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Heuristic bounds on superconductivity and how to exceed
them
Johannes S. Hofmann 1, Debanjan Chowdhury 2✉, Steven A. Kivelson 3 and Erez Berg1

What limits the value of the superconducting transition temperature (Tc) is a question of great fundamental and practical
importance. Various heuristic upper bounds on Tc have been proposed, expressed as fractions of the Fermi temperature, TF, the
zero-temperature superfluid stiffness, ρs(0), or a characteristic Debye frequency, ω0. We show that while these bounds are physically
motivated and are certainly useful in many relevant situations, none of them serve as a fundamental bound on Tc. To demonstrate
this, we provide explicit models where Tc/TF (with an appropriately defined TF), Tc/ρs(0), and Tc/ω0 are unbounded.
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INTRODUCTION
While superconducting transition temperatures are non-universal
properties, and hence not generally amenable to a simple
theoretical analysis, understanding what physics determines Tc is
of self-evident importance. One approach to this challenge is to
focus on a key physical process that contributes to the
development of superconducting order, and to formulate an
upper bound – either rigorous or heuristic – on Tc1–7.
In this paper, we examine three proposed bounds on Tc that are

expressed as a fraction of a measurable physical quantity of a
given system: an appropriately defined Fermi temperature, a
characteristic phonon frequency, or the zero-temperature super-
fluid phase stiffness. While these putative bounds are physically
motivated, and provide valuable intuition in many cases of
practical importance, we show by explicit counter-examples that
they can be violated by an arbitrary amount. In addition to the
fundamental importance of these results, we hope they suggest
routes to further optimize Tc.
We briefly summarize our key results here:

1. The notion of an upper bound on Tc in terms of an
appropriately defined Fermi energy comes from the fact
that, in many situations, as EF→ 0, the electrons have no
kinetic energy. Thus, in this limit, the superfluid stiffness
must seemingly go to zero. What sets Tc in the limit of small
EF is pertinent to moiré superconductors8–13, where the
bands can be tuned to be narrow. To make this question
precise, we must define EF in a strongly interacting system.
We propose two such definitions of EF, in terms of (i) the
difference in the chemical potential between a system with
a given density of electrons and a system with a vanishing
density, or (ii) the energy dispersion of a single electron
added to the empty system.
We show that there is no general bound on Tc/EF by either

definition, by studying two explicit models. In the first model,
a flat band is separated by an energy gap from a broad band
with pair-hopping interaction between the two. The second
model consists of a pair of perfectly flat bands with an on-site
electron-electron attraction. We show explicitly that the first
model violates any putative Tc/EF bound when using the first
definition of EF above, while the second model violates the

bound using either definition of EF. Both models have been
defined on a two-dimensional lattice for convenience, but
generalized versions of the same models in any D > 1 can be
easily seen to exhibit qualitatively similar behaviors. In the
context of two-dimensional systems, we identify Tc as
the Berezinskii–Kosterlitz–Thouless (BKT) transition tempera-
ture. In contrast with some earlier discussions14 of this topic,
the topology of the flat band plays no essential role in our
analysis. Specifically, in our second model, it is the non-zero
spatial extent of the Wannier functions rather than any
topological property that is the essential feature responsible
for the non-vanishing Tc.

2. In two-dimensional systems where Tc is limited by phase
fluctuations, an intuitive bound on Tc is given in terms of
the zero-temperature phase stiffness, ρs(0). This comes from
the relation15 T c ¼ πρsðT�

c Þ=2, and the (often physically
reasonable) assumption that ρs(T) is a decreasing function of
T, and hence ρs(0) ≥ ρs(T).
We construct an explicit counter-example in a two-band

model of bosons (or, equivalently, tightly bound Cooper pairs),
where ρs(0) can be made arbitrarily smaller than Tc. In this
model, ρs(0) can even vanish while Tc > 0, implying that there
is a reentrant transition into the non-superconducting state
below Tc.

3. In electron-phonon superconductors, a heuristic bound on Tc/
ω0 (ω0 being the characteristic phonon frequency) was
proposed6,7,16. The reasoning behind this bound is that, as
the dimensionless electron-phonon coupling constant λ
increases past an O(1) value, the system tends to become
unstable, either towards the formation of localized bipolarons
or towards a charge density wave state. At the same time (and
relatedly), the phonon frequency is renormalized downward
as λ increases, suppressing Tc.
Here, we construct an explicit d− dimensional model

where these strong-coupling instabilities are avoided, and Tc
increases without bound upon increasing λ. The model
includes N electronic bands interacting with N2 phonon
modes. The model is solvable asymptotically in the large-N
limit; then, the famous Allen-Dynes result17 T c / ω0

ffiffiffi
λ

p
is valid

for large λ, so long as λ≪N, and hence Tc/ω0 is unbounded as
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N→∞. Note that at the heuristic level, it is difficult to identify
physical circumstances where more than a few phonons are
comparably strongly coupled to the relevant electrons.
Nevertheless, our analysis suggests that generically, the larger
the number of phonon modes coupled to the electrons, the
larger the λ at which the suppression of Tc onsets.

RESULTS
Flat band superconductivity: bound on Tc/TF?
In most conventional superconductors, Tc is determined by the
energy scale associated with electron pairing. On the other hand,
across numerous unconventional superconductors, Tc is more
strongly sensitive to the ‘phase ordering scale’4. In this context, an
important recent advance is the result by Hazra, Verma, and
Randeria (HVR)5 of a rigorous upper bound on ρs(T), the
temperature-dependent superfluid phase stiffness, in terms of
the integral of the optical conductivity over frequency (the optical
sum rule). However, since this integral includes all the bands, this
upper bound is often of the order of several electron-volts in
electronic systems of interest.
At the heuristic level, this bound has been interpreted18 as

implying a bound on Tc/TF, where TF= EF/kB is the Fermi energy
in units of temperature. For a Galilean invariant system with a
parabolic band, HVR express their bound in terms of the
Fermi energy.
At the outset, it is important to define sharply what we mean by

EF. A particular protocol that is often adopted in experiments to
estimate EF is to use an effective mass, m*, obtained from
quantum oscillations along with an estimate of the Fermi
momentum (kF) from a measurement of the the carrier density
n, and then defining EF ¼ k2F=ð2m�Þ; in two dimension, this is
equivalent to determining EF= πћ2n/m*18. This procedure is only
possible when there is a nearby Fermi liquid-like state that
displays quantum oscillations.
Below, we propose two different definitions of EF, that we can

use in settings that do not rely on any underlying assumptions
(e.g., that there is a nearby Fermi liquid) and are also amenable to
an experimental interpretation. We consider the case in which we
add a given density, n, of electrons to an insulating reference
state. We can define EF as follows:

● Starting from our reference state, we set the temperature to
zero and consider the change in the chemical potential,
μ(n, T= 0), as we fill in n electrons,

Eð1ÞF � μðn; T ¼ 0Þ � μ0; (1)

as an effective definition of EF. Here μ0 ¼ limn!0 μðn; T ¼ 0Þ. Note
that the above definition of EF includes all many-body corrections,
which can furthermore be dependent on the density itself, and does
not make any reference to any non-interacting limit; see Fig. 1a, b.

● Alternatively, we can define the Fermi energy through the ‘non-
interacting’ density of states, ρ(ε), for adding a single electron to
the insulating system. This density of states is typically not the
same as the one measured at the ‘target’ filling. Here, the Fermi
energy (Eð2ÞF ) is defined implicitly from the expression

n ¼
Z εminþEð2ÞF

εmin

dε ρðεÞ; (2)

where εmin is the energy of the ground state with one electron
added on top to the insulating reference state; see Fig. 1b, c. Eð2ÞF is
accessible directly in e.g. STM measurements19. We note that Eð2ÞF
is identical to Eð1ÞF for non-interacting systems.

Below, we provide model Hamiltonians of interacting electrons
in flat bands where the superconducting Tc exceeds the Fermi
energy by one or both of the above definitions. Thus, these
models exemplify flat band superconductivity, where Tc is
determined entirely by the interaction scale20–22. Analogous
phenomena may also occur in semi-metals23,24.
Flat band superconductivity induced by a nearby dispersive band:

We consider a model consisting of a nearly-flat band and a
dispersive band. A closely related model25 has recently been
studied in the context of superconductivity in twisted bilayer
graphene. The single-particle part of the Hamiltonian is given by

H0 ¼
X
k;ℓ;σ

εℓðkÞcyk;ℓ;σck;ℓ;σ; (3)

where cyk;ℓ;σ creates an electron with quasi-momentum k in band
ℓ= 1, 2 and spin polarization σ. We consider the lower band
(ℓ= 1) to be a flat band with bandwidth, W1, that we will
ultimately take to be parametrically small (i.e. W1→ 0). The upper
band (ℓ= 2) is separated from the flat band by an energy gap,
Δgap, and has a large bandwidth, W2≫W1. The bands are
topologically trivial and the Wannier functions are tightly localized
on the lattice sites.
We now introduce an on-site interaction which scatters a pair of

electrons between the flat band and the dispersive band:

Hint ¼ V
X
R

φy
1ðRÞφ2ðRÞ þ h:c:

h i
; (4)

φℓðrÞ ¼ cR;ℓ;#cR;ℓ;"; (5)

where R labels a lattice site. Let us focus on the case where the flat
band is half filled, such that the number of particles per unit cell is
n= 1.
We consider the case where V≪ Δgap≪W2. Within mean-field

theory, the superconducting transition temperature is given by
(see Supplementary Methods),

TMF � ν2V2

8

� �
ln

W2

Δgap

� �
; (6)

where we have assumed a constant density of states per unit cell,
ν2= 1/W2, in the dispersive band. The zero-temperature phase
stiffness is given by (Supplementary Methods)

ρsðT ¼ 0Þ � V2

8πΔgap
: (7)

Hence ρs(0)≫ TMF, which implies that phase fluctuations are
unimportant in determining Tc4, i.e. Tc ≈ TMF.
We now examine the Fermi energies Eð1;2ÞF defined in Eqs. (1)

and (2) and compare them to Tc. Adding a single particle to the
empty system, we find that Eð2ÞF � W1 � Tc, and hence T c=E

ð2Þ
F

can be made arbitrarily large. Eð1ÞF is computed in Supplementary
Methods by calculating the chemical potentials at n= 1 and
n→ 0. The result is Eð1ÞF ¼ 2TMF � T c. Hence, in this model,
Tc=E

ð1Þ
F ¼ Oð1Þ. An example of a different model where T c=E

ð1Þ
F

is unbounded is presented in the next section.

Fig. 1 Illustration of the two operational definitions of EF. a, b Eð1ÞF
is defined in Eq. (1) as the difference between the chemical potential
at density n (panel a) and the limiting value of the chemical
potential μ0 at which n approaches the value, n0, it takes in a
reference insulating state (panel b). c Eð2ÞF is defined by Eq. (2) in
terms of the density of states ρ(ε) of a single electron excitation
added to the reference insulating state.
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Flat band superconductivity induced by spatial extent of Wannier
functions: We now introduce a different model for superconduc-
tivity in a narrow band. The model is defined on a two-
dimensional square lattice with two electronic orbitals per unit
cell. The Hamiltonian is given by

H ¼ H0 þ HU;

H0 ¼ t
P
k;γ;γ0

cyk;γ τx sin αk þ σzτy cos αk � μ
� �

ck;γ0 ; (8)

HU ¼ �U
2

X
r;ℓ

δn2r;ℓ þ V
X
hr;r0i;ℓ

δnr;ℓδnr0;ℓ: (9)

Here, cyk ¼ ðcyk;1;"; cyk;1;#; cyk;2;"; cyk;2;#Þ, where the operator cyk;ℓ;σ
creates an electron with momentum k in orbital ℓ= 1, 2 with spin
σ= ↑, ↓. We denote γ= {σ, ℓ}. The Pauli matrices τx,y,z and σx,y,z act
on the orbital and spin degrees of freedom, respectively, and
δnr;ℓ �

P
σc

y
r;ℓ;σcr;ℓ;σ � 1 is the number of particles at site r and

orbital ℓ, relative to half filling. hr; r0i denotes nearest-neighbor
sites. The single-particle Hamiltonian H0 leads to perfectly flat
bands with energies ε= ± t. The function αk � ζðcos kx þ cos kyÞ
controls the spatial extent of the Wannier functions in each band,
tuned by the dimensionless parameter ζ. More specifically, the
Wannier functions decay exponentially over a distance propor-
tional to ζ. Note that there is no obstruction towards constructing
exponentially localized Wannier functions for the above model
since the bands are topologically trivial. This can be seen from the
fact that the Berry curvature of the bands is identically zero, since
H0 contains only τx,y but not τz. The strength of on-site attractive
Hubbard interaction is denoted U > 0, whereas V > 0 is a nearest-
neighbor repulsion.
We are interested in the limit where T≪ U, V≪ Δgap(= 2t) and

ζ≪ 1. An extensive numerical study of the model (9) beyond this
parameter regime has been analyzed in a separate publication26.
In this limit, we project HU to the lower eigenband. The projected
Hamiltonian is expanded in powers of ζ. The average density is set
to quarter filling per unit cell.
For ζ= 0, the problem effectively reduces to a set of decoupled

sites with a strong attractive interaction; the resulting ground state
manifold is highly degenerate with local ‘Cooper pairs’ but a
vanishing phase stiffness. The linear corrections in ζ vanish due to
a chiral symmetry and the orbital l independent interaction
strength U. At second order in ζ, the projected interaction, fHU ,
contains nearest-neighbor pair-hopping and density-density
interactions:fHU ¼ �

X
hr;r0i

J? bηxrbηxr0 þ bηyr0bηyr� �þJzbηzrbηzr0� �
: (10)

Here, we have also introduced the pseudospin operatorsbηar ¼ ðΨy
rη

aΨrÞ=2, where Ψy
r ¼ ð~cyr;";~cr;#Þ, ~cyr;σ creates an electron

with spin σ in a Wannier-orbital localized around site r in the lower
band of H0 (with τy=− σ for ζ= 0), and ηa are Pauli matrices. The
J⊥ and Jz terms correspond to hopping and a nearest-neighbor
interaction of the Cooper pairs, respectively, and their strengths
are J⊥= ζ2(2U+ V)/8 and Jz= ζ2U/4− V(2+ 9ζ2/8).
For V= 0, the system has an emergent SU(2) symmetry that

relates the pairing and charge order parameters27. This symmetry
is weakly broken by terms of order (U/t)2, not included in Eq. (10).
For 0 < V≪ U, the problem is equivalent to a two-dimensional
pseudospin ferromagnet with a weak easy-plane anisotropy.
Parameterizing the anisotropy by ΔJ= J⊥− Jz, we can estimate
the critical temperature of the BKT transition as28

T c � πJ?= logðπJ?=ΔJÞ: (11)

Note that in the limit ΔJ→ 0 we get Tc→ 0, as required by the
Mermin-Wagner-Hohenberg theorem.

We now turn to estimating Eð1;2ÞF . Due to the particle-hole
symmetry of the effective Hamiltonian in Eq. (10), the chemical
potential at n= 1 (i.e., hbηzri ¼ 0) is μ(n= 1)= 0. In the limit n→ 0,
the system consists of dilute Cooper pairs. In this limit, the
interactions between the Cooper pairs can be neglected, and the
chemical potential is equal to half the energy per Cooper pair:
μ(n→ 0)=− (J⊥− Jz)=− ΔJ. Importantly, for J⊥ > Jz, the system
does not phase separate at any density. Therefore,
Eð1ÞF ¼ μðn ¼ 1Þ � μðn ! 0Þ ¼ ΔJ. Comparing this to Eq. (11), we
find that for ΔJ≪ J⊥, T c � Eð1ÞF . We remark that the second band
of the microscopic model gives rise to perturbative corrections,
controlled by U/Δgap, that are of subleading order for Eð1ÞF , ΔJ and
J⊥ (note that V ≠ 0); hence, the above conclusion is unchanged.
Clearly, since the lower band is completely dispersionless, Eð2ÞF ¼ 0.
We conclude that Tc can be made arbitrarily larger than the Fermi
energy by either of the two definitions of Eqs. (1) and (2).
It is worth noting that, in the parameter regime we are

considering, ρs(0) ~ J⊥ ~ ζ2U. Hence, the delocalization of the
Cooper pairs is entirely due to the interactions and the spatial
overlap between the Wannier function of the active band, as in
refs. 14,29–33. The finite value of ρs(0) and the associated lower
bound as derived in refs. 14,29–31 is based on the application of BCS
mean-field theory. Here, however, for U≫ V, we get ΔJ≪ J⊥ and
hence ρs(0)≫ Tc [see Eq. (11)].

Bound on Tc/ρs(0)?
In this section, we turn to the question of whether the zero-
temperature phase stiffness, ρs(0), sets an upper bound on Tc in
two dimensions. ρs(0) can be extracted directly from a measure-
ment of the London penetration depth (λ2Lð0Þ / 1=ρsð0Þ), or from
the imaginary part of the low-frequency optical conductivity.
As is well known, in two spatial dimensions, the phase stiffness

right below Tc is related to Tc by the inequality ρsðT ! T�
c Þ 	 2Tc=π.

At a continuous BKT transition, ρsðT ! T�
c Þ ¼ 2Tc=π. However, if

the transition is first order, ρs right below Tc can be larger than the
universal BKT value. See, e.g., ref. 34. However, Tc is not directly
related to ρs(0). On physical grounds, it often makes sense to identify
ρs(0) with a ‘phase ordering scale’ that sets an upper limit on Tc4. This
is justified by the fact that ρs(T) is usually a monotonically decreasing
function of temperature, i.e. ρs(0) ≥ ρs(Tc), and therefore Tc can be
bounded from above by ρs(0). In conventional superconductors,
ρs(0)≫ Tc, and Tc is almost entirely determined by the pairing scale.
In contrast, in underdoped cuprates, ρs(0) is close to Tc, as illustrated
by the famous Uemura plot35. This suggests that in these systems,
phase fluctuations play an important role in limiting Tc4.
While this line of reasoning is likely correct in most

circumstances, we will show here that—as a matter of principle
—there is no bound on Tc/ρs(0). We outline a concrete model
where ρs(0) can be made arbitrarily smaller than ρs(Tc) (Fig. 2).
Let us begin with a two-dimensional lattice model of two

species of (complex) bosons, b1, b2,

Hb ¼ Hb
0 þ Hb

int; (12)

Hb
0 ¼

X
α;k

εαðkÞ byα;kbα;k; (13)

where ε2(k) is assumed to have a large bandwidth, W2, and
ε1= ε2(0)− ε0 forms a completely flat band at an energy ε0 below
the bottom of the ε2 band, i.e. the b1 bosons are completely
localized on individual sites. The dispersion of the two species of
bosons is illustrated in Fig. 2. For the purpose of our discussion
here, we can approximate ε2(k) ≈ k2/2mb near the bottom of the
broad band. Hb

int includes an on-site (Hubbard) interaction of
strength U1,2 for the b1,2 bosons. We take U2≪W2 whereas
U1→∞, implying that the number of b1 bosons on each localized
site can only be 0 or 1. The total average number of bosons per
unit cell is chosen to be nb > 1.
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At temperatures near Tc, the chemical potential is slightly above
the bottom of the broad band. Then, assuming that ε0≪ T, the
average occupation of the localized sites is close to 1/2 (since
the b1 bosons are essentially hard-core bosons at effectively
‘infinite’ temperature), so there are approximately nb− 1/2 bosons
per unit cell left to occupy the broad band. The critical temperature
is T c � nb�1=2

2mb
, up to logarithmic corrections in nb�1=2

2mb
=U2

36–38. Since
we are in two spatial dimensions, in the absence of interactions,
Tc= 0. The momentum distribution of particles at T≳ Tc is shown
schematically in Fig. 2a.
On the other hand, at T= 0, all the localized sites are filled with

one boson. The density of bosons in the broad band is thus nb− 1,
and the superfluid stiffness is ρs � nb�1

2mb
. The boson distribution

function is illustrated in Fig. 2b. Clearly, the ratio Tc/ρs(0) can be
made arbitrary large by letting nb→ 1+. If 1/2 < nb < 1, the ground
state is not a superfluid, and there is a reentrant transition into a
superconducting state with increasing T.
Note that in our simple model (Eq. (12)), the numbers of the two

boson species are separately conserved. However, we do not
expect the key results to be changed qualitatively by the addition
of a weak hybridization between the two species, that breaks this
separate conservation of the two boson numbers. In particular, a
small hybridization generically produces a perturbative correction
to Tc and ρs(0).
Indeed, a mild version of this sort of breakdown of the heuristic

bound on Tc/ρs(0) has been documented experimentally in Zn-
doped cuprates39. Here, the pristine material comes close to
saturating the heuristic bound; light Zn doping suppresses Tc but
apparently suppresses ρs(0) more rapidly, leading to a ratio that
slightly exceeds the value proposed in ref. 4. This was explained
—likely correctly—by the authors of ref. 39 as being due to Zn-
induced inhomogeneity of the superfluid response. This explana-
tion is spiritually close to the model discussed above: each Zn
impurity destroys the superconductor in its vicinity, possibly due
to pinning of local spin-density-wave order40. In some sense, this
can be thought of as a state with localized d-wave pairs near
the impurities. This effect depletes the condensate at low
temperature, causing a decrease in the superfluid density.
However, near Tc, this effect weakens, as the spin-density wave
order partially melts. From this perspective, it would be
interesting to explore whether this violation can be made
parametrically large with increasing Zn concentration - approach-
ing the point at which Tc→ 0.

Electron-phonon superconductivity: bound on Tc/ω0?
Recently, it has been proposed that Tc in an electron-phonon
superconductor can never exceed a certain fraction of the
characteristic phonon frequency, ω0

6,7. This putative bound
implies that Migdal–Eliashberg (ME) theory41–43 must breakdown
when the dimensionless electron-phonon coupling λ is of order
unity6,16, since according to ME theory, Tc grows without limit with

increasing λ17. In general, the failure of ME theory at λ=O(1) is a
result of strong-coupling effects: (i) The lattice tends to become
unstable for large λ, resulting in a charge density wave (CDW)
transition; (ii) electrons become tightly bound into bipolarons,
whose kinetic energy is strongly quenched in the strong-coupling
limit; and (iii) as λ increases, the phonon frequency renormalizes
downward by an appreciable amount, Δω, suppressing Tc

44. The
softening of ω0 due to electron-phonon coupling is formally taken
into account in Eliashberg theory. Often, however, the phonon
spectral function is taken as given or is fit to experiment, as is
done in ref. 17.
These strong-coupling effects certainly play an important role in

limiting Tc in real systems, where it is typically found never to
exceed about 0.1ω0 across numerous conventional superconduc-
tors7. Determinant Monte Carlo simulations of the paradigmatic
Holstein model reveal that ME theory indeed fails for λ=O(1), and
the maximal Tc is significantly below ω0

6. As we shall now show,
however, this is not a rigorous bound on Tc.
To demonstrate this, we consider a particular large− N variant

of the electron-phonon problem45,46 with N− component elec-
trons and N × N− component (‘matrix’) phonons, defined on a
d− dimensional hypercubic lattice. The Hamiltonian is given by

H ¼ He þ Hph þ He�ph; (14)

He ¼
XN
a¼1

X
r;r0 ;σ

ð�trr0 � μδrr0 Þcyr;σ;acr0 ;σ;a; (15)

Hph ¼
XN
a;b¼1

X
r

P2r;ab
2M

þ K
2
X2
r;ab

 !
; (16)

He�ph ¼ αffiffiffiffi
N

p
XN
a;b¼1

X
r;σ

Xr;abc
y
r;σ;acr;σ;b: (17)

Here, cyr;σ;a creates an electron at position r with spin σ in ‘orbital’
a. The hopping parameters trr0 and chemical potential μ are
assumed to be identical for all orbitals. We have introduced a real,
symmetric matrix of phonon displacements, bXr and their canonically
conjugate momenta, bPr, with frequency ω0 ¼

ffiffiffiffiffiffiffiffiffi
K=M

p
, assumed to

be much smaller than the Fermi energy. The phonons are taken to
be dispersionless for simplicity. The purely on-site electron-phonon
coupling constant is denoted α, with a N—dependent normalization
factor that ensures that the model has a finite energy density in the
N→∞ limit. The dimensionless electron-phonon coupling constant
is defined as λ= α2ν(0)/K, where ν(0) is the electronic density of
states at the Fermi level per orbital.
We are interested in the large− N limit of the model defined in

Eq. (14). Since the number of phonon degrees of freedom is much
larger than the number of electron orbitals, the phonon dynamics
are essentially unaffected by the coupling to the electrons, even
when the electrons are strongly perturbed. This implies that the
strong-coupling effects mentioned above are suppressed, even for
λ≫ 1. In particular, as we show in Supplementary Methods, there
is no lattice instability or polaron formation as long as λ≪ N, and
the softening of the phonon frequency is only of the order of
Δω ~ λω0/N.
To zeroth order in 1/N, the equations for the electron self-

energy and the pairing vertex are exactly those given by
Eliashberg theory, whereas the phonon self-energy is of order 1/
N (see Fig. 3). Thus, the self-consistent equations for the pairing
vertex are identical to those of ME theory neglecting the
renormalization of the phonons, and hence the result is the same.
In particular, for 1≪ λ≪ N, T c � 0:1827ω0

ffiffiffi
λ

p
17. Implicit in the fact

that Migdal-Eliashberg theory is exact at N→∞ is an assurance
that there is no suppression of Tc by phase fluctuations. In the
d= 2 version of our model, the BKT temperature differs from

Fig. 2 Schematic illustration of the dispersion and momentum
distribution function of the bosons in the model with unbounded
Tc/ρs(0) [Eq. (12)]. a At T≳ Tc, the flat band is approximately half
filled, and the remaining nb− 1/2 bosonic particles per site occupy
the dispersive band. b At T= 0, the flat band is completely filled with
one boson per site, and hence the superfluid density is proportional
to nb− 1.
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the mean-field transition temperature only by a 1/N correction.
More specifically, this follows from the observation that the
superfluid stiffness is OðNÞ. Thus, Tc is unbounded.
The key ingredient in our model that allows us to take λ > 1

without suffering from lattice instabilities is that the different
phonon modes couple to electron bilinears that do not commute
with each other [see Eq. (17)]. This limits the energy gain from
distorting a given set of phonon modes when forming a CDW or a
polaron bound state, since the resulting perturbations to the
electronic Hamiltonian cannot be diagonalized simultaneously. In
contrast, the contributions of the individual phonon modes add
algebraically in the total dimensionless coupling λ that enters the
equation for the pairing vertex (the same dimensionless coupling
also determines the resistivity in the normal state of this model45).
It is worth noting that while these considerations may be of some

use in searching for systems with ever higher Tc, as a practical
matter it may be difficult to significantly violate the proposed
heuristic bound. To achieve Tc ≈ω0 requires the extremely large
value of λ ≈ 25. At the same time, to avoid polaron formation
requires N≫ λ, which means the number of distinctly coupled
phonon modes would have to be N2≫ λ2 ~ 625!

DISCUSSION
The notion of a fundamental upper bound on Tc for models of
interacting electrons is an attractive concept. In this paper, we
have demonstrated that while there are numerous physical
settings where such bounds can be formulated at a heuristic
level, there exists no fundamental, universal upper bound on Tc in
terms of the characteristic energy scales of interest to us, which
include an appropriately defined TF, ρs(0) and ω0. We have
constructed explicit counter-examples which violate these heur-
istic bounds by an arbitrary amount.
On the experimental front, it would be fruitful to look for

candidate materials where the heuristic bounds are violated by a
large amount. The fact that these bounds are usually satisfied is to
be expected, since although the bounds are not rigorous, the
physical reasoning behind them is quite robust. As our theoretical
discussion illustrates, whenever such bounds are violated, there is
an interesting underlying physical reason behind the violation;
moreover, the mechanisms behind the violation of the heuristic
bounds may suggest ways to optimize Tc. Our work provides two
such examples. Flat band systems with a large spatial extent of the
Wannier functions are a promising platform for increasing Tc. In
electron-phonon systems, the instabilities that limit Tc at large
electron-phonon interaction strength can be partially mitigated if

the coupling is shared between several active phonon modes that
couple to non-commuting electronic operators.

METHODS
All analytical calculations are explicit presented in Supplementary Information.
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