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Abstract—This paper presents general bounds on the highest
achievable rate for list-decodable insertion-deletion codes. In
particular, we give novel outer and inner bounds for the highest
achievable communication rate of any insertion-deletion code that
can be list-decoded from any ~ fraction of insertions and any
0 fraction of deletions. Our bounds simultaneously generalize
the known bounds for the previously studied special cases of
insertion-only, deletion-only, and zero-rate and correct other
bounds that had been reported for the general case.

Index Terms—Coding for Insertions and Deletions, List Decod-
ing, Synchronization, Error-Resilience, List-Decoding Capacity

I. INTRODUCTION

Error-correcting codes are classic combinatorial objects that
have been extensively studied since late 40s with broad appli-
cations in a multitude of communication and storage applica-
tions. While error-correcting codes are mostly studied within
the setting that concerns symbol substitutions and erasures
(i.e., Hamming-type errors), there has been a recent rise of
interest in codes that correct from synchronization errors, such
as insertions and deletions, from both theoretical [3]-[9], [11],
[14], [16]-[20], [23], [25], [29] and practical perspectives [1],
[2], [10], [12], [32], [34]. Such codes and their relevant
qualities are defined in the same fashion as error-correcting
codes, except that the minimum distance requirement is with
respect to the pairwise edit distance between code words.

Compared to error-correcting codes for Hamming errors
synchronization codes are far less understood and many funda-
mental questions about them remain to be explored. One such
important question is the rate-distance trade-off for (worst-
cases) synchronization errors, i.e., determining the largest rate
that any synchronization code can achieve in the presence of
a certain amount of synchronization errors. We address this
question in the list-decoding setting.

A code is list-decodable if there exists a decoder D which,
for any corrupted codeword (within the desired error bounds),
outputs a small size list of codewords that is guaranteed to in-
clude the uncorrupted codeword. More formally, an insertion-
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Fig. 1: Depiction of our outer bound for ¢ = 5 and its three projections for
the insertion-only case (on the right), the deletion-only case (on the left), and
the zero-rate case (on the bottom). The projection graphs are exactly matching
the state-of-the-art results of [14], [24].

deletion code C' C 3™ (or insdel code, for short) is (v, d, L)-
list-decodable if there exists a function D : ¥* — 2¢ such that
|D(w)| < L for every w € ¥* and for every codeword z € C
and every word w obtained from = by at most «y - n insertions
and at most ¢ - n deletions, it is the case that x € D(w). The
parameter L is called the list-size. These definitions naturally
extend to families of codes with increasing block lengths in
the usual way: A family of codes is (v, d, L(-))-list decodable
if each member of the family is (v, d, L(n))-list decodable
where n denotes the block length. Often the function L is
omitted and a family of g-ary codes C is said to be (v, J)-list
decodable if there exist some polynomial function L(-) for

which C is (v, d, L(-))-list decodable. The rate R of a family
log, |Ch|

of g-ary codes C is defined as R = lim,,_,

The fundamental question studied in this paper is to un-
derstand the inherent trade-off between the communication
rate of a g-ary list-decodable insdel code and the amount of
synchronization errors it can correct, i.e., the error parameters
~ and 4. For every fixed alphabet size ¢, this trade-off can be
nicely plotted as a 3D-surface in a 3D-chart which plots the
maximum communication rate on the z-axis for all v and ¢
(plotted on the x- and y-axes respectively). See Figure 1 for
an example of such a 3D-plot.

Of course, determining the exact communication rate values
for any ¢ and any non-trivial values of (v,d) is beyond
the capability of current techniques. Prior work (described in
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Section I-B) has furthermore mainly focused on obtaining a
better understanding of certain special cases, which correspond
to projections or cuts of the general trade-off plot. In particular,
Figure 1 shows the 2D cuts/projections onto the xz- and yz-
planes, which correspond to the insertion-only setting with
0 = 0 and the deletion-only setting with v = 0, as well as the
projection/cut onto the yz-plane specifying for which error rate
combinations of v and § the communication rate hits zero.
See Figure 1 for examples of these three 2D-projections. It
has also been studied how the shape of the 3D-plot changes
asymptotically as ¢ gets larger.

A. Our Results

This paper is among the first to give results for the entirety
of the 3D trade-off between communication rate and the two
error rates for every fixed alphabet size q. We primarily focus
on giving good outer bounds, i.e., impossibility results proving
limits on the best possible communication rate (for any given
~,0, and g). The novel outer bounds we prove are given in
the 3D-plot of Figure 1 for an alphabet size of ¢ = 5 (similar
plots for any given g apply). We develop these outer bounds
in Section II. (See Theorem I1.4)

A notable property of our new outer bound is that, for every
q, it exactly matches the best previously known results on
all three aforementioned projections/cuts. That is, the outer
bound implied for deletion-only codes (i.e., the cut on v =0
plane) matches the deletion-only bound from [24]. Similarly,
we match the best insertion-only bounds known (also from
[24]) when restricting or projecting our new general outer
bound result to the § = 0 plane. Finally, the error resilience
implied by our bound (i.e., where the curve in Figure 1 hits
the floor) precisely matches the list-decoding error resilience
curve for insertions and deletions as identified by [14]. As
such, our bound fully encapsulates and truly generalizes the
entirety of the current state-of-the-art of the fundamental rate-
distance trade-off for list-decodable insertion-deletion codes.

Lastly, for the sake of completeness and as a comparison
point, we also provide a general inner bound in Section III.
This general existence result is obtained by analyzing the list-
decodability of random codes. We do this mainly through a
simple bound on the size of the insertion-deletion sphere. It
is worth noting that, in contrast to our outer bound, the cut
onto the xy-plane does not match the precise error resilience
identified (through matching inner and outer bounds) in [14].
However, the cuts onto the xz and yz planes do match the
inner bounds of [24] for insertion-only and deletion-only cases,
which were also derived by analysis of random codes. We
generally believe our outer bounds to be closer to the true
zero-error list-decoding channel capacity.

B. Related Work

This paper studies the fundamental rate-distance trade-off
for error correcting codes which are capable of list-decoding
from worst-cases insertions and deletions, a topic which has
attracted significant attention over the last three years [14],
[17], [24], [26], [29], [33]. We summarize these prior works

in detail in this section. The multitude of related work on
similar questions, such as, (efficient) list-decoding from Ham-
ming errors, unique-decodable insdel codes, or decoding from
random insertions or deletions are too many to list or discuss
here. Instead, we refer the interested reader to the following
(recent) surveys [9], [13], [22], [30], [31], which give detailed
accounts of such works.

As noted above, with the exception of [29], mostly special
cases of the general rate-distance trade-off for list-decodable
insdel codes have been studied up to now. This includes in
particular (combinations of) the deletion-only case (with v =
0), the insertion-only case (with § = 0), the zero-rate regime
or resilience case asking for what extremal values of (v, J) a
non-zero rate can be obtained, and the case of large alphabets
where the alphabet size ¢ = O(1) is allowed to be a large
constant that can depend on the error rates (v, 9).

1) List-Decodable Insdel Codes Over Large Constant-Size
Alphabets: The rate-distance tradeoff for list-decodable error
correcting codes has been studied in [24] under the large
alphabet setting, that is the question of finding the largest
possible achievable rate that (-, d)-list-decodable families of
codes can achieve as long as their alphabet size is constant
g = O,,(1) (ie., independent of the block length). Using
a method of constructing insdel codes by indexing ordinary
error-correcting codes with synchronization strings introduced
in [23], [24] shows the following: For every § € (0,1),
v > 0, and sufficiently small € > 0, there exists an efficient
family of (v, d)-list-decodable codes over an alphabet of size
q = O,,5.(1) that achieve a rate of 1 — J — ¢ or more. It is
easy to verify that no such family of codes can achieve a rate
larger than 1 — 4.

The result of [24] points out an interesting and indeed very
drastic distinction between insertions and deletions in the list-
decoding setting. In the unique-decoding setting the effect of
insertions and deletions are symmetric, and the rate-distance
tradeoff can be fully measured solely in terms of the edit-
distance between codewords. For list-decoding it turns out that
insertions behave completely different than deletions. Indeed
while any ¢ fraction of deletions will definitely reduce the
rate at the very least to 1 — 4, in the very extreme the impact
of insertion errors can be fully compensated by taking the
alphabet appropriately large. This is what makes the maximum
achievable rate for arbitrarily large constant alphabets merely
a function of the deletion error rate §. This stark distinction in
the effects insertions and deletions have on the rate-distance
tradeoff for list-decodable codes is the reason why it is crucial
to use the two parameters v and J to keep track of insertions
and deletions separately.

2) Error Resilience of List-Decodable Insdel Codes: An
important special case of the rate-distance trade-off for list-
decodable insertion-deletion codes is the question of the best
possible error resilience. In particular, the question of “what
is the “largest” fraction of errors against which list-decoding
is possible for some positive-rate code”. Understanding this
question is, in some way, a prerequisite to meaningfully talk
about more general positive rates. Nevertheless, even when
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restricted to binary deletions-only or insertions-only codes,
finding good bounds on the error resilience is highly non-
trivial (in contrast to the Hamming case) [14], [15], [17], [26]
and has only recently been solved [14]. (along with the general
case where insertions and deletions occur together.)

For deletion-only codes, i.e., the special case where v = 0,
Guruswami and Wang [17] gave binary codes that are list-
decodable from a 6 = % — € fraction of errors attaining
a poly(e) rate for any ¢ > 0. This implies that the error
resilience for deletion coding is precisely dg = % since, with a
fraction of deletions § > %, an adversary can simply eliminate
all instances of the least frequent symbol and convert any
codeword from {0,1}" into either 0™/ or 17/2,

In 2017 a work of Wachter-Zeh [33] gave Johnson-type
bounds on list-decodability and list-sizes of codes given their
minimum edit-distance. In 2018, Hayashi and Yasunaga [26]
made corrections to the results presented in [33], and further
showed that such bounds give novel results for the insertion-
only case of resilience. In particular, they prove that the codes
introduced by Bukh, Guruswami, and Hastad [4] can be list-
decoded from up to v = 0.707 fraction of insertions (and no
deletions) while maintaining a positive-rate.

Very recently, Guruswami et al. [14] improved this fraction
of insertions to an optimal v < 1. Much more generally [14]
were able to tightly and fully identify the error resilience
region for codes that are list-decodable from a mixture of
insertions and deletions, i.e., determine exactly and for any
given ¢ the set of all (7, d)s where the largest achievable rate
for g-ary (v, 9d)-list decodable codes is non-zero. This fully
resolved the zero-rate projection of the question addressed in
this paper (shown in the bottom 2D chart of Figure 1).

3) Alphabet dependent rate results for the deletion-only and
insertion-only case: The two other projections, i.e., bounds on
the highest achievable rate for the insertion-only (6 = 0) and
deletion-only (v = 0) cases in dependence on ¢ and the error
parameter (y and J respectively) were given by Haeupler et
al. [24]. These projections are shown in Figure 1 to the right
and left respectively. The inner bounds presented in [24] are
derived by analyzing list-decoding properties of random codes.
Here, we briefly review (the ideas of) the outer bounds from
[24] as these will be helpful for the remainder of this paper.

a) Deletion-only case.: A simple observation for
deletion-only channels is that no family of positive-rate g-ary
codes can be list-decoded from § > 1— L fraction of deletions.
This is due to a simple strategy that adversary can employ to
eliminate all occurrences of all symbols of the alphabet except
the most frequent one to convert any sent codeword into a word
like a™(*=9) for some a € [q]. [24] suggests a similar strategy
called Alphabet Reduction for the adversary when 6 = g for
some integer d. With 6 = ¢ fraction of deletions, an adversary
can remove all instances of the d least frequent symbols and,
hence, convert any transmitted codeword into a member of an
ensemble of (¢—d)"(1=?) strings. This implies an outer bound
of % =(1-9) (1 — log, 1%5) on the largest rate
achievable by list-decodable deletion codes for special values

of § = % where d = 1,2,---,q — 1. Using a simple time
sharing argument between the alphabet reduction strategy over
these points, [24] provides a piece-wise linear outer bound for
all values of 0 < 6 < 1 — %

b) Insertion-only case.: In an insertion channel, the
received word contains the sent codeword as a subsequence.
To provide an outer bound on the highest achievable rate
by insertion codes, [24] used the probabilistic method: For
a given codeword x € [q]", [24] computes the probability of
a random string y € [¢]"(!*7) containing 2 as a subsequence.
Having this quantity, one can compute the expected number
of codewords of a given code C' with rate 7 that are contained
in a random string y € [¢]"(!*7). Note that if r is so high that
this expectation is exponentially large in terms of n, then, by
linearity of expectation, there exists some string ¢ € [q}”(HV)
which contains exponentially many codewords of C' which is
a contradiction to its list-decodability from yn insertions. This
implies an outer bound for the communication rate which we
describe in more details below.

4) General Case: Liu et al. [28] was the first and only other
work studying the rate of list-decodable insertion-deletion
codes in full generality, like this paper. After direct con-
tradictions between the results reported here and the claims
in [28] were discovered, several correctness issues with key
approaches of [28] for outer bounds were identified. These
results have been removed in [29], the final version of [28].
The underlying issues seem hard to fix without substantially
new ideas, as also reported in the acknowledgements of [29].
As a result, [29] is less directly relevant to this work, with
the largest overlap being the inner bounds, similarly derived
via a simple analysis of random insertion-deletion codes. Our
bound is stronger for all pairs (7, ) when g > 3. (See the full
version for a proof.)

II. OUTER BOUND

We start by reminding the following outer bound for the
insertion-only case from [24].

Theorem IL.1 (From [24]). For any alphabet size q and error
rate v < q — 1, any family of q-ary codes C which is list-
decodable from a ~ fraction of insertions has a rate of no
more than 1 —log,(y+1) —~v (logq “’T'H — log, qﬁ—l).
Next, we show how to use Theorem II.1 in a black-box
fashion to give a very clean and easily statable outer bound
for settings with both insertions and deletions, but in which
the fraction of deletions has a nice form. (a multiple of %)
This outer bound forms the backbone of our final result.

Theorem I1.2. For any fixed alphabet size q, any inser-
tion rate v < q — 1 and any deletion rate 6 = < for
some integer d < q, it is true that any family of q-ary
codes C which is (v, 0)-list-decodable has a rate of at most

—d —d—1
(1=8) [(1+ 1% ) log, 424 — 125 - (log, =51 ).
Proof. Consider a code C' that is (v, d)-list-decodable and
assume that § = g for some integer d. Assume that we restrict
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the adversary to utilize its deletions in the following manner:
The adversary uses the g deletion to remove all occurrences
of the d-least frequent symbols of the alphabet. If there are
remaining deletions, the adversary removes symbols from the
end of the transmitted word.

Let us define the code C” that is obtained from C' by deleting
a ¢ fraction of symbols from each codeword of C as described
above. Note that the block length of C’ is n’ = n(1 — ¢)
and each of its codewords consist of up to ¢ = ¢(1 —9) =
q — d symbols of the alphabet though this subset of size ¢ —d
may be different from codeword to codeword. We partition the
codewords of C” into (qu) sets C1,C%, - - - ,CE “) based on

which (g — d)-subset of the alphabet they consist %f.
Since C is (v,d)-list-decodable, each of the CIs
are list-decodable from ~n insertions. Therefore, Theo-

rem II.1 implies that the size of each code C! is no

larger than q/n/ e e G 7 1)] where
q':q—d,n’:n(l—(S),and'y:l%S.
Therefore,

the size of the code C is no larger than
(qu) qn(lﬂs) [logq ¢'~log, (v'+1)=' (logq o %} which

implies the theorem statement. O

ql
-1

Given the nice and explicit form of Theorem II.2 for any ¢
and ~ with multiple specific values of J, it seems tempting
to conjecture that the restriction of § is unnecessary mak-

ing (1—19) [(14— = 5>logq = il %5 - (log, q?ij)} a

-9
valid outer bound for any value of § (and ). This, however,
could not be further from the truth. Indeed, for any 4 not of the
form restricted to by Theorem I1.2, there exists a y for which
this extended bound is provably wrong because it contradicts
the existence of the list-decodable codes constructed in [14].

In fact, for the valid points where § is a multiple of
1" the rate bound of Theorem IL.2 hits zero at exactly the
corner points of the piece-wise linear resilience region F,
characterized by [14]. Taking this as an inspiration, one could
try to extend the bound of Theorem IL.2 to all values of § by
considering for each ¢ and each rate r the roughly £ points
where Theorem II.2 hits the plane corresponding to rate r and
extend these points in a piece-wise linear manner to a complete
2D-curve for this rate r. This would give a rate bound for any
~,0, and ¢ as desired, which reduces to a piece-wise linear
function for any fixed  and correctly reproduce Fj, for r = 0.

It turns out that this is indeed a correct outer bound. How-
ever, a stronger form of convexity, which takes full 3D-convex
interpolations between any points supplied by Theorem II.2
and in particular combines points with different rates, also
holds and is needed to give our final outer bound.

Theorem IL3. For a fixed q, suppose that (yo,00 = %0)

and (vy1,01 = %1) are two error rate combinations for which
Theorem I1.2 implies a maximal communication rate of ro and
ry, respectively. For any 0 < a < 1 consider the following
convex combinations of these quantities: -y = a~yo+ (1 —a)m,
d=adg+ (1 —a)dy, and r = arg+ (1 — a)ry. It is true that
any (0,~)-list-decodable q-ary code has a rate of at most r.

Fig. 2: Outer bound for rate for ¢ = 5. The special case where § = g for
some integer d is indicated with red lines.

See Figure 2 for an illustration of this bound for ¢ = 5.
Red curves indicate the outer bound described above for the
special values of ¢ of the form ¢ g a8 given by Theorem II.2.

Theorem II.3 together with Theorem II.2 gives a conceptu-
ally very clean description of our outer bound. However, an
(exact) evaluation of the outer bound as given by Theorem 11.3
is not straightforward since there are many convex combi-
nations which all produce valid bound but how to compute
or select the one which gives the strongest guarantee on the
rate for a given (v,d) pair is not clear. This is particularly
true since, as already mentioned above, the optimal points to
combine do not lie on the same rate-plane. To remedy this,
we give, as an alternative statement to Theorem II.3, the next
theorem which produces an explicit outer bound for any (v, ¢)
as an a-convex combination of two points (7o, do) and (71, d7)
only in dependence on the free parameter vy. We then show
in Theorem IL.5 an explicit expression for the optimal value
for 7. Together, this produces a significantly less clean but on
the other hand fully explicit description of our outer bound.

Theorem I1.4. Let C' be a g-ary insertion-deletion code that is
list-decodable from ~ € [0, q—1] fraction of insertions and § €
[0,1— %] fraction of deletions. Then, the rate of C is no larger

a (1 - g) ((1 +70) log, i 1+7 — Y0 log, &= 1) +
(1= ) (1= 42 ((1+ ) log, % —vllogqq 1=2)

than

1+v gt
Sfor d = |dq|, « = 1 —=306q+d, and all ~y,v1 > 0 where
all— g)’YO +(1—a)(1- %)'\yl = . We present the optimal
choice of o in Theorem IL5.

Proof of Theorems I1.3 and 11.4. We first note that the
statements of Theorem II.4 and Theorem II.3 are merely a
rephrasing of each other with the exception that Theorem II.4
only allows and optimizes over convex combinations of
neighboring spokes of Theorem II.2, namely the ones for
do = d and d; = d+1 for d = |§q]. This restriction, however,
is without loss of generality. Indeed, for any values from the
5) 0= g,O <d<q—1,d € Z;, Theorem II.2
gives values which come from the function f(vy,0) =

(1 = 0 [(1+ 525 log, 255% — 25 - (log, 271 ) .

This function is convex. (proof in [21].) Any value given as a
convex combination between two non-neighboring spokes can
therefore be at least matched (and actually improved due to

domain { (v,
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strict convexity) by choosing a different convex combination
between neighboring spokes. This justifies the “restricted”
formulation of Theorem II.4, which helps in reducing the
number of parameters and simplifies calculations.

In order to prove Theorem I1.4 we, again, fix a specific
strategy for the adversary’s use of deletions. In particular, the
adversary will use na% deletions on the first na symbols
of the transmitted codeword to eliminate all instances of
the d least-frequent symbols there. Similarly, he removes all
instances of the respective d + 1 least frequent symbols from

the last n(1 — «) symbols of the codeword. The resulting
. na(l-4) n(l—a)(1—4th)
string is one out of some X T x Y ¢ where

Y0,%1 Clal o= 1Yol =q—d. g1 = [E1] =qg—d—1.
Note that while the adversary can convert any codeword
of C to a string of such form, the sub-alphabets ¥y and X
will likely be different between different codewords of C.
Let (X,X;) be the pair of the most frequently reduced to
alphabets and let Cy be the set of codewords of C that, after
undergoing the above-described procedure, turn into a string

d d+1
out of 23‘“(1*3) X Z?(lfa)(lfT . Note that (3)‘((’}1) <
|Co| < |C|. Further, let Dy be the set of codewords in C’B after
undergoing the alphabet reduction procedure mentioned above.
To give an outer bound of the rate of C' it thus suffices to bound
from above the size of Cy—or equivalently, Dg; Since C is
(L = poly(n))-list-decodable, no more than L members of Cy
can be mapped to a single member of Dy thus |Dy| > 5 lS(()L)

We bound above the size of Dy by showing that if | Dy
is too large, there will be some received word that can be
obtained by exponentially many words in Dy after ny inser-
tions. Similar to [24], we utilize the linearity of expectation
to derive this. Let us pick a random string Z = (Zy, Z1) that
consists of na(l — g)(l + 7o) symbols chosen uniformly out
of 3 (referred to by Zp) and n(1 — a)(1 — E4)(1 +m)
symbols uniformly chosen out of ¥; (referred to by Z;). We
have that a(l—g)%—k(l—a)(l—%)vl = 7. (70 and y; will
be determined later.) We calculate the expected number of the
members of Dy that are subsequences of such string — denoted
by X. In the following, we describe members of Dy like y as
the concatenation (yg,y1) where |yo| = ng = na(1l — g) and
lyi| =n1 =n(l—a)(1 - T).

We have E[X] = > _ . cp, Pr{y is a subseq. of Z}.
Note that Pr{y is a subseq. of Z} is not smaller than
;=01 Pr{y; is a subseq. of Z;}. Also, conditioning
on the leftmost occurrence of Z; in y;, we
can write down the Pr{y; is asubseq. of Z;} as

Ap —Nj
1 (11 )" We

Zlﬁa1<--~<anjﬁﬂj(1+%') (2519 ( [25] ’

use this expression in [21] to bound below E[X] by

-1 J

L o= | Do‘qzjzu,lm(wogq - —<1+v_j>logq%j+o<1>).

This means that there exists some realization of Z to

which at least L codewords of C are subsequences. In

order for C' to be list-decodable, this quantity needs to

. log,, | Do|+0(1
be sub-exponential. Therefore, r¢ log, [Dol+OM) -
4=

nj i AN ie
Ym0 ((1 + ;) log, %w — 7 log, - ) This leads

to the upper bound stated in Theorem 1.4 for r¢. (see the
full version [21] for a complete calculation and proof.) O
Theorem IL.5S. The optimal choice for -y in Theo-
rem 114  satisfies 1+1/m)A-1/(¢g—d-1)) =
(14+1/%)(1—=1/(¢g—d)). Together with the equation
all— g)% +(1-a)(1- d%:l)vl =, this gives an explicit
expression for ~yo in terms of ¢y, d = |6q/|, and o = 1—6q+d
which can be found in the full version [21].

IIT. INNER BOUND VIA ANALYZING RANDOM CODES

In this section, we provide an inner bound on the high-
est rate achievable by list-decodable insertion-deletion codes.
Throughout this section, we define B;(S,n;) or the insertion
sphere of radius n; as the set of all strings that can be obtained
by n; insertions from S. By(S,ng) and B(S,n;,ng) are
similarly defined for deletions and combination of insertions
and deletions.

Lemma IIL.1 (From [27]). Let n,n;, and q be positive integers
and S € [q]". Then, |B;(S,n;)| =31 ("5")(q—1)"

7

Lemma IL2. Let « € [q", § [0,1—%} and v €

[0,(¢ — 1)(1 — 0)]. The size of the insertion-deletion sphere
of insertion-radius yn and deletion-radius én around x is
no larger than ¢"(Ha(®)+(1=0+mHy(1=375) =6 log, (a=1))+o(n)
where H,(-) denotes the g-ary entropy function defined as

Hy(x) = zlog,(¢ — 1) — xlog,z — (1 — x)log,(1 —x) .
Proof Sketch (Full proof available in [21]).
|B(xz,yn, én)| < Z

zoEBg(x,0n)

|Bi(zo,vn)|

() (") -y M)
i=0
() -

_ qn(Hq<s>+<1—a+w>Hq(ﬁ)—élegqm—l))w(n)

Note that (1) follows from Lemma III.1 and (2) is true because
the term in summation reaches its maximum when ¢ = ny. [l

Using the bound on the size of the insertion-deletion radius
presented above, we give the following inner bound on the
highest achievable rate for (v, §)-list-decodable codes derived
by analysis of the list-decodability of random codes.

Theorem IIL.3. For any integer ¢ > 2, § € [0,1 — ﬂ and
v €10,(¢ — 1)(1 — 8)], a family of random q-ary codes with
rate R <1—(1-0+~)H, (ﬁ) —Hy (6)+~log,(¢g—1)
is list-decodable from ~yn insertions and on deletions WHP.

Proof Sketch (Full proof in [21]). We use Lemma II1.2 to
bound the probability of a fixed string falling within a certain
ball around a codeword of a random code. We then bound
above the probability of such string being close to [+ 1 code-
words, i.e., violating the [-list-decodability condition. Taking
an upper bound over all such center strings, we bound above
the probability of a random code not being list-decodable and
find a range for R where such probability is negligible. [
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