

1 **Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments:**
2 **the roles of authigenesis, marine silicate weathering and reverse weathering**

3 Jianghui Du^a, Brian A. Haley^b, Alan C. Mix^b, April Abbott^c, James McManus^d, Derek Vance^a

4 ^aInstitute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausiusstrasse 25,
5 8092, Zürich, Switzerland

6 ^bCollege of Earth Ocean and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin. Bldg.,
7 Corvallis, OR 97331, USA

8 ^cDepartment of Marine Science, Coastal Carolina University, 100 Chanticleer Drive E, Conway, SC 29526,
9 USA

10 ^dBigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA

11 **Corresponding to:** Jianghui Du (jianghui.du@erdw.ethz.ch)

12 Abstract

13 Dissolved Rare Earth Elements (REE) and radiogenic neodymium (Nd) isotope composition (ϵ_{Nd}) of
14 seawater are widely used geochemical tools in studying marine processes, but their modern ocean budgets
15 are poorly understood. Recent discoveries of large benthic fluxes of REE with unique ϵ_{Nd} signatures from
16 marine sediments, particularly in the deep-sea, have led to a “bottom-up” hypothesis, which suggests that
17 early diagenesis below the sediment-water interface (SWI) controls the ocean's REE and ϵ_{Nd} budgets. To
18 investigate such sedimentary processes, we created a reactive-transport model for the biogeochemical
19 cycling of Nd and ϵ_{Nd} in marine sediments. Here, we attempt to quantify the roles of authigenesis, marine
20 silicate weathering and reverse weathering in the diagenetic cycling of Nd and ϵ_{Nd} at a deep-sea (3000 m)
21 site on the Oregon margin.

22 Our model predicts that, at this site, Nd carried by Fe/Mn oxides into sediments eventually
23 transforms to authigenic Nd-phosphate, during which ~9% of the incoming solid Nd flux is released as a
24 dissolved benthic flux back to the overlying bottom water. We also find that the classic reversible
25 scavenging formulation applied to Nd co-cycling with Fe/Mn oxides is inconsistent with the data. Rather, a
26 co-precipitation formulation, assuming Nd is structurally incorporated into Fe/Mn oxides, successfully
27 simulates the data. The model also shows that authigenesis alone cannot explain the pore water and
28 authigenic ϵ_{Nd} , which are both more radiogenic than bottom water at this site. However, the weathering of
29 volcanic silicates sourced from the local subduction zone can successfully explain ϵ_{Nd} . We suggest that,
30 because reverse weathering by authigenic clay formation maintains the under-saturation of primary silicates
31 in pore water, marine silicate weathering can proceed. The processes we model likely affect the sedimentary
32 cycling of many other trace elements and isotopes, with much broader implications for the understanding of
33 ocean biogeochemistry.

34 Keywords:

35 Reactive-transport model, Rare Earth Elements, Radiogenic neodymium isotope, Authigenesis, Marine
36 silicate weathering, Reverse weathering

37 1. Introduction

38 The seawater Rare Earth Elements (REE) are widely used geochemical tools for tracing ocean
39 processes, such as circulation and the particulate-dissolved interaction known as Boundary Exchange
40 (Elderfield and Greaves, 1982; Lacan and Jeandel, 2005; Piepraga et al., 1979). Among the 14 REE,
41 neodymium (Nd) has received the most attention because its radiogenic isotope composition, expressed as
42 $\varepsilon_{\text{Nd}} = [({}^{143}\text{Nd}/{}^{144}\text{Nd})_{\text{sample}}/({}^{143}\text{Nd}/{}^{144}\text{Nd})_{\text{CHUR}} - 1] \times 10^4$ where CHUR is the Chondritic Uniform Reservoir, gives
43 additional constraints on the oceanic cycles of the REE (Goldstein and Hemming, 2003).

44 The applications of marine REE proxies have been hampered by our limited understanding of their
45 modern oceanic budgets. Studies of marine Nd cycle have long identified a “missing source” problem: the
46 known riverine and atmospheric inputs are too small to balance the global budgets, and some ~90% of the
47 required sources needed to maintain the ocean inventory appears to be “missing” (Arsouze et al., 2009;
48 Bertram and Elderfield, 1993; Tachikawa et al., 2003; Goldstein and Jacobsen, 1988).

49 Recently, the discovery of large benthic fluxes from marine sediment, with ε_{Nd} values that also
50 satisfy the isotope budget, provides a promising candidate for this “missing source”, leading to the “bottom-
51 up” hypothesis of the marine REE cycles (Abbott et al., 2015a; Du et al., 2020; Haley et al., 2017). In this
52 hypothesis, the sedimentary flux is the dominant source of ocean REE, and seawater ε_{Nd} signatures are
53 acquired at the sediment-water interface (SWI) rather than at the river/atmosphere-ocean interface.
54 Anomalous behavior of ε_{Nd} at the SWI has been documented (Grenier et al., 2013; Lacan and Jeandel, 2005;
55 Lambelet et al., 2018), suggesting that processes involved in Boundary Exchange are indeed critical to trace
56 element and isotopic budgets. It is thus important to understand the mechanisms of early diagenesis within
57 sediments that derive these benthic fluxes, and how these processes contribute to the broader concepts of
58 Boundary Exchange (Jeandel, 2016).

59 If correct, the “bottom-up” hypothesis would significantly change our interpretations of marine REE
60 proxies; for example, the use of ε_{Nd} to trace paleo-circulation (Abbott et al., 2022; Du et al., 2020, 2018).
61 However, studies of pore water REE concentrations and ε_{Nd} are scarce and mostly observational, with the
62 mechanisms regulating the flux obscured by the complexity of sedimentary processes.

63 Here we report a reactive-transport model of the early diagenesis of Nd and ε_{Nd} in marine sediments
64 with the intent of establishing the “bottom-up” hypothesis in mechanistic and quantitative terms. We focus

65 on deep-sea sediments where the benthic flux is the largest yet measured, potentially dominating the global
66 budget (Abbott et al., 2015b; Du et al., 2020). We also present a test application of the model to a deep-sea
67 site on the Oregon Margin, to date the only region for which a comprehensive pore water dataset exists
68 (Abbott et al., 2019, 2016, 2015b, 2015a). We test three processes hypothesized to be critical in the
69 diagenetic Nd cycle: (1) authigenesis of Fe-Mn oxides and phosphates (Schijf and Byrne, 2021; Takahashi et
70 al., 2015; Bi et al., 2021; Abbott et al., 2016); (2) weathering of lithogenic sediments, for example silicate
71 minerals (Abbott et al., 2022; Blaser et al., 2019; Du et al., 2020; Jeandel and Oelkers, 2015; Lacan and
72 Jeandel, 2005), and (3) reverse weathering through conversion of biogenic silica to authigenic clay (Aller,
73 2014; Mackin and Aller, 1984). These processes are likely important for the sedimentary cycle of many
74 trace elements and isotopes (TEIs), and our general modelling approach as well as the specific results for
75 this site thus have implications for the global budgets of these TEIs. Our model also helps illuminate how
76 authigenic phases acquire ε_{Nd} diagenetically, thus providing key insights for the use of authigenic ε_{Nd} in
77 paleoceanography.

78 2. Study region

79 Paired REE and ε_{Nd} measurements in pore water and sediment, as well as ancillary data needed by the
80 model, have only been made by Abbott et al., (2019, 2016, 2015b, 2015a) at three sites on the Oregon
81 margin, Northeast Pacific (Fig. 1). We choose to model site HH3000 at 3000 m water depth, because it has
82 one of the highest benthic Nd fluxes yet measured ($\sim 30 \text{ pmol/cm}^2/\text{yr}$). The water column here has a uniform
83 ε_{Nd} of -2.4ε , but pore water ε_{Nd} (-1.8ε) is more radiogenic, the first evidence that diagenetic processes can
84 decouple bottom and pore water ε_{Nd} .

85 The site underlies oxic bottom water ($\sim 100 \mu\text{M}$) and has a low organic carbon rain rate ($200 \mu\text{g/cm}^2/\text{yr}$)
86 (Lyle et al., 1992). These conditions lead to a weakly reducing shallow sediment package, with dissolved
87 Mn ($\sim 50 \mu\text{M}$) higher than Fe ($< 10 \mu\text{M}$) in pore water (Abbott et al., 2016). Sediments are composed mainly
88 of terrigenous materials ($\sim 90 \text{ wt\%}$) with moderate organic carbon (OC) ($\sim 1.8 \text{ wt\%}$), significant biogenic
89 opal ($\sim 6 \text{ wt\%}$), but negligible carbonate ($\sim 0.05 \text{ wt\%}$). The accumulation rate is $\sim 13 \text{ cm/kyr}$ (Abbott et al.,
90 2016; Lyle et al., 1992). Terrigenous sediments are delivered by small coastal rivers that drain across the
91 Oregon Coastal Range and Cascade Arc. The mineral assemblage consists of quartz, plagioclase, chlorite

92 and muscovite/illite, with minor clinopyroxene, amphibole and volcanic glass (Abbott et al., 2019),
93 reflecting their sources in the igneous and low-grade metamorphic rocks of the continental arc
94 (VanLaningham et al., 2008).

95 3. Diagenetic modelling

96 Ours is a classic 1D reactive-transport model describing the distributions of dissolved species in pore
97 water and solid species in sediments (Boudreau, 1997). Physical transport includes molecular diffusion,
98 burial and bio-irrigation for dissolved species, and bioturbation and burial for solid species. The model
99 includes the classic sequence of organic matter decomposition, and uses the continuum formulation of the
100 reactivity of organic matter. The model also includes secondary redox reactions, dissolution of biogenic
101 opal, CaCO_3 and precipitation of FeS/FeS_2 . We also model pH for speciation calculations. Complete model
102 details are given in the Supplementary Methods; here we only present those that relate to Nd and ε_{Nd} .

103 We model ^{144}Nd and radiogenic ^{143}Nd as two separate tracers. The convention for reporting radiogenic
104 ε_{Nd} is to remove the natural and instrumental stable isotope fractionation by normalizing the $^{143}\text{Nd}/^{144}\text{Nd}$
105 ratio to a fixed $^{146}\text{Nd}/^{144}\text{Nd}$ ratio of 0.7219. A model of ε_{Nd} thus has no need to consider stable isotope
106 fractionation. Modeled Nd concentration is the sum of these two isotopes divided by the summed natural
107 abundance (0.35971). Nd speciation for both isotopes is computed following Schijf and Byrne (2021),
108 considering complexation with dissolved ligands CO_3^{2-} , HCO_3^- , Cl^- , SO_4^{2-} and H_3SiO_4^- . We do not consider
109 organic ligands since they have not been characterized in sediment pore water.

110 3.1. Authigenic Fe/Mn oxides

111 To date, interaction of Nd with solid phases in ocean models has been formulated as *equilibrium*
112 reversible scavenging (Siddall et al., 2008). Using MnO_2 as an example (same for FeOOH):

$$113 \quad {}^i\text{Nd}_{\text{MnO}_2} = {}^i\text{Nd}_d \times K_{\text{ads-MnO}_2} \times \text{MnO}_2, \quad (1)$$

114 where

115 ${}^i\text{Nd}_d$ is the *total* dissolved Nd concentration ($i=143$ or 144);

116 ${}^i\text{Nd}_{\text{MnO}_2}$ is the adsorbed Nd concentrations;

117 $K_{ads-\text{MnO}_2}$ is the adsorption constant specific to MnO_2 .

118 We also consider an alternative *kinetic* co-precipitation formulation:

$$119 \quad R^i \text{Nd}_{\text{Mn-pre}} = R \text{Mn}_{\text{oxi}} \times D_{\text{Nd/Mn}} \times {}^i \text{Nd}_{\text{d/Mn}}, \quad (2)$$

$$120 \quad R^i \text{Nd}_{\text{Mn-dis}} = R \text{MnO}_{2\text{red}} \times {}^i \text{Nd}_{\text{MnO}_2}/\text{MnO}_2, \quad (3)$$

121 where

122 $R^i \text{Nd}_{\text{Mn-pre}}$ is the co-precipitation rate of Nd when dissolved Mn (Mn_d) is oxidized at a rate of $R \text{Mn}_{\text{oxi}}$;

123 $D_{\text{Nd/Mn}}$ is the partition coefficient controlling the enrichment of Nd relative to Mn in MnO_2 ;

124 $R^i \text{Nd}_{\text{Mn-dis}}$ is the release rate of solid Nd (${}^i \text{Nd}_{\text{MnO}_2}$) in MnO_2 during reduction ($R \text{MnO}_{2\text{red}}$).

125 In this formulation, newly formed oxides have the same ε_{Nd} as the pore water precipitating them, and
126 during dissolution the release of dissolved Nd isotopes are proportional to the release of dissolved Mn
127 according to the solid concentration ratio of Nd isotopes to Mn in MnO_2 (*i.e.*, dissolution is congruent).

128 3.2. Authigenic phosphate

129 We consider the precipitation-dissolution of rhabdophane (NdPO_4) using the classic linear Transient
130 State Theory (TST) (Steefel et al., 2014):

$$131 \quad R^i \text{Nd}_{\text{PO}_4} = k_{\text{NdPO}_4} \times a^i_{\text{NdPO}_4} \times ({}^i \text{Nd}^{3+} \times [\text{PO}_4^{3-}] / K_{sp\text{NdPO}_4} / a^i_{\text{NdPO}_4} - 1), \quad (4)$$

132 where

133 k_{NdPO_4} is the precipitation rate constant;

134 $a^i_{\text{NdPO}_4}$ is the activity of the isotopic NdPO_4 species ($i=143,144$), which we assume to form an ideal solid-
135 solution so that the activity is equal to the mole fraction;

136 $[{}^i \text{Nd}^{3+}]$ is the *free* Nd concentration of an isotope;

137 $[\text{PO}_4^{3-}]$ is the concentration of PO_4^{3-} ion;

138 $K_{sp\text{NdPO}_4}$ is the *apparent* solubility.

139 Positive $R^iNd_{PO_4}$ favors precipitation while negative values imply dissolution. This formulation

140 ensures that newly formed NdPO₄ has the same ϵ_{Nd} as the pore water.

141 **3.3. Marine silicate weathering**

142 We model the dissolution of four silicate phases: basalt glass, clinopyroxene, plagioclase and chlorite.

143 The general TST law of silicate dissolution is (Heřmanská et al., 2022):

144 $R_{silicate} = k_{silicate} \times S_{silicate} \times M_{silicate} \times \text{silicate} \times (1 - \Omega_{silicate}),$ (5)

145 Which is used for clinopyroxene and chlorite, but modified for basalt and plagioclase to include the Al-

146 inhibition term (Heřmanská et al., 2022):

147 $R_{basalt} = k_{basalt} \times S_{basalt} \times M_{basalt} \times \text{basalt} \times (a^3 H^+ / a_{Al^3+})^{1/3} \times (1 - \Omega_{basalt}),$ (6)

148 $R_{plag} = k_{plag} \times S_{plag} \times M_{plag} \times \text{plag} \times (a^3 H^+ / a_{Al^3+})^{0.35} \times (1 - \Omega_{plag}),$ (7)

149 where

150 k is the surface area normalized Si release rate;

151 S is the specific surface area;

152 M is the mineral molecular weight;

153 *Silicate/Basalt/Plag* is the mineral concentration in solid sediment;

154 Ω is the saturation state in pore water, and dissolution is allowed only when $\Omega < 1$;

155 a refers to aqueous activity.

156 The release of Nd isotopes are assumed congruent to Si:

157 $R^{143}Nd_{silicate} = R_{silicate} \times r_{Nd/Si} \times 0.35971 \times {}^{143}Nd / {}^{144}Nd_{silicate} / ({}^{143}Nd / {}^{144}Nd_{silicate} + 1),$ (8)

158 $R^{144}Nd_{silicate} = R_{silicate} \times r_{Nd/Si} \times 0.35971 / ({}^{143}Nd / {}^{144}Nd_{silicate} + 1),$ (9)

159 where

160 $r_{Nd/Si}$ is the molar Nd/Si ratio in silicates;

161 $^{143}\text{Nd}/^{144}\text{Nd}_{\text{silicate}}$ is the Nd isotopic ratio of silicates.

162 **3.4. Reverse weathering**

163 In the model, reverse weathering includes two reactions: (1) opal dissolution, releasing dissolved Si
164 to pore water, and; (2) authigenic illite formation, previously identified in marine sediments (Mackin and
165 Aller, 1986), that consumes cations and alkalinity from pore water while releasing CO₂. The net reaction is:

167 Opal dissolution also releases Al according to a molar Al/Si ratio of 0.0025 in diatom frustules (Van
168 Cappellen et al., 2002), and marine silicate weathering provides additional Al sources.

169 The dissolution rate of opal is (Van Cappellen et al., 2002):

170 $R_{\text{opal}} = k_{\text{opal}} \times \text{opal} \times (1 - \Omega_{\text{opal}})$, (11)

171 where

172 k_{opal} is the opal dissolution rate constant and,

173 Ω_{opal} is the opal saturation state.

174 The rate of authigenic illite precipitation is computed using the TST rate law Eq. (5) when $\Omega_{\text{illite}} > 1$.

175 **3.5. Model simulations**

176 We perform two types of simulations: baseline simulations and simulations that further add silicate
177 weathering and reverse weathering. The baseline simulations include the sediment biogeochemical reactions
178 and the authigenic Fe/Mn oxides and phosphate phases, and we test both the reversible scavenging and co-
179 precipitation formulations. In the silicate weathering and reverse weathering simulations, silicate phases are
180 added to the sediments to study their behavior. We test the model sensitivity to the dissolution rates of
181 silicates, and the precipitation rates of authigenic clay during reverse weathering.

182 The model domain is the top 50 cm of the sediment, representing ~3500 years of sedimentation. This
183 depth domain is discretized into 200 intervals, with finer grid spacing close to SWI to capture the large
184 biogeochemical gradients there, resulting in 6600 coupled and stiff differential equations in the baseline
185 simulations. Boundary conditions and the model solution are described in the Supplementary Methods.

186 4. Results

187 4.1. Sediment biogeochemistry

188 The model reproduces the classic redox sequence at site HH3000 (Fig. 2). The depth-integrated OC
189 remineralization rate is 0.5 mmol/m²/d, typical of this margin at similar water depth (McManus et al., 2012).
190 The remineralization pathway is dominated by aerobic respiration (37.6%) and sulfate reduction (52.6%)
191 (Fig. 2a). Despite its importance, sulfate reduction is still far from complete, with only ~0.5 mM of SO₄
192 consumed in the top 50 cm (Fig. 2f) and little formation of Fe sulfides (~0.12 wt%, Fig. 2e). Denitrification
193 (8.0%) and MnO₂ reduction (1.6%) also contribute to carbon remineralization, but there is little FeOOH
194 reduction (0.25%) and methanogenesis is negligible (Fig. 2a). Organic carbon respiration slightly decreases
195 pH from ~7.7 in the bottom water to ~7.3 in the deep pore water (Fig. 2i). Pore water total silica
196 concentration is relatively high (~620 μM, Fig. 2g) because of high opal content.

197 In the model, the surface bioturbated layer is ~ 6 cm thick. To fit the OC profile (Fig. 2d), the initial age
198 of OC in the continuum reactivity model is 60 yr, higher than that of fresh phytoplankton but within the
199 range observed in deep-sea studies (Arndt et al., 2013). To fit the dissolved phosphate profile (Fig. 2h), the
200 required P/C ratio is 1/170, lower than the classic Redfield ratio (1/106). Together, the lower reactivity and
201 P/C imply the presence of refractory terrestrial OC at this site (Hastings et al., 2012).

202 Assuming sediments below 6 cm represent the lithogenic background, the excesses of MnO₂,
203 presumably authigenic, are ~0.45 wt% near the surface (Fig. 2d) (Abbott et al., 2016). Modeled surface
204 sediment MnO₂ (~0.05 wt%) has to be lower than this value to fit the pore water Mn profile (Fig. 2c),
205 suggesting that the surface enrichment might be a transient feature, or that other interfaces or microbial
206 processes are involved but not modeled. Estimated authigenic (0.5 wt%) and modeled (0.2 wt%) FeOOH are
207 similar (Fig. 2d). The authigenic enrichment of Fe is thus much lower than Mn, given the higher lithogenic
208 background for Fe (~5 wt%) versus Mn (~0.07 wt%). Model results are consistent with elemental mapping
209 using energy dispersive X-ray spectroscopy (EDS), which shows that Fe is located mainly in silicates, while
210 Mn is enriched in amorphous nanoparticles that are likely authigenic (Abbott et al., 2019). Modeled Mn
211 cycling is more intense than Fe cycling, at rates one order of magnitude higher for Mn than Fe (Fig. 2d). The
212 modeled benthic Mn flux is 0.14 μmol/m²/d, in the range of measurements at similar depths at this margin

213 (McManus et al., 2012). The modeled benthic Fe flux is $-0.005 \mu\text{mol/m}^2/\text{d}$, also consistent with
214 measurements (McManus et al., 1997).

215 5. Discussion

216 5.1. Authigenesis

217 Authigenesis has typically been considered the main process affecting the early diagenesis of REE
218 (Haley et al., 2004; German and Elderfield, 1989), which in turn has justified the assumption that pore water
219 and authigenic Nd are simply derived from bottom water Nd at the SWI (Goldstein and Hemming, 2003).
220 Here we investigate to what degree authigenesis alone can explain the observations of the diagenetic Nd
221 cycle.

222 5.1.1. Authigenic Fe/Mn oxides and co-precipitation

223 Our co-precipitation formulation is controlled by the partition coefficients (D). We use the results of
224 the GEOTRACES Pacific GP16 cruise (Haley et al., 2021; Lam et al., 2018) to derive these parameter
225 values. $D_{Nd/Mn}$ is calculated as $(Nd_{auth}/MnO_2)/(Nd_d/Mn_d)$. Nd_{auth} is the measured particulate Nd corrected for
226 lithogenic background, using a lithogenic Nd/Al mass ratio of 3.375×10^{-4} and measured particulate Al. Data
227 for authigenic MnO_2 , $FeOOH$, dissolved Nd and Mn are from the cited studies (Haley et al., 2021; Lam et
228 al., 2018). We find $D_{Nd/Mn}=0.025$ and $D_{Nd/Fe}=0.005$ in the deep-sea (>2500 m). Using these values, the fluxes
229 of Nd carried by MnO_2 and $FeOOH$ into sediments at the study site are 612 and $40 \text{ pmol/cm}^2/\text{yr}$,
230 respectively, based on the MnO_2 and $FeOOH$ fluxes in the model (Supplementary Information).

231 For co-precipitation, the modeled pore water and authigenic Nd agree well with measurements (Fig.
232 3). MnO_2 reduction (by POC, Fe^{2+} and H_2S) is predicted to be the major source of pore water Nd (Fig. 3d),
233 while Mn oxidation (by O_2) is a small sink. The depth-integrated MnO_2 reduction source (647 pmol
234 $Nd/\text{cm}^2/\text{yr}$) far outweighs the Mn oxidation sink ($35 \text{ pmol Nd/cm}^2/\text{yr}$). In comparison, $FeOOH$ reduction (by
235 POC and H_2S) is a much smaller source of pore water Nd (Fig. 3d), while Fe oxidation (by O_2 and MnO_2) is
236 a relatively larger sink. The depth-integrated $FeOOH$ reduction source ($120 \text{ pmol Nd/cm}^2/\text{yr}$) slightly
237 exceeds the Fe oxidation sink ($80 \text{ pmol Nd/cm}^2/\text{yr}$).

238 **5.1.2. Authigenic Fe/Mn oxides and reversible scavenging**

239 The reversible scavenging formulation is controlled by the adsorption constants (K_{ads}). We use

240 values of $K_{ads-MnO_2}=5\times 10^7$ (M⁻¹) and $K_{ads-FeOOH}=0.8\times 10^7$ (M⁻¹), to deliver the same amount of Nd to the

241 sediment via Fe/Mn oxides as in the co-precipitation simulation (Supplementary Methods).

242 These model results cannot explain the pore water Nd profile (Fig. 4). Modeled peak Nd

243 concentration is far deeper than measured (Fig. 4c). Model sensitivity tests show that by varying K_{ads} the

244 magnitude of the peak Nd concentration would change, but it would not affect the depth of the peak

245 (Supplementary Fig. 1). This is because, in the presence of MnO₂ and FeOOH, Nd remains in the adsorbed

246 form, and is converted to dissolved Nd only when the concentrations of oxides greatly decrease (Fig. 4b). In

247 contrast, in the co-precipitation formulation Nd is released to pore water as soon as oxide reduction begins

248 (Fig. 3d). The failure of reversible scavenging is perhaps not surprising given that *reversible* adsorption is a

249 first step toward *irreversible* structural incorporation (co-precipitation), and laboratory experiments have

250 identified the gradual structural incorporation of adsorbed trace metals into Mn oxides (Atkins et al., 2016).

251 Most existing ocean models rely on reversible scavenging to explain increasing seawater REE (and

252 other TEIs) concentrations with increasing water depth in the open ocean (Arsouze et al., 2009; Siddall et

253 al., 2008), on the premise that the concentrations of particulate scavengers decrease with depth. However, no

254 ocean REE model has included Fe/Mn oxides, despite the fact that they are amongst the most important

255 scavengers, especially in the deep ocean (Schijf et al., 2015). If Fe/Mn oxide concentrations in seawater

256 increase with depth, as recent GEOTRACES results have shown (Lam et al., 2018), reversible scavenging

257 onto Fe/Mn oxides would predict a decrease, rather than an increase, of seawater REE concentrations with

258 depth. Our results do not necessarily indicate that adsorption is unimportant, but rather that the reversible

259 scavenging formulation in present ocean models may be unsuitable to describe this process, or that kinetic

260 rather than equilibrium process may better describe particulate-dissolved interaction in seawater. We suggest

261 that future studies need to include Fe/Mn oxides to robustly evaluate the appropriateness of reversible

262 scavenging.

263 5.1.3. Authigenic phosphate

264 Solid REE concentrations in Pacific sediments are most strongly correlated to phosphate, more so than
265 Fe/Mn oxides and other elements (Bi et al., 2021). Also, bio-apatite becomes strongly enriched in REE post-
266 deposition (Toyoda and Tokonami, 1990). Diagenetic Nd formed on foraminiferal tests is associated with
267 oxides, *but also phosphorous* (Roberts et al., 2012). Transformation of labile Fe/Mn oxide-associated REE
268 to stable phosphate phases has been identified in pelagic sediments, suggesting phosphate is likely the
269 ultimate sink of REE (Takahashi et al., 2015). Whether REE form their own phosphate minerals, are
270 incorporated into authigenic Ca-phosphates, or are taken up by biogenic phosphate, is unclear. In the model,
271 we choose rhabdophane, a common REE mineral forming in low-temperature environment (Gausse et al.,
272 2016; Liu and Byrne, 1997; Pearce et al., 2013), as the authigenic phosphate (NdPO_4), largely because
273 relevant thermodynamic data exist.

274 Literature values of $\log(K_{sp}^0_{\text{NdPO}_4})$ at standard state and zero ionic strength are in the range of $-26 \sim -24$
275 (Gausse et al., 2016). The corresponding *apparent* $\log(K_{sp\text{NdPO}_4})$ in seawater medium at *in situ* temperature
276 (2°C) and atmospheric pressure is estimated to be $-20 \sim -18$ using the activity coefficients of Pierrot and
277 Millero (2017), but we lack the thermodynamic data to compute the constant at *in situ* pressure. Model
278 sensitivity tests show that the higher end of solubility estimates fits the pore water Nd profile better
279 (Supplementary Fig. 2), which could be because either greater pressure leads to higher solubility than
280 reported values at the standard state, or because NdPO_4 formed in sediments is less crystalline than the
281 versions used in some solubility experiments (Gausse et al., 2016). The saturation concentration of *total* Nd
282 with respect to NdPO_4 is

$$283 Nd_{saturation} = K_{sp\text{NdPO}_4} / ([\text{PO}_4^{3-}] \times f_{\text{Nd}^{3+}}), \quad (12)$$

284 where $f_{\text{Nd}^{3+}}$ is the fraction of the *free* Nd^{3+} ion.

285 Given $k_{\text{NdPO}_4} = 100 \text{ pmol/cm}^3/\text{yr}$, the modeled pore water Nd fits observations very well (Fig. 3g). Pore
286 water becomes oversaturated below $\sim 1 \text{ cm}$. Close to the SWI, solid NdPO_4 that is formed in the over-
287 saturation zone beneath is brought up to the under-saturation zone by bioturbation, and its dissolution is a
288 greater source of pore water Nd than MnO_2 reduction (Fig. 3d, e). Overall, phosphate precipitation is the

289 dominant sink of pore water Nd, far surpassing that of Fe/Mn oxidation (Fig. 3d–e). As modeled oxides
290 disappear below 30 cm, the model predicts pore water Nd concentration that are nearly at *equilibrium* with
291 NdPO₄ (Fig. 3g). The modeled total (MnO₂, FeOOH and phosphate related) authigenic Nd concentration (~9
292 ppm) also matches estimates based on an *operationally* defined acid-reductive leaching (Abbott et al., 2016).
293 Though leaching studies of authigenic Nd have traditionally focused on the role of Fe/Mn oxides, it is well-
294 known that the acetic acid used in these studies can also extract authigenic and biogenic phosphates
295 (Ruttenberg, 1992).

296 5.1.4. Authigenesis and benthic flux

297 The benthic Nd flux in the model is affected by molecular diffusion and bio-irrigation (i.e.,
298 convective exchange between pore water and bottom water due to the activity of benthic organisms)
299 (Supplementary Methods). Using the co-precipitation formulation and including authigenic phosphate, the
300 modeled diffusive flux is 39 pmol/cm²/yr, agreeing well with the estimate (24~41 pmol/cm²/yr) based on the
301 measured pore water profile (Abbott et al., 2015b). The model uses the bio-irrigation parameterization of
302 Meile and Van Cappellen (2003), derived from the globally measured O₂ flux. The resulting bio-irrigation
303 Nd flux is 20 pmol/cm²/yr. This value is an upper limit because the impact of bio-irrigation on other
304 dissolved species is likely weaker than on O₂ (Meile et al., 2005). Taken together the total benthic flux is 59
305 pmol/cm²/yr.

306 The authigenic minerals influence the benthic Nd flux in different ways. Both MnO₂ and NdPO₄ are
307 sources of pore water Nd at the SWI, and thus support the benthic flux. However, when integrated over the
308 sediment column, MnO₂ is a net source of pore water Nd while NdPO₄ is a net sink (Fig. 3d–f). In contrast,
309 FeOOH is a sink of pore water Nd at the SWI and thus decreases the benthic flux (Fig. 3d–f), despite the
310 fact that FeOOH is a net source of pore water Nd integrated over the sediment column.

311 In summary, in the baseline simulation including only authigenesis, the early diagenetic Nd cycle at the
312 study site can be described as near total (~91%) conversion of Nd carried by incoming MnO₂, and to a lesser
313 degree FeOOH, to authigenic NdPO₄, with a small fraction (~9%) returning to bottom water via diffusion
314 and irrigation. Since, in this model, all Nd sources ultimately come from incoming water column-derived
315 Fe/Mn oxides, modeled pore water and authigenic ϵ_{Nd} are the same as bottom water (Fig. 3i).

316 5.2. Silicate weathering

317 The observed relatively small ε_{Nd} difference ($+0.6 \varepsilon$) between pore water and bottom water is an
318 indication that bottom water ε_{Nd} is strongly influenced by pore water ε_{Nd} because of a large benthic flux
319 (Abbott et al., 2016). To explain this difference additional processes must be invoked. Much larger
320 differences between pore water/authigenic and bottom water ε_{Nd} exist elsewhere, linked to smaller benthic
321 flux or reactive lithogenic sediments (Abbott et al., 2016; Blaser et al., 2019; Du et al., 2016; Wilson et al.,
322 2013). Moreover, variations in authigenic ε_{Nd} on glacial-interglacial timescales is only on the order of $1\sim2 \varepsilon$,
323 sometimes correlated to changes of lithogenic sediment ε_{Nd} (Du et al., 2020 and references therein). It is thus
324 important to understand ε_{Nd} differences on this order of magnitude for robust circulation reconstruction.

325 5.2.1. The reactive spectrum of silicate minerals

326 Our next model iteration investigates the impact of marine silicate weathering on the diagenetic cycle of
327 ε_{Nd} , focusing on mineral reactivity. We model four phases: basaltic glass, clinopyroxene, chlorite and
328 plagioclase (albite): all present in the study region (Abbott et al., 2019; VanLaningham et al., 2008).
329 Volcanic glass, often derived from ash deposition that reaches far into the ocean interior, is ubiquitous in
330 Pacific sediments (Du et al., 2020; Straub and Schmincke, 1998). Clinopyroxene is a mafic mineral that is
331 commonly found in sediments near volcanic arcs. Chlorite often exists as a clay mineral, as the metamorphic
332 alteration product of igneous minerals (Griffin et al., 1968). Plagioclase is not necessarily volcanic but it
333 is the most abundant primary silicate mineral, after quartz, in marine sediments (Li and Schoonmaker,
334 2014). Collectively they represent a large range of silicate reactivity in terms of abundance, dissolution rate
335 and solubility.

336 We add these phases separately to the baseline model, with deposition fluxes that are proportional to the
337 total incoming sediment: 2 wt% of basalt glass and clinopyroxene, 10 wt% of chlorite and 20 wt% of
338 plagioclase respectively, based on published abundance data in the study region (Abbott et al., 2019;
339 VanLaningham et al., 2008; Zemmel and Cook, 1973). Interrogation of the GEOROC database
340 (Supplementary Methods), either using data from the Cascade Arc or other convergent margins, suggests
341 that the average Nd/Si molar ratios of basalt glass, clinopyroxene and plagioclase are 1.9×10^{-5} , 1.8×10^{-5} and
342 1.9×10^{-6} respectively (Supplementary Fig. 3), consistent with the partition coefficients of Nd in silicates

343 (Taylor and McLennan, 1988). For chlorite, we use the average Nd/Si ratio (1.6×10^{-5}) of clay minerals from
344 rivers draining volcanic terrains, as compiled by Bayon et al., (2015). In comparison, the average Nd/Si ratio
345 of volcanic rocks from the Cascade Arc is 1.7×10^{-5} , similar to that of basalt glass, clinopyroxene and clay,
346 but 1-order of magnitude higher than plagioclase. The average ϵ_{Nd} of Cascade volcanic rocks is $+6.2 \epsilon$ which
347 we use for all four silicates. Dissolution parameters for these phases are reported in Supplementary Table 6.

348 We further assume that during silicate weathering the Nd/Si dissolution rate ratio is the same as the
349 Nd/Si ratio in silicates (*i.e.*, congruent dissolution). In the laboratory dissolution experiment of Pearce et al.,
350 (2013), the ratio of *gross* Nd/Si release, estimated using ϵ_{Nd} , from three basalt samples at the end of 121
351 days is $\sim 2.5 \times 10^{-5}$. This value is similar to the Nd/Si ratio in their basalt samples ($\sim 2.1 \times 10^{-5}$), supporting our
352 assumption. No other experimental studies of Nd and ϵ_{Nd} during silicate dissolution exists to our knowledge,
353 thus whether this assumption is true for other silicates is presently not tested.

354 Field-derived weathering rates are often lower than laboratory-derived values, a conundrum that has
355 been attributed to inadequate dissolution rate laws, the loss of reactive surface sites due to occlusion, fluid
356 transport limitation and the influence of secondary phases on saturation state (e.g., Maher et al., 2006). For
357 example, Maher et al., (2006) suggested that the plagioclase dissolution rate in deep-sea sediments is 10^5
358 times lower than in the laboratory for the linear TST rate law at their study site. To investigate our model
359 sensitivity, we vary the silicate dissolution rates by 6 orders of magnitude, from the laboratory-derived rates
360 to values 1 to 5 orders of magnitude lower.

361 At higher dissolution rates, silicates are quickly consumed, while at lower rates greater amounts of
362 minerals are preserved (Fig. 5). The modeled pore water Nd concentration, however, do not respond linearly
363 to changes of dissolution rate (Fig. 5–6). In the upper sediment (<10 cm), dissolved Nd still largely agrees
364 with the observed concentrations (Fig. 6), as silicate Nd release at even the highest dissolution rates are
365 slower than Nd release from $\text{MnO}_2/\text{NdPO}_4$ (Fig. 3). In the deeper sediment, modeled dissolved Nd exceeds
366 the measured values at intermediate dissolution rates, but neither with the highest nor lowest rates: the
367 former because the silicates are spent and the latter because dissolution is slow at all depths. Modeled
368 dissolved Si is subject to a similar influence (Fig. 5).

369 Model sensitivity also depends on mineral abundance, Nd/Si ratio and solubility (Fig. 5–6). Modeled Nd,
370 Si concentrations and ϵ_{Nd} are not sensitive to dissolution of basaltic glass nor clinopyroxene because their
371 Nd and Si reservoirs are small due to low abundance at the study site (Fig. 5a–h, 6a–h). In contrast, modeled
372 Si concentration are very sensitive to plagioclase dissolution (Fig. 5i–l) because it is more abundant and thus
373 has greater potential to affect pore water chemistry, such as pH. This in turn drives large changes of Nd
374 speciation and dissolved Nd concentration (Fig. 6i). The influence on ϵ_{Nd} is however limited too because
375 low Nd/Si in plagioclase leads to a small Nd reservoir. In comparison, despite a relatively high abundance
376 and large Nd reservoir, modeled ϵ_{Nd} is not much more sensitive to chlorite dissolution rates because of its
377 relatively low solubility (Fig. 5m–p, 6m–p).

378 5.2.2. Best-fit silicate weathering models

379 Considering the fit to observed pore water ϵ_{Nd} , Nd and Si concentrations, the best-fit models include
380 the weathering of volcanic phases such as basaltic glass and clinopyroxene, at dissolution rates within 2
381 orders of magnitude of laboratory-derived rates (Fig. 5a–h, 6a–h), and with their presence at <2 wt%. This
382 relatively high reactivity may be explained by their “freshness,” because of direct volcanic ash deposition, or
383 fast physical erosion of volcanic rocks in the Costal Range and Cascade Arc, coupled to short transport
384 times in coastal rivers and efficient dispersal of fluvial sediments on the Oregon margin (Wheatcroft and
385 Sommerfield, 2005). In contrast, to explain pore water ϵ_{Nd} requires that nearly all plagioclase dissolves,
386 inconsistent with its observed abundance at ~20 wt%. The model using chlorite cannot fit Nd concentration
387 and ϵ_{Nd} simultaneously, and its abundance at ~10 wt% also suggest it is likely not reactive. The inferred low
388 reactivity of plagioclase and chlorite implies that at site HH3000 these minerals are probably not of volcanic
389 origin (*i.e.*, sedimentary or metamorphic), and have experienced loss of reactivity before reaching the
390 seafloor.

391 Adding silicate weathering increases *diffusive* benthic Nd fluxes from 39 pmol/cm²/yr in the baseline
392 model to 41~42 pmol/cm²/yr in the best-fit models (the range is given for basalt weathering using
393 dissolution rates that are 10⁻¹~10⁰ times of laboratory-derived rate). Thus, the impact of silicate weathering
394 on the elemental Nd benthic flux is likely non-measurable at site HH3000. In contrast, the ϵ_{Nd} of the flux
395 increases from -2.4 ϵ to -1.7~ -1.3 ϵ , a significant difference given the analytical uncertainty (2 σ =0.27 ϵ).

396 Modeled pore water ϵ_{Nd} is more radiogenic than bottom water (-2.4ϵ), and importantly, the trend of pore
397 water ϵ_{Nd} deviating toward bottom water ϵ_{Nd} at ~ 5 cm is reproduced (Fig. 6c, 6g). This depth is where MnO_2
398 reduction rate is at a maximum, and thus is the peak release for seawater derived Nd (Fig. 3d).

399 Modeled authigenic ϵ_{Nd} is similar to pore water, but has a smoother profile (Fig. 6d, 6h), as
400 authigenic phases integrate over longer timescales and are subject to bioturbation. However, modeled
401 authigenic ϵ_{Nd} is still not as radiogenic as the *operationally* defined leachate ϵ_{Nd} (Abbott et al., 2016),
402 suggesting that the leach likely extracts some non-authigenic components that are refractory under *in situ*
403 sediment conditions but reactive in laboratory leaching (Abbott et al., 2022, 2016; Du et al., 2016). If the
404 lower pH and wash off of major cations during leaching increases the dissolution rates and under-saturation
405 of silicate minerals like plagioclase and chlorite, enough silicate Nd could be released, just as our model
406 demonstrates (Fig. 6p). At site HH3000, a combination of ~ 8.5 ppm *truly* authigenic Nd (-1.8ϵ) with ~ 0.5
407 ppm Nd extracted from silicates ($+6.2 \epsilon$), can explain the leachate Nd (~ 9 ppm and $\sim -1.2 \epsilon$).

408 5.3. Reverse weathering

409 Authigenic clay formation during reverse weathering can affect the saturation state of primary
410 silicates by influencing pore water Al concentration (Maher et al., 2006), thus *indirectly* controlling the
411 diagenetic Nd cycle. In the “best-fit” silicate weathering models discussed above, we included reverse
412 weathering using an authigenic illite precipitation rate of 10^{-19} mol/m²/s, as suggested by a previous study
413 (Maher et al., 2006), but ~ 6 orders of magnitude lower than laboratory-derived rates (Marty et al., 2015).

414 We ran further sensitivity tests of the influence of reverse weathering by varying the authigenic illite
415 precipitation rate (Fig. 7): 10^{-19} mol/m²/s in the “normal clay” model; 10^{-16} in the “fast clay”; 10^{-22} in the
416 “slow clay”, and 0 in the “no clay” (no reverse weathering) models. At the study site illite is also a *detrital*
417 mineral through riverine input (VanLaningham et al., 2008). Therefore, in the model, we add a *detrital* illite
418 flux that represents 2 wt% of the total sediment. We model the *total* illite concentration, with the *authigenic*
419 fraction as the excess above the detrital input. In these tests we include basalt weathering as discussed
420 previously, at a dissolution rate 10^{-1} times the laboratory-derived value.

421 Close to the SWI (<0.2 cm), modeled Al and Si concentrations are positively correlated because of
422 co-release by basalt and opal dissolution, but they become anti-correlated at depth because of authigenic

423 illite formation, except in the “no clay” model wherein the positive correlation persists (Fig. 7e–f, 8). At
424 depth, the Al concentration converges to equilibrium values with respect to illite solubility in the “fast clay”
425 model, but reaches an asymptote to values that are congruent to Si with respect to opal in the “no clay”
426 model. Pore water Al in the upper sediment increases from ~1 nM in the “fast clay” model to ~1000 nM in
427 the “no clay” model (Fig. 7e), reducing basalt under-saturation, until over-saturation (Fig. 7g). Authigenic
428 illite concentration is <1 wt% in all models.

429 Pore water Al was not measured at HH3000. We compare the modeled Al-Si relationship with
430 published seawater and pore water data to evaluate if model results are reasonable (Fig. 8). Al-Si trends in
431 the “fast clay” and “normal clay” models follow that of deep ocean water (GEOTRACES Intermediate Data
432 Product Group, 2021) and East China Sea pore water (Mackin and Aller, 1984). Al-Si trends in the “normal
433 clay” and “slow clay” models bracket pore water data from the North Atlantic, Southern Ocean and Amazon
434 shelf (Mackin and Aller, 1986, 1986; Stoffyn-Egli, 1982; Van Beueskom et al., 1997). The Al speciation in
435 the model considers only hydrolysis, but if other ligands are present, which is likely in reality, then the same
436 *free* Al^{3+} concentration in the model would lead to greater *total* Al concentrations. Thus the modeled total Al
437 concentration is likely a lower limit. Overall, we consider the “normal clay” model the best option given its
438 consistency with literature data and the uncertainty in Al speciation. As long as the precipitation rate is
439 higher than in the “slow clay” model, reverse weathering will drive basalt weathering, and modeled pore
440 water ε_{Nd} will agree with observations (Fig. 7l).

441 Finally, whether Nd is *directly* incorporated into authigenic clay is unknown. If it is, and assuming
442 the same Nd/Si ratio as primary silicates, the authigenic illite sink for Nd (<3 pmol/cm³/yr) (Fig. 7a) would
443 be much smaller than the phosphate sink (~200 pmol/cm³/yr) (Fig. 3d), and thus negligible.

444 6. Implications and perspectives

445 The modeled diagenetic Nd cycle at the study site is summarized in Fig. 9. Our aim was to
446 investigate the roles of commonly suggested sedimentary processes, rather than comprehensively consider
447 all potential processes. That the model successfully simulated observations indicates co-cycling with Fe/Mn,
448 authigenic phosphate formation, silicate weathering and reverse weathering are indeed among the most

449 important at the study site. Future studies should aim to examine other potential processes, such as the role
450 of organic ligands and colloids in pore water.

451 Our study paves the way for modeling diagenetic Nd cycling at other sites and regions where the
452 relative contributions of the studied processes may differ. For instance, site HH200 on the Oregon shelf (200
453 m) has a much larger pore water to bottom water ε_{Nd} difference (+1.6 ε) than the study site HH3000 (+0.6 ε),
454 corresponding to a greater abundance of volcanic phases like glass and clinopyroxene in sediments (Abbott
455 et al., 2019). One would thus expect silicate weathering to be more important than at the deep-sea site
456 HH3000.

457 Our study also has global implications. With authigenesis alone, a benthic flux only produces
458 regenerated Nd (Fig. 9), with significant impact on the oceanic budget of Nd concentration but not ε_{Nd} . In
459 contrast, silicate weathering produces a new external source of Nd (Fig. 9), which may have a small impact
460 on the Nd concentration but a significant one on ε_{Nd} , particularly when the ε_{Nd} difference between seawater
461 and reactive silicate phases is large. This contrast in element versus isotopic sensitivity mirrors seawater
462 observations and implies that diagenetic transformation at the SWI is likely a key component of Boundary
463 Exchange (Jeandel, 2016). The apparent conservative behavior of seawater ε_{Nd} , in the presence of non-
464 conservative Nd concentration due to benthic flux, can be preserved in the first case but not in the second.
465 The reality is likely somewhere in-between (Du et al., 2020). We suggest the differing response of Nd
466 concentration versus ε_{Nd} to the benthic flux is key to resolving the “Nd paradox” (Goldstein and Hemming,
467 2003).

468 Our results may also explain why, globally, benthic Nd fluxes do not correlate to redox parameters
469 such as bottom water oxygen and OC rain rate (Du et al., 2018). For example, strong redox cycling on the
470 continental shelf does not convert to high benthic Nd flux (Abbott et al., 2015b; Deng et al., 2022) as it does
471 for Fe and Mn (McManus et al., 2012, 1997). We suggest that the non-redox-sensitive Nd sink (phosphate)
472 may play a more important role than the redox-sensitive source (Fe/Mn oxides). If phosphate
473 precipitation/dissolution is fast enough, pore water Nd concentrations will be largely controlled by
474 phosphate solubility, and only weakly dependent on redox cycling.

475 Our model illustrates the *indispensable* role of pore water TEI data in constraining diagenetic
476 processes and fluxes across the SWI. In our best-fit models, with 2 wt% basalt/clinopyroxene supply to
477 sediments, only <0.4 wt% remains at the surface, and none below 10 cm. Such small fractions are virtually
478 undetectable by solid phase analysis methods, let alone when the solid phases have disappeared completely
479 and leave only an imprint on pore water. Thus, it is likely *not* possible to study such processes using solid
480 phase analysis alone: pore water TEIs may be our only source of evidence.

481 The processes investigated here also affect the diagenesis of other TEIs (Little et al., 2020; Jeandel,
482 2016). Presently, the application of diagenetic modeling to TEIs is limited by the scarcity of comprehensive
483 pore water data and measurements of the fluxes of all solid components into sediments. As fluxes at the SWI
484 are increasingly seen to be a key part of the global ocean budgets of TEIs (Homoky et al., 2016), it is
485 important for further pore water and sediment trap TEI studies, as extensions of the GEOTRACES water
486 column surveys.

487 7. Conclusions

488 We created the first reactive-transport model for Nd and ϵ_{Nd} in marine sediments, and quantified the
489 roles of authigenesis, silicate weathering and reverse weathering in the early diagenetic Nd cycle at the
490 deep-sea site HH3000 on the Oregon margin.

491 The model correctly captured the biogeochemical processes at the site and successfully simulated the
492 observed pore water Nd profile using the co-precipitation formulation of Nd co-cycling with Fe/Mn and
493 authigenic phosphate formation. In the simulation, we found that MnO_2 reduction is the main source of Nd
494 in pore water, phosphate formation is the main sink, and Fe cycling plays a minor role. Benthic Nd flux is
495 mainly driven by MnO_2 reduction and phosphate dissolution close to the SWI. In contrast, the model cannot
496 reproduce the pore water Nd profile via the reversible scavenging formulation of Nd co-cycling with Fe/Mn.

497 We further included silicate weathering and reverse weathering to simulate pore water ϵ_{Nd} . We
498 studied the model's sensitivity to the dissolution of basaltic glass, clinopyroxene, plagioclase and chlorite,
499 representing a wide range of mineral reactivity, abundance and solubility. The model correctly simulated
500 pore water ϵ_{Nd} (and other data) if it includes the weathering of basaltic glass or clinopyroxene with relatively

501 high dissolution rates, supporting the hypothesis that weathering of volcanic sediments is responsible for the
502 relatively more radiogenic ϵ_{Nd} of pore water and authigenic phases in the Pacific. Furthermore, we show that
503 reverse weathering is necessary to maintain relatively low pore water Al concentrations, thus enabling the
504 undersaturation of primary silicates and indirectly contributing to the diagenetic Nd cycle.

505 Acknowledgements

506 This project has received funding from the European Union's Horizon 2020 research and innovation
507 programme under the Marie Skłodowska-Curie grant agreement 891489. J.D. was also supported by an ETH
508 Zurich Postdoctoral Fellowship 19-2 FEL-32. A.C.M and B.A.H. received funding from US NSF Grant
509 1357529. B.A.H was supported by US NSF Grant 1850765. J.M. was supported by US NSF Grant 1850789.
510 Collection of Oregon margin pore water and sediment data were funded by US NSF Grant 1147407. We
511 thank Dr. Laurence Coogan for editorial handling, and Dr. Catherine Jeandel and one other anonymous
512 reviewer for their comments and insights which greatly improved this manuscript.

513 Data availability

514 Model output from this study can be found at: <https://doi.org/10.5281/zenodo.6998239>.

515 Figure legends

516
517 Fig 1. Map of the study region. Site HH3000 is marked by the white dot with black border. The two thin
518 black lines on the seafloor indicate the 200 m and 3000 m depth contours. The white dashed lines indicate
519 the plate tectonic boundaries. The red triangles on land indicate volcanoes in the Cascades. The blue lines on
520 land indicate rivers.

521

522 Fig. 2. Modeled sediment biogeochemistry. (a) POC oxidation rates. (b) Mn and Fe cycling rates. (c–h)
523 Solid and dissolved species (lines) compared with measured values (colored dots with red borders). (i) Pore
524 water pH (free proton scale). The prefix “T” in names indicates total concentrations summed over all species
525 (e.g., TH₃PO₄ = H₃PO₄ + H₂PO₄[–] + HPO₄^{2–} + PO₄^{3–}).

526

527 Fig. 3. Baseline simulation using the co-precipitation formulation for Fe/Mn oxides and including NdPO₄.
528 (a–c) Fe, Mn and phosphate cycling. (d) Nd uptake/release due to individual reactions. Positive means Nd
529 release to pore water and negative uptake. (e) Net Nd release/uptake driven by Fe, Mn and phosphate
530 cycling. (f) pore water Nd sources and sinks summed over individual reactions, and the net source. (g)
531 Concentrations of the *total* dissolved Nd and the *free* Nd³⁺ ion, and the *total* Nd concentrations at saturation
532 with respect to NdPO₄. (h) Authigenic Nd concentrations. (i) Pore water and authigenic ε_{Nd}. In the plots
533 colored dots with red borders indicate direct measurements, except in (h–i) where authigenic Nd and ε_{Nd} are
534 estimated using an *operationally* defined acid-reductive leach.

535

536 Fig. 4. Model results using the reversible scavenging formulation of Fe/Mn oxides. (a) Fe/Mn oxide
537 concentrations. (b) Nd adsorbed on to the oxides. (c) Pore water Nd concentrations compared with the
538 results of the co-precipitation formulation and with measurements (in red dots). Sensitivity tests involving
539 different adsorption constants are reported in Supplementary Fig. 1.

540

541 Fig. 5. Model sensitivity to silicate dissolution rate. (a) Nd release rate by basalt dissolution. (b) Basalt
542 concentration. (c) Dissolved silica. Red dots indicate measurements. (d) Basalt saturation index. Red dashed
543 line indicates saturation. The color legend in (a) indicates the orders of magnitude of dissolution rate
544 reduction in the sensitivity tests. “1e0” means dissolution rate is the same as the laboratory-derived value.
545 “1e1” means a dissolution rate that is 1-order of magnitude lower etc. (e–h) are the same as (a–d) but for
546 clinopyroxene. (i–l) are for plagioclase, and (m–p) are for chlorite.

547

548 Fig. 6. Sensitivity of the Nd cycle to silicate weathering. (a–d) Pore water Nd, authigenic Nd, pore water ε_{Nd},
549 and authigenic ε_{Nd} respectively in the basalt weathering sensitivity tests. The color legend in (a) indicates the
550 orders of magnitude of dissolution rate reduction in the sensitivity tests as in Fig. 5. Red dots indicate direct
551 measurements, except that authigenic Nd and ε_{Nd} are estimated using an *operationally* defined acid-

552 reductive leach. In (c–d) the 2σ analytical errors of ε_{Nd} are shown. (e–h), (i–l) and (m–p) are the results of
553 model tests with weathering of clinopyroxene, plagioclase and chlorite respectively.

554

555 Fig. 7. The impact of reverse weathering on silicate weathering and the Nd cycle. (a) Illite precipitation rate.
556 (b) Basalt dissolution rate. (c) Opal dissolution rate. (d) pH. (e) Al concentration. (f) Dissolved Si. (g) Basalt
557 saturation index. Dash red line indicates saturation. (h) Illite saturation index. (i) Basalt concentration. (j)
558 Authigenic illite concentration. (k) Pore water Nd. (l) Pore water ε_{Nd} . The color legend in (a) indicates the
559 sensitivity tests using different authigenic clay precipitation rates. Red dots indicate measured values.

560

561 Fig. 8. Modeled pore water Al-Si relationship at the study site compared with literature results. Seawater
562 data are from the GEOTRACES IDP2021 (GEOTRACES Intermediate Data Product Group, 2021) and only
563 the deep ocean data are shown (>1000 m depth). Pore water data are from the North Atlantic, Southern
564 Ocean, East China Sea and Amazon shelf (Mackin and Aller, 1986, 1986; Stoffyn-Egli, 1982; Van
565 Beueskom et al., 1997). Al and Si concentrations are in units of mol/kg on the log scale.

566

567 Fig. 9. Summary of the early diagenetic cycle of Nd and ε_{Nd} at HH3000. Black italic numbers are Nd fluxes
568 and depth-integrated transformation rates in pmol/cm²/yr. The benthic fluxes are written in the form of
569 “diffusive + bio-irrigation” fluxes. Purple numbers are ε_{Nd} . The summary is based on (1) the baseline model
570 using the co-precipitation formulation of Fe/Mn oxides and including authigenic phosphate, (2) the silicate-
571 weathering model using the dissolution of basalt glass at a rate 1 order of magnitude lower than laboratory-
572 derived rate, and (3) the “normal clay” model of reverse weathering. Reverse weathering is shown in dashed
573 lines as it influences the Nd cycle indirectly by driving the marine silicate weathering. The flux of refractory
574 silicate Nd is not modeled but calculated using the sedimentation rate and refractory silicate Nd
575 concentration, which is estimated as the difference between the measured bulk and modeled authigenic Nd
576 concentration. Similarly, the ε_{Nd} of refractory silicate is computed using the measured bulk ε_{Nd} and modeled
577 authigenic ε_{Nd} based on isotopic mass balance. The refractory silicates are not reactive on the short timescale

578 of early diagenesis but may become reactive on the longer timescales of later diagenesis. Bulk sediment data
579 are from Abbott et al., (2016).

580 Reference

581 Abbott, A.N., Haley, B.A., McManus, J., 2016. The impact of sedimentary coatings on the diagenetic Nd
582 flux. *Earth and Planetary Science Letters* 449, 217–227. <https://doi.org/10.1016/j.epsl.2016.06.001>

583 Abbott, A.N., Haley, B.A., McManus, J., 2015a. Bottoms up: Sedimentary control of the deep North Pacific
584 Ocean's ϵ Nd signature. *Geology* 43, 1035–1035. <https://doi.org/10.1130/G37114.1>

585 Abbott, A.N., Haley, B.A., McManus, J., Reimers, C.E., 2015b. The sedimentary flux of dissolved rare earth
586 elements to the ocean. *Geochimica et Cosmochimica Acta* 154, 186–200.
587 <https://doi.org/10.1016/j.gca.2015.01.010>

588 Abbott, A.N., Löhr, S., Trethewy, M., 2019. Are Clay Minerals the Primary Control on the Oceanic Rare
589 Earth Element Budget? *Front. Mar. Sci.* 6. <https://doi.org/10.3389/fmars.2019.00504>

590 Abbott, A.N., Löhr, S.C., Payne, A., Kumar, H., Du, J., 2022. Widespread lithogenic control of marine
591 authigenic neodymium isotope records? Implications for paleoceanographic reconstructions.
592 *Geochimica et Cosmochimica Acta* 319, 318–336. <https://doi.org/10.1016/j.gca.2021.11.021>

593 Aller, R.C., 2014. Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes, in: Holland,
594 H.D., Turekian, K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford, pp. 293–
595 334.

596 Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying
597 the degradation of organic matter in marine sediments: A review and synthesis. *Earth-Science
598 Reviews* 123, 53–86. <https://doi.org/10.1016/j.earscirev.2013.02.008>

599 Arsouze, T., Dutay, J.-C., Lacan, F., Jeandel, C., 2009. Reconstructing the Nd oceanic cycle using a coupled
600 dynamical – biogeochemical model. *Biogeosciences* 6, 2829–2846. [https://doi.org/10.5194/bg-6-2829-2009](https://doi.org/10.5194/bg-6-
601 2829-2009)

602 Atkins, A.L., Shaw, S., Peacock, C.L., 2016. Release of Ni from birnessite during transformation of
603 birnessite to todorokite: Implications for Ni cycling in marine sediments. *Geochimica et
604 Cosmochimica Acta* 189, 158–183. <https://doi.org/10.1016/j.gca.2016.06.007>

605 Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J.,
606 Freslon, N., Gauchery, T., Germain, Y., Jorry, S.J., Ménot, G., Monin, L., Ponzevera, E., Rouget,
607 M.-L., Tachikawa, K., Barrat, J.A., 2015. Rare earth elements and neodymium isotopes in world
608 river sediments revisited. *Geochimica et Cosmochimica Acta* 170, 17–38.
609 <https://doi.org/10.1016/j.gca.2015.08.001>

610 Bertram, C.J., Elderfield, H., 1993. The geochemical balance of the rare earth elements and neodymium
611 isotopes in the oceans. *Geochimica et Cosmochimica Acta* 57, 1957–1986.
612 [https://doi.org/10.1016/0016-7037\(93\)90087-D](https://doi.org/10.1016/0016-7037(93)90087-D)

613 Bi, D., Shi, X., Huang, M., Yu, M., Zhou, T., Zhang, Y., Zhu, A., Shi, M., Fang, X., 2021. Geochemical and
614 mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean:
615 Constraints on the enrichment processes of rare earth elements. *Ore Geology Reviews* 138, 104318.
616 <https://doi.org/10.1016/j.oregeorev.2021.104318>

617 Blaser, P., Pöppelmeier, F., Schulz, H., Gutjahr, M., Frank, M., Lippold, J., Heinrich, H., Link, J.M.,
618 Hoffmann, J., Szidat, S., Frank, N., 2019. The resilience and sensitivity of Northeast Atlantic deep
619 water ϵ Nd to overprinting by detrital fluxes over the past 30,000 years. *Geochimica et Cosmochimica
620 Acta* 245, 79–97. <https://doi.org/10.1016/j.gca.2018.10.018>

621 Boudreau, B.P., 1997. Diagenetic models and their implementation : modelling transport and reactions in
622 aquatic sediments. Springer, Berlin; New York.

623 Deng, K., Yang, S., Du, J., Lian, E., Vance, D., 2022. Dominance of benthic flux of REEs on continental
624 shelves: implications for oceanic budgets. *Geochemical Perspectives Letters* 22, 26–30.
625 <https://doi.org/10.7185/geochemlet.2223>

626 Du, J., Haley, B.A., Mix, A.C., 2020. Evolution of the Global Overturning Circulation since the Last Glacial
627 Maximum based on marine authigenic neodymium isotopes. *Quaternary Science Reviews* 241,
628 106396. <https://doi.org/10.1016/j.quascirev.2020.106396>

629 Du, J., Haley, B.A., Mix, A.C., 2016. Neodymium isotopes in authigenic phases, bottom waters and detrital
630 sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction.
631 *Geochimica et Cosmochimica Acta* 193, 14–35. <https://doi.org/10.1016/j.gca.2016.08.005>

632 Du, J., Haley, B.A., Mix, A.C., Walczak, M.H., Praetorius, S.K., 2018. Flushing of the deep Pacific Ocean
633 and the deglacial rise of atmospheric CO₂ concentrations. *Nature Geoscience* 11, 749–755.
634 <https://doi.org/10.1038/s41561-018-0205-6>

635 Elderfield, H., Greaves, M.J., 1982. The rare earth elements in seawater. *Nature* 296, 214–219.
636 <https://doi.org/10.1038/296214a0>

637 Gausse, C., Szenknect, S., Qin, D.W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D., Dacheux, N.,
638 2016. Determination of the Solubility of Rhabdophanes LnPO₄·0.667H₂O (Ln = La to Dy).
639 *European Journal of Inorganic Chemistry* 2016, 4615–4630. <https://doi.org/10.1002/ejic.201600517>

640 GEOTRACES Intermediate Data Product Group, 2021. The GEOTRACES Intermediate Data Product 2021
641 (IDP2021). NERC EDS British Oceanographic Data Centre NOC. <https://doi.org/10.5285/cf2d9ba9->
642 d51d-3b7c-e053-8486abc0f5fd

643 German, C.R., Elderfield, H., 1989. Rare earth elements in Saanich Inlet, British Columbia, a seasonally
644 anoxic basin. *Geochimica et Cosmochimica Acta* 53, 2561–2571. <https://doi.org/10.1016/0016->
645 7037(89)90128-2

646 Goldstein, S.J., Jacobsen, S.B., 1988. Rare earth elements in river waters. *Earth and Planetary Science
647 Letters* 89, 35–47. [https://doi.org/10.1016/0012-821X\(88\)90031-3](https://doi.org/10.1016/0012-821X(88)90031-3)

648 Goldstein, S.L., Hemming, S.R., 2003. Long-lived Isotopic Tracers in Oceanography, Paleoceanography,
649 and Ice-sheet Dynamics, in: Holland, H.D., Turekian, K.K. (Eds.), *Treatise on Geochemistry*.
650 Pergamon, Oxford, pp. 453–489.

651 Grenier, M., Jeandel, C., Lacan, F., Vance, D., Venchiarutti, C., Cros, A., Cravatte, S., 2013. From the
652 subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth
653 element concentration variations. *Journal of Geophysical Research: Oceans* 118, 592–618.
654 <https://doi.org/10.1029/2012JC008239>

655 Griffin, J.J., Windom, H., Goldberg, E.D., 1968. The distribution of clay minerals in the World Ocean. *Deep
656 Sea Research and Oceanographic Abstracts* 15, 433–459. <https://doi.org/10.1016/0011->
657 7471(68)90051-X

658 Haley, B.A., Du, J., Abbott, A.N., McManus, J., 2017. The Impact of Benthic Processes on Rare Earth
659 Element and Neodymium Isotope Distributions in the Oceans. *Frontiers in Marine Science* 4.
660 <https://doi.org/10.3389/fmars.2017.00426>

661 Haley, B.A., Klinkhammer, G.P., McManus, J., 2004. Rare earth elements in pore waters of marine
662 sediments. *Geochimica et Cosmochimica Acta* 68, 1265–1279.
663 <https://doi.org/10.1016/j.gca.2003.09.012>

664 Haley, B.A., Wu, Y., Muratli, J.M., Basak, C., Pena, L.D., Goldstein, S.L., 2021. Rare earth element and
665 neodymium isotopes of the eastern US GEOTRACES Equatorial Pacific Zonal Transect (GP16).
666 *Earth and Planetary Science Letters* 576, 117233. <https://doi.org/10.1016/j.epsl.2021.117233>

667 Hastings, R.H., Goñi, M.A., Wheatcroft, R.A., Borgeld, J.C., 2012. A terrestrial organic matter depocenter
668 on a high-energy margin: The Umpqua River system, Oregon. *Continental Shelf Research* 39–40,
669 78–91. <https://doi.org/10.1016/j.csr.2012.04.002>

670 Heřmanská, M., Voigt, M.J., Marieni, C., Declercq, J., Oelkers, E.H., 2022. A comprehensive and internally
671 consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. *Chemical
672 Geology* 120807. <https://doi.org/10.1016/j.chemgeo.2022.120807>

673 Homoky, W.B., Weber, T., Berelson, W.M., Conway, T.M., Henderson, G.M., Hulten, M. van, Jeandel, C.,
674 Severmann, S., Tagliabue, A., 2016. Quantifying trace element and isotope fluxes at the ocean–
675 sediment boundary: a review. *Phil. Trans. R. Soc. A* 374, 20160246.
676 <https://doi.org/10.1098/rsta.2016.0246>

677 Jeandel, C., 2016. Overview of the mechanisms that could explain the ‘Boundary Exchange’ at the land–
678 ocean contact. *Phil. Trans. R. Soc. A* 374, 20150287. <https://doi.org/10.1098/rsta.2015.0287>

679 Jeandel, C., Oelkers, E.H., 2015. The influence of terrigenous particulate material dissolution on ocean
680 chemistry and global element cycles. *Chemical Geology* 395, 50–66.
681 <https://doi.org/10.1016/j.chemgeo.2014.12.001>

682 Lacan, F., Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the
683 continent–ocean interface. *Earth and Planetary Science Letters* 232, 245–257.
684 <https://doi.org/10.1016/j.epsl.2005.01.004>

685 Lam, P.J., Lee, J.-M., Heller, M.I., Mehic, S., Xiang, Y., Bates, N.R., 2018. Size-fractionated distributions
686 of suspended particle concentration and major phase composition from the U.S. GEOTRACES
687 Eastern Pacific Zonal Transect (GP16). *Marine Chemistry, The U.S.GEOTRACES Eastern Tropical*
688 *Pacific Transect (GP16)* 201, 90–107. <https://doi.org/10.1016/j.marchem.2017.08.013>

689 Lambelet, M., Flierdt, T. van de, Butler, E.C.V., Bowie, A.R., Rintoul, S.R., Watson, R.J., Remenyi, T.,
690 Lannuzel, D., Warner, M., Robinson, L.F., Bostock, H.C., Bradtmiller, L.I., 2018. The Neodymium
691 Isotope Fingerprint of Adélie Coast Bottom Water. *Geophysical Research Letters* 45, 11,247-11,256.
692 <https://doi.org/10.1029/2018GL080074>

693 Li, Y.-H., Schoonmaker, J.E., 2014. Chemical Composition and Mineralogy of Marine Sediments, in:
694 Holland, H.D., Turekian, K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford,
695 pp. 1–32.

696 Little, S.H., Archer, C., McManus, J., Najorka, J., Wegorzewski, A.V., Vance, D., 2020. Towards balancing
697 the oceanic Ni budget. *Earth and Planetary Science Letters* 547, 116461.
698 <https://doi.org/10.1016/j.epsl.2020.116461>

699 Liu, X., Byrne, R.H., 1997. Rare earth and yttrium phosphate solubilities in aqueous solution. *Geochimica et*
700 *Cosmochimica Acta* 61, 1625–1633. [https://doi.org/10.1016/S0016-7037\(97\)00037-9](https://doi.org/10.1016/S0016-7037(97)00037-9)

701 Lyle, M., Zahn, R., Prahl, F., Dymond, J., Collier, R., Pisias, N., Suess, E., 1992. Paleoproductivity and
702 carbon burial across the California Current: The multitracers transect, 42°N. *Paleoceanography* 7,
703 251–272. <https://doi.org/10.1029/92PA00696>

704 Mackin, J.E., Aller, R.C., 1986. The effects of clay mineral reactions on dissolved Al distributions in
705 sediments and waters of the Amazon continental shelf. *Continental Shelf Research* 6, 245–262.
706 [https://doi.org/10.1016/0278-4343\(86\)90063-4](https://doi.org/10.1016/0278-4343(86)90063-4)

707 Mackin, J.E., Aller, R.C., 1984. Dissolved Al in sediments and waters of the East China Sea: Implications
708 for authigenic mineral formation. *Geochimica et Cosmochimica Acta* 48, 281–297.
709 [https://doi.org/10.1016/0016-7037\(84\)90251-5](https://doi.org/10.1016/0016-7037(84)90251-5)

710 Maher, K., Steefel, C.I., DePaolo, D.J., Viani, B.E., 2006. The mineral dissolution rate conundrum: Insights
711 from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments.
712 *Geochimica et Cosmochimica Acta* 70, 337–363. <https://doi.org/10.1016/j.gca.2005.09.001>

713 Marty, N.C.M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochebin, B.,
714 Tournassat, C., 2015. A database of dissolution and precipitation rates for clay-rocks minerals.
715 *Applied Geochemistry, Geochemical Speciation Codes and Databases* 55, 108–118.
716 <https://doi.org/10.1016/j.apgeochem.2014.10.012>

717 McManus, J., Berelson, W.M., Coale, K.H., Johnson, K.S., Kilgore, T.E., 1997. Phosphorus regeneration in
718 continental margin sediments. *Geochimica et Cosmochimica Acta* 61, 2891–2907.
719 [https://doi.org/10.1016/S0016-7037\(97\)00138-5](https://doi.org/10.1016/S0016-7037(97)00138-5)

720 McManus, J., Berelson, W.M., Severmann, S., Johnson, K.S., Hammond, D.E., Roy, M., Coale, K.H., 2012.
721 Benthic manganese fluxes along the Oregon–California continental shelf and slope. *Continental*
722 *Shelf Research* 43, 71–85. <https://doi.org/10.1016/j.csr.2012.04.016>

723 Meile, C., Berg, P., Van Cappellen, P., Tuncay, K., 2005. Solute-specific pore water irrigation: Implications
724 for chemical cycling in early diagenesis. *J. Mar. Res.* 63, 601–621.
725 <https://doi.org/10.1357/0022240054307885>

726 Meile, C., Van Cappellen, P., 2003. Global estimates of enhanced solute transport in marine sediments.
727 *Limnol. Oceanogr.* 48, 777–786. <https://doi.org/10.4319/lo.2003.48.2.0777>

728 Pearce, C.R., Jones, M.T., Oelkers, E.H., Pradoux, C., Jeandel, C., 2013. The effect of particulate dissolution
729 on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater. *Earth and*
730 *Planetary Science Letters* 369–370, 138–147. <https://doi.org/10.1016/j.epsl.2013.03.023>

731 Piepgras, D.J., Wasserburg, G.J., Dasch, E.J., 1979. The isotopic composition of Nd in different ocean
732 masses. *Earth and Planetary Science Letters* 45, 223–236. [https://doi.org/10.1016/0012-821X\(79\)90125-0](https://doi.org/10.1016/0012-821X(79)90125-0)

734 Pierrot, D., Millero, F.J., 2017. The Speciation of Metals in Natural Waters. *Aquat Geochem* 23, 1–20.
735 <https://doi.org/10.1007/s10498-016-9292-4>

736 Roberts, N.L., Piotrowski, A.M., Elderfield, H., Eglinton, T.I., Lomas, M.W., 2012. Rare earth element
737 association with foraminifera. *Geochimica et Cosmochimica Acta* 94, 57–71.
738 <https://doi.org/10.1016/j.gca.2012.07.009>

739 Ruttenberg, K.C., 1992. Development of a sequential extraction method for different forms of phosphorus in
740 marine sediments. *Limnology and Oceanography* 37, 1460–1482.
741 <https://doi.org/10.4319/lo.1992.37.7.1460>

742 Schijf, J., Byrne, R.H., 2021. Speciation of yttrium and the rare earth elements in seawater: Review of a 20-
743 year analytical journey. *Chemical Geology* 584, 120479.
744 <https://doi.org/10.1016/j.chemgeo.2021.120479>

745 Schijf, J., Christenson, E.A., Byrne, R.H., 2015. YREE scavenging in seawater: A new look at an old model.
746 Marine Chemistry, Cycles of metals and carbon in the oceans - A tribute to the work stimulated by
747 Hein de Baar 177, 460–471. <https://doi.org/10.1016/j.marchem.2015.06.010>

748 Siddall, M., Khatiwala, S., van de Flierdt, T., Jones, K., Goldstein, S.L., Hemming, S., Anderson, R.F.,
749 2008. Towards explaining the Nd paradox using reversible scavenging in an ocean general
750 circulation model. *Earth and Planetary Science Letters* 274, 448–461.
751 <https://doi.org/10.1016/j.epsl.2008.07.044>

752 Steefel, C.I., Druhan, J.L., Maher, K., 2014. Modeling Coupled Chemical and Isotopic Equilibration Rates.
753 *Procedia Earth and Planetary Science* 10, 208–217. <https://doi.org/10.1016/j.proeps.2014.08.022>

754 Stoffyn-Egli, P., 1982. Dissolved aluminium in interstitial waters of recent terrigenous marine sediments
755 from the North Atlantic Ocean. *Geochimica et Cosmochimica Acta* 46, 1345–1352.
756 [https://doi.org/10.1016/0016-7037\(82\)90270-8](https://doi.org/10.1016/0016-7037(82)90270-8)

757 Straub, S.M., Schmincke, H.U., 1998. Evaluating the tephra input into Pacific Ocean sediments: distribution
758 in space and time. *Geol Rundsch* 87, 461–476. <https://doi.org/10.1007/s005310050222>

759 Tachikawa, K., Athias, V., Jeandel, C., 2003. Neodymium budget in the modern ocean and paleo-
760 oceanographic implications. *Journal of Geophysical Research: Oceans* 108, 3254.
761 <https://doi.org/10.1029/1999JC000285>

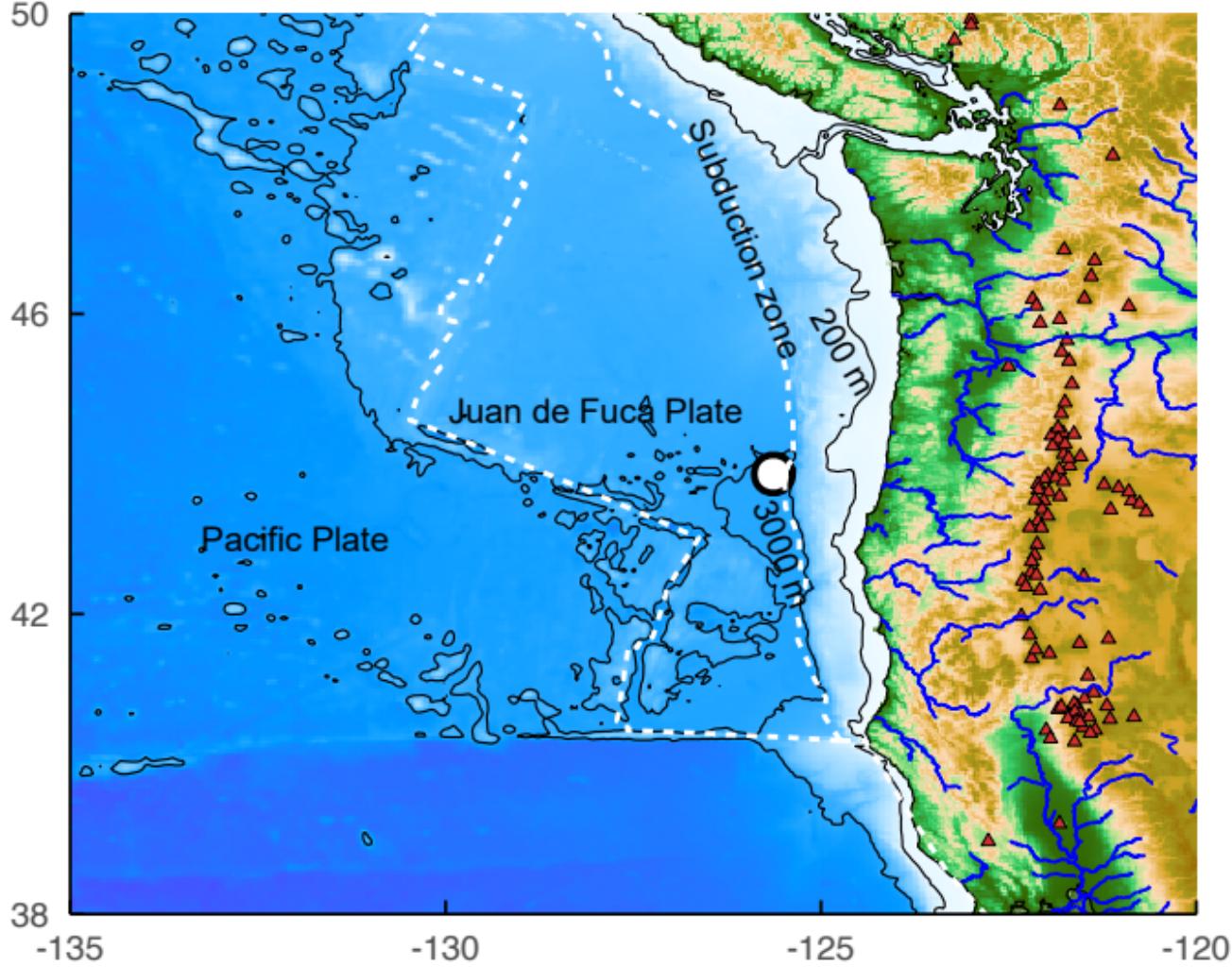
762 Takahashi, Y., Hayasaka, Y., Morita, K., Kashiwabara, T., Nakada, R., Marcus, M.A., Kato, K., Tanaka, K.,
763 Shimizu, H., 2015. Transfer of rare earth elements (REE) from manganese oxides to phosphates
764 during early diagenesis in pelagic sediments inferred from REE patterns, X-ray absorption
765 spectroscopy, and chemical leaching method. *GEOCHEMICAL JOURNAL* 49, 653–674.
766 <https://doi.org/10.2343/geochemj.2.0393>

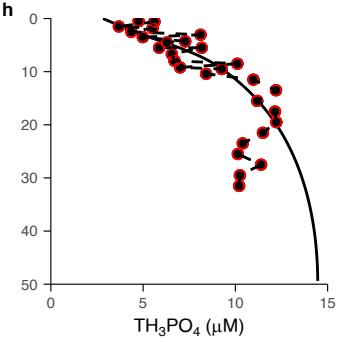
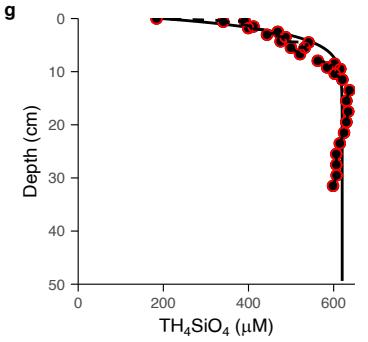
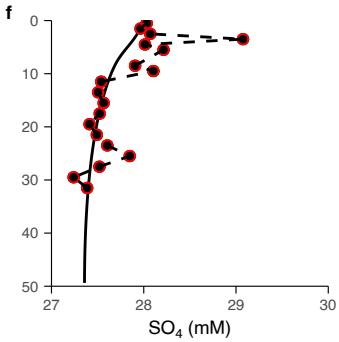
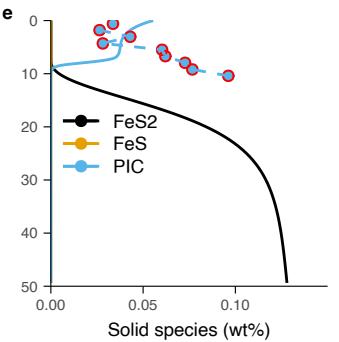
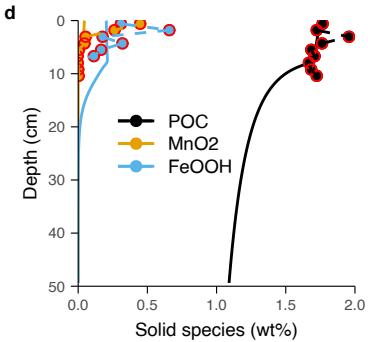
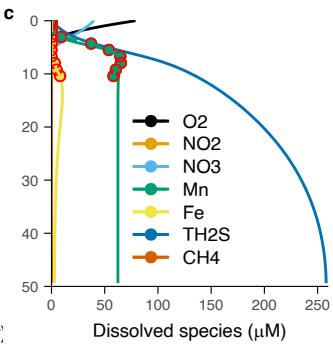
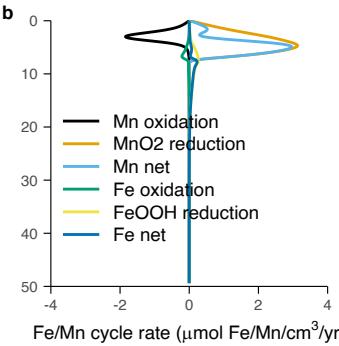
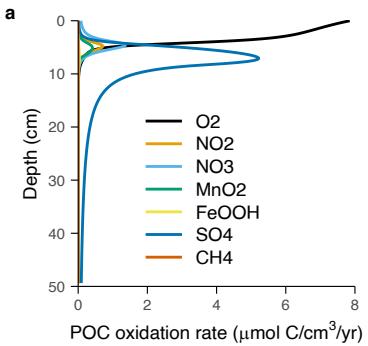
767 Taylor, S.R., McLennan, S.M., 1988. Chapter 79 The significance of the rare earths in geochemistry and
768 cosmochemistry, in: *Handbook on the Physics and Chemistry of Rare Earths*, Two-Hundred-Year
769 Impact of Rare Earths on Science. Elsevier, pp. 485–578. [https://doi.org/10.1016/S0168-1273\(88\)11011-8](https://doi.org/10.1016/S0168-1273(88)11011-8)

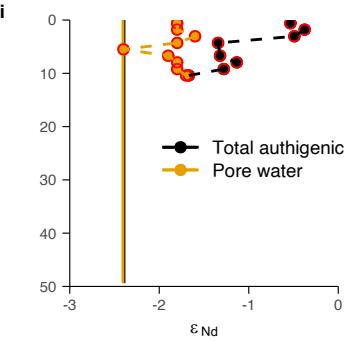
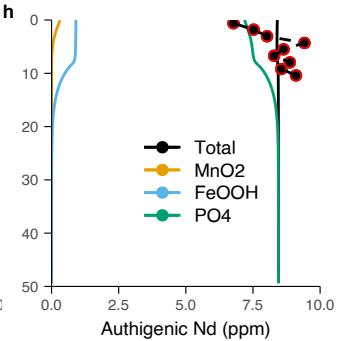
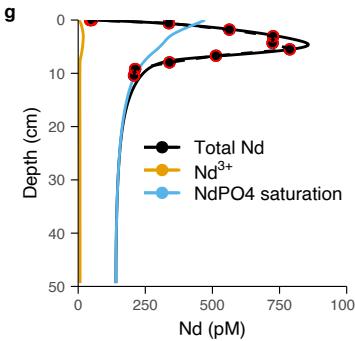
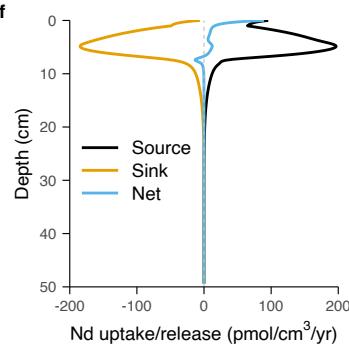
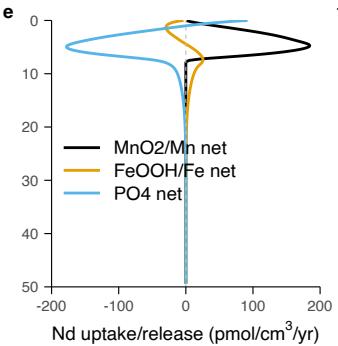
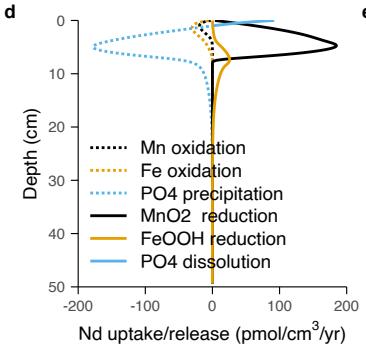
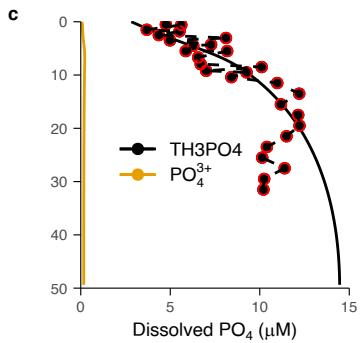
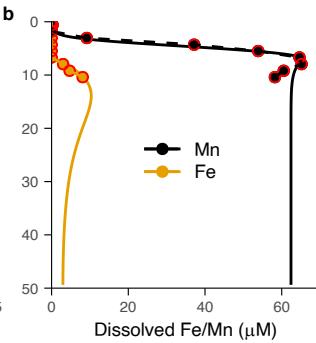
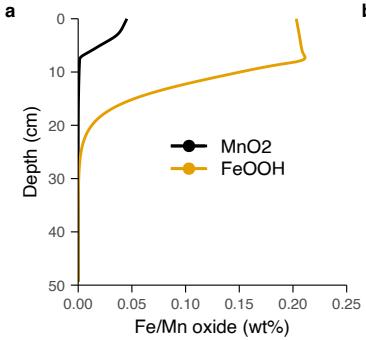
771 Toyoda, K., Tokonami, M., 1990. Diffusion of rare-earth elements in fish teeth from deep-sea sediments.
772 *Nature* 345, 607–609. <https://doi.org/10.1038/345607a0>

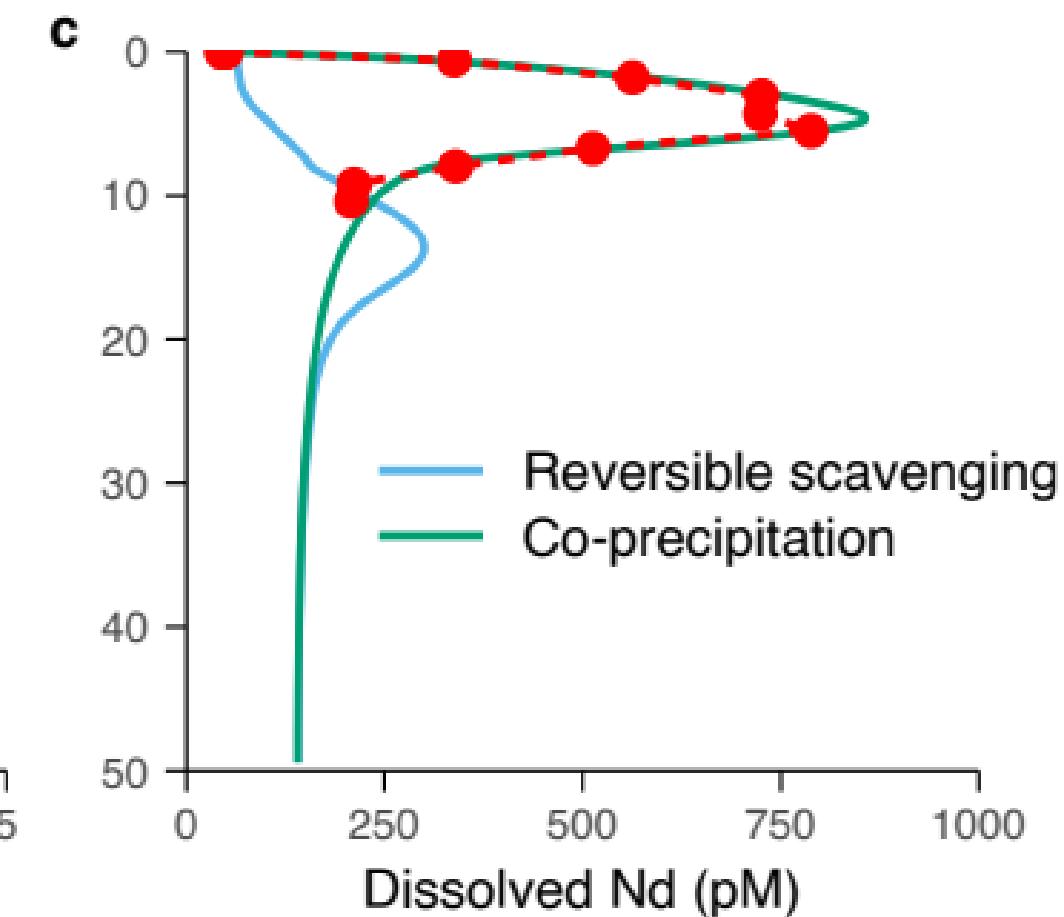
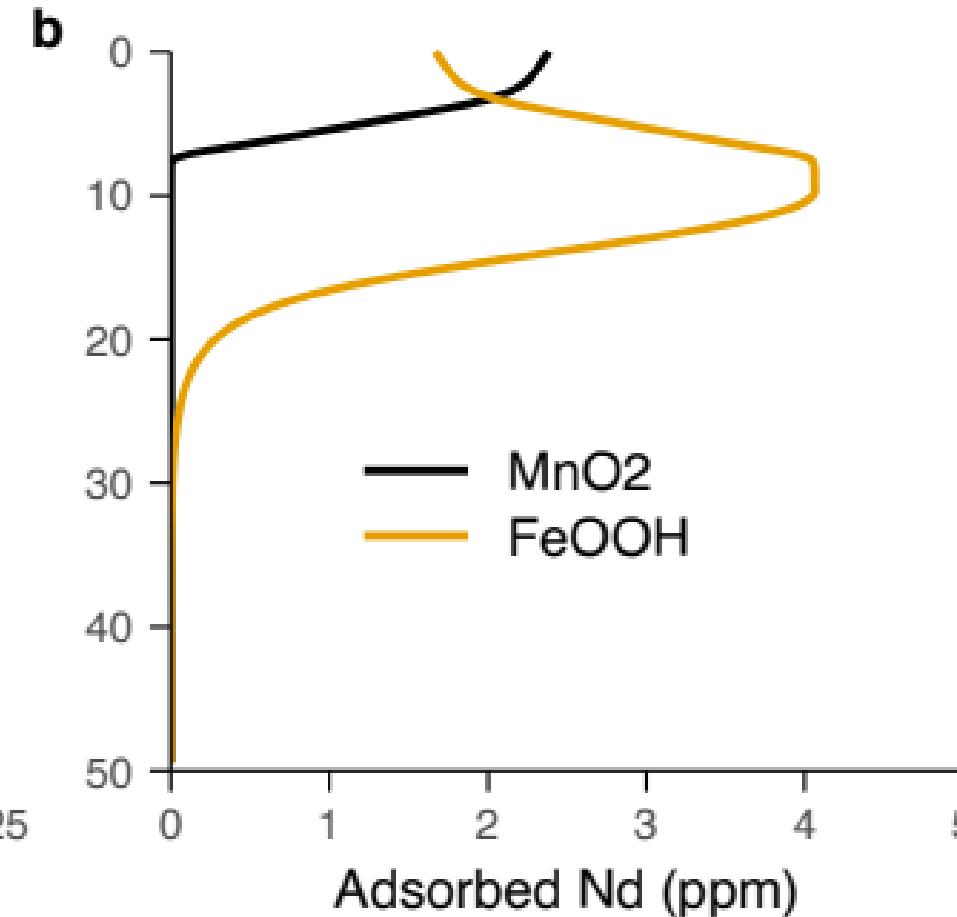
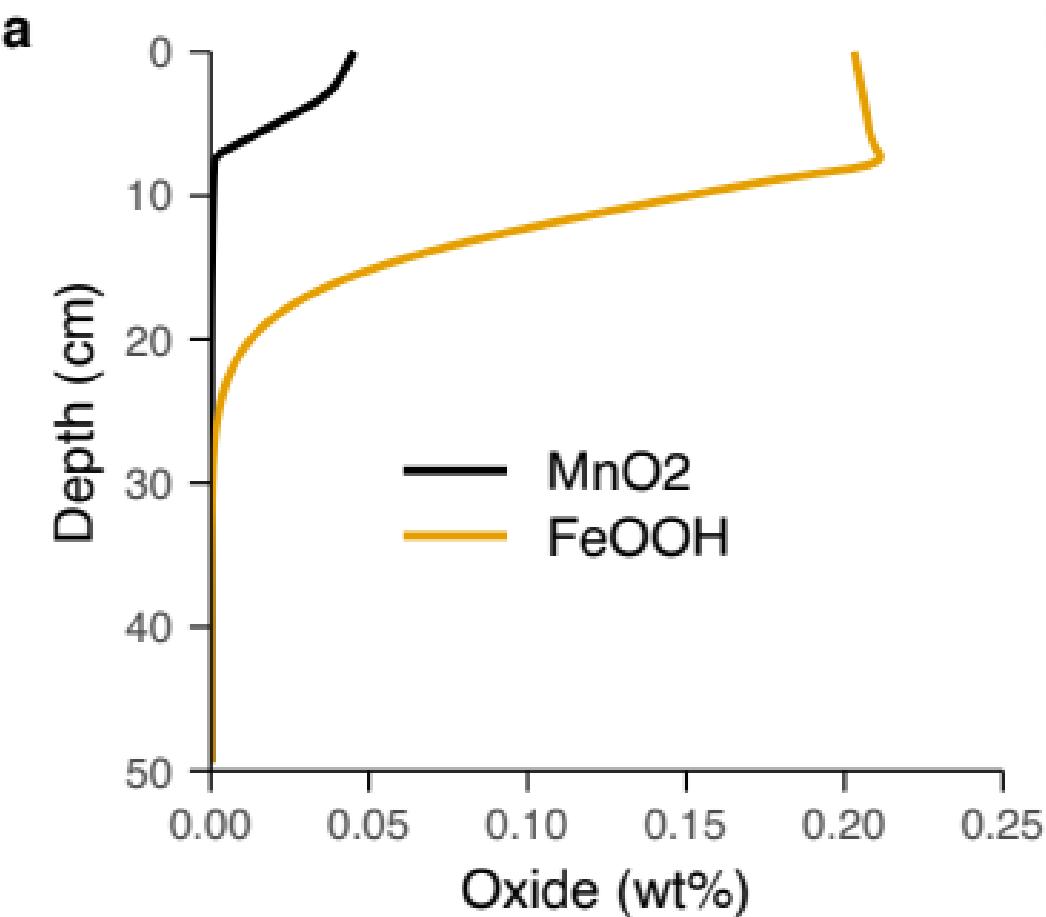
773 Van Beueskom, J.E.E., Van Bennekom, A.J., Tréguer, P., Morvan, J., 1997. Aluminium and silicic acid in
774 water and sediments of the Enderby and Crozet Basins. *Deep Sea Research Part II: Topical Studies*
775 in Oceanography

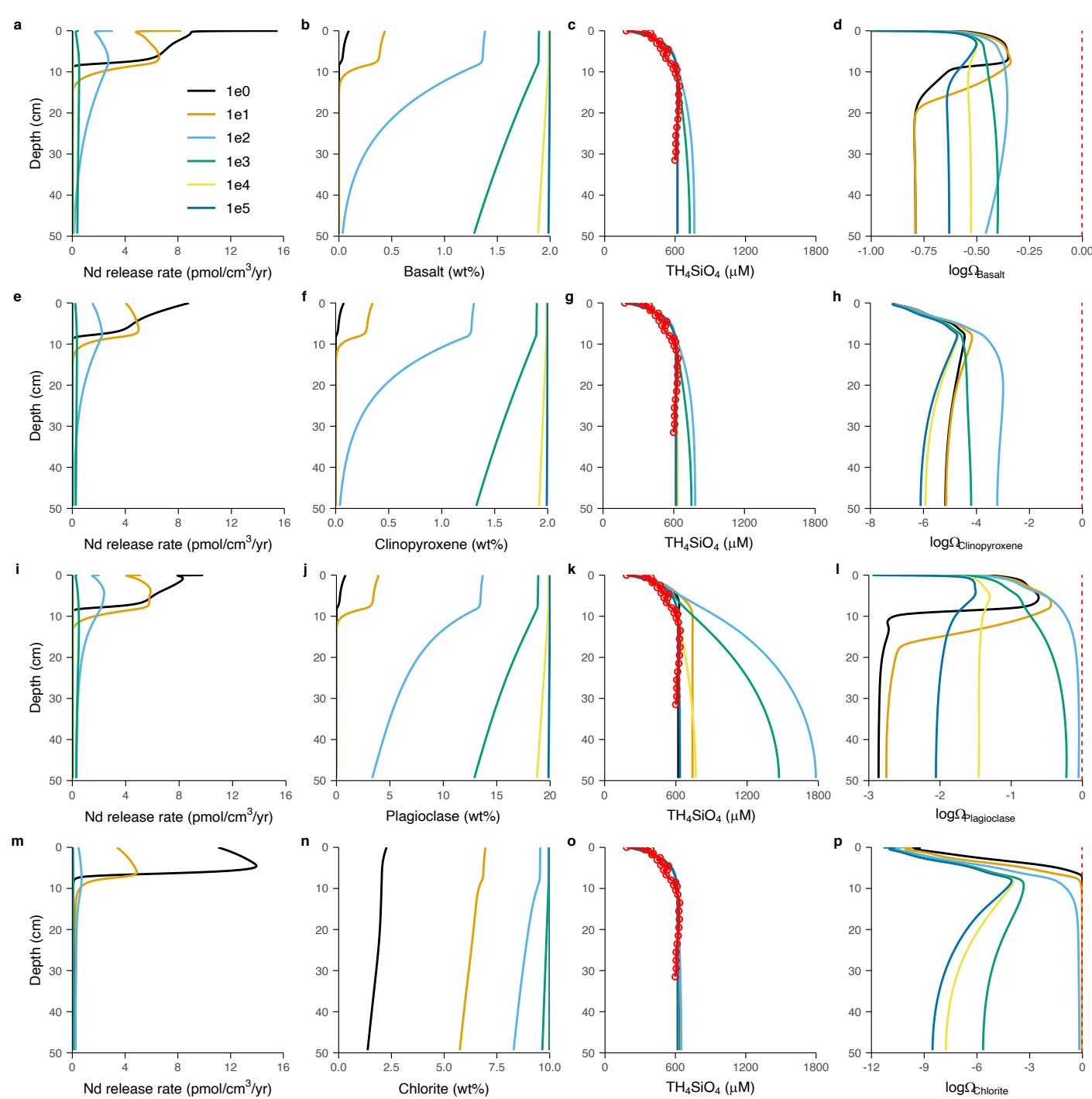
776 Van Cappellen, P., Dixit, S., Beusekom, J. van, 2002. Biogenic silica dissolution in the oceans: Reconciling
777 experimental and field-based dissolution rates. *Global Biogeochemical Cycles* 16, 23-1-23-10.
778 <https://doi.org/10.1029/2001GB001431>

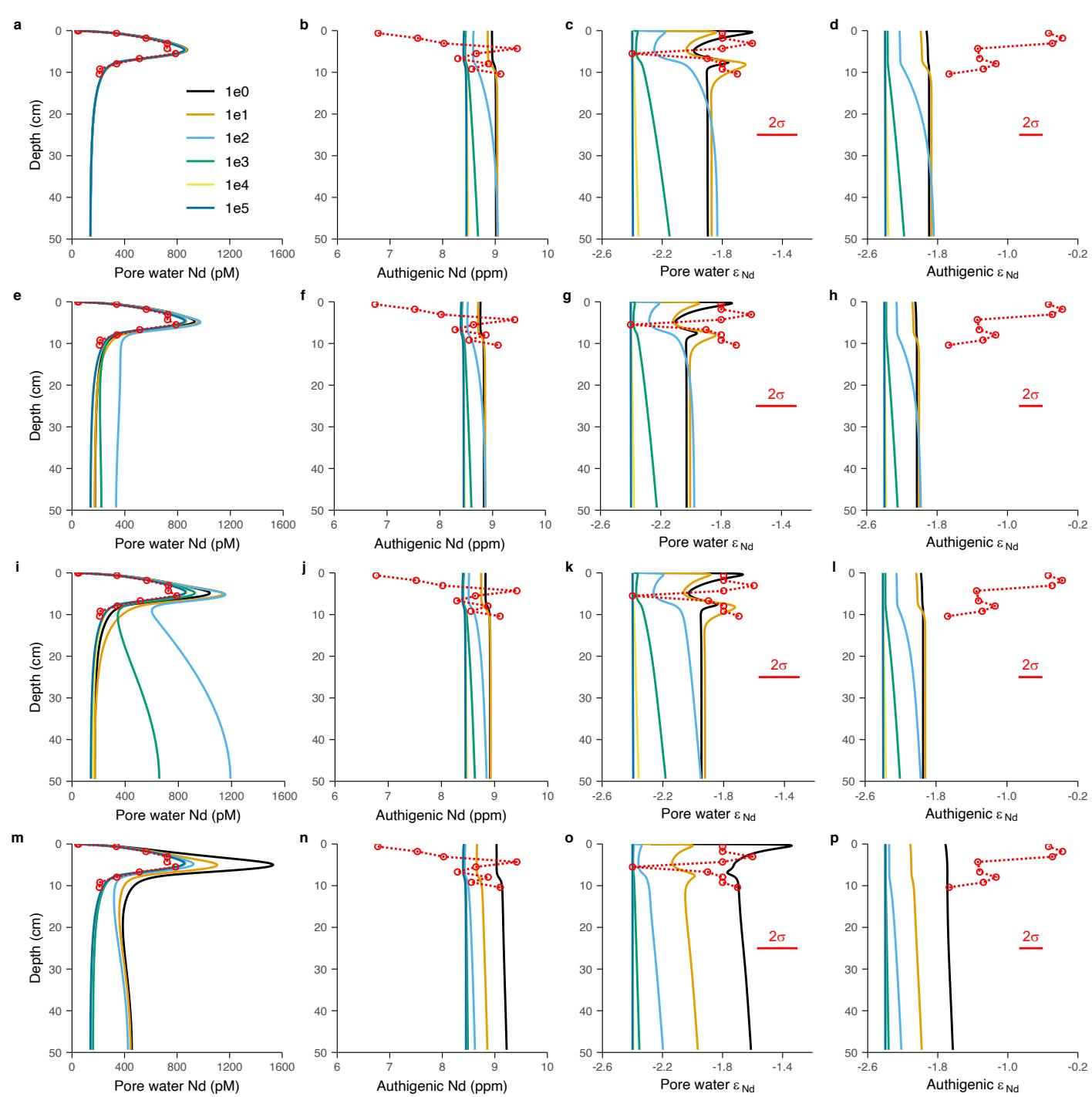

779 Van Laningham, S., Duncan, R.A., Pisias, N.G., Graham, D.W., 2008. Tracking fluvial response to climate
780 change in the Pacific Northwest: a combined provenance approach using Ar and Nd isotopic systems
781 on fine-grained sediments. *Quaternary Science Reviews* 27, 497–517.
782 <https://doi.org/10.1016/j.quascirev.2007.10.018>

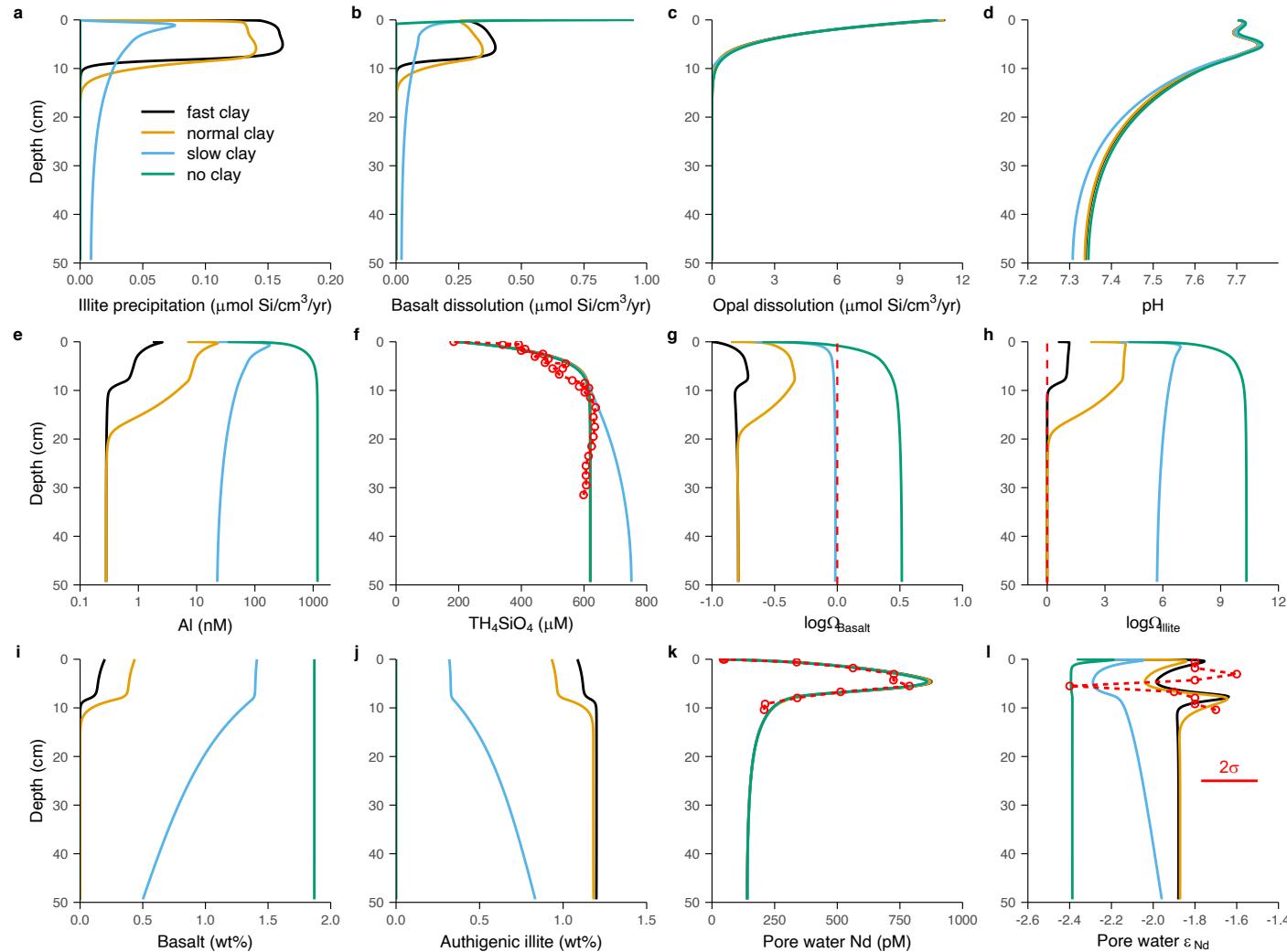









783 Wheatcroft, R.A., Sommerfield, C.K., 2005. River sediment flux and shelf sediment accumulation rates on
784 the Pacific Northwest margin. *Continental Shelf Research* 25, 311–332.
785 <https://doi.org/10.1016/j.csr.2004.10.001>

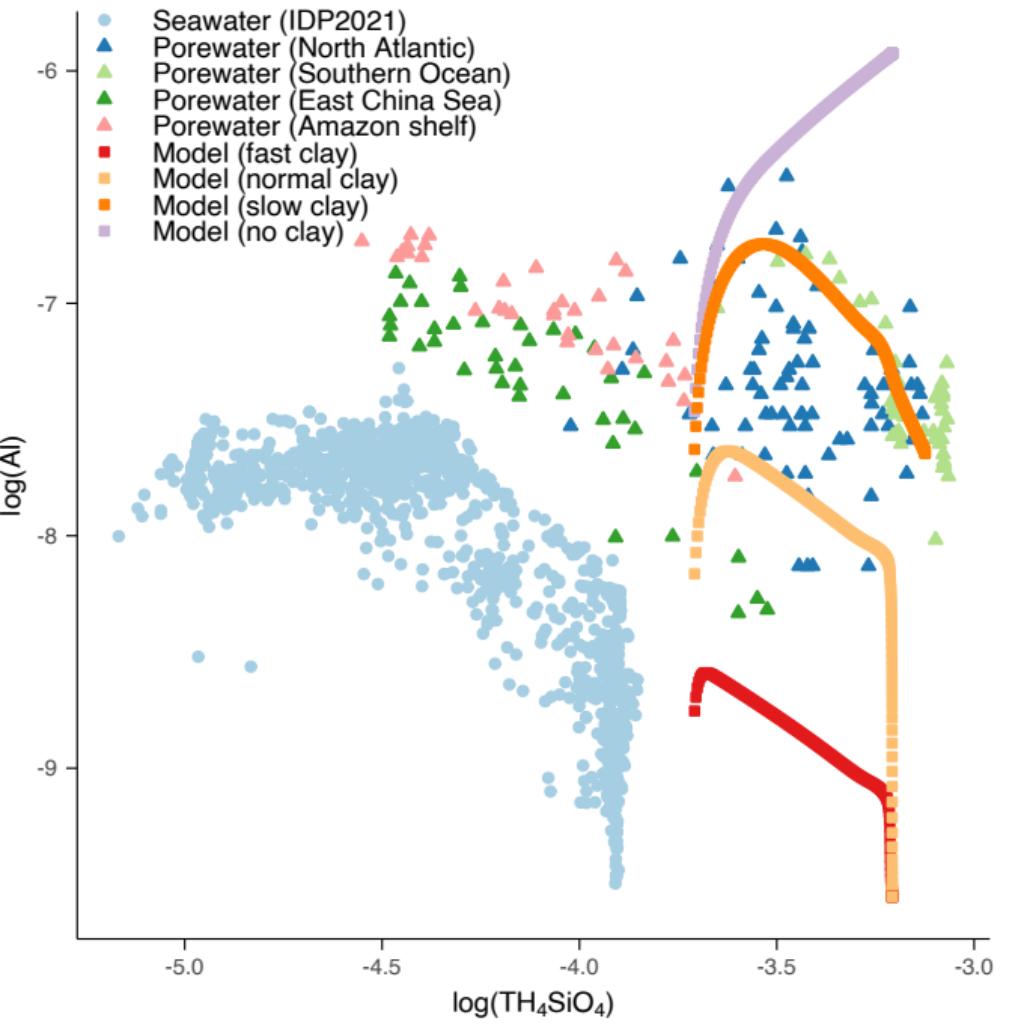









786 Wilson, D.J., Piotrowski, A.M., Galy, A., Clegg, J.A., 2013. Reactivity of neodymium carriers in deep sea
787 sediments: Implications for boundary exchange and paleoceanography. *Geochimica et*
788 *Cosmochimica Acta* 109, 197–221. <https://doi.org/10.1016/j.gca.2013.01.042>

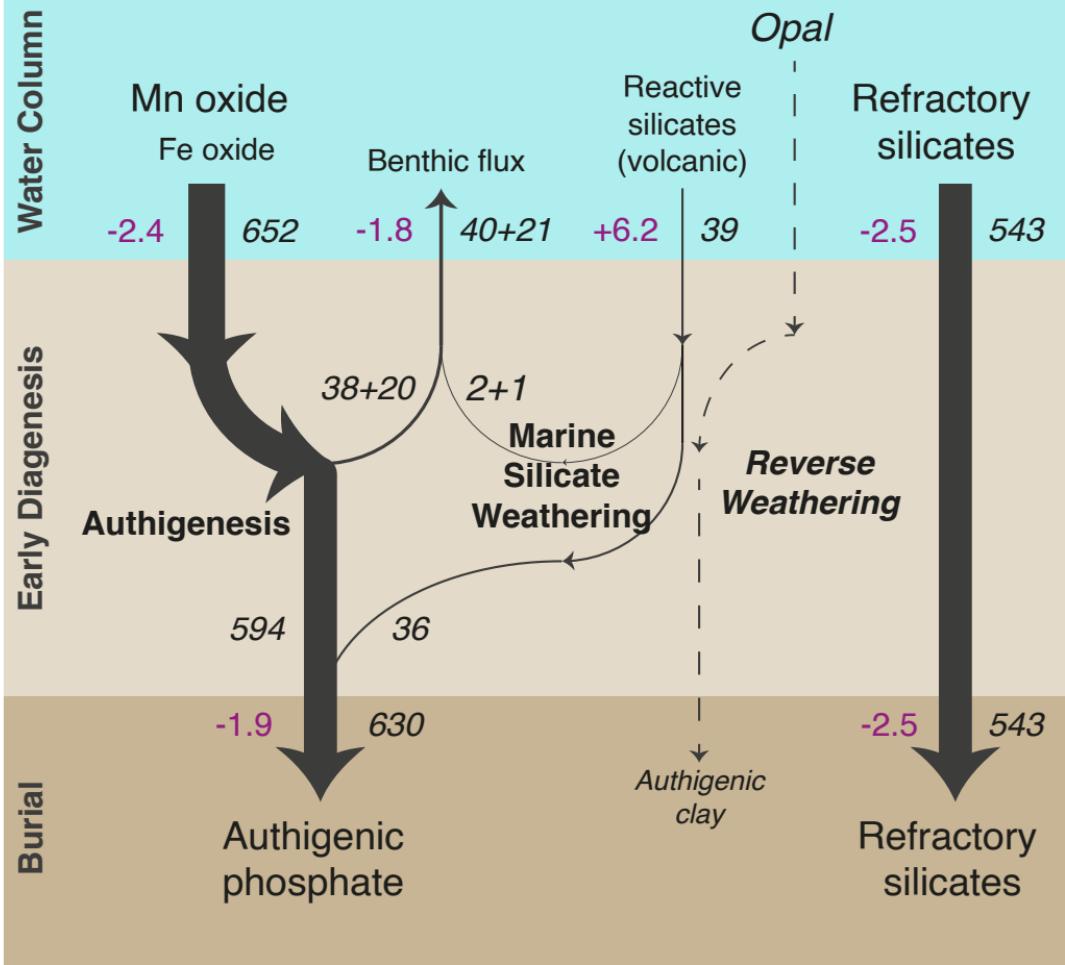



789 Zemmel, I., Cook, H.E., 1973. Appendix IV; X-ray mineralogy of sediments from the Northeast Pacific and
790 Gulf of Alaska-Leg 18 Deep Sea Drilling Project, in: Kulm, L.V.D., von Huene, R. (Eds.), Initial


791 Reports of the Deep Sea Drilling Project. U.S. Govt. Printing Office, Washington, D.C., pp. 1015–
792 1060.
793









Supplementary Information

Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments: the roles of authigenesis, marine silicate weathering and reverse weathering

4 Jianghui Du^a, Brian A Haley^b, Alan C Mix^b, April Abbott^c, James McManus^d, Derek Vance^a

⁵ ^aInstitute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich,
⁶ Clausiusstrasse 25, 8092, Zürich, Switzerland

⁷ ^bCollege of Earth Ocean and Atmospheric Sciences, Oregon State University, 104 CEOAS
⁸ Admin. Bldg., Corvallis, OR 97331, USA

⁹ Department of Marine Science, Coastal Carolina University, 100 Chanticleer Drive E,
¹⁰ Conway, SC 29526, USA

11 ^dBigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544,
12 USA

13

Supplementary Methods

1. Diagenetic equations

The concentrations of dissolved (C_d , in mmol/cm³ pore water) and solid (C_s , in mmol/cm³ dry sediment) species are modeled using the classic 1-D reactive transport model of early diagenesis (Boudreau, 1997):

$$\varphi \frac{\partial C_d}{\partial z} = \frac{\partial}{\partial z} \left(\varphi D_d \frac{\partial C_d}{\partial z} \right) - \frac{\partial}{\partial z} (\varphi u_d C_d) + \varphi \alpha (C_{BW} - C_d) + \varphi \sum R, \quad (1)$$

$$(1 - \varphi) \frac{\partial C_s}{\partial z} = \frac{\partial}{\partial z} \left((1 - \varphi) D_s \frac{\partial C_s}{\partial z} \right) - \frac{\partial}{\partial z} ((1 - \varphi) u_s C_s) + (1 - \varphi) \sum R, \quad (2)$$

where φ is porosity, z is sediment depth, C_{BW} is the bottom water concentration and R is the reaction rate. Physical transport includes molecular diffusion corrected for tortuosity (D_d), burial (u_d) and bio-irrigation (α) for dissolved species, and bioturbation (D_s) and burial (u_s) for solid species.

2. Physical transport

The physical transport in the model follows well-established principals in early diagenesis assuming steady state compaction (Berner, 1980; Boudreau, 1997; Dale et al., 2015; Meysman et al., 2003). The parameterizations of the transport terms are reported in Supplementary Table 1 and the parameters are reported in Supplementary Table 2.

3. Biogeochemical reaction network

The biogeochemical reaction network in the model follows the classic studies of early diagenesis including the organic carbon remineralization sequence, secondary redox reactions and minerals such as opal, calcite and Fe sulfides (Berner, 1980; Boudreau, 1997; Dale et al., 2015; Meysman et al., 2003; Wang and Van Cappellen, 1996). The reactions are reported in Supplementary Table 3, the rate expressions are reported in Supplementary Table 4, and the reaction parameters are reported in Supplementary Table 5. Silicate weathering and reverse weathering reactions are reported in Supplementary Table 6.

In the model we use the continuum model of POC reactivity (Boudreau et al., 2008; Boudreau and Ruddick, 1991):

$$k_{POC} = \frac{\nu}{a_0 + a}, \quad (3)$$

40 Here k_{POC} is the POC remineralization rate, ν controls the shape of the gamma distribution
 41 for POC mineralization, a_0 is the initial age of POC, and a is duration of remineralization.
 42 We model the deposition age of sediment (Meile and Van Cappellen, 2005) to represent a in
 43 Eq. (3):

$$44 \frac{\partial Age}{\partial z} = \frac{1}{1-\varphi} \frac{\partial}{\partial z} \left((1-\varphi) D_s \frac{\partial Age}{\partial z} \right) - \frac{1}{1-\varphi} \frac{\partial}{\partial z} \left((1-\varphi) u_s Age \right) + 1, \quad (4)$$

45 4. Adsorption

46 The adsorption of Nd is described in the main text. In the model, NH_4 adsorption is
 47 modeled as (Mackin and Aller, 1984):

$$48 NH_{4ads} = K NH_{4ads} \times NH_4, \quad (5)$$

49 Dissolved Fe and Mn can be adsorbed onto FeOOH and MnO_2 (Katsev et al., 2007):

$$50 Fe_{ads-MnO_2} = K Fe_{ads-MnO_2} \times Fe \times MnO_2, \quad (6)$$

$$51 Fe_{ads-FeOOH} = K Fe_{ads-FeOOH} \times Fe \times FeOOH, \quad (7)$$

$$52 Mn_{ads-MnO_2} = K Mn_{ads-MnO_2} \times Mn \times MnO_2, \quad (8)$$

$$53 Mn_{ads-FeOOH} = K Mn_{ads-FeOOH} \times Mn \times FeOOH, \quad (9)$$

54 5. Aqueous speciation

55 Speciation reactions and constants are reported in Supplementary Table 7 and 8. To
 56 calculate mineral saturation state the model computes pore water pH and the speciation of
 57 dissolved Nd, Fe(II) and Al. We follow the Direct Substitution Approach to pH modeling
 58 (Hofmann et al., 2008):

$$59 \frac{\partial H}{\partial t} = \left(\frac{\partial TA}{\partial t} - \frac{\partial TCO_2}{\partial t} \frac{\partial TA}{\partial TCO_2} - \frac{\partial TH_2S}{\partial t} \frac{\partial TA}{\partial TH_2S} - \frac{\partial TB(OH)_3}{\partial t} \frac{\partial TA}{\partial TB(OH)_3} \right) / \frac{\partial TA}{\partial H}, \quad (10)$$

60 Proton (H) concentration is modeled dynamically following the impacts of transport
 61 and reactions on *total* alkalinity ($TA = \text{HCO}_3^- + 2\text{CO}_3^{2-} + \text{HS}^- + \text{B(OH)}_4^- + \text{OH}^- - \text{H}^+$), total carbon
 62 ($TCO_2 = \text{CO}_2 + \text{HCO}_3^- + \text{CO}_3^{2-}$), total sulfide ($TH_2S = \text{H}_2\text{S} + \text{HS}^-$), total boron
 63 ($TB(OH)_3 = \text{B(OH)}_3 + \text{B(OH)}_4^-$) and their individual species. Given modeled pH and assuming
 64 local equilibrium, the acid-base equilibria are computed, also including the dissociation of
 65 H_4SiO_4 and H_3PO_4 , which contribute little to TA but needed for metal speciation. *Apparent*
 66 equilibrium constants for seawater are computed at *in situ* temperature (2°C) and pressure

67 (300 bar) using “seacarb” package (Gattuso et al., 2016) following the best practice
68 recommendation of Dickson et al. (2007).

69 For Fe(II), complexation with HS^- , CO_3^{2-} , HCO_3^- , Cl^- , SO_4^{2-} are included (Pierrot and
70 Millero, 2017; Rickard, 2006). For Al we consider stepwise hydrolysis (Brown and Ekberg,
71 2016). *Apparent* equilibrium constants for complex formation and mineral saturation suitable
72 for a seawater medium are either measured, or computed using the constants at zero ionic
73 strength and the activity coefficients from the Pitzer equation based Miami Ion Interaction
74 model of seawater (Pierrot and Millero, 2017). The constants at *in situ* temperature are
75 computed whenever possible, otherwise those at the standard state (25°C) are used. The
76 pressure effects are generally unknown and thus unaccounted for.

77 For example, the *apparent* solubility of Nd rhabdophane is computed as

$$78 \quad K_{\text{sp}}^0_{\text{NdPO}_4} = \frac{K_{\text{sp}}^0_{\text{NdPO}_4}}{\gamma_{\text{Nd}^{3+}} \gamma_{\text{PO}_4^{3-}}} \quad (11)$$

79 where $K_{\text{sp}}^0_{\text{NdPO}_4}$ is the solubility at zero ionic strength and *in situ* temperature (Gausse et al.,
80 2016), and γ are the activity coefficients in seawater at *in situ* temperature (Pierrot and
81 Millero, 2017).

82 In the model, pore water concentrations of Cl^- , F^- , Na^+ , Mg^{2+} , K^+ are taken to be the same
83 as seawater (salinity=35) as they generally remain constant in surface sediments, while other
84 ligands and species are modeled explicitly. We do not consider organic ligands since they
85 have not been characterized in sediment pore water.

86 6. Boundary conditions

87 Boundary conditions of modeled species are reported in Supplementary Table 9. In
88 the model, the flux of Nd is linked to Fe/Mn oxides. In the reversible scavenging formulation,
89 the flux of Nd entering sediments and adsorbed onto MnO_2 (same for FeOOH) is:

$$90 \quad FNd_{\text{MnO}_2-\text{ads}} = FMnO_2 \times K_{\text{ads-MnO}_2} \times {}^iNd_{\text{BW}}, \quad (12)$$

91 In the co-precipitation formulation, the flux of Nd entering sediments and co-
92 precipitated with Mn is

$$93 \quad FNd_{\text{MnO}_2-\text{copre}} = FMnO_2 \times D_{\text{Nd/Mn}} \times \frac{{}^iNd_{\text{BW}}}{Mn_{\text{BW}}}, \quad (13)$$

94 Subscript “BW” refers to bottom water and $FMnO_2$ is the flux of MnO_2 . Both
95 formulations assume that incoming oxides inherit ε_{Nd} from the bottom water.

96 Finally, using the modeled pore water Nd concentration, we compute the total benthic
97 Nd flux as the sum of diffusive flux, burial flux and bio-irrigation flux:

98
$$F_{Nd} = -\phi D_{Nd} \frac{\partial Nd}{\partial z} \Big|_{z=0} + \phi u_d Nd \Big|_{z=0} + \int_{0 \text{ cm}}^{50 \text{ cm}} \phi \alpha (Nd - Nd_{BW}) dz, \quad (14)$$

99 We compute the benthic flux of both ^{143}Nd and ^{144}Nd , and the ε_{Nd} is computed using the ratio
100 of their fluxes accordingly.

101 7. Numerical solution

102 The model code is written in the Julia Language, a programming language for high-
103 performance scientific computing (Bezanson et al., 2017). Diagenetic equations are
104 discretized using the Method-of-Line approach (Boudreau, 1996), resulting in 6600 coupled
105 and stiff ordinary differential equations in the baseline simulation. We solve the sparse
106 system of equations using the CVODE_BDF GMRES solver from the SUNDIALS package
107 (Hindmarsh et al., 2005) included in the Julia package “DifferentialEquations.jl”
108 (Rackauckas and Nie, 2017). The model is run dynamically toward steady state.

109 8. Data source

110 Geochemical datasets used in this study are derived from the GEOROC database:

111 Cascade Arc compilation: <https://doi.org/10.25625/PVFZCE>IDBJFS>.

112 Clinopyroxene compilation: <https://doi.org/10.25625/SGFTFN/QDDJRA>.

113 Plagioclase compilation: <https://doi.org/10.25625/SGFTFN/C8I6RT>.

Supplementary Tables

Supplementary Table 1. Parameterization of physical transport

Variables	Parameterization
Porosity	$\varphi(z) = (\varphi_0 - \varphi_L)\exp(-z/z_\varphi) + \varphi_L$
Pore water burial velocity	$u_d(z) = \frac{\varphi_L}{\varphi(z)} u_s^L$
Solid sediment burial velocity	$u_s(z) = \frac{1-\varphi_L}{1-\varphi(z)} u_s^L$
Final sediment burial velocity	$u_s^L = \frac{F_{sed}}{\rho_s(1-\varphi_L)}$
Bioturbation	$D_s(z) = D_s^0 \operatorname{erfc}(\frac{z-z_s}{2})$
Bio-irrigation	$\alpha(z) = \alpha^0 \exp(-\frac{z}{z_{\text{irr}}})$
Molecular diffusion	$D_d(z) = \frac{D_m}{1-\ln(\varphi^2(z))}$

Supplementary Table 2. Parameters of physical transport

Parameter	Explanation	Values	Sources
φ_0	Porosity at 0 cm	0.8	This study
φ_L	Porosity at 50 cm	0.7	This study
z_φ	Porosity attenuation scale	5 cm	This study
F_{sed}	Total sediment flux	$1.01 \times 10^{-2} \text{ g/cm}^2/\text{yr}$	(Lyle et al., 1992)
ρ_s	Dry sediment density	2.6 g/cm ³	This study
D_s^0	Bioturbation at 0 cm	1.9 cm ² /yr	(Middelburg et al., 1997)
z_s	Mixed layer depth scale	6 cm	(Boudreau, 1994)
α^0	Bio-irrigation at 0 cm	28.4 yr ⁻¹	(Meile and Van Cappellen, 2003)
z_{irr}	Irrigation attenuation scale	2 cm	This study
D_m	Molecular diffusivity	Calculated for each species	(Boudreau, 1997)

Supplementary Table 3. Biogeochemical reaction network

Reaction	Explanation	Chemical equation
RO2POC ¹	Aerobic respiration of POC	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + O_2 + (rNC-rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + H_2O$
RNO2POC	Denitrification using NO2	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + 4/3*NO_2\{-\} + (4/3+rNC - rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + 2/3*N_2 + 5/3*H_2O$
RNO3POC	Denitrification using NO3	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + 2*NO_3\{-\} + (rNC - rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + 2*NO_2\{-\} + H_2O$
RMnO2POC	Mn reduction by POC	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + 2*MnO_2 + (4 + rNC - rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + 2*Mn\{2+\} + 3*H_2O$
RFeOOHPOC	Fe reduction by POC	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + 4*FeOOH + (8+rNC - rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + 4*Fe\{2+\} + 7*H_2O$
RSO4POC	SO4 reduction by POC	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + 1/2*SO_4\{2-\} + (1+rNC - rPC)*H\{+\} = CO_2 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\} + 1/2*H_2S + H_2O$
RCH4POC	Methanogenesis	$(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC] + (rNC - rPC)*H\{+\} = 1/2*CO_2 + 1/2*CH_4 + rNC*NH_4\{+\} + rPC*H_2PO_4\{-\}$
RO2NO2	Oxidation of NO2 by O2	$1/2*O_2 + NO_2\{-\} = NO_3\{-\}$
RO2NH4	Oxidation of NH4 by O2	$3/2*O_2 + NH_4\{+\} = NO_2\{-\} + 2*H\{+\} + H_2O$
RO2Mn	Oxidation of Mn2+ by O2	$1/2*O_2 + Mn\{2+\} + H_2O = MnO_2 + 2*H\{+\}$
RO2Mn _{ads} ²	Oxidation of adsorbed Mn by O2	$1/2*O_2 + Mn_{ads} + H_2O = MnO_2 + 2*H\{+\}$
RO2Fe	Oxidation of Fe2+ by O2	$1/4*O_2 + Fe\{2+\} + 3/2*H_2O = FeOOH + 2*H\{+\}$
RO2Fe _{ads} ³	Oxidation of adsorbed Fe by O2	$1/4*O_2 + Fe_{ads} + 3/2*H_2O = FeOOH + 2*H\{+\}$
RO2H2S	Oxidation of H2S by O2	$2*O_2 + H_2S = SO_4\{2-\} + 2*H\{+\}$
RO2FeS	Oxidation of FeS by O2	$9/4*O_2 + FeS + 3/2*H_2O = FeOOH + SO_4\{2-\} + 2*H\{+\}$
RO2CH4	Oxidation of CH4 by O2	$2*O_2 + CH_4 = CO_2 + 2*H_2O$
RNO2NH4	Anammox	$NO_2\{-\} + NH_4\{+\} = N_2 + 2*H_2O$
RSO4CH4	Anaerobic oxidation of methane	$SO_4\{2-\} + CH_4 + 2*H\{+\} = CO_2 + H_2S + 2*H_2O$
RMnO2Fe	Oxidation of Fe2+ by MnO2	$1/2*MnO_2 + Fe\{2+\} + H_2O = 1/2*Mn\{2+\} + FeOOH + H\{+\}$
RMnO2H2S	Oxidation of H2S by MnO2	$MnO_2 + H_2S + 2*H\{+\} = Mn\{2+\} + S + 2*H_2O$
RFeOOHH2S	Oxidation of H2S by FeOOH	$2*FeOOH + H_2S + 4*H\{+\} = 2*Fe\{2+\} + S + 4*H_2O$
RFeSH2S	Precipitation of pyrite	$FeS + H_2S = FeS_2 + H_2$
RFeS _{dis}	FeS dissolution	$FeS + H\{+\} = Fe\{2+\} + HS\{-\}$
RFeS _{pre}	FeS precipitation	$Fe\{2+\} + HS\{-\} = FeS + H\{+\}$
RCaCO3 _{dis}	Calcite dissolution	$CaCO_3 = Ca\{2+\} + CO_3\{2-\}$
RBSi _{dis} ⁴	Biogenic opal dissolution	$SiO_2(Al)[rAlSi] + 2*H_2O = H_4SiO_4 + rAlSi*Al\{3+\}$

¹The chemical formula of POC is $(CH_2O)(NH_3)[rNC](H_3PO_4)[rPC]$, where rNC is the N:C ratio and rPC is the P:C ratio.

² Mn_{ads} is the sum of Mn adsorbed on MnO2 and FeOOH.

³ Fe_{ads} is the sum of Fe adsorbed on MnO2 and FeOOH.

⁴Biogenic opal contains Al at an Al:Si molar ratio of $rAlSi$.

Supplementary Table 4. Biogeochemical reaction rates

Reaction	Rate expression
RO2POC	$O_2/(K_02+O_2)^*v/(a_0+A_{ge})*POC$
RNO2POC	$NO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RNO3POC	$NO_3/(KNO_3+NO_3)^*KNO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RMnO2POC	$MnO_2/(KMnO_2+MnO_2)^*KNO_3/(KNO_3+NO_3)^*KNO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RFeOOHPOC	$FeOOH/(KFeOOH+FeOOH)^*KMnO_2/(KMnO_2+MnO_2)^*KNO_3/(KNO_3+NO_3)^*KNO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RSO4POC	$SO_4/(KSO_4+SO_4)^*KFeOOH/(KFeOOH+FeOOH)^*KMnO_2/(KMnO_2+MnO_2)^*KNO_3/(KNO_3+NO_3)^*KNO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RCH4POC	$KSO_4/(KSO_4+SO_4)^*KFeOOH/(KFeOOH+FeOOH)^*KMnO_2/(KMnO_2+MnO_2)^*KNO_3/(KNO_3+NO_3)^*KNO_2/(KNO_2+NO_2)^*K_02/(K_02+O_2)^* v/(a_0+A_{ge})*POC$
RO2NO2	$kO_2NO_2^*O_2^*NO_2$
RO2NH4	$kO_2NH_4^*O_2^*NH_4$
RO2Mn	$kO_2Mn^*O_2^*Mn$
RO2Mn _{ads} ¹	$kO_2Mn_{ads}^*O_2^*Mn_{ads}^*dstopw$
RO2Fe	$kO_2Fe^*O_2^*Fe$
RO2Fe _{ads} ¹	$kO_2Fe_{ads}^*O_2^*Fe_{ads}^*dstopw$
RO2H2S	$kO_2H_2S^*O_2^*TH_2S$
RO2FeS	$kO_2FeS^*O_2^*FeS$
RO2CH4	$kO_2CH_4^*O_2^*CH_4$
RNO2NH4	$kNO_2NH_4^*NO_2^*NH_4$
RSO4CH4	$kAOM^*CH_4^*SO_4/(SO_4+KAOM)$
RMnO2Fe	$kMnO_2Fe^*MnO_2^*Fe$
RMnO2H2S	$kMnO_2H_2S^*MnO_2^*TH_2S$
RFeOOHH2S	$kFeOOHH_2S^*FeOOH^*TH_2S$
RFeSH2S	$kFeSH_2S^*FeS^*TH_2S$
RFeS _{dis} ²	$kFeS_{dis}^*FeS^*(1-Fe_{free}^*HS/(H^*KspFeS)), \text{ if } Fe_{free}^*HS/(H^*KspFeS) < 1$
RFeS _{pre} ²	$kFeS_{pre}^*Fe^*TH_2S^*(Fe_{free}^*HS/(H^*KspFeS)-1), \text{ if } Fe_{free}^*HS/(H^*KspFeS) > 1$
RCaCO3 _{dis} ³	$kCaCO_3dis0^*CaCO_3 + kCaCO_3dis1^*CaCO_3^*(1-Ca^*CO_3/KspCaCO_3_{dis})^nCaCO_3dis, \text{ if } Ca^*CO_3/KspCaCO_3 < 1$
RBSi _{dis}	$kBSi_{dis}^*BSi^*(1-TH_4SiO_4/TH_4SiO_4_{sat}), \text{ if } TH_4SiO_4/TH_4SiO_4_{sat} < 1$

¹ Rate is converted to unit in per volume of pore water by multiplying $dstopw = (1 - \varphi)/\varphi$

² Fe_{free} is the free Fe^{2+} concentration computed using the speciation model.

³ Calcite dissolution rate is the sum of the close to saturation rate ($kCaCO_3dis0$) and the far from saturation rate ($kCaCO_3dis1$) (Naviaux et al., 2019).

Supplementary Table 5. Biogeochemical reaction parameters

Parameter	Value	Unit ¹	Explanation	Sources
ν	0.125	dimensionless	Shape of the gamma distribution of POC reactivity	(Boudreau et al., 2008)
a_0	60	yr	Initial age of POC	This study
r_{NC}	16/117	mol/mol	N:C ratio of POC	(Anderson and Sarmiento, 1994)
r_{PC}	1/170	mol/mol	P:C ratio of POC	This study
K_{O_2}	1.00E-06	mmol cm ⁻³ pw	Half saturation constant of O ₂ in POC oxidation	(Dale et al., 2015)
K_{NO_2}	1.00E-05	mmol cm ⁻³ pw	Half saturation constant of NO ₂ in POC oxidation	(Dale et al., 2015)
K_{NO_3}	1.00E-05	mmol cm ⁻³ pw	Half saturation constant of NO ₃ in POC oxidation	(Dale et al., 2015)
K_{MnO_2}	0.03	mmol cm ⁻³ ds	Half saturation constant of MnO ₂ in POC oxidation	(Dale et al., 2015)
K_{FeOOH}	8.8	mmol cm ⁻³ ds	Half saturation constant of FeOOH in POC oxidation	This study
K_{SO_4}	2.60E-06	mmol cm ⁻³ pw	Half saturation constant of SO ₄ in POC oxidation	(Contreras et al., 2013)
$k_{O_2NO_2}$	1.00E+07	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of NO ₂ oxidation by O ₂	(Dale et al., 2015)
$k_{O_2NH_4}$	1.00E+07	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of NH ₄ oxidation by O ₂	(Dale et al., 2015)
k_{O_2Mn}	0.00E+00	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of Mn ²⁺ oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{O_2Mn_ads}$	1.00E+06	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of adsorbed Mn oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
k_{O_2Fe}	1.00E+07	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of Fe ²⁺ oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{O_2Fe_ads}$	1.00E+06	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of adsorbed Fe oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{O_2H_2S}$	1.00E+05	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of H ₂ S oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
k_{O_2FeS}	1.00E+05	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of FeS oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{O_2CH_4}$	1.00E+10	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of CH ₄ oxidation by O ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{NO_2NH_4}$	1.00E+08	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of anammox	(Dale et al., 2015)
k_{AOM}	4.00E-02	yr ⁻¹	Rate of anaerobic oxidation of methane (AOM)	(Contreras et al., 2013)
K_{AOM}	1.00E-03	mmol cm ⁻³ pw	Half saturation constant of SO ₄ in AOM	(Contreras et al., 2013)
k_{MnO_2Fe}	1.00E+06	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of Fe ²⁺ oxidation by MnO ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
$k_{MnO_2H_2S}$	1.00E+04	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of H ₂ S oxidation by MnO ₂	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
k_{FeOOHH_2S}	1.00E+01	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of H ₂ S oxidation by FeOOH	This study
k_{FeSH_2S}	1.00E+07	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of pyrite precipitation	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
K_{spFeS}	1.3465E-03	mmol cm ⁻³ pw	Solubility of FeS	(Rickard, 2006)
k_{FeSdis}	1.00E-03	yr ⁻¹	Rate of FeS dissolution	(Meysman et al., 2003; Wang and Van Cappellen, 1996)
k_{FeSpre}	2.00E+03	(mmol cm ⁻³ pw) ⁻¹ yr ⁻¹	Rate of FeS precipitation	This study
k_{CaCO_3dis0}	5.54E-02	yr ⁻¹	Close to saturation dissolution rate constant of calcite	(Naviaux et al., 2019)
k_{CaCO_3dis1}	1.75E+02	yr ⁻¹	Far from saturation dissolution rate constant of calcite	(Naviaux et al., 2019)
n_{CaCO_3dis}	5	dimensionless	Order of far from saturation dissolution rate of calcite	(Naviaux et al., 2019)
K_{spCaCO_3}	7.8636E-07	(mmol cm ⁻³ pw) ²	Solubility of calcite	(Gattuso et al., 2016)
k_{BSi_dis}	0.025	yr ⁻¹	Dissolution rate of biogenic opal	(Van Cappellen et al., 2002)
$TH_{4SiO_4_sat}$	6.20E-04	mmol cm ⁻³ pw	Saturation concentration of opal dissolution	This study
r_{AlSi}	0.0025	mol/mol	Al/Si ratio in opal	(Van Cappellen et al., 2002)
K_{NH_4ads}	4.16	cm ³ (pw) cm ⁻³ (ds)	Adsorption constant of NH ₄	(Mackin and Aller, 1984)
$K_{Mn_{ads}MnO_2}$	1.00E+04	(mmol cm ⁻³ pw) ⁻¹	Adsorption constant of dissolved Mn on MnO ₂	(Van Cappellen et al., 2002)
$K_{Mn_{ads}FeOOH}$	1.00E+02	(mmol cm ⁻³ pw) ⁻¹	Adsorption constant of dissolved Mn on FeOOH	(Van Cappellen et al., 2002)
$K_{Fe_{ads}MnO_2}$	1.00E+04	(mmol cm ⁻³ pw) ⁻¹	Adsorption constant of dissolved Fe on MnO ₂	(Van Cappellen et al., 2002)
$K_{Fe_{ads}FeOOH}$	1.00E+04	(mmol cm ⁻³ pw) ⁻¹	Adsorption constant of dissolved Fe on FeOOH	(Van Cappellen et al., 2002)

¹Units of volume are either referring to pore water (pw) or dry sediments (ds).

Supplementary Table 6. Silicate weathering and reverse weathering reactions.

Reaction	Solubility logK	Rate Logk (mol/m ² /s)	Surface area (m ² /g) ¹	Reference & Comment
Basalt $\text{SiAl}_{0.36}\text{O}_2(\text{OH})_{1.08} + 0.92\text{H}_2\text{O} + 1.08\text{H}^+ = \text{H}_4\text{SiO}_4 + 0.36\text{Al}^{3+}$	0.64	-8.05	7	(1) Solubility is computed as the stoichiometrically weighted sum of amorphous Si gel and gibbsite dissolution (Gislason and Oelkers, 2003) at <i>in situ</i> temperature and pressure using SUPCRTBL (Zimmer et al., 2016). It is then converted to apparent solubility in seawater using the activity coefficient at <i>in situ</i> temperature and salinity from the Miami Pitzer Model (Pierrot and Millero, 2017). (2) Dissolution rate at near neutral condition is from (Heřmanská et al., 2022).
Clinopyroxene (Di₄₅Hed₂₅En₁₉Fs₁₁) $\text{Ca}_{0.7}\text{Mg}_{0.84}\text{Fe}_{0.46}\text{Si}_2\text{O}_6 + 4\text{H}^+ + 2\text{H}_2\text{O} = 0.7\text{Ca}^{2+} + 0.84\text{Mg}^{2+} + 0.46\text{Fe}^{2+} + 2\text{H}_4\text{SiO}_4$	23.63	-11.65	7	(1) Solubility at <i>in situ</i> temperature is from (Stefánsson, 2001), then converted to apparent solubility in seawater using the activity coefficient at <i>in situ</i> temperature and salinity (Pierrot and Millero, 2017). (2) Dissolution rate at near neutral condition is from (Heřmanská et al., 2022).
Plagioclase (An₂₉Ab₇₁) $\text{Ca}_{0.29}\text{Na}_{0.71}\text{Al}_{1.29}\text{Si}_{2.71}\text{O}_8 + 5.16\text{H}^+ + 2.84\text{H}_2\text{O} = 0.29\text{Ca}^{2+} + 0.71\text{Na}^+ + 1.29\text{Al}^{3+} + 2.71\text{H}_4\text{SiO}_4$	14.04	-8.41	7	(1) Solubility at <i>in situ</i> temperature is from (Stefánsson, 2001), then converted to apparent solubility in seawater using the activity coefficient at <i>in situ</i> temperature and salinity (Pierrot and Millero, 2017). (2) Dissolution rate at near neutral condition is from (Heřmanská et al., 2022).
Chlorite $\text{Mg}_3\text{Fe}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_8 + 16\text{H}^+ = 2\text{Fe}^{2+} + 3\text{H}_4\text{SiO}_4 + 2\text{Al}^{3+} + 6\text{H}_2\text{O} + 3\text{Mg}^{2+}$	72.92	-13.15	7	(1) Solubility at <i>in situ</i> temperature is from the LLNL database (Delany and Lundein, 1991), then converted to apparent solubility in seawater using the activity coefficient at <i>in situ</i> temperature and salinity (Pierrot and Millero, 2017). (2) Dissolution rate at near neutral condition is from (Smith and Carroll, 2016).
Illite $\text{K}_{0.85}\text{Al}_{2.85}\text{Si}_{3.15}\text{O}_{10}(\text{OH})_2 + 9.4\text{H}^+ + 0.6\text{H}_2\text{O} = 0.85\text{K}^+ + 2.85\text{Al}^{3+} + 3.15\text{H}_4\text{SiO}_4$	18.64	-19.00	55	(1) Solubility at <i>in situ</i> temperature is from the Thermochimie database (Marty et al., 2015), then converted to apparent solubility in seawater using the activity coefficient at <i>in situ</i> temperature and salinity (Pierrot and Millero, 2017). (2) Precipitation rate is tested in the main text.

¹Surface areas for primary silicates and authigenic clay are assumed to be 7 and 55 m²/g respectively following previous studies of marine sediments (Maher et al., 2006).

Supplementary Table 7. Metal speciation

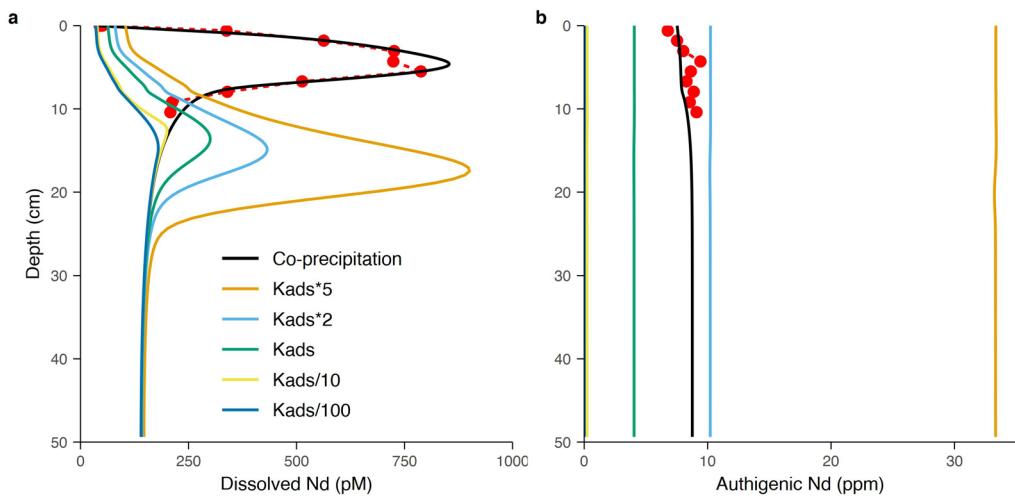
Equation	logK ¹	Sources
Fe{2+} + OH{-} = Fe(OH){+}	3.68	(Pierrot and Millero, 2017)
Fe{2+} + 2*OH{-} = Fe(OH)[2]	5.68	(Pierrot and Millero, 2017)
Fe{2+} + HCO3{-} = FeHCO3{+}	0.58	(Pierrot and Millero, 2017)
Fe{2+} + CO3{2-} = FeCO3 ⁰	2.98	(Pierrot and Millero, 2017)
Fe{2+} + 2*CO3{2-} = Fe(CO3)[2]{2-}	4.62	(Pierrot and Millero, 2017)
Fe{2+} + SO4{2-} = FeSO4 ⁰	0.82	(Pierrot and Millero, 2017)
Fe{2+} + Cl{-} = FeCl{+}	-0.26	(Pierrot and Millero, 2017)
Fe{2+} + HS{-} = FeS ⁰ + H{+}	-2.82	(Rickard, 2006)
Al{3+} + H2O = Al(OH){2+} + H{+}	-5.63	(Brown and Ekberg, 2016)
Al{3+} + 2*H2O = Al(OH)[2]{+} + 2*H{+}	-12.74	(Brown and Ekberg, 2016)
Al{3+} + 3*H2O = Al(OH)[3] ⁰ + 3*H{+}	-18.23	(Brown and Ekberg, 2016)
Al{3+} + 4*H2O = Al(OH)[4]{-} + 4*H{+}	-25.85	(Brown and Ekberg, 2016)
Nd{3+} + CO3{2-} = NdCO3{+}	5.46	(Schijf and Byrne, 2021)
Nd{3+} + 2*CO3{2-} = Nd(CO3)[2]{-}	9.56	(Schijf and Byrne, 2021)
Nd{3+} + HCO3{-} = NdHCO3{2+}	0.87	(Schijf and Byrne, 2021)
Nd{3+} + Cl{-} = NdCl{2+}	-0.46	(Schijf and Byrne, 2021)
Nd{3+} + SO4{2-} = NdSO4{+}	1.75	(Schijf and Byrne, 2021)
Nd{3+} + H2O = NdOH{2+} + H{+}	-9.02	(Schijf and Byrne, 2021)
Nd{3+} + H3SiO4{-} = NdH3SiO4{2+}	5.20	(Schijf and Byrne, 2021)
Nd{3+} + 2*H3SiO4{-} = Nd(H3SiO4)[2]{+}	10.80	(Schijf and Byrne, 2021)

¹Apparent stability constants, either measured at ionic strength of 0.7, or corrected to salinity of 35 using the activity coefficients from (Pierrot and Millero, 2017). We made further corrections to *in situ* temperature (2°C) and pressure (300 bar) whenever possible, otherwise we use the values at the standard state (25°C and 1 bar).

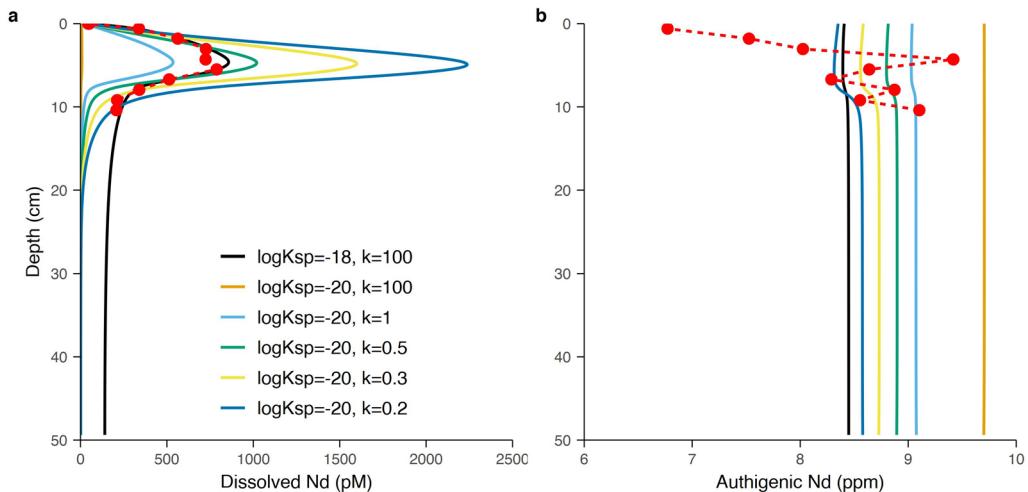
Supplementary Table 8. Acid dissociation

Equation	logK¹
$\text{H}_4\text{SiO}_4 = \text{H}_3\text{SiO}_4\{-\} + \text{H}\{+\}$	-9.72
$\text{H}_3\text{PO}_4 = \text{H}_2\text{PO}_4\{-\} + \text{H}\{+\}$	-1.59
$\text{H}_2\text{PO}_4\{-\} = \text{HPO}_4\{2-\} + \text{H}\{+\}$	-6.11
$\text{HPO}_4\{2-\} = \text{PO}_4\{3-\} + \text{H}\{+\}$	-9.26
$\text{CO}_2 + \text{H}_2\text{O} = \text{HCO}_3\{-\} + \text{H}\{+\}$	-6.01
$\text{HCO}_3\{-\} = \text{CO}_3\{2-\} + \text{H}\{+\}$	-9.32
$\text{H}_2\text{S} = \text{HS}\{-\} + \text{H}\{+\}$	-6.11
$\text{B}(\text{OH})_3 + \text{H}_2\text{O} + \text{B}(\text{OH})_4\{-\} + \text{H}\{+\}$	-8.78
$\text{H}_2\text{O} = \text{OH}\{-\} + \text{H}\{+\}$	-14.13

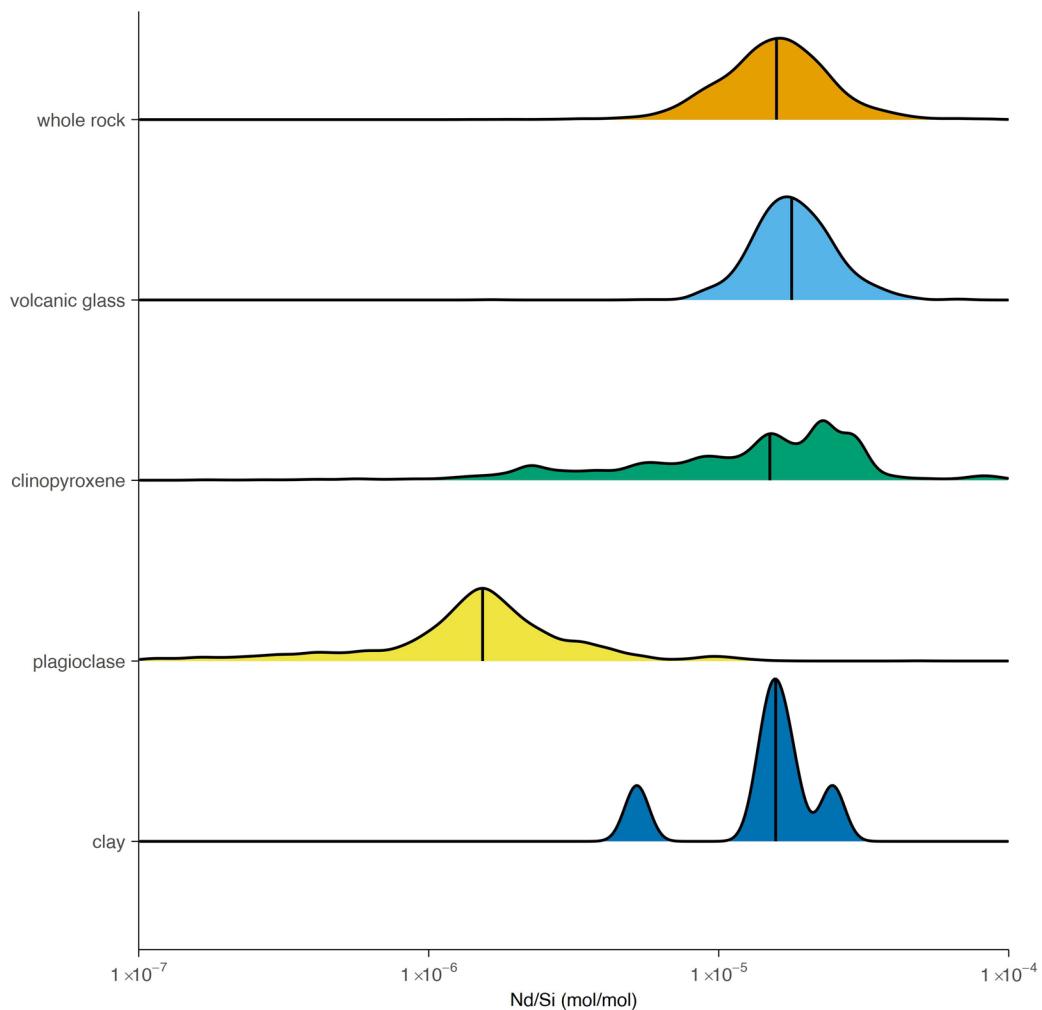
¹Computed at *in situ* temperature (2°C), pressure (300 bar) and salinity (35) (Gattuso et al., 2016).


Supplementary Table 9. Boundary conditions¹

Variable	Type	Value	Unit
POC	Incoming flux	2.7E-3	mmol cm ⁻² yr ⁻¹
MnO2	Incoming flux	3.5E-4	mmol cm ⁻² yr ⁻¹
FeOOH	Incoming flux	1.1E-4	mmol cm ⁻² yr ⁻¹
FeS	Incoming flux	0	mmol cm ⁻² yr ⁻¹
FeS2	Incoming flux	0	mmol cm ⁻² yr ⁻¹
CaCO3	Incoming flux	1.01E-2	mmol cm ⁻² yr ⁻¹
BSi	Incoming flux	3.23E-2	mmol cm ⁻² yr ⁻¹
Ca	Bottom water	1.03E-02	mmol cm ⁻³
SO4	Bottom water	2.80E-02	mmol cm ⁻³
TH3BO3	Bottom water	8.71E-05	mmol cm ⁻³
Mn	Bottom water	5.00E-10	mmol cm ⁻³
Fe	Bottom water	5.00E-10	mmol cm ⁻³
Al	Bottom water	5.00E-10	mmol cm ⁻³
CH4	Bottom water	0	mmol cm ⁻³
O2	Bottom water	8.00E-05	mmol cm ⁻³
NO3	Bottom water	4.00E-05	mmol cm ⁻³
NO2	Bottom water	5.00E-08	mmol cm ⁻³
NH4	Bottom water	0.00E+00	mmol cm ⁻³
TH3PO4	Bottom water	2.80E-06	mmol cm ⁻³
TH4SiO4	Bottom water	1.90E-04	mmol cm ⁻³
pH	Bottom water	7.7	free H scale
TCO2	Bottom water	2.38E-03	mmol cm ⁻³
TH2S	Bottom water	0.00E+00	mmol cm ⁻³
Age		0	yr


¹Boundary conditions at the sediment-water interface. For solid materials, we specify the incoming flux. For dissolved species, we specify the bottom water concentration. Boundary conditions at L=50 cm are no-flux conditions for all species, except for Age, which

is $\frac{\partial \text{Age}}{\partial z}|_{z=L} = 1/u_s^L$.


Supplementary Figures

Supplementary Fig. 1. Model sensitivity to adsorption constants in the reversible scavenging formulation of Nd cycling with Fe/Mn oxides. The adsorption constants for both MnO_2 and FeOOH are varied from 5 times (“Kads*5”) to 1/100 (“Kads/100”) of the values (“Kads”) used in the main text in Fig. 4. The results are compared with the co-precipitation formulation and the observations (red dots). The results show that the reversible scavenging formulation cannot capture the depth of the peak dissolved Nd concentration in pore water (**a**). With lower adsorption constants, less Nd is carried by oxides into the sediments, leading to lower pore water (**a**) and authigenic Nd concentrations (**b**).

Supplementary Fig. 2. Model sensitivity to the solubility and precipitation rate of NdPO₄. The parameters chosen in the main text in Fig. 3 are logK_{sp} = -18 and k = 100 pmol/cm³/yr. In the sensitivity tests we reduce the solubility to logK_{sp} = -20 while decreasing the precipitation rate from 100 to 0.2 pmol/cm³/yr. With lower solubility, the peak concentration can be captured if reducing the precipitation rate (**a**). However, the resulting peak shapes are narrower than the data suggest. The increase of Nd concentration with depth is delayed close to the sediment water interface, while the decrease of Nd concentration beneath the peak is more abrupt. The best constraint on the parameters would be Nd concentration beneath 20 cm, which would directly reflect the equilibrium concentration with respect to NdPO₄, but is unfortunately unavailable. Overall, the fit to the data is worse than using higher solubility (logK_{sp} = -18). Modeled authigenic Nd concentration is not as sensitive considering the data scatter (**b**).

Supplementary Fig. 3. The molar Nd/Si ratio in silicate phases. Data are plotted as probability density graphs (arbitrary y-scale), and the vertical lines indicate median values. Data of whole rock, volcanic glass, clinopyroxene and plagioclase come from the GEOROC database. The whole rock data include all volcanic rock samples from the Cascade Arc. The volcanic glass data are also from the Cascade Arc. The clinopyroxene and plagioclase data are from other convergent margins in the database since no data from the Cascade Arc is found. Clay data are from the global river sediment REE compilation of Bayon et al., (2015), and include the clay data from rivers draining volcanic terrains.

Supplementary References

Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. *Global Biogeochemical Cycles* 8, 65–80. <https://doi.org/10.1029/93GB03318>

Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S.J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M.-L., Tachikawa, K., Barrat, J.A., 2015. Rare earth elements and neodymium isotopes in world river sediments revisited. *Geochimica et Cosmochimica Acta* 170, 17–38. <https://doi.org/10.1016/j.gca.2015.08.001>

Berner, R.A., 1980. *Early Diagenesis: A Theoretical Approach*. Princeton University Press.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V., 2017. Julia: A Fresh Approach to Numerical Computing. *SIAM Rev.* 59, 65–98. <https://doi.org/10.1137/141000671>

Boudreau, B.P., 1997. *Diagenetic models and their implementation : modelling transport and reactions in aquatic sediments*. Springer, Berlin; New York.

Boudreau, B.P., 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. *Computers & Geosciences* 22, 479–496. [https://doi.org/10.1016/0098-3004\(95\)00115-8](https://doi.org/10.1016/0098-3004(95)00115-8)

Boudreau, B.P., 1994. Is burial velocity a master parameter for bioturbation? *Geochimica et Cosmochimica Acta* 58, 1243–1249. [https://doi.org/10.1016/0016-7037\(94\)90378-6](https://doi.org/10.1016/0016-7037(94)90378-6)

Boudreau, B.P., Arnosti, C., Jørgensen, B.B., Canfield, D.E., 2008. Comment on “Physical Model for the Decay and Preservation of Marine Organic Carbon.” *Science* 319, 1616–1616. <https://doi.org/10.1126/science.1148589>

Boudreau, B.P., Ruddick, B.R., 1991. On a reactive continuum representation of organic matter diagenesis. *Am J Sci* 291, 507–538. <https://doi.org/10.2475/ajs.291.5.507>

Brown, P.L., Ekberg, C., 2016. *Aluminium, gallium, indium and thallium*. Wiley VCH, Germany.

Contreras, S., Meister, P., Liu, B., Prieto-Mollar, X., Hinrichs, K.-U., Khalili, A., Ferdelman, T.G., Kuypers, M.M.M., Jørgensen, B.B., 2013. Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation on the Peruvian shelf. *PNAS* 110, 18098–18103. <https://doi.org/10.1073/pnas.1305981110>

Dale, A.W., Nickelsen, L., Scholz, F., Hensen, C., Oschlies, A., Wallmann, K., 2015. A revised global estimate of dissolved iron fluxes from marine sediments. *Global Biogeochemical Cycles* 29, 691–707. <https://doi.org/10.1002/2014GB005017>

Delany, J.M., Lundein, S.R., 1991. The LLNL thermochemical data base -- revised data and file format for the EQ3/6 package (No. UCID-21658). Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States).

Dickson, A.G., Sabine, C.L., Christian, J.R., 2007. Guide to best practices for ocean CO₂ measurements.

Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., Orr, J., Gentili, B., Hofmann, A., Proye, A., Soetaert, K., Rae, J., 2016. seacarb: Seawater Carbonate Chemistry.

Gausse, C., Szenknect, S., Qin, D.W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D., Dacheux, N., 2016. Determination of the Solubility of Rhabdophanes LnPO₄·0.667H₂O (Ln = La to Dy). *European Journal of Inorganic Chemistry* 2016, 4615–4630. <https://doi.org/10.1002/ejic.201600517>

Gislason, S.R., Oelkers, E.H., 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. *Geochimica et Cosmochimica Acta* 67, 3817–3832. [https://doi.org/10.1016/S0016-7037\(03\)00176-5](https://doi.org/10.1016/S0016-7037(03)00176-5)

Heřmanská, M., Voigt, M.J., Marieni, C., Declercq, J., Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. *Chemical Geology* 120807. <https://doi.org/10.1016/j.chemgeo.2022.120807>

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S., 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. *ACM Trans. Math. Softw.* 31, 363–396. <https://doi.org/10.1145/1089014.1089020>

Hofmann, A.F., Meysman, F.J.R., Soetaert, K., Middelburg, J.J., 2008. A step-by-step procedure for pH model construction in aquatic systems. *Biogeosciences* 5, 227–251. <https://doi.org/10.5194/bg-5-227-2008>

Katsev, S., Chaillou, G., Sundby, B., Mucci, A., 2007. Effects of progressive oxygen depletion on sediment diagenesis and fluxes: A model for the lower St. Lawrence River Estuary. *Limnol. Oceanogr.* 52, 2555–2568. <https://doi.org/10.4319/lo.2007.52.6.2555>

Lyle, M., Zahn, R., Prahl, F., Dymond, J., Collier, R., Pisias, N., Suess, E., 1992. Paleoproductivity and carbon burial across the California Current: The multitracers transect, 42°N. *Paleoceanography* 7, 251–272. <https://doi.org/10.1029/92PA00696>

Mackin, J.E., Aller, R.C., 1984. Ammonium adsorption in marine sediments1. *Limnol. Oceanogr.* 29, 250–257. <https://doi.org/10.4319/lo.1984.29.2.0250>

Maher, K., Steefel, C.I., DePaolo, D.J., Viani, B.E., 2006. The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. *Geochimica et Cosmochimica Acta* 70, 337–363. <https://doi.org/10.1016/j.gca.2005.09.001>

Marty, N.C.M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochebin, B., Tournassat, C., 2015. A database of dissolution and precipitation rates for clay-rocks minerals. *Applied Geochemistry, Geochemical Speciation Codes and Databases* 55, 108–118. <https://doi.org/10.1016/j.apgeochem.2014.10.012>

Meile, C., Van Cappellen, P., 2005. Particle age distributions and O₂ exposure times: Timescales in bioturbated sediments. *Global Biogeochemical Cycles* 19. <https://doi.org/10.1029/2004GB002371>

Meile, C., Van Cappellen, P., 2003. Global estimates of enhanced solute transport in marine sediments. *Limnol. Oceanogr.* 48, 777–786. <https://doi.org/10.4319/lo.2003.48.2.0777>

Meysman, F.J.R., Middelburg, J.J., Herman, P.M.J., Heip, C.H.R., 2003. Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. *Computers & Geosciences, Reactive Transport Modeling in the Geosciences* 29, 301–318. [https://doi.org/10.1016/S0098-3004\(03\)00007-4](https://doi.org/10.1016/S0098-3004(03)00007-4)

Middelburg, J.J., Soetaert, K., Herman, P.M.J., 1997. Empirical relationships for use in global diagenetic models. *Deep Sea Research Part I: Oceanographic Research Papers* 44, 327–344. [https://doi.org/10.1016/S0967-0637\(96\)00101-X](https://doi.org/10.1016/S0967-0637(96)00101-X)

Naviaux, J.D., Subhas, A.V., Dong, S., Rollins, N.E., Liu, X., Byrne, R.H., Berelson, W.M., Adkins, J.F., 2019. Calcite dissolution rates in seawater: Lab vs. in-situ measurements and inhibition by organic matter. *Marine Chemistry* 215, 103684. <https://doi.org/10.1016/j.marchem.2019.103684>

Pierrot, D., Millero, F.J., 2017. The Speciation of Metals in Natural Waters. *Aquat Geochem* 23, 1–20. <https://doi.org/10.1007/s10498-016-9292-4>

Rackauckas, C., Nie, Q., 2017. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. *Journal of Open Research Software* 5, 15. <https://doi.org/10.5334/jors.151>

Rickard, D., 2006. The solubility of FeS. *Geochimica et Cosmochimica Acta, A Special Issue Dedicated to Robert A. Berner* 70, 5779–5789.
<https://doi.org/10.1016/j.gca.2006.02.029>

Schijf, J., Byrne, R.H., 2021. Speciation of yttrium and the rare earth elements in seawater: Review of a 20-year analytical journey. *Chemical Geology* 584, 120479.
<https://doi.org/10.1016/j.chemgeo.2021.120479>

Smith, M.M., Carroll, S.A., 2016. Chlorite dissolution kinetics at pH 3–10 and temperature to 275 °C. *Chemical Geology* 421, 55–64.
<https://doi.org/10.1016/j.chemgeo.2015.11.022>

Stefánsson, A., 2001. Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0°C to 350°C. *Chemical Geology* 172, 225–250. [https://doi.org/10.1016/S0009-2541\(00\)00263-1](https://doi.org/10.1016/S0009-2541(00)00263-1)

Van Cappellen, P., Dixit, S., Beusekom, J. van, 2002. Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates. *Global Biogeochemical Cycles* 16, 23-1-23-10. <https://doi.org/10.1029/2001GB001431>

Wang, Y., Van Cappellen, P., 1996. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. *Geochimica et Cosmochimica Acta* 60, 2993–3014. [https://doi.org/10.1016/0016-7037\(96\)00140-8](https://doi.org/10.1016/0016-7037(96)00140-8)

Zimmer, K., Zhang, Y., Lu, P., Chen, Y., Zhang, G., Dalkilic, M., Zhu, C., 2016. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. *Computers & Geosciences* 90, 97–111.
<https://doi.org/10.1016/j.cageo.2016.02.013>