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Abstract

This paper is concerned with the inverse problem of determining the shape of pen-
etrable periodic scatterers from scattered field data. We propose a sampling method
with a novel indicator function for solving this inverse problem. This indicator function
is very simple to implement and robust against noise in the data. The resolution and
stability analysis of the indicator function is analyzed. Our numerical study shows that
the proposed sampling method is more stable than the factorization method and more
efficient than the direct or orthogonality sampling method in reconstructing periodic
scatterers.
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1 Introduction

In this paper we aim to numerically solve the inverse scattering problem for periodic media in
R

2. The periodic media of interest are unboundedly periodic in the horizontal direction and
bounded in the vertical direction. These periodic media are motivated by one-dimensional
photonic crystals and the inverse problem of interest is inspired by applications of nonde-
structive evaluations for photonic crystals. There have been an increasing amount of studies
on numerical methods for shape reconstruction of periodic scattering media during the past
years, see [1, 2, 4, 6, 9, 11, 15, 20, 22–25, 27, 28]. Two major approaches that were studied in
these papers are the factorization method and the near field imaging method. The latter
method, which relies on a transformed field expansion, can provide super-resolved resolution.
However, this method requires the periodic scattering structure to be a smooth periodic
function multiplied by a small surface deformation parameter. The factorization method can
essentially work for periodic scattering structures of arbitrary shape but it is not very robust
against the noise in the scattering data. This method belongs to the class of sampling or

∗Department of Mathematics, Kansas State University, Manhattan, KS 66506; (dlnguyen@ksu.edu,
stahlkj@ksu.edu, trungt@ksu.edu)

1



qualitative methods that were introduced by D. Colton and A. Kirsch [7, 17]. The factor-
ization method aims to construct a necessary and sufficient characterization of the unknown
scatterer from multi-static data. We refer to [18] for more details about the factorization
method.

In this work we develop a sampling method with a new indicator function to solve the
inverse scattering problem for periodic media. This sampling method is inspired by the or-
thogonality sampling method [26] and the direct sampling method [13]. These two sampling
methods share similar ideas and features and were studied independently. For simplicity
we will refer to them as the orthogonality sampling method. The computation of the new
indicator function is very simple and fast as one only needs to evaluate a finite double sum
involving the propagating modes of the scattered field data. Like the orthogonality sampling
method, the proposed sampling method also does not involve solving any ill-posed problems
and it is very robust against noise in the data. The resolution of the new indicator function
is studied using Green’s identities and the Rayleigh expansion of the α-quasiperiodic fields
of the scattering problem. The stability of the indicator function is also established. The
performance of the new indicator function is studied in various contexts in the numerical
study. The numerical study also shows that the proposed sampling method is more robust
than the factorization method and more efficient than the orthogonality sampling method
in reconstructing periodic scattering media. We also want to mention that although the
orthogonality sampling method has been studied for inverse scattering from bounded ob-
jects [10,12–14,16,19,26], its application to the inverse scattering problem for periodic media
is still not known.

The paper is organized as follows. The basics of the scattering from periodic media and
the inverse problem of interest are described in Section 2. The new indicator function and
its resolution and stability analysis are discussed in Section 3. Section 4 is dedicated to a
numerical study of the new indicator function and its comparison to the factorization method
and the orthogonality sampling method.

2 Problem setup

We consider a two-dimensional medium which is unboundedly 2π-periodic in x1-direction
and bounded in x2-direction. Let n be a bounded function which is 2π-periodic with respect
to x1. Suppose that the interior of the periodic medium is characterized by n and that the
exterior of the periodic medium is homogeneous which means n = 1 in these areas. Note
that the period can be any arbitrary value, but it is chosen to be 2π for the convenience of
the presentation. For α ∈ R, we define that a function f is α-quasiperiodic in x1 if

f(x1 + 2πj, x2) = ei2πjαf(x1, x2), j ∈ Z, (x1, x2)
> ∈ R

2.

From now on we will call functions with this property α-quasiperiodic functions for short.
A typical example of α-quasiperiodic functions is a plane wave (e.g. exp(ik(d1x1 + d2x2))
with d21 + d22 = 1, k > 0). Suppose that the periodic medium is illuminated by an α-
quasiperiodic incident field uin with wave number k > 0. Note that since the medium is
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unboundedly periodic in x1, we are only interested incident fields propagating downward or
upward toward the medium. The scattering of such an incident field by the periodic medium
produces the scattered field usc described by

∆usc + k2usc = −k2qu in R
2, (1)

where u := usc + uin is the total field and q is the contrast given by

q = n− 1.

We follow the usual approach in that for the well-posedness of the direct scattering problem
we look for an α-quasiperiodic scattered field usc (see [5]). Thus, the direct problem of finding
usc can be reduced to one period

Ω := (−π, π)× R.

Let D = supp(q) ∩ Ω. For h > 0 such that

h > sup
{

|x2| : (x1, x2)
> ∈ D

}

, (2)

the direct scattering problem is completed by the Rayleigh expansion condition for the scat-
tered field

usc(x) =

{

∑

j∈Z u
+
j e

iαjx1+iβj(x2−h), x2 ≥ h,
∑

j∈Z u
−
j e

iαjx1−iβj(x2+h), x2 ≤ −h,
(3)

where

αj := α + j, βj :=







√

k2 − α2
j , k2 ≥ α2

j

i
√

α2
j − k2, k2 < α2

j

, j ∈ Z,

and (u±
j )j∈Z are the (complex-valued) Rayleigh sequences of the scattered field usc. The

condition (3) means that the scattered field usc is an outgoing wave. Note that only a finite
number of terms in (3) are propagating plane waves which are called propagating modes,
the rest are evanescent modes which correspond to exponentially decaying terms. From now,
we call a function satisfying (3) a radiating function. In addition, we also assume that βj is
nonzero for all j which means the Wood anomalies are excluded in our analysis.

With the further assumption that n(x) > c almost everywhere for some positive constant
c, the scattering problem (1)–(3) is well-posed for all but a countable set of wave numbers k,
see [5]. In this paper we always assume the wave number k such that the direct problem is
well-posed. For r > 0 define

Ωr := (−π, π)× (−r, r), Γ±r := (−π, π)× {±r}.

Recall the constant h in (2). For the inverse problem of interest we measure the scattered
field usc on Γ±r for some r ≥ h. From the Rayleigh expansion of usc, knowing usc on Γ±r

is equivalent to knowing the Rayleigh coefficients (u±
j )j∈Z. Since the evanescent modes are
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associated with the exponentially decaying terms in the Rayleigh expansion (3), it is typically
difficult to obtain these modes in practice unless one can measure extremely near (e.g. within
one wavelength) the periodic scatterers. Thus, we consider only the propagating modes for
the scattering data of our inverse problem as follows.

Inverse problem. Given the Rayleigh coefficients (u±
j ) for j ∈ Z such that βj > 0,

determine D.

3 A new indicator function and its properties

It is well-known that the α-quasiperiodic Green function of the direct problem is given by

Gk,α(x, y) =
i

4π

∑

j∈Z

1

βj

eiαj(x1−y1)+iβj |x2−y2|, x, y ∈ Ω, x2 6= y2. (4)

We refer to [3] for a derivation and more details on the α-quasiperiodic Green function of the
direct problem. We also refer to [8] for the fact that the direct problem is equivalent to the
Lippmann-Schwinger equation

usc(x) = k2

∫

D

Gk,α(x, y)q(y)u(y) dy. (5)

Let N be the number of incident fields we use for the inverse problem. The incident fields
can be either point sources Gα,k(·, yl) or plane waves exp(iαlx1 + iβlx2) for l = 1, 2, . . . , N .
Let u±

j (l) be the Rayleigh coefficients of the scattered field usc(·, l) generated by incident field
uin(·, l) for l = 1, 2, . . . , N . For p ∈ N, z ∈ Ω, define the following indicator function

I(z) :=
N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
j (l)g

+
j (z) + u−

j (l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

p

, (6)

where

g±j (z) =
i

4πβj

e−iαjz1∓iβj(z2∓h).

This indicator function I(z) aims to determine D in Ω and z plays the role of sampling points.
We note that g±j (z) are also the Rayleigh coefficients of the α-quasiperiodic Green function.
In the proof of following theorem we will drop the dependence of u±

j on l for the convenience
of the presentation but we keep l in the total field u(y, l) that is generated by incident field
uin(y, l). We analyze the behavior of I(z) in the following theorem.

Theorem 1. The indicator function satisfies

I(z) =

(

k2

8π

)p N
∑

l=1

∣

∣

∣

∣

∫

D

[J0(k|z − y|) + wα(z, y)] q(y)u(y, l)dy

∣

∣

∣

∣

p

where J0 is the Bessel function of the first kind, and

wα(z, y) :=
∑

j∈Z\{0}

e−i2πjαJ0

(

k
√

(z1 − y1 + 2jπ)2 + (z2 − y2)2
)

. (7)
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Remark 2. The series in (7) converges due to the decay of

J0(k
√

(z1 − y1 + 2jπ)2 + (z2 − y2)2). We numerically observe that the kernel function

J0(k|z − y|) + wα(z, y) peaks at z = y and is relatively small as y and z are away from each

other, see Figure 1 for an example. Thus we expect from the theorem that I(z) has small

values as z is outside D and has much larger values as z is inside D.

(a) J0(k|x− y|) (b) |J0(k|x− y|) + w0(x, y)| (c) |J0(k|x− y|) + wπ/3(x, y)|

(d) J0(k|x− y|) (e) |J0(k|x− y|) + w0(x, y)| (f) |J0(k|x− y|) + wπ/3(x, y)|

Figure 1: Functions J0(k|x−y|) and |J0(k|x−y|)+wα(x, y)| for x ∈ (−π, π)× (−3, 3), y = 0,
k = 2π (first row) and k = 4π (second row).

Proof. For xs ∈ Ωh, Gk,α(x, xs) solves

∆Gk,α(x, xs) + k2Gk,α(x, xs) = −δ(x− xs), x ∈ Ωh.

For xt ∈ Ωh, multiplying both sides by Gk,α(x, xt) and integrating over Ωh gives
∫

Ωh

(∆Gk,α(x, xs) + k2Gk,α(x, xs))Gk,α(x, xt) dx = −Gk,α(xs, xt). (8)

Similarly, Gk,α(x, xt) solves

∆Gk,α(x, xt) + k2Gk,α(x, xt) = −δ(x− xt), x ∈ Ωh,

thus by multiplying both sides by Gk,α(x, xs) and integrating over Ωh we obtain
∫

Ωh

(∆Gk,α(x, xt) + k2Gk,α(x, xt))Gk,α(x, xs) dx = −Gk,α(xt, xs). (9)
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Subtracting (9) from (8) yields

Gk,α(xt, xs)−Gk,α(xs, xt) =

∫

Ωh

∆Gk,α(x, xs)Gk,α(x, xt)−∆Gk,α(x, xt)Gk,α(x, xs) dx

=

∫

∂Ωh

Gk,α(x, xt)
∂Gk,α(x, xs)

∂ν
−Gk,α(x, xs)

∂Gk,α(x, xt)

∂ν
ds(x),

where ν is an unit normal outward vector to ∂Ωh. Thanks to the α-quasiperiodicity of Gk,α

we have that

∫

{±π}×(−h,h)

Gk,α(x, xt)
∂Gk,α(x, xs)

∂ν
−Gk,α(x, xs)

∂Gk,α(x, xt)

∂ν
ds(x) = 0.

Therefore

Gk,α(xt, xs)−Gk,α(xs, xt) =

∫

Γh∪Γ−h

Gk,α(x, xt)
∂Gk,α(x, xs)

∂ν
−Gk,α(x, xs)

∂Gk,α(x, xt)

∂ν
ds(x).

(10)
Define

F (x, y) :=
Gk,α(x, y)−Gk,α(y, x)

2i
, x, y ∈ Ωh,

then the left-hand side of (10) equals 2iF (xt, xs). Now we calculate the right-hand side.
Since Gk,α satisfies the radiation condition, for a fixed y ∈ Ωh,

Gk,α(x, y) =
∑

j∈Z

g±j (y)e
iαjx1 , x ∈ Γ±h (11)

and
∂Gk,α(x, y)

∂ν
=
∑

j∈Z

iβjg
±
j (y)e

iαjx1 , x ∈ Γ±h.

Therefore
∫

Γ±h

Gk,α(x, xt)
∂Gk,α(x, xs)

∂ν
ds(x) =

∫ π

−π

∑

j1,j2∈Z

iβj2g
±
j1
(xt)g

±
j2
(xs)e

i(αj2
−αj1

)x1 dx1

=
∑

j1,j2∈Z

iβj2g
±
j1
(xt)g

±
j2
(xs)

∫ π

−π

ei(j2−j1)x1 dx1,

and since
∫ π

−π

ei(j2−j1)x1 dx1 =

{

2π, j1 = j2

0, j1 6= j2

we have
∫

Γh∪Γ−h

Gk,α(x, xt)
∂Gk,α(x, xs)

∂ν
ds(x) = 2πi

∑

j∈Z

βj

(

g+j (xt)g
+
j (xs) + g−j (xt)g

−
j (xs)

)

. (12)
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Similarly
∫

Γh∪Γ−h

Gk,α(x, xs)
∂Gk,α(x, xt)

∂ν
ds(x) = −2πi

∑

j∈Z

βj

(

g+j (xt)g
+
j (xs) + g−j (xt)g

−
j (xs)

)

. (13)

Combining (12) and (13) yields

Gk,α(xt, xs)−Gk,α(xs, xt) = 2πi
∑

j∈Z

(βj + βj)
(

g+j (xt)g
+
j (xs) + g−j (xt)g

−
j (xs)

)

,

that is

F (xt, xs) = 2π
∑

j∈Z

Re βj

(

g+j (xt)g
+
j (xs) + g−j (xt)g

−
j (xs)

)

. (14)

From the Rayleigh expansion (3) we have that

u±
j =

1

2π

∫

Γ±h

usc(x)e
−iαjx1ds(x).

Thus, for j ∈ Z, substituting (5) into the integral above gives

u±
j =

1

2π

∫

Γ±h

(

k2

∫

D

Gk,α(x, y)q(y)u(y) dy

)

e−iαjx1 ds(x)

= k2

∫

D

(

1

2π

∫

Γ±

Gk,α(x, y)e
−iαjx1 ds(x)

)

q(y)u(y) dy = k2

∫

D

g±j (y)q(y)u(y) dy.

For z ∈ Ω, using the Rayleigh coefficients of u±
j above and (14) we obtain

2π
∑

j∈Z

Re βj

(

u+
j g

+
j (z) + u−

j g
−
j (z)

)

= k2

∫

D

2π
∑

j∈Z

Re βj

(

g+j (y)g
+
j (z) + g−j (y)g

−
j (z)

)

q(y)u(y) dy

= k2

∫

D

F (z, y)q(y)u(y) dy. (15)

Now, using the following representation of the α-quasiperiodic Green function

Gk,α(z, y) =
i

4

∑

j∈Z

e−i2πjαH
(1)
0

(

k
√

(z1 − y1 + 2jπ)2 + (z2 − y2)2
)

where the series converges for (y1 − z1, y2 − z2) 6= (2jπ, 0), j ∈ Z, we have

F (z, y) =
1

8

∑

j∈Z

e−i2πjαH
(1)
0

(

k
√

(z1 − y1 + 2jπ)2 + (z2 − y2)2
)

+
1

8

∑

j∈Z

ei2πjαH
(1)
0

(

k
√

(y1 − z1 + 2jπ)2 + (y2 − z2)2
)

=
1

4

∑

j∈Z

e−i2πjαJ0

(

k
√

(z1 − y1 + 2jπ)2 + (z2 − y2)2
)

.
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Also from the definition of I(z) in (6) and the equation (15) we obtain

I(z) =
N
∑

l=1

∣

∣

∣

∣

k2

2π

∫

D

F (z, y)q(y)u(y) dy

∣

∣

∣

∣

p

.

Substituting the representation of F (z, y) above we complete the proof of the theorem.

In the next theorem we will establish a stability estimate for the indicator function.
Assume usc(·, l) ∈ L2(Γr ∪ Γ−r) for all l = 1, . . . , N .

Theorem 3. For δ > 0, denote by usc,δ and
(

u±
δ,j

)

j∈Z
the noisy scattered wave and its Rayleigh

sequences respectively, for which we have

N
∑

l=1

‖usc,δ(·, l)− usc(·, l)‖L2(Γr∪Γ−r) ≤ δ.

Define

Iδ(z) :=
N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
δ,j(l)g

+
j (z) + u−

δ,j(l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

p

.

Then the following stability property holds

|Iδ(z)− I(z)| = O(δ), as δ → 0

for every z ∈ Ω.

Proof. For l = 1, . . . , N and j ∈ Z such that βj > 0, we have

|u±
δ,j(l)− u±

j (l)| ≤
1

2π

∫

Γ±r

|uδ
sc(x, l)− usc(x, l)| ds(x),

thus, by Cauchy-Schwarz inequality,

N
∑

l=1

|u±
δ,j(l)− u±

j (l)| ≤
N
∑

l=1

‖uδ
sc(·, l)− usc(·, l)‖L2(Γr∪Γ−r) ≤ δ.

Therefore
∣

∣

∣

∣

∣

∣

N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
δ,j(l)g

+
j (z) + u−

δ,j(l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

−

N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
j (l)g

+
j (z) + u−

j (l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

N
∑

l=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
δ,j(l)g

+
j (z) + u−

δ,j(l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
j (l)g

+
j (z) + u−

j (l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

N
∑

l=1

∑

j:βj>0

βj

(
∣

∣u+
δ,j(l)− u+

j (l)
∣

∣

∣

∣g+j (z)
∣

∣+
∣

∣u−
δ,j(l)− u−

j (l)
∣

∣

∣

∣g−j (z)
∣

∣

)

≤ Cδ,
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where

C =

(

max
j:βj>0

∥

∥g+j
∥

∥

L∞(Ω)
+ max

j:βj>0

∥

∥g−j
∥

∥

L∞(Ω)

)

∑

j:βj>0

βj.

For brevity, set

al :=

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
δ,j(l)g

+
j (z) + u−

δ,j(l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

,

bl :=

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
j (l)g

+
j (z) + u−

j (l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

,

γ := max
j:βj>0
l=1,...,N

{∣

∣u+
j (l)

∣

∣ ,
∣

∣u−
j (l)

∣

∣

}

,

then we have
N
∑

l=1

|al − bl| ≤ Cδ, bl ≤ Cγ,

for all l = 1, . . . , N . Hence, for all z ∈ Ω,

|Iδ(z)− I(z)| ≤
N
∑

l=1

|apl − bpl | =
N
∑

l=1

(

|al − bl|

∣

∣

∣

∣

∣

p−1
∑

m=0

aml b
p−1−m
l

∣

∣

∣

∣

∣

)

≤

(

N
∑

l=1

|al − bl|

)(

N
∑

l=1

∣

∣

∣

∣

∣

p−1
∑

m=0

aml b
p−1−m
l

∣

∣

∣

∣

∣

)

≤ Cδ
N
∑

l=1

p−1
∑

m=0

(|al − bl|+ bl)
mbp−1−m

l

≤ Cδ
N
∑

l=1

p−1
∑

m=0

2m(|al − bl|
m + bml )b

p−1−m
l

≤ Cδ

p−1
∑

m=0

N
∑

l=1

2m(|al − bl|
m + γm)γp−1−m

≤ Cδ

p−1
∑

m=0

2m
(

Cmδmγp−1−m +Nγp−1
)

= O(δ), as δ → 0.

This completes the proof.

4 Numerical study

In this section, we test the performance of the proposed sampling method with respect to
the number of incident sources, the levels of noise in the data, the wave numbers, the values
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of parameter α (in (3)) and exponent p, and the shape of the periodic scatterers. For the
latter category we compare the performance of the proposed sampling method with those of
the factorization method and the orthogonality sampling method.

In all of the numerical examples below we choose the following parameters:

sampling domain = (−π, π)× (−1, 1), h = 1,

measurement boundary Γ±2 = (−π, π)× {±2},

location of incident sources Γ±3 = (−π, π)× {±3}.

In our numerical study we observed that any reasonable choices of these parameters do not
affect much the performance of the method. The sampling domain is uniformly discretized
in each dimension with 128 × 96 sampling points. The boundary measurements Γ±2 are
discretized uniformly with 64 points on each boundary. By using N incident sources we
mean to consider

uin(x, l) = Gk,α(x, yl), x ∈ Ω, yl ∈ Γ±3, l = 1, . . . , N,

where N/2 sources are uniformly located on Γ+3 and N/2 sources are uniformly located on
Γ−3. For a source Gk,α(x, y) located on Γ+3, we can see for y2 < 3 that Gk,α(x, y) is a series of
downward propagating plane waves and exponentially decaying evanescent waves. Similarly,
for a source located on Γ−3, Gk,α(x, y) is a series of upward propagating plane waves and
and exponentially decaying evanescent waves for y > −3. Figure 2 presents the real and
imaginary parts of a source on Γ3.

Figure 2: The real (left) and imaginary (right) parts of the source Gk,α(x, y) with y = (0, 3)T ,
x ∈ (−π, π)× (−4, 4), k = 2π, α = 0.

We generate the synthetic scattering data by solving the direct problem with the spectral
Galerkin method studied in [21]. The entries of the artificial noise matrix are of the form
a + ib where real scalars a, b ∈ (−1, 1) are generated randomly with a uniform distribution.
With the artificial noise added to the synthetic scattering data we implement the indicator
function

Iδ(z) =
N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j:βj>0

βj

(

u+
δ,j(l)g

+
j (z) + u−

δ,j(l)g
−
j (z)

)

∣

∣

∣

∣

∣

∣

p

.
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To compare with the orthogonality sampling method we implement following indicator
function

IOSM(z) =
N
∑

l=1

∣

∣

∣

∣

∫

Γ+2∪Γ−2

usc,δ(x)Gk,α(x, z)ds(x)

∣

∣

∣

∣

p

.

This indicator function of the orthogonality sampling method can be rewritten in the modal
form by using the Rayleigh expansion of the scattered field. In this modal form the evanescent
modes or the exponentially decaying terms can be neglected and there remains only a finite
number of the propagating modes. If we drop βj in Iδ(z), we will approximately obtain the
modal form of IOSM(z). We refer to [22] for the indicator function of the factorization method
implemented for the test in this section.

4.1 Reconstruction with one incident source (Figure 3)

In this section we test the performance of the sampling method for data generated by only
one incident source. Here the parameters are chosen as α = 0, wave number k = 2π,
and exponent p = 4. We add 20% artificial noise to the scattered field data (δ = 20%).
From Figure 3 we can see that the method is able to reconstruct small scatterers quite
well. This capability is an advantage over classical sampling methods (e.g. linear sampling
method, factorization method) in terms of computational efficiency since classical methods
are only able to reconstruct targets with data generated by multiple incident fields. However,
the proposed sampling method fails to reconstruct scatterers with extended shape, which
is reasonable since only one incident source and one wave number are used for the data.
We refer to Figure 4 for improved results when multiple incident sources are used for the
reconstruction.

4.2 Reconstruction with multiple incident sources (Figure 4)

In this section we test the performance of the method for reconstructing extended scatterers
with different number of incident sources. The parameters are the same as in Figure 3,
meaning α = 0, wave number k = 2π, exponent p = 4, and 20% artificial noise is added to
the scattered field data. If in Figure 3 the method fails to reconstruct extended ellipses with
one incident source, the reconstructions are improved with more sources, see Figure 4. The
reconstructions already look reasonable with 32 incident sources and continue to improve
when more sources are used. The results remain almost the same even if more than 128
incident sources are used to generate the scattering data.

4.3 Reconstruction with different levels of noise in the data (Fig-
ure 5)

In this section we test the performance of the method for reconstructing extended scatterers
with different levels of artificial noise in the data (10%, 20% and 40%). Here the parameters
are chosen as α = 0, wave number k = 2π, exponent p = 4, and 128 incident sources are
used to generate the scattering data. It can be seen from Figure 5 that all reconstructions

11



(a) True geometry in (−2π, 2π).

(b) Reconstruction of small elliptical scatterers in Figure 3-(a).

(c) True geometry in (−2π, 2π).

(d) Reconstruction of extended elliptical scatterers in Figure 3-(c).

Figure 3: Reconstruction of small and extended elliptical scatterers with one incident source.

are not affected by the amounts of noise added to the data. Furthermore, the reconstructions
will remain essentially the same even with much higher amounts of noise in the data. This is
not a surprise since the evanescent modes are typically sensitive with noise but the sampling
method only uses propagating modes. The great robustness against noise in the data was
also seen in the orthogonality sampling methods studied in [12,19,26].
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(a) True geometry in (−2π, 2π).

(b) Reconstruction with 32 incident sources.

(c) Reconstruction with 64 incident sources.

(d) Reconstruction with 128 incident sources.

Figure 4: Reconstruction with different numbers of incident sources.

4.4 Reconstruction with higher wave numbers (Figure 6)

Besides the reconstruction result for k = 2π we test in this section the performance of the
method for reconstructing extended scatterers with higher wave numbers (k = 3π, 5π, 6π).
Here the parameters are chosen as α = 0, exponent p = 4, 128 incident sources are used to
generate the scattering data, and 20% noise added to the data. We can see from Figure 6 that
the resolution of reconstructions improve as the wave number increases from 2π to 3π, which
is reasonable. However, the reconstruction results are not better for k = 5π and k = 6π. It
is also known that as the wave number increases, the nonlinearity and ill-posedness of the
inverse problem become more difficult to deal with. We can clearly notice some effects of
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(a) True geometry in (−2π, 2π).

(b) Reconstruction with 10% noise.

(c) Reconstruction with 20% noise.

(d) Reconstruction with 40% noise.

Figure 5: Reconstruction with different levels of noise in the data.

large wave numbers in the reconstruction results for k = 5π and k = 6π.

4.5 Reconstruction with different values of α and p (Figures 7–8)

In this section we test the performance of the method for different values of the parameters α
and p. The other parameters are chosen as k = 2π, 128 incident sources are used to generate
the scattering data, and 20% noise added to the data. From Figures 7–8, we can see that
the sampling method works well for different values of α. Although the reconstructions look
reasonable for exponents p = 2 and p = 3, the exponent p = 4 seems to be an ideal exponent
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(a) True geometry in (−2π, 2π).

(b) Reconstruction with wave number k = 3π.

(c) Reconstruction with wave number k = 5π.

(d) Reconstruction with wave number k = 6π.

Figure 6: Reconstruction with higher wave numbers.
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for the indicator function. With larger p the reconstructions will have cleaner background
but lose some small details of the scatterers.

4.6 Reconstruction of different shapes and comparison with the
factorization method and the orthogonality sampling method
(Figures 9–12)

In this section we test the performance of the proposed sampling method for different shapes
of periodic scatterers and compare its performance with those of the factorization method
and the orthogonality sampling method. The parameters are chosen as α = 0, wave number
k = 2π, exponent p = 4, 128 incident sources are used to generate the scattering data,
and 20% noise added to the data. It is obvious from all reconstructions in Figures 9–12
that the factorization method suffers severely from the 20% amount of noise added to the
scattering data. Actually, the reconstructions of the factorization method can be greatly
affected even with smaller amounts of noises (e.g. 5% or 7%). This unstable behavior of
the factorization method in reconstructing periodic media was also reported in [1, 23]. The
reconstructions of the orthogonality sampling method are as stable as those of the proposed
sampling method but it is also clear from the pictures that the accuracy in the reconstructions
of the orthogonality sampling method is much worse than that of the proposed sampling
method. The proposed sampling method may provide reasonable reconstructions for different
shapes considered in the test. This indicates a high efficiency of this sampling method.
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