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H I G H L I G H T S

Expansion of lithium-ion batteries is mea-
sured during aging.
Features in differential expansion are
strongly correlated with capacity fade.
The correlation is nearly linear under a
wide range of conditions.
The feature stays observable up to 1C
and is robust to the starting SOC of
charge.
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A B S T R A C T

The expansion of lithium-ion batteries exhibits characteristic inflection points during cycling that are distinctly
identifiable using differential analysis. In this paper, we show that the evolution of several features in the
second-differential of expansion correlates to capacity loss under a wide range of stress factors such as
temperature, charging rate, and depth-of-discharge. Specifically, the evolution of the zero-crossing point of the
second differential of the expansion has a strong correlation with capacity fade. The correlation is nearly linear
and universal as the same correlation describes capacity fade for various conditions tested on NMC/Graphite
cells. The zero-crossing expansion feature remains observable at higher C-rates up to 1C and is robust when the
charging commences from different states of charge. The expansion feature also occurs near the half-charged
point. Thus, the expansion measurement can enable fast and more robust capacity estimation at the end of a
manufacturing process for quality control, during cycling testing in the lab, or even in the field.
1. Introduction

A consensus has finally taken shape by science, policy, and industry
that electric vehicles (EV) should constitute 1/5 of the global vehicle
fleet to meet the carbon emission goals of 2030. Consequently, light-
duty vehicle manufacturers are preparing for a transition that could
bring tens of millions of EVs to the road. With the production of
lithium-ion batteries projected to ramp up to billions of cells by the end
of the decade, it is necessary to develop diagnostics that estimate the
state of health of batteries, assess their condition and residual value to
ultimately stretch their lifetime [1]. Accurate knowledge of lithium-ion
atteries’ health is essential for optimal battery operation with regards
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to power limits, cycle-life, and safety. The most important aspect of a
battery’s health is the amount of charge it can store, i.e., the capac-
ity, however, capacity measurement is often challenging in real-world
operation since most EVs are rarely deeply discharged due to range
anxiety. Moreover, reducing the testing time in the laboratory settings
for capacity checks during aging tests is often greatly advantageous in
terms of cost reduction (labor, data, equipment, test time).

The state of health (SOH), defined here as capacity retention, can
be quantified by full charge–discharge that takes time, which is rarely
possible since convenient home and workplace charging will be used
to maintain the battery near full levels. Several techniques to estimate
vailable online 18 November 2021
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capacity involve parametric estimation simultaneously with state of
charge (SOC) estimation using terminal voltage measurements, and
Coulomb counting [2–4]. These algorithms converge to the true ca-
pacity value when the operation straddles the graphite phase tran-
sitions [5]. These are the same phase transitions observed in the
differential voltage (DV) analysis [6–8] and incremental capacity (IC)
analysis [9] that are used mostly in the laboratory for estimating SOH.
These methods track the voltage level where DV peaks are observed
and correlate to the capacity as cells degrade. These correlations can
be used when the battery is charging under a constant low current,
which avoids the confounding influence of impedance. The DV peaks
can also provide additional information about the anode capacity and
stoichiometric utilization window [10].

An insightful indicator of lithium-ion battery aging is the mechan-
ical expansion during cycling. Lithium-ion batteries are made of elec-
trodes that expand during charging and contract during discharging.
The combined cell-level expansion can be characterized either using
a strain sensor or a force sensor. For example, when the battery is
compressed in a fixture, the intrinsic material swelling is constrained
and causes stresses that can be measured as an increase in pressure.
Recently, the influence of aging on the swelling has shown promising
results for predicting SOH as a function of the cell deformation [11]. It
as been also shown that the measurement of the mechanical response
an improve the accuracy of SOC estimation [12,13]. The graphite
hase transitions are also observable as peaks in the second differential
f the expansion. This connection was first reported and explained
n [14]. As the cell ages due to the loss of active material (LAM)
nd loss of lithium inventory (LLI) [15] aging modes, the peaks, and
eatures in the expansion shift. The differential expansion (DE) signal
as the advantage of better peak observability at higher C-rates [16]
ompared to the DV signal. Therefore, the DE can be used to develop
OH estimation methods, either by itself or in conjunction with voltage,
o increase the accuracy and robustness [17].
In this work, first, we demonstrate that the features extracted from

he expansion during charging at practical rates have a strong correla-
ion with the capacity fade. Furthermore, we directly compare the DV,
C, and various DE features and develop capacity estimation methods
ased on voltage and expansion that are accurate and robust with
espect to the aging conditions. Moreover, we show that the zero-
rossing feature of the DE has several characteristics that make it ideal
or capacity estimation. Namely, the feature

1. is detectable at various practical C-rates up to 1C [14,16].
2. occurs within a frequently used operational SOC range (close to
50% SOC).

3. is unaffected by the initial SOC, so it can be used during charg-
ing.

The paper is organized as follows: Section 2 describes the ex-
erimental methodology and presents the range of aging conditions
rom charge/discharge C-rates, temperatures, and depth of discharges.
ection 3 presents the experimental results, evolution, and correlation
f the voltage and expansion signals with the capacity fade. The var-
ous differential signals are introduced. Using the experimental data,
number of features in expansion and voltage are identified. Linear
egression models based on different combinations of experimentally
bserved features are developed. The accuracy and robustness of the
ifferent data-driven regression models are compared. The model based
n the zero-crossing of the differential expansion feature is shown to
e superior for the capacity fade estimation. Section 4 summarizes the
contributions.

2. Experimental procedures

2.1. Cycling aging

A number of identical pouch cells were manufactured in one batch
using the fabrication facility at the University of Michigan Battery
2

Table 1
Pouch cell specifications.
Pouch cell

Nominal capacity 5.0 Ah
Operating voltage 3.0–4.2 V
Thickness 4.0 mm
Length 132 mm
Width 90 mm

Positive electrode

Material NMC111:CB:PVDF (94:3:3)
Number of double sided electrode sheets 14
Electrode active material loading 18.5 (single side) mg∕cm2

Electrode thickness 67 μm

Negative electrode

Material Graphite:PVDF (95:5)
Number of double sided electrode sheets 15
Electrode active material loading 8.55 (single side) mg∕cm2

Electrode thickness 62 μm

Separator

Material Polyethylene (PE)

Electrolyte

Material 1 M 𝐿𝑖𝑃𝐹6
Organic solvent in electrolyte 3:7 EC:EMC v/v + 2wt% VC

Lab (UMBL) to study the degradation under various conditions. The
production of the cells in one batch minimizes the cell-to-cell variation
in performance caused by the manufacturing process [18]. The cells
were comprised of graphite (Hitachi MAG-E3) anode and NMC 111
(TODA North America) cathode with the detailed specifications shown
in Table 1. The cells were primarily designed as energy cells, which
led to a relatively fast degradation at high charging rates [19], and
enabled a faster study of different aging conditions. The cells were
assembled inside the fixture and placed in a climate chamber shown
in Fig. 1(a). The fixture, shown in Fig. 1(b), was designed such that the
op and bottom plates are fixed in place while the middle plate is free
oving. Compression springs were used to apply a prescribed pressure
n the cell. Spring modulus was selected to be much lower than the
attery, which ensures almost constant pressure on the cell as it cycles
nd expands. Initial target pressures of 34.5 kPa (5 psi) were achieved
y adjusting the spring compression to a fixed displacement using
he threaded rods. Furthermore, polymer poron sheets (Rogers, USA)
ere used on both sides of the pouch cell to achieve a more uniform
ressure on the cell and avoid high-pressure spots. The expansion is
easured using a displacement sensor (Keyence, Japan) mounted on
he top plate similar to [16]. The precision and repeatability of the
xpansion measurement was checked by back-to-back C/10 charge and
ischarge cycles and found to be close to the sensor accuracy (Fig.
1). The measurement of expansion using load cells [5] and strain
auges [20,21] have also been shown previously and can be applied on
wider scale. The dynamic testing was carried using a battery cycler
Biologic, France). A climate chamber (Cincinnati Ind., USA) was used
n order to control the temperature during cycling. The temperature
as measured using a K-type thermocouple (Omega, USA) place on the
attery’s surface.
The aging experiments were designed to cover an array of stress

actors such as C-rates during charge and discharge, depth of discharges
DOD), and temperatures. Based on these stress factors, a number
f testing conditions were selected. The summary of all the testing
onditions is shown in Table 2. Each of the test conditions is done
t three different temperatures of hot (45 ◦C), cold (−5 ◦C), and room
25 ◦C), which are indicated by condition group A to G. The condition
roup G utilizes a realistic daily drive cycle with fast charging for an
lectric vehicle. The details of the drive cycle are presented in Fig. S4.
n the following, the C-rate noted for all the test procedures is defined
ith respect to the nominal cell capacity (i.e., 5 Ah).
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Fig. 1. (a) The testing configuration inside the climate chamber and (b) the schematic of the fixture.
Table 2
The aging test conditions matrix.
Cycling aging conditions

Condition group Cell number–Temperature (R/C/H)a DOD Chargeb Discharge

A – (baseline) 01 (R) | 02 (C) | 03 (H) 0%–100% C/5 C/5
B 04 (R) | 05 (C) | 06 (H) 0%–100% 1.5C 1.5C
C – (fast charge) 07 (R) | 08 (C) | 09 (H) 0%–100% 2C 2C
D 10 (R) | 11 (C) | 12 (H) 0%–100% C/5 1.5C
E 13 (R) | 14 (C) | 15 (H) 0%–50% C/5 C/5
F 16 (R) | 17 (C) | 18 (H) 0%–50% C/5 1.5C
G – (drive cycle) 19 (R) | 20 (C) | 21 (H) 0%–50% 1.5C Drive cyclec

aThe R, C, and H corresponds to room (25 ◦C), cold (−5 ◦C), and hot (45 ◦C) temperature.
bConstant current until 4.2 V and then constant voltage until (𝐼 < 𝐶∕50).
cFor the details on the drive cycle refer to the Fig. S4.
D
G

Cycling procedure. Before starting the cycling tests, the chamber tem-
perature was set to the target temperature of the cycling test, and
the cells were held at rest for 3 h to ensure thermal equilibrium. The
cycling consists of a constant current (CC) charge until reaching 4.2 V,
followed by a constant voltage (CV) phase at 4.2 V until (𝐼 < 𝐶∕50).
Then a CC discharge until reaching 3.0 V for the full range conditions.
For partial DOD, the discharge time is with respect to the nominal
capacity at all times (i.e., to obtain 50% DOD, 2.5 Ah are discharged
from a completely charged state). During all the tests, in addition to the
traditional signals of voltage, current, and temperature, the thickness
changes (expansion) of the cell are also recorded. All the cells were
cycled to at least 70% capacity retention, and reference performance
tests (RPTs) were performed periodically.

RPTs. Fig. 2(a) shows the testing procedure consists of cycling and
RPTs. Initial RPTs were done for all the cells before the start of the
aging experiment. The subsequent RPTs were performed after a certain
number of cycles corresponding to an expected 5% capacity loss for
cycling aging tests. Before starting the tests, the cells were brought back
to room temperature (25 ◦C) and held at rest for 3 h to ensure thermal
equilibrium. The RPTs are as following:

1. A C/20 charge–discharge cycle consists of an initial C/5 dis-
charge until reaching 3.0 V, followed by a CV phase at 3.0 V until
(|𝐼| < 𝐶∕50) and 1 h rest to ensure the cell is fully discharged.
Then a C/20 charge until reaching 4.2 V, followed by a CV phase
at 4.2 V until (𝐼 < 𝐶∕50) and 1 h rest. Then a C/20 discharge
until reaching 3.0 V.

2. Hybrid pulse power characterization (HPPC) measurements at
10% SOC intervals. First, the cells are charged using C/2 CC until
4.2 V, followed by a CV at 4.2 V until (𝐼 < 𝐶∕50) and 1/2 h
rest. Then a C/2 CC discharge for an equivalent of 10% SOC
discharge, where the discharge time was adjusted based on the
prior capacity measurement (C/20) test—followed by a 1/2 h
rest. Then the HPPC profile consisted of a 1C CC discharge for
10 s, a 10 min rest, a 1C CC discharge for 10 s—followed by
a 10 min rest. The above steps were repeated until the end of
3

discharge 3.0 V was reached.
3. The C-rate dependency test consists of charging the cell at dif-
ferent rates for characterizing the rate capabilities of the cell.
Before each charge, the cell was fully discharged to 3.0 V by a
C/3 discharge current until reaching 3.0 V, followed by a CV
phase at 3.0 V until (|𝐼| < 𝐶∕50). Then the cell was charged
using CC (C/10, C/5, C/2, and 1C) until 4.2 V. The voltage and
expansion response are measured at various C-rates, as shown
in Fig. 2(b). Then, the various differential signals are processed
using filtering and a number of features are extracted as shown
in Fig. 2(c).

ata filtering. The differential signals are processed using the Savitsky–
olay (SG) filtering technique [22]. In this filtering method, a poly-

nomial is fitted to a moving frame of the data. Selecting a suitable
polynomial order and data frame length depends on the noise levels
and the number of available data points. Generally, lower-order poly-
nomials and larger data frames lead to more filtering. In this work, the
polynomial order of three is selected. The data acquisition frequency
is fixed at 0.1 Hz. This means that charging at higher C-rates results
in a fewer number of data points. It was discovered that a fixed SOC
window for data frame size leads to more consistent filtering compared
to a fixed number of data points. Therefore, for different C-rates, the
frame length is always set to the number of data points equivalent to a
5% SOC window.

Initial SOC sensitivity test. A C/3 discharge to 5% SOC, followed by a
1 h rest. Then a charge with C/10 CC until 4.2 V, followed by a CV
phase at 4.2 V until (𝐼 < 𝐶∕50) and 1 h rest. The previous steps are
repeated for a discharge to 20% and 40% SOC. The test is done again
for the C/5, C/2, and 1C for the charge current. This test is done at the
end of the cycling test.

2.2. Data and code availability

The datasets presented in this study are available at https://doi.org/

10.7302/7tw1-kc35.

https://doi.org/10.7302/7tw1-kc35
https://doi.org/10.7302/7tw1-kc35
https://doi.org/10.7302/7tw1-kc35


Journal of Power Sources 518 (2022) 230714P. Mohtat et al.

T
o
2
f
C
i
m
t

Fig. 2. (a) The testing procedure. The reference performance tests (RPTs) are done at approximately every 5% loss in capacity. The RPTs consist of a C/20 charge and discharge
capacity measurement, the hybrid pulse power characterization (HPPC) test for measuring the resistance at various SOC states, and the c-rated dependency test of charging at
various C-rates (C/10, C/5, C/2, 1C) from the discharged state. (b) A typical voltage and expansion measurement at C/10. (c) The incremental capacity (IC), differential expansion
(DE), and voltage (DV) signals are extracted and filtered using the charging data. This processes is repeated for other C-rates of C/5, C/2, and 1C.
3. Results and discussion

3.1. Capacity fade

The capacity evolution of all the aging conditions is shown in Fig. 3.
he aging conditions are also denoted in Fig. 3. The conditions consist
f symmetrical and unsymmetrical cycling with C-rates from C/5 to
C, room @25 ◦C, cold @ − 5 ◦C, hot @45 ◦C temperatures, and a
ull and 50% depth of discharge. The capacity fade measured using the
/20 RPT and the capacity fade measured during cycling are shown
n Fig. 3(a) and (b), respectively. In this paper, the C/20 capacity
easurement at 25 ◦C is used to quantify the maximum capacity of
he cell and this capacity is referred to as the thermodynamic capacity
of the cell. The thermodynamic capacity fade is primarily caused by
LLI and LAM at each electrode [15]. On the other hand, the capacity
measured during each cell’s specific cycling conditions is affected by
the C-rate via the resistive drop, diffusion limitations, and other effects
such as cell temperature beyond the loss of active material (LAM) and
loss of Lithium Inventory (LLI). We refer to this capacity as the apparent
capacity of the cell because it is the observed (apparent) capacity which
is the combined result of multiple phenomena. The low charging rate
of C/20 minimizes the impact of resistance on the measured capacity.
As a result, the C/20 capacity fade shown in Fig. 3(a) is denoted as the
thermodynamic capacity fade, which is caused by the aging modes

Fig. 3(b) shows the apparent discharge capacity, which is measured
at the C-rate and temperature that the cells were cycling. Therefore,
depending on the C-rate, the resistance growth can also reduce the mea-
sured apparent capacity when the minimum voltage is reached sooner
due to a larger ohmic voltage drop. The apparent capacity can be a
more relevant measure of capacity in field applications, nevertheless, it
can be easily inferred after estimating the thermodynamic capacity by
measuring the resistance. The measurement of resistance is relatively
easy and fast since, for example, it can be done with simple pulse charge
techniques. In terms of capacity estimation, in this paper, the objec-
tive is the estimation of the thermodynamic capacity. Measurement
of the thermodynamic capacity requires prolonged experiments that
often can take days to finish. Moreover, the periodic thermodynamic
capacity RPT disrupts the cycling aging and can have unintended
consequences on the aging process, such as capacity recovery [23,24],
which complicates the translation of lab data to the real-world aging
4

scenarios. Therefore, methods that can estimate the thermodynamic
capacity during cycling and accelerated conditions such as high C-rates
are more difficult to obtain and the focus of our effort.

3.2. Expansion differential

The differential analysis is utilized in order to identify the promi-
nent features in the expansion. The second differential of expansion
(DE) with respect to charge displays distinct features such as local max-
imums and minimums. These features are the product of the various
stages of phase transitions in the graphite anode [17]. The differential
of voltage (DV) with respect to charge also exhibits similar features,
and the connections of the DV and DE features to the graphite phase
transitions have been reported previously [14,16]. The distinct features
in the DV signal such as voltage level at the peaks and also features in
the incremental capacity (IC), which is the inverse of DV, have been
utilized in capacity estimation methods [6,9]. These features are often
quantified using a fixed constant current during charge or discharge.
This paper systematically compares the expansion and voltage features
measured at various constant charge currents. Also, the impact of
partial charging is quantified by varying the initial SOC during charging
tests. In the following, the various signals based on differential analysis
of the voltage and expansion measurements are introduced, and the
features of interest are described.

Fig. 4(b) shows a measurement of the voltage and expansion during
charging at C/10. In this case, the measurements are from cell 01
at the fresh state. The differential expansion (DE) is defined as the
second derivative of the expansion, 𝛿, with respect to the amount of
input-charge, 𝑄. The DE signal is plotted in Fig. 4(a). The differential
voltage (DV) is defined as the derivative of the voltage, 𝑉 , with respect
to the amount of input-charge, 𝑄. The DV signal is also plotted in
Fig. 4(a). Notably, in the DE and DV signals a peak is observable at the
same location near 60% SOC, 3.8 V, verifying that these features are
fundamentally pointing towards the same graphite phase transitions.
Lastly, the incremental capacity (IC) is defined as the derivative of the
amount of input-charge, 𝑄, with respect to voltage, 𝑉 (i.e., the inverse
of the DV). The IC signal is plotted in Fig. 4(c). The peaks in the IC
signal correspond to the local minimums in the DV signal. Here, the
signals are plotted on the 𝑥-axis, and the voltage is plotted on the 𝑦-axis.
This is to aid in illustrating the location of the features in the voltage

curve and their corresponding SOC values.
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Fig. 3. (a) The thermodynamic capacity measured during the periodic C/20 tests at 25 ◦C, which is computed by averaging the charge and discharge capacities. The C/20 capacity
is plotted for all the aging conditions versus Ah throughput. (b) The apparent discharge capacity measured during cycling. The apparent capacity is only available for the cell
with a full DOD, namely cells 1–12.
Fig. 4. (a) The differential voltage and expansion. (b) The voltage and expansion during charging at C/10. (c) The incremental capacity. The selected feature in differential voltage
(DV) is the voltage at the peak observed about the 60% SOC. The selected feature in differential expansion (DE) is the voltage at the zero cross over point observed about the
45% SOC. The selected features in incremental capacity (IC) are the voltage and the height of the peak observed about the 25% SOC.
As can be seen from Fig. 4(a) and (c), several distinct features can
be used for each of the signals. For example, the measured voltage
at any of the peaks or their height. Nevertheless, the most important
criteria for selecting a feature is its correlation factor with capacity
fade. In other words, the feature should maintain a strong correlation
with capacity retention that is invariant to the cycling conditions.
Furthermore, the feature needs to be insensitive to the initial SOC at the
start of charging, and the correlation should remain strong at various
C-rates. It is also desirable that the feature appears at SOC ranges that
most electric or hybrid vehicles usually operate in, meaning the feature
should not occur at a high depth of discharge (SOC < 20%). These
conditions are essential for the relevance of the capacity estimation
method for real-world applications.

Several prominent features are selected, which are marked in
Fig. 4(a) and (c). For the IC signal, the measured voltage, 𝑉𝐼𝐶 , at
the peak occurring about 25% SOC and its height, 𝐻𝐼𝐶 are selected.
For the DE signal, the measured voltage, 𝑉𝐷𝐸𝑝, at the peak, occurring
about 60% SOC and the zero crossover point (𝑑2𝛿∕𝑑𝑄2 = 0), 𝑉𝐷𝐸𝑧,
occurring about 45% SOC are selected. A second zero-crossing point is
also available at a higher SOC and voltage in Fig. 4(a), however, this
point is not consistently detectable at various C-rate and aged states.
On the other hand, the selected zero-crossing point (close to 45% SOC)
is well observable even at the most aged states, and corresponds to the
center of the middle plateau in the graphite potential. For the DV signal,
5

the measured voltage, 𝑉𝐷𝑉 , at the peak, occurring about 60% SOC is
selected. The summary of all the signals and features are shown in
Table 3. In the following sections, the correlation of these features with
capacity and their sensitivity to the charge conditions are presented.

3.3. Evolution of the differential signals at different C-rates

As an example, the evolution of the DE, DV, and IC signals of cell
04 (1.5C/1.5C @25 ◦C) during aging is shown in Fig. 5(a), (b), and (c),
respectively. For each signal, the evolution is shown for the C/10, C/5,
C/2, and 1C. The lines in Fig. 5 are colored from green to red for fresh
to aged. Note that in Fig. 5(b) the height of the DV peak diminishes
considerably at 1C, which makes detection of this peak infeasible. The
diminishing height of the DV peak with increased C-rate is a well
understood phenomenon [14] and has been attributed and reproduced
with electrochemical models that capture the non-uniform charging of
the graphite across electrodes [16]. It is also observable that all signals
are shifting to higher voltages with aging. This change is about 60 mV
for the C/10 rate and about 100 mV for the 1C rate at the maximum.
The resistance increase is partially responsible for this change.

The direct current resistance (DCR) is calculated using the HPPC
data. Dividing the voltage drop after 1 s after each discharge and charge
pulse by the current magnitude of 1C (5 A) gives the resistance values
in discharge and charge direction. The discharge and charge resistances
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Table 3
The summary of the different features and signals.
Signal Feature Definition

DE (𝑑2𝛿∕𝑑𝑄2) 𝑉𝐷𝐸𝑧 The measured voltage at the zero-crossing point about the 45% SOC
𝑉𝐷𝐸𝑝 The measured voltage at the local maximum about the 60% SOC

DV (𝑑𝑉 ∕𝑑𝑄) 𝑉𝐷𝑉 The measured voltage at the local maximum about the 60% SOC

IC (𝑑𝑄∕𝑑𝑉 ) 𝑉𝐼𝐶 The measured voltage at the local maximum about the 25% SOC
𝐻𝐼𝐶 The magnitude of the IC signal at the local maximum about the 25% SOC, i.e. 𝑉𝐼𝐶 peak height
Fig. 5. (a) The evolution of the differential expansion (DE), (b) the differential voltage (DV), and (c) the incremental capacity (IC) signals for the cell 04 (1.5C/1.5C @25 ◦C) at
arious C-rates during aging. Note that the peak in DV is unobservable at 1C. The lines are color coded from green (fresh) to red (most aged). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
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re calculated at 10% SOC intervals and averaged to estimate the
CR. For reporting the resistance increase during aging, the average
alue of the DCRs over the whole SOC range is used. Fig. S2(a) shows
he average DCR increases for all the aging conditions. The resistance
ncrease is faster for the cells cycled at the hot temperature. The
esistance increase varies significantly with the aging conditions and
he operating temperature. On average, the resistance was increased
y 100% at the end of cycling (70% capacity retention), going from 8
𝛺 to 16 mΩ.
A resistance increase of about 8 mΩ translates to a 4 mV and 40 mV

hift for all signals (DE, DV, and IC) due to resistance increase at C/10
nd 1C, respectively, in Fig. 5. Therefore, at low C-rates, the impact of
he resistance increase is much lower on the voltage shift, and in fact,
he majority of the voltage shift is due to the underlying degradation of
ndividual electrodes. It is also worth noting that in the experimental
C signals of Fig. 5(c), the height of the peak in the IC signal decreases
ith aging. This is expected as the area under the IC curve is equal
o charge capacity. Therefore, overall the IC curve magnitude should
ecrease with aging.
6

.4. Sensitivity of the differential signals during charging to different initial
OCs

The goal here is to assess the sensitivity of the signals (and their
eatures) to the initial SOC of the charge. As in practice, the charging
rocess can start from different initial SOCs. The test was performed
fter the termination of the cycling experiment with the cell at ap-
roximately 70% capacity retention (see Section 2 for detailed steps).
he experiment was done with respect to three different initial SOC of
%, 20%, and 40%, and was repeated with various C-rates. The results
f this experiment for cell 04 are presented in Fig. 6. The DE, DV,
nd IC signals at various C-rates are shown in Fig. 6(a), (b), and (c),
respectively. For the DE signal, the zero crossover point is detectable
with 5% and 20% initial SOC. The voltage values of this feature, 𝑉𝐷𝐸𝑧,
are presented in Table S1 with the maximum error of 5 mV observed
at 1C. However, large deviations are observable for the location, 𝑉𝐷𝐸𝑝,
and height of the DE peak.

In Fig. 6(b), for the DV signal the peak is detectable with 5%, 20%,
nd 40% initial SOC. Similar to the results of Fig. 5(b), which has a

charge starting from a full depth of the discharge, the peak is still not
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Fig. 6. The data shown is taken at the end of life near 67% capacity retention. (a) The charge response of the DE, (b) DV, and (c) IC signals with respect to the initial SOC at
various C-rates. The signals are plotted for the 5%, 20%, and 40% initial SOC. Note that the height of the peaks in DE, DV, and IC curve varies greatly depending on the initial
SOC. The location of the peak in the DV and IC signals is consistence regardless of the initial SOC. Moreover, the zero crossover point of the DE signal also remains unchanged
by the initial SOC.
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observable at 1C. The voltage values of the peak, 𝑉𝐷𝑉 , at lower C-rates
are available in Table S2 with a maximum error of 5 mV observed at
C/2. Nevertheless, similar to the DE peak, a large variation of the peak
height is observed depending on the initial SOC. The peak in IC signal
in Fig. 6(c) is detectable with 5% and 20% initial SOC. The voltage
values, 𝑉𝐼𝐶 , of the peak, are presented in Table S3 with the maximum
error of 2 mV observed at 1C. Here as well, the height of the peak, 𝐻𝐼𝐶 ,
changes with respect to the initial SOC.

3.5. Correlations between differential signal features and capacity

As noted in Fig. 4 the primary features selected in this study are the
voltage at the peak of the DV and IC signals and zero crossover voltage
of the DE signal. Other potential features are the height of the peaks
in the DV and IC signals. However, as discussed earlier, the heights of
these peaks are sensitive to the initial SOC, and therefore not suitable
for robust capacity estimation. The features that appear only below
20% SOC were also not considered since to observe these features, a
high depth of discharge is required. Additionally, the peak in the DE
signal was also not robust with respect to the initial SOC. It should be
mentioned that the evolution of the IC peak height and the voltage of
the DE peak also shows a good degree of correlation with the capacity
(see Fig. S3). However, due to the sensitivity of these features to the
initial SOC, these features are not considered for the development of
capacity estimation methods.

Fig. 7 shows the evolution of the selected features during aging for
all the aging conditions. All three features have a good correlation with
capacity. Similar to Fig. 3(a), the capacity in Fig. 7 is measured during
the C/20 diagnostic test. Based on these results, each of the features are
7

a good candidate for a capacity estimation method. Comparing the DV
feature in Fig. 7(b) with the other two features, it is evident that there
is larger distribution in the evolution of this feature among the aging
conditions. In order to compare the accuracy of estimating capacity
using the identified expansion and voltage features, linear regression
models are fitted to the data.

From the results in Fig. 7, it is clear that the selected features
ave a strong correlation with the capacity that is highly indepen-
ent of the vast array of aging conditions tested in this study. Thus,
hese features are great candidates for developing capacity estimation
ethods based on simple linear regression models. Furthermore, it is
ossible to combine these features to develop more robust capacity
stimation methods. Therefore, various combinations of the features are
lso considered. In order to assess the goodness of the linear regression
odels, the root mean square error (RMSE) of the fits are compared.
he RMSE is normalized by the nominal capacity of 5 Ah and is akin
o an absolute error in estimating SOH. The linear regression models
re fitted using all the data at each C-rate independently. The detailed
esults of the fitting for the C/5 and 1C are shown in Table 4. The DCR
ata is also used as a feature to develop a linear regression model and
he results are reported in Table 4.
In terms of single features, the expansion feature, 𝑉𝐷𝐸𝑧, at 1C has

the lowest absolute error of 1.9% for capacity estimation. Additionally,
this feature remains observable up to 1C and occurs at about 50% SOC.
At C/5, the combination of the 𝑉𝐷𝐸𝑧 with 𝑉𝐼𝐶 , improves the accuracy
of the capacity estimation method considerably. As can be seen from
the results in Table 4 the combination of all the features has the best
correlation with the capacity. However, as noted previously, the DV
feature is not observable at 1C. Therefore, capacity estimation models
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Fig. 7. (a) The evolution of the DE feature, 𝑉𝐷𝐸𝑧, (b) the DV feature, 𝑉𝐷𝑉 , and (c) the IC feature, 𝑉𝐼𝐶 , for all the aging conditions. The evolution of the features are plotted for
different C-rates. At 1C the DV feature was not detectable, therefore, this C-rate is not included in the plot. The data is color coded such that the red, blue, and green colors
correspond to the aging condition at hot, cold, and room temperatures, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Table 4
RMSE values of the linear regression fit using different feature sets for all the
conditions.
Features RMSE/𝑄𝑛𝑜𝑚 [%] Required SOC range

C/5 1C

𝑉𝐷𝑉 3.57 – 55%–65%
𝑉𝐷𝐸𝑧 2.68 1.94 40%–50%
𝑉𝐼𝐶 2.36 2.21 20%–30%
𝑉𝐷𝑉 , 𝑉𝐼𝐶 2.28 – 20%–65%
𝑉𝐼𝐶 , 𝑉𝐷𝐸𝑧 2.26 1.95 20%–50%
𝑉𝐷𝑉 , 𝑉𝐷𝐸𝑧 2.54 – 40%–65%
𝑉𝐷𝑉 , 𝑉𝐼𝐶 , 𝑉𝐷𝐸𝑧 2.22 – 20%–65%

DCR 4.17 –

with the DV features are only possible if the charging C-rates are below
C/2. The required SOC range is also essential for the applicability of
the estimation method for fast characterization. Methods that require
shorter SOC ranges, rely on features from the middle of the entire SOC
range, and are applicable at 1C are more desirable. In this sense, the
expansion feature, 𝑉𝐷𝐸𝑧, fulfills all the aforementioned requirements.

As evident from the results of Table 4, capacity estimation using
DCR has a large error since the evolution of average DCR is strongly
dependent on the cycling conditions. The correlation of average DCR
and capacity is shown in Fig. S2(b). On the other hand, measurement
of the resistance can effectively be done at any SOC by applying
8

a prescribed short-duration charge or discharge pulse. Nevertheless, l
particular attention to the effects of aging conditions is needed if one
wants to utilize DCR reliably for capacity estimation.

Finally, it should be noted that in order to develop capacity esti-
mation methods for cells with different chemistry or construction, it is
necessary to collect the aging data. However, as demonstrated in this
study, the correlation of the voltage and expansion features in Table 4
ith capacity is largely independent of the aging conditions. Therefore,
he data collection can be done using an accelerated aging condition
ike the (2C/2C) at hot temperature to significantly reduce testing time.

.6. Origins of the differential signal shift from the mechanistic model
erspective

As mentioned earlier, the capacity fade is due to the LLI and LAM.
ften the capacity fade is significantly more at the negative electrode
ompared to the positive electrode. This is because the LLI is mainly
ue to side reactions of SEI growth and lithium plating at the negative
lectrode (graphite). Furthermore, the LAM can occur with particle
racking, separation, and isolation [15]. Particle cracking exposes fresh
urface area to the electrolyte, which creates newly formed SEI layers.
herefore, the main reason for the increase in SEI growth is due to
he increase in particle cracking [25]. Graphite is considered a brittle
aterial, which means that the increase and decrease of the internal
tresses during cycling can lead to the growth of cracks, fatigue failure,
nd ultimately material separation. High charge–discharge rates lead to
arge stress gradients in the particles, which propagates the micro-crack
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Fig. 8. (a) Mechanistic model of the changes to the OCV during aging. Notice the shift of the operating window of the positive electrode to higher potentials. (b) The DV, DE,
and IC signals of the fresh and aged states. The aged signals are moved to a higher voltages.
formations. The temperature rise is also more significant at high C-rate
than low C-rate conditions, which induces more SEI growth.

The LLI and LAM over the lifetime of the battery alter the open
circuit voltage (OCV). The measured OCV is equal to the potential
difference of the positive (𝑈𝑝) and negative (𝑈𝑛) electrodes. The specific
shape of the OCV curve is a function of the operating stoichiometric
window and the relative capacity of the electrodes, which evolves
during aging depending on the amount of LLI and LAM. Fig. 8(a) shows
a simulation of the OCV change during aging due to LLI and LAM. For
this simulation study, the modeling methodology of Ref. [17] is uti-
lized. Furthermore, the potential functions of the negative and positive
electrodes are taken from Ref. [16]. In this simulation scenario, the
LAM at the negative electrode is 11%, the LAM at the positive electrode
is 5%, and the LLI is 9%, resulting in 10% capacity fade. The LAM at the
negative electrode and LLI caused a shift of the stoichiometric window
of the positive electrode (𝑦0) to higher potentials. As a result, as shown
in Fig. 8(b), the DV, DE, and IC signals are moved to a higher voltage
at the aged state. Therefore, in essence, the shift in the DV, IC, and
DE signals to higher voltages is caused by the underlying degradation
of individual electrodes during aging. Hence, the strong correlation of
the features in the Table 4 with capacity fade is contributed to the
interplay of the different degradation modes under the wide range of
aging conditions.

4. Conclusion

In this paper, aging experiments were carried out, and the cell
voltage and mechanical response were recorded under a variety of
aging conditions such as C-rate and temperature. To develop a ca-
pacity estimation method based on voltage and expansion, the charge
response of the cell was recorded periodically with different C-rates.
It was demonstrated that with the expansion the diagnostics can be
performed with a reduced SOC range, which speeds up the charac-
terization considerably. The features in the DV, IC, and DE signals
and their evolution with capacity fade were presented. Based on the
results of sensitivity of the feature with respect to the initial SOC, a
number of features were selected for developing capacity estimation
9

methods. Different linear regression models were fitted to the data by
considering all the combinations of the features. It was discovered that
utilizing the IC and DE features results in the best method for capacity
estimation in terms of accuracy. Furthermore, the expansion feature
occurs in the middle of the SOC range, which makes it more useful
for in-the-field applications as well. There are still several challenges
that need to be addressed in future work. The sensitivity of the fea-
tures to the operating temperature was not explored in this study and
needed to be addressed. Also, the instrumentation of the batteries with
expansion sensors remains an open issue in large packs. Nevertheless,
the goal here was to demonstrate how the diagnostics can benefit by
incorporating the expansion measurements technology. Additionally,
the batteries can benefit from monitoring the expansion in other areas
such as safety [26] and pressure control for future battery technologies
that further encourages the inclusion and development of expansion
sensors in future battery packs. For example, for the next generation
anode materials with Si/C composites, the cycle life of these cells is
highly dependent on the external pressure [25], and for solid-state
batteries with lithium metal as the anode, it is necessary to account
for the changes in cell expansion during charging and discharging due
to Li plating and stripping, along with the changes during aging and
preventing accelerated aging by adjusting the applied pressure [27].
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