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Heuristic bounds on superconductivity and how to exceed

them
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What limits the value of the superconducting transition temperature (T.) is a question of great fundamental and practical
importance. Various heuristic upper bounds on T. have been proposed, expressed as fractions of the Fermi temperature, T, the
zero-temperature superfluid stiffness, ps(0), or a characteristic Debye frequency, wy. We show that while these bounds are physically
motivated and are certainly useful in many relevant situations, none of them serve as a fundamental bound on T.. To demonstrate
this, we provide explicit models where T /T¢ (with an appropriately defined T¢), T./ps(0), and T./wy are unbounded.
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INTRODUCTION

While superconducting transition temperatures are non-universal
properties, and hence not generally amenable to a simple
theoretical analysis, understanding what physics determines T is
of self-evident importance. One approach to this challenge is to
focus on a key physical process that contributes to the
development of superconducting order, and to formulate an
upper bound - either rigorous or heuristic - on 7.'~.

In this paper, we examine three proposed bounds on T that are
expressed as a fraction of a measurable physical quantity of a
given system: an appropriately defined Fermi temperature, a
characteristic phonon frequency, or the zero-temperature super-
fluid phase stiffness. While these putative bounds are physically
motivated, and provide valuable intuition in many cases of
practical importance, we show by explicit counter-examples that
they can be violated by an arbitrary amount. In addition to the
fundamental importance of these results, we hope they suggest
routes to further optimize T..

We briefly summarize our key results here:

1. The notion of an upper bound on T. in terms of an
appropriately defined Fermi energy comes from the fact
that, in many situations, as Er — 0, the electrons have no
kinetic energy. Thus, in this limit, the superfluid stiffness
must seemingly go to zero. What sets T in the limit of small
Er is pertinent to moiré superconductors®='3, where the
bands can be tuned to be narrow. To make this question
precise, we must define Er in a strongly interacting system.
We propose two such definitions of Eg, in terms of (i) the
difference in the chemical potential between a system with
a given density of electrons and a system with a vanishing
density, or (ii) the energy dispersion of a single electron
added to the empty system.

We show that there is no general bound on T/E¢ by either
definition, by studying two explicit models. In the first model,
a flat band is separated by an energy gap from a broad band
with pair-hopping interaction between the two. The second
model consists of a pair of perfectly flat bands with an on-site
electron-electron attraction. We show explicitly that the first
model violates any putative T./Er bound when using the first
definition of Er above, while the second model violates the

bound using either definition of Er. Both models have been
defined on a two-dimensional lattice for convenience, but
generalized versions of the same models in any D> 1 can be
easily seen to exhibit qualitatively similar behaviors. In the
context of two-dimensional systems, we identify T. as
the Berezinskii—Kosterlitz-Thouless (BKT) transition tempera-
ture. In contrast with some earlier discussions' of this topic,
the topology of the flat band plays no essential role in our
analysis. Specifically, in our second model, it is the non-zero
spatial extent of the Wannier functions rather than any
topological property that is the essential feature responsible
for the non-vanishing T.

In two-dimensional systems where T is limited by phase
fluctuations, an intuitive bound on T, is given in terms of
the zero-temperature phase stiffness, ps(0). This comes from
the relation' T.=mp,(T.)/2, and the (often physically
reasonable) assumption that p4(7) is a decreasing function of
T, and hence p,(0) = py(T).

We construct an explicit counter-example in a two-band

model of bosons (or, equivalently, tightly bound Cooper pairs),
where p(0) can be made arbitrarily smaller than T.. In this
model, p¢(0) can even vanish while T, > 0, implying that there
is a reentrant transition into the non-superconducting state
below T..
In electron-phonon superconductors, a heuristic bound on T,/
wo (wo being the characteristic phonon frequency) was
proposed®”'®. The reasoning behind this bound is that, as
the dimensionless electron-phonon coupling constant A
increases past an O(1) value, the system tends to become
unstable, either towards the formation of localized bipolarons
or towards a charge density wave state. At the same time (and
relatedly), the phonon frequency is renormalized downward
as A increases, suppressing Te.

Here, we construct an explicit d — dimensional model
where these strong-coupling instabilities are avoided, and T,
increases without bound upon increasing A. The model
includes N electronic bands interacting with N? phonon
modes. The model is solvable asymptotically in the large-N
limit; then, the famous Allen-Dynes result'” T, « woV/A is valid
for large A, so long as A < N, and hence T/wy is unbounded as
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Fig. 1 lllustration of the two operational definitions of E.. a, b E(F1>
is defined in Eq. (1) as the difference between the chemical potential
at density n (panel a) and the limiting value of the chemical
potential po at which n approaches the value, ng, it takes in a
reference insulating state (panel b). ¢ 2) is defined by Eq. (2) in
terms of the density of states p(e) of a smgle electron excitation
added to the reference insulating state.

N — oco. Note that at the heuristic level, it is difficult to identify
physical circumstances where more than a few phonons are
comparably strongly coupled to the relevant electrons.
Nevertheless, our analysis suggests that generically, the larger
the number of phonon modes coupled to the electrons, the
larger the A at which the suppression of T. onsets.

RESULTS
Flat band superconductivity: bound on T /T?

In most conventional superconductors, T. is determined by the
energy scale associated with electron pairing. On the other hand,
across numerous unconventional superconductors, T. is more
strongly sensitive to the ‘phase ordering scale’. In this context, an
important recent advance is the result by Hazra, Verma, and
Randeria (HVR)® of a rigorous upper bound on p(T), the
temperature-dependent superfluid phase stiffness, in terms of
the integral of the optical conductivity over frequency (the optical
sum rule). However, since this integral includes all the bands, this
upper bound is often of the order of several electron-volts in
electronic systems of interest.

At the heuristic level, this bound has been interpreted’® as
implying a bound on T./T¢, where Tg = E¢/kg is the Fermi energy
in units of temperature. For a Galilean invariant system with a
parabolic band, HVR express their bound in terms of the
Fermi energy.

At the outset, it is important to define sharply what we mean by
Er. A particular protocol that is often adopted in experiments to
estimate Er is to use an effective mass, m", obtained from
quantum oscillations along with an estimate of the Fermi
momentum (ki) from a measurement of the the carrier density
n, and then defining Er = kZ/(2m*); in two dimension, this is
equivalent to determining Er = h%n/m*'8. This procedure is only
possible when there is a nearby Fermi liquid-like state that
displays quantum oscillations.

Below, we propose two different definitions of Er, that we can
use in settings that do not rely on any underlying assumptions
(e.g., that there is a nearby Fermi liquid) and are also amenable to
an experimental interpretation. We consider the case in which we
add a given density, n, of electrons to an insulating reference
state. We can define E¢ as follows:

® Starting from our reference state, we set the temperature to
zero and consider the change in the chemical potential,
u(n, T=0), as we fill in n electrons,

£V = u(n, T =0) — p,, ()

as an effective definition of E. Here y, = limp_o u(n, T = 0). Note
that the above definition of Er includes all many-body corrections,
which can furthermore be dependent on the density itself, and does
not make any reference to any non-interacting limit; see Fig. 1a, b.
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® Alternatively, we can define the Fermi energy through the ‘non-
interacting’ density of states, p(g), for adding a single electron to
the insulating system. This density of states is typically not the
same as the one measured at the ‘target’ filling. Here, the Fermi
energy (E(F )) is defined implicitly from the expression

(2)

Emin+Ep
n= / dep(e), )
Emin

where emin is the energy of the ground state with one electron
added on top to the insulating reference state; see Fig. 1b, c. E(
accessible dlrectl%/ in e.g. STM measurements'®. We note that Ef
is identical to E for non-interacting systems.

( )

Below, we provide model Hamiltonians of interacting electrons
in flat bands where the superconducting T. exceeds the Fermi
energy by one or both of the above definitions. Thus, these
models exemplify flat band superconductivity, where T is
determined entirely by the interaction scale?*~22, Analogous
phenomena may also occur in semi-metals?>24,

Flat band superconductivity induced by a nearby dispersive band:
We consider a model consisting of a nearly-flat band and a
dispersive band. A closely related model® has recently been
studied in the context of superconductivity in twisted bilayer
graphene The single-particle part of the Hamiltonian is given by

=) clk

k.0

where cL + o Creates an electron with quasi-momentum k in band

€=1,2 and spin polarization 0. We consider the lower band
(=1) to be a flat band with bandwidth, W,, that we will
ultimately take to be parametrically small (i.e. W; — 0). The upper
band (¢ =2) is separated from the flat band by an energy gap,
Agap, and has a large bandwidth, W, W,. The bands are
topologically trivial and the Wannier functions are tightly localized
on the lattice sites.

We now introduce an on-site interaction which scatters a pair of
electrons between the flat band and the dispersive band:

Hint = VZ[‘P1 +hC} 4)

®p(r) = Cre, | CReT (5)

where R labels a lattice site. Let us focus on the case where the flat
band is half filled, such that the number of particles per unit cell is
n=1.

We consider the case where V < Ag,, < W,. Within mean-field
theory, the superconducting transition temperature is given by
(see Supplementary Methods),

2
= 5] el

Agap

Ckgocké’a: 3)

where we have assumed a constant density of states per unit cell,

v, = 1/W,, in the dispersive band. The zero-temperature phase

stiffness is given by (Supplementary Methods)
VZ

8MAgap

p(T=0)~ )

Hence py(0) > Tywr, which implies that phase fluctuations are
unimportant in determining T.%, i.e. T.= T"f'

We now examine the Fermi energles E; ) defined in Egs. (1)
and (2) and compare them to Adding a single particle to the
empty system, we find that E 5~ W; < T, and hence T, /E( )
can be made arbitrarily large. E is computed in Supplementary
Methods by calculating the chemlcal potentials at n=1 and
n—>0 The result is E( = 2Tur ~ Tc. Hence, in this model,
TC/EF =0(1). An example of a different model where TC/E(F”
is unbounded is presented in the next section.
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Flat band superconductivity induced by spatial extent of Wannier
functions: We now introduce a different model for superconduc-
tivity in a narrow band. The model is defined on a two-
dimensional square lattice with two electronic orbitals per unit
cell. The Hamiltonian is given by

H=Hy+ HU7
Ho =1t c} (Tesinak + 0,7, cos ak — p)cky, €S)
kyy'
=——Z§n,€+v Z 6nr56nrr€ (9)

(r,r'y,

Here, ¢} = (cf(1T Clu CLZT clu), where the operator cf(“
creates an electron with momentum k in orbital € = 1, 2 with spin
0=1,]. We denote y = {g, £}. The Pauli matrices 1, and o,,,, act
on the orbital and spin degrees of freedom, respectively, and
Onre =>4 ré,oc,“ 1 is the number of particles at site r and
orbital ¢, relative to half filling. (r,r’) denotes nearest-neighbor
sites. The single-particle Hamiltonian H, leads to perfectly flat
bands with energies € =+ t. The function ay = {(cos ky + cosk,)
controls the spatial extent of the Wannier functions in each band,
tuned by the dimensionless parameter {. More specifically, the
Wannier functions decay exponentially over a distance propor-
tional to {. Note that there is no obstruction towards constructing
exponentially localized Wannier functions for the above model
since the bands are topologically trivial. This can be seen from the
fact that the Berry curvature of the bands is identically zero, since
Hy contains only 1, but not 7,. The strength of on-site attractive
Hubbard interaction is denoted U > 0, whereas V>0 is a nearest-
neighbor repulsion.

We are interested in the limit where T < U, V < Agap( = 2t) and
(< 1. An extensive numerical study of the model (9) beyond this
parameter regime has been analyzed in a separate publication?®
In this limit, we project Hy to the lower eigenband. The projected
Hamiltonian is expanded in powers of {. The average density is set
to quarter filling per unit cell.

For (=0, the problem effectively reduces to a set of decoupled
sites with a strong attractive interaction; the resulting ground state
manifold is highly degenerate with local ‘Cooper pairs’ but a
vanishing phase stiffness. The linear corrections in { vanish due to
a chiral symmetry and the orbital / independent interaction
strength U. At second order in (, the projected interaction, Hy,

contains nearest-neighbor pair-hopping and density-density
interactions:
Hy = = SRRy + RA,)+Jorerc). 10

(r.r)

Here, we have also introduced the pseudospin operators
Ny = (Yin¥,)/2, where Wi =& 1o € Ig creates an electron
with spin o in a Wannier-orbital localized around site r in the lower
band of H, (with T, = — o for {=0), and n° are Pauli matrices. The
Jy and J, terms correspond to hopping and a nearest-neighbor
interaction of the Cooper pairs, respectively, and their strengths
are J, = P(2U + W/8 and J, = C?U/4 — V(2 + 97?/8).

For V=0, the system has an emergent SU(2) symmetry that
relates the pairing and charge order parameters?’. This symmetry
is weakly broken by terms of order (U/t)?, not included in Eq. (10).
For 0 < V< U, the problem is equivalent to a two-dimensional
pseudospin ferromagnet with a weak easy-plane anisotropy.
Parameterizing the anisotropy by AJ=J, —J,, we can estimate
the critical temperature of the BKT transition as?®

Te ~mdy /log(m)y /). (amn

Note that in the limit AJ— 0 we get T, — 0, as required by the
Mermin-Wagner-Hohenberg theorem.
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We now turn to estimating Eg‘z). Due to the particle-hole
symmetry of the effective Hamiltonian in Eq. (10), the chemical
potential at n=1 (i.e, (§;) = 0) is u(n = 1) =0. In the limit n >0,
the system consists of dilute Cooper pairs. In this limit, the
interactions between the Cooper pairs can be neglected, and the
chemical potential is equal to half the energy per Cooper pair:
uln - 0)=—(J, —J,)=— AJ. Importantly, for J, > J,, the system
does not phase separate at any density. Therefore,
E“) =u(n=1) —u(n — 0) = AJ. Comparing this to Eq. (11), we
ﬁnd that for )< J, Tc > EF We remark that the second band
of the microscopic model gives rise to perturbative correctlons
controlled by U/Agap, that are of subleading order for EF ", AJ and
J, (note that V=0); hence, the above conclusion is unchanged
Clearly, since the lower band is completely dispersionless, EF =0.
We conclude that T, can be made arbitrarily larger than the Fermi
energy by either of the two definitions of Egs. (1) and (2).

It is worth noting that, in the parameter regime we are
considering, p.(0)~J, ~(?U. Hence, the delocalization of the
Cooper pairs is entirely due to the interactions and the spatial
overlap between the Wannier function of the active band, as in
refs. 142933 The finite value of p,(0) and the associated lower
bound as derived in refs. 142731 is based on the application of BCS
mean-field theory. Here, however, for U>V, we get AJ < J, and
hence p.(0) > T, [see Eq. (11)].

Bound on T./p,(0)?

In this section, we turn to the question of whether the zero-
temperature phase stiffness, p(0), sets an upper bound on T, in
two dimensions. ps(0) can be extracted directly from a measure-
ment of the London penetration depth (\*(0) o< 1/p(0)), or from
the imaginary part of the low-frequency optical conductivity.

As is well known, in two spatial dimensions, the phase stiffness
right below T_ is related to T, by the inequality p (T — T_) > 2T /m.
At a continuous BKT transition, p (T — T_) = 2T./m. However, if
the transition is first order, ps right below T. can be larger than the
universal BKT value. See, e.g. ref. 3% However, T, is not directly
related to ps(0). On physical grounds, it often makes sense to identify
ps(0) with a ‘phase ordering scale’ that sets an upper limit on T.*. This
is justified by the fact that p4(7) is usually a monotonically decreasing
function of temperature, i.e. ps(0) = ps(T.), and therefore T, can be
bounded from above by ps(0). In conventional superconductors,
ps(0)>T,, and T is almost entirely determined by the pairing scale.
In contrast, in underdoped cuprates, ps(0) is close to T, as illustrated
by the famous Uemura plot®. This suggests that in these systems,
phase fluctuations play an important role in limiting 7.*.

While this line of reasoning is likely correct in most
circumstances, we will show here that—as a matter of principle
—there is no bound on T./p(0). We outline a concrete model
where ps(0) can be made arbitrarily smaller than p4(T.) (Fig. 2).

Let us begin with a two-dimensional lattice model of two
species of (complex) bosons, b, b,,

HP = HS + HP

int?

= (k)
ak

where &(k) is assumed to have a large bandwidth, W,, and
& = &(0) — g forms a completely flat band at an energy &, below
the bottom of the & band, i.e. the b; bosons are completely
localized on individual sites. The dispersion of the two species of
bosons is illustrated in Fig. 2. For the purpose of our discussion
here, we can approximate &5(k) = k2/2m,, near the bottom of the
broad band. H®, includes an on-site (Hubbard) interaction of
strength U;, for the b;, bosons. We take U, < W, whereas
U, — oo, implying that the number of b; bosons on each localized
site can only be 0 or 1. The total average number of bosons per
unit cell is chosen to be n, > 1.

(12)

b;kba,w (1 3)
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Fig. 2 Schematic illustration of the dispersion and momentum
distribution function of the bosons in the model with unbounded
T./ps(0) [Eq. (12)]. a At T> T, the flat band is approximately half
filled, and the remaining n, — 1/2 bosonic particles per site occupy
the dispersive band. b At T= 0, the flat band is completely filled with
one boson per site, and hence the superfluid density is proportional
ton,— 1.

At temperatures near T, the chemical potential is slightly above
the bottom of the broad band. Then, assuming that & < T, the
average occupation of the localized sites is close to 1/2 (since
the b, bosons are essentially hard-core bosons at effectively
‘infinite’ temperature), so there are approximately n, — 1/2 bosons
per unit cell left to occupy the broad band. The critical temperature
isTe ~ M up to logarithmic corrections in ™ 1/2 JU,36738 Since
we are in two spatial dimensions, in the absence of interactions,
T.=0. The momentum distribution of particles at T> T, is shown
schematically in Fig. 2a.

On the other hand, at T=0, all the localized sites are filled with
one boson. The density of bosons in the broad band is thus n, — 1,
and the superfluid stiffness is p, ~ ”2"m1 The boson distribution
function is illustrated in Fig. 2b. CIearIy, the ratio T./ps(0) can be
made arbitrary large by letting n, - 1".If 1/2 < n, < 1, the ground
state is not a superfluid, and there is a reentrant transition into a
superconducting state with increasing T.

Note that in our simple model (Eg. (12)), the numbers of the two
boson species are separately conserved. However, we do not
expect the key results to be changed qualitatively by the addition
of a weak hybridization between the two species, that breaks this
separate conservation of the two boson numbers. In particular, a
small hybridization generically produces a perturbative correction
to T, and p,(0).

Indeed, a mild version of this sort of breakdown of the heuristic
bound on T./ps(0) has been documented experimentally in Zn-
doped cuprates®®. Here, the pristine material comes close to
saturating the heuristic bound; light Zn doping suppresses T but
apparently suppresses ps(0) more rapidly, leading to a ratio that
slightly exceeds the value proposed in ref. 4. This was explained
—likely correctly—by the authors of ref. 3° as being due to Zn-
induced inhomogeneity of the superfluid response. This explana-
tion is spiritually close to the model discussed above: each Zn
impurity destroys the superconductor in its vicinity, possibly due
to pinning of local spin-density-wave order*°. In some sense, this
can be thought of as a state with localized d-wave pairs near
the impurities. This effect depletes the condensate at low
temperature, causing a decrease in the superfluid density.
However, near T, this effect weakens, as the spin-density wave
order partially melts. From this perspective, it would be
interesting to explore whether this violation can be made
parametrically large with increasing Zn concentration - approach-
ing the point at which T, — 0.

Electron-phonon superconductivity: bound on T /wg?

Recently, it has been proposed that T. in an electron-phonon
superconductor can never exceed a certain fraction of the
characteristic phonon frequency, w,®’. This putative bound
implies that Migdal-Eliashberg (ME) theory*'~** must breakdown
when the dimensionless electron-phonon coupling A is of order
unity®'®, since according to ME theory, T, grows without limit with
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increasing A'”. In general, the failure of ME theory at A=0(1) is a
result of strong-coupling effects: (i) The lattice tends to become
unstable for large A, resulting in a charge density wave (CDW)
transition; (ii) electrons become tightly bound into bipolarons,
whose kinetic energy is strongly quenched in the strong-coupling
limit; and (iii) as A increases, the phonon frequency renormalizes
downward by an appreciable amount, Aw, suppressing T.**. The
softening of wy due to electron-phonon coupling is formally taken
into account in Eliashberg theory. Often, however, the phonon
spectral function is taken as given or is fit to experiment, as is
done in ref. 7.

These strong-coupling effects certainly play an important role in
limiting T, in real systems, where it is typically found never to
exceed about 0.1 wy across numerous conventional superconduc-
tors”. Determinant Monte Carlo simulations of the paradigmatic
Holstein model reveal that ME theory indeed fails for A = O(1), and
the maximal T, is significantly below wo®. As we shall now show,
however, this is not a rigorous bound on T..

To demonstrate this, we consider a particular large — N variant
of the electron-phonon problem**¢ with N — component elec-
trons and N x N — component (‘matrix’) phonons, defined on a
d — dimensional hypercubic lattice. The Hamiltonian is given by

H:H6+th+He—ph7 (14)
N
= Z Z(_t"’ - uérr')ci.o,acr’,o,m (15)
a=1rr.o
b
= 3 3 (o ) 0o
ab=1 r
He- ph_TZZXrabcraa rob (17)
ab=1 ro

Here, cI,M creates an electron at position r with spin ¢ in ‘orbital’
a. The hopping parameters t,» and chemical potential u are
assumed to be identical for all orbitals. We have introduced a real,
symmetric matrix of phonon displacements, X, and their canonically
conjugate momenta, P, with frequency wo = /K/M, assumed to
be much smaller than the Fermi energy. The phonons are taken to
be dispersionless for simplicity. The purely on-site electron-phonon
coupling constant is denoted a, with a N—dependent normalization
factor that ensures that the model has a finite energy density in the
N — oo limit. The dimensionless electron-phonon coupling constant
is defined as A = a®v(0)/K, where v(0) is the electronic density of
states at the Fermi level per orbital.

We are interested in the large — N limit of the model defined in
Eq. (14). Since the number of phonon degrees of freedom is much
larger than the number of electron orbitals, the phonon dynamics
are essentially unaffected by the coupling to the electrons, even
when the electrons are strongly perturbed. This implies that the
strong-coupling effects mentioned above are suppressed, even for
A> 1. In particular, as we show in Supplementary Methods, there
is no lattice instability or polaron formation as long as A < N, and
the softening of the phonon frequency is only of the order of
Aw ~ Awg/N.

To zeroth order in 1/N, the equations for the electron self-
energy and the pairing vertex are exactly those given by
Eliashberg theory, whereas the phonon self-energy is of order 1/
N (see Fig. 3). Thus, the self-consistent equations for the pairing
vertex are identical to those of ME theory neglecting the
renormalization of the phonons, and hence the result is the same.
In particular, for 1 <A <N, Tc & 0.1827 wov/A". Implicit in the fact
that Migdal-Eliashberg theory is exact at N — oo is an assurance
that there is no suppression of T. by phase fluctuations. In the
d=2 version of our model, the BKT temperature differs from
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Fig. 3 Diagrams of the large — N expansion for the coupled
electron-phonon model. Self-energy for the a phonon (X,,), and
b electron (c,) fields, respectively. ¢ Bethe-Salpeter equation for
the pairing vertex, ®. Double dashed and solid lines represent the
phonon and electron fields. Solid circles (triangles) denote the
electron-phonon (pairing) vertex.

the mean-field transition temperature only by a 1/N correction.
More specifically, this follows from the observation that the
superfluid stiffness is O(N). Thus, T, is unbounded.

The key ingredient in our model that allows us to take A>1
without suffering from lattice instabilities is that the different
phonon modes couple to electron bilinears that do not commute
with each other [see Eq. (17)]. This limits the energy gain from
distorting a given set of phonon modes when forming a CDW or a
polaron bound state, since the resulting perturbations to the
electronic Hamiltonian cannot be diagonalized simultaneously. In
contrast, the contributions of the individual phonon modes add
algebraically in the total dimensionless coupling A that enters the
equation for the pairing vertex (the same dimensionless coupling
also determines the resistivity in the normal state of this model*”).

It is worth noting that while these considerations may be of some
use in searching for systems with ever higher T, as a practical
matter it may be difficult to significantly violate the proposed
heuristic bound. To achieve T.=w, requires the extremely large
value of A=25. At the same time, to avoid polaron formation
requires N> A, which means the number of distinctly coupled
phonon modes would have to be N?>> A2 ~ 625!

DISCUSSION

The notion of a fundamental upper bound on T, for models of
interacting electrons is an attractive concept. In this paper, we
have demonstrated that while there are numerous physical
settings where such bounds can be formulated at a heuristic
level, there exists no fundamental, universal upper bound on T in
terms of the characteristic energy scales of interest to us, which
include an appropriately defined Tg ps(0) and w,. We have
constructed explicit counter-examples which violate these heur-
istic bounds by an arbitrary amount.

On the experimental front, it would be fruitful to look for
candidate materials where the heuristic bounds are violated by a
large amount. The fact that these bounds are usually satisfied is to
be expected, since although the bounds are not rigorous, the
physical reasoning behind them is quite robust. As our theoretical
discussion illustrates, whenever such bounds are violated, there is
an interesting underlying physical reason behind the violation;
moreover, the mechanisms behind the violation of the heuristic
bounds may suggest ways to optimize T.. Our work provides two
such examples. Flat band systems with a large spatial extent of the
Wannier functions are a promising platform for increasing T.. In
electron-phonon systems, the instabilities that limit T. at large
electron-phonon interaction strength can be partially mitigated if
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the coupling is shared between several active phonon modes that
couple to non-commuting electronic operators.

METHODS
All analytical calculations are explicit presented in Supplementary Information.
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