crossed this boundary. Figures 2-3 (bottom)  

show that this correction procedure does indeed significantly reduce the errors in estimating 

both average exit times and splitting probabilities.  



An obvious limitation of the method is the requirement that the diffusivity =	is known, 

as it is needed to estimate G6  using Eq. 3. At first glance, this appears to limit the applicability of 

the method only to cases where the model of Eq. 2 is known to be true and where, moreover, 

the value of =	is known. The value of the diffusion coefficient, however, can be estimated using 

a variety of methods; for example, one can use the first and second moments of the particle’s 

displacement to estimate the diffusion coefficient30, 33, 34: 

〈Δ!"	〉 − 〈Δ!〉" ≈ 2=&#,  (4) 

where Δ! = !(# + &#) − !(#) . This idea can be extended to certain classes of systems that are 

not described by Eq. 2; for example, systems with position-dependent diffusion coefficients 

=(!) can be treated in a similar way, and the function =(!) can again be estimated using Eq. 4. 

In using Eq. 3, then, one should use the value of the diffusivity that corresponds to the 

boundary whose crossing is being considered (i.e. =(0) or =(/) in the above case). 

For systems with memory, such as those described by generalized Langevin equations 

(see, e.g., refs.21, 35), the diffusivity is effectively frequency-dependent36-38, with short-time/high 

frequency dynamics being described by the high-frequency diffusivity limit39. Assuming the 

timestep &# is short enough that the high-frequency limit is reached, the coefficient = 

estimated from Eq. 4 should be treated as such high frequency limit, and Eq. 3 should still apply 

despite the fact that the dynamics, at longer timescales, is not truly diffusive. Indeed, the high-

frequency limit of the diffusion coefficient can be estimated both from simulated and 

experimental trajectories17, 40-42. 



To test the applicability of the method to trajectories !(#) whose dynamics is non-

Markovian, we have considered a system of two particles, with their respective coordinates 

obeying the two-dimensional Langevin equation of the form  

)"%
*%

+,
+-
= −X9(!, Y)/X! + ;,(#)  

)"%
*&

+D
+-
= −X9(!, Y)/XY + ;D(#) (5)  

with  

9(!, Y) = 	<! + )(D1,)#

#
 (6) 

and with ;,,D being the Gaussian noise satisfying the fluctuation-dissipation theorem   

〈;F(#);G(#.)〉 = "()"%)#

*'
	&(# − #.)&FG, Z, [	 ∈ {!, Y}. (7)    

The particle whose coordinate is ! is subjected to a force <, as in the previous examples. The 

trajectory !(#) is viewed as the “experimental” data, while the effect of the “unobserved” 

particle (with coordinate Y) that is coupled harmonically to ! is to introduce memory effects in 

the dynamics of !. Indeed, it is known that the resulting trajectory !(#) in this case obeys a 

generalized Langevin equation with an exponential memory kernel21, 43.     

In our simulations, we use the parameters =D = =,/5 and C = 1000 )"%
3#

, which result in 

highly non-Markovian dynamics of the observed trajectory. Indeed, the long-time dynamics is 

governed by a diffusion coefficient =HIJK = ^=,14 + =D14_14 = *%
2

 , (which describes the 

collective motion of the two particles) while its short-time properties are governed by the high-

frequency diffusion coefficient =LMIN- = =,, where the observed degree of freedom !	is 

effectively decoupled from Y  (see, e.g., ref.39). Using the same sampling timesteps &# as in the 



previous example, the diffusion coefficient estimated from the coarse trajectories !(A&#)	using 

Eq. 4 is virtually identical to the correct short-time limit =LMIN- = =,.  

Figure 4 shows analysis of exit times for the non-Markov trajectory !(#) sampled at 

different time intervals.  Although an exact analytical solution is not known for this system, we 

observe the same trends as in the case of Langevin dynamics: while the exit times measured 

directly from the sampled trajectories strongly depend on the sampling time interval &#, they 

become virtually independent of &# after the correction of Eq. 3. Similar behavior was observed 

for the splitting probabilities (data not shown.) 

In summary, inference of underlying dynamics, and particularly of first passage times 

and transition path times, from imperfect observations has attracted considerable recent 

interest—the present work is complementary to studies that treat imperfect observations as 

“gating”44 and to studies of the effect of smoothing that is sometimes used to reduce 

experimental noise45. Here we have shown that finite (and often disappointingly large) 

sampling time intervals, typical of both experimental trajectories and of molecular simulations, 

introduce errors to various (conditional) first passage times that far exceed the time resolution. 

Such errors are caused by missed first passage events. Under certain assumptions about the 

underlying dynamics, it is possible to correct for such errors using a simple stochastic algorithm 

that reintroduces missed crossing events probabilistically. Here, we have explored the simplest 

possible version of such algorithm, in which the dynamics of the particle in the vicinity of the 

target is approximated as free diffusion, leading to Eq. 3. It is further possible, if needed, to 

improve the crossing probability estimate using a linear approximation, 9(!) ≈ 9(*) +



9′(*)(! − *) (where *	is the location of the “target”) and using Green’s function for diffusion 

with drift instead of that of free diffusion.  
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Figure 1: Examples of crossings missed when a trajectory !(#)	is sampled at finite time 
intervals. The particle’s position as a function of time is shown by the gray line. A coarser-
resolution trajectory, obtained by sampling the particle’s location every 1000 timesteps, is 
shown in black. The background color changes whenever the particle leaves the interval (0, /); 
the coarse-resolution trajectory, however, remains within the interval. Left: the particle exits 
the right side of the interval three times, but only the final exit event is detected for the 
trajectory that is sampled with a coarser resolution. This leads to an overestimate of how long it 
takes the particle to transition across the interval (i.e. of the transition path time). Right: the 
trajectory exits the interval (0, /) to the right; thus two transition paths are observed, one from 
left to right and the other from right to left. The coarse-resolution trajectory, however, never 
sees the particle cross the right endpoint of the interval, and thus no transition paths are 
observed at all. 
 
 
 
 
 
 
 
 



 

 
Figure 2: Conditional exit times to the right and left boundaries of the interval (0, /) shown as a 
function of the starting position !! for unbiased diffusion (left), moderately biased diffusion 
(middle), and strongly biased diffusion (right), obtained from trajectories sampled at various 
timesteps &#. The upper row shows the values obtained directly from sampled trajectories, 
along with the theory. Due to the effects illustrated in Figure 1, the typical error in these curves 
is much larger than the sampling timestep, ranging from 3&# to 60&#. The lower row shows the 
values obtained by applying our correction procedure based on Eq. 3 to the same trajectories. 
All timescales are reported in reduced units, where /"/= sets the timescale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3: Splitting probability for leaving an interval (0, /)	plotted as a function of the initial 
position !! for unbiased diffusion (left), moderately biased diffusion (middle) and strongly 
biased diffusion (right) and compared with their respective theoretical values18. The upper row 
shows the values obtained from sampled trajectories using different sampling timesteps &#.	As 
in Figure 2, the splitting probability estimates become worse with larger time steps. The lower 
row shows the splitting probabilities obtained after the correction procedure based on Eq. 3 
was applied to the same trajectories. All timescales are reported in reduced units, where /"/= 
sets the timescale. 
 
 
 
 
 
 
 
 



 
Figure 4: Conditional exit times to the right and left boundaries of the interval (0, /) shown as a 
function of the starting position !! for the non-Markovian trajectory !(#) simulated using Eqs. 
5-7 sampled at different time intervals &#, as indicated. Upper row shows raw data and lower 
row shows the data after the correction of Eq. 3 was implemented. Other parameters are the 
same as in Figure 2. All timescales are reported in reduced units, where /"/=, sets the 
timescale. 
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