


Section I-B) has furthermore mainly focused on obtaining a

better understanding of certain special cases, which correspond

to projections or cuts of the general trade-off plot. In particular,

Figure 1 shows the 2D cuts/projections onto the xz- and yz-

planes, which correspond to the insertion-only setting with

δ = 0 and the deletion-only setting with γ = 0, as well as the

projection/cut onto the yz-plane specifying for which error rate

combinations of γ and δ the communication rate hits zero.

See Figure 1 for examples of these three 2D-projections. It

has also been studied how the shape of the 3D-plot changes

asymptotically as q gets larger.

A. Our Results

This paper is among the first to give results for the entirety

of the 3D trade-off between communication rate and the two

error rates for every fixed alphabet size q. We primarily focus

on giving good outer bounds, i.e., impossibility results proving

limits on the best possible communication rate (for any given

γ, δ, and q). The novel outer bounds we prove are given in

the 3D-plot of Figure 1 for an alphabet size of q = 5 (similar

plots for any given q apply). We develop these outer bounds

in Section II. (See Theorem II.4)

A notable property of our new outer bound is that, for every

q, it exactly matches the best previously known results on

all three aforementioned projections/cuts. That is, the outer

bound implied for deletion-only codes (i.e., the cut on γ = 0
plane) matches the deletion-only bound from [24]. Similarly,

we match the best insertion-only bounds known (also from

[24]) when restricting or projecting our new general outer

bound result to the δ = 0 plane. Finally, the error resilience

implied by our bound (i.e., where the curve in Figure 1 hits

the floor) precisely matches the list-decoding error resilience

curve for insertions and deletions as identified by [14]. As

such, our bound fully encapsulates and truly generalizes the

entirety of the current state-of-the-art of the fundamental rate-

distance trade-off for list-decodable insertion-deletion codes.

Lastly, for the sake of completeness and as a comparison

point, we also provide a general inner bound in Section III.

This general existence result is obtained by analyzing the list-

decodability of random codes. We do this mainly through a

simple bound on the size of the insertion-deletion sphere. It

is worth noting that, in contrast to our outer bound, the cut

onto the xy-plane does not match the precise error resilience

identified (through matching inner and outer bounds) in [14].

However, the cuts onto the xz and yz planes do match the

inner bounds of [24] for insertion-only and deletion-only cases,

which were also derived by analysis of random codes. We

generally believe our outer bounds to be closer to the true

zero-error list-decoding channel capacity.

B. Related Work

This paper studies the fundamental rate-distance trade-off

for error correcting codes which are capable of list-decoding

from worst-cases insertions and deletions, a topic which has

attracted significant attention over the last three years [14],

[17], [24], [26], [29], [33]. We summarize these prior works

in detail in this section. The multitude of related work on

similar questions, such as, (efficient) list-decoding from Ham-

ming errors, unique-decodable insdel codes, or decoding from

random insertions or deletions are too many to list or discuss

here. Instead, we refer the interested reader to the following

(recent) surveys [9], [13], [22], [30], [31], which give detailed

accounts of such works.

As noted above, with the exception of [29], mostly special

cases of the general rate-distance trade-off for list-decodable

insdel codes have been studied up to now. This includes in

particular (combinations of) the deletion-only case (with γ =
0), the insertion-only case (with δ = 0), the zero-rate regime

or resilience case asking for what extremal values of (γ, δ) a

non-zero rate can be obtained, and the case of large alphabets

where the alphabet size q = O(1) is allowed to be a large

constant that can depend on the error rates (γ, δ).
1) List-Decodable Insdel Codes Over Large Constant-Size

Alphabets: The rate-distance tradeoff for list-decodable error

correcting codes has been studied in [24] under the large

alphabet setting, that is the question of finding the largest

possible achievable rate that (γ, δ)-list-decodable families of

codes can achieve as long as their alphabet size is constant

q = Oγ,δ(1) (i.e., independent of the block length). Using

a method of constructing insdel codes by indexing ordinary

error-correcting codes with synchronization strings introduced

in [23], [24] shows the following: For every δ ∈ (0, 1),
γ ≥ 0, and sufficiently small ε > 0, there exists an efficient

family of (γ, δ)-list-decodable codes over an alphabet of size

q = Oγ,δ,ε(1) that achieve a rate of 1 − δ − ε or more. It is

easy to verify that no such family of codes can achieve a rate

larger than 1− δ.

The result of [24] points out an interesting and indeed very

drastic distinction between insertions and deletions in the list-

decoding setting. In the unique-decoding setting the effect of

insertions and deletions are symmetric, and the rate-distance

tradeoff can be fully measured solely in terms of the edit-

distance between codewords. For list-decoding it turns out that

insertions behave completely different than deletions. Indeed

while any δ fraction of deletions will definitely reduce the

rate at the very least to 1− δ, in the very extreme the impact

of insertion errors can be fully compensated by taking the

alphabet appropriately large. This is what makes the maximum

achievable rate for arbitrarily large constant alphabets merely

a function of the deletion error rate δ. This stark distinction in

the effects insertions and deletions have on the rate-distance

tradeoff for list-decodable codes is the reason why it is crucial

to use the two parameters γ and δ to keep track of insertions

and deletions separately.

2) Error Resilience of List-Decodable Insdel Codes: An

important special case of the rate-distance trade-off for list-

decodable insertion-deletion codes is the question of the best

possible error resilience. In particular, the question of “what

is the “largest” fraction of errors against which list-decoding

is possible for some positive-rate code”. Understanding this

question is, in some way, a prerequisite to meaningfully talk

about more general positive rates. Nevertheless, even when
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restricted to binary deletions-only or insertions-only codes,

finding good bounds on the error resilience is highly non-

trivial (in contrast to the Hamming case) [14], [15], [17], [26]

and has only recently been solved [14]. (along with the general

case where insertions and deletions occur together.)

For deletion-only codes, i.e., the special case where γ = 0,

Guruswami and Wang [17] gave binary codes that are list-

decodable from a δ = 1
2 − ε fraction of errors attaining

a poly(ε) rate for any ε > 0. This implies that the error

resilience for deletion coding is precisely δ0 = 1
2 since, with a

fraction of deletions δ ≥ 1
2 , an adversary can simply eliminate

all instances of the least frequent symbol and convert any

codeword from {0, 1}n into either 0n/2 or 1n/2.

In 2017 a work of Wachter-Zeh [33] gave Johnson-type

bounds on list-decodability and list-sizes of codes given their

minimum edit-distance. In 2018, Hayashi and Yasunaga [26]

made corrections to the results presented in [33], and further

showed that such bounds give novel results for the insertion-

only case of resilience. In particular, they prove that the codes

introduced by Bukh, Guruswami, and Håstad [4] can be list-

decoded from up to γ = 0.707 fraction of insertions (and no

deletions) while maintaining a positive-rate.

Very recently, Guruswami et al. [14] improved this fraction

of insertions to an optimal γ < 1. Much more generally [14]

were able to tightly and fully identify the error resilience

region for codes that are list-decodable from a mixture of

insertions and deletions, i.e., determine exactly and for any

given q the set of all (γ, δ)s where the largest achievable rate

for q-ary (γ, δ)-list decodable codes is non-zero. This fully

resolved the zero-rate projection of the question addressed in

this paper (shown in the bottom 2D chart of Figure 1).

3) Alphabet dependent rate results for the deletion-only and

insertion-only case: The two other projections, i.e., bounds on

the highest achievable rate for the insertion-only (δ = 0) and

deletion-only (γ = 0) cases in dependence on q and the error

parameter (γ and δ respectively) were given by Haeupler et

al. [24]. These projections are shown in Figure 1 to the right

and left respectively. The inner bounds presented in [24] are

derived by analyzing list-decoding properties of random codes.

Here, we briefly review (the ideas of) the outer bounds from

[24] as these will be helpful for the remainder of this paper.

a) Deletion-only case.: A simple observation for

deletion-only channels is that no family of positive-rate q-ary

codes can be list-decoded from δ ≥ 1− 1
q fraction of deletions.

This is due to a simple strategy that adversary can employ to

eliminate all occurrences of all symbols of the alphabet except

the most frequent one to convert any sent codeword into a word

like an(1−δ) for some a ∈ [q]. [24] suggests a similar strategy

called Alphabet Reduction for the adversary when δ = d
q for

some integer d. With δ = d
q fraction of deletions, an adversary

can remove all instances of the d least frequent symbols and,

hence, convert any transmitted codeword into a member of an

ensemble of (q−d)n(1−δ) strings. This implies an outer bound

of
log(q−d)n(1−δ)

n log q = (1− δ)
(

1− logq
1

1−δ

)

on the largest rate

achievable by list-decodable deletion codes for special values

of δ = d
q where d = 1, 2, · · · , q − 1. Using a simple time

sharing argument between the alphabet reduction strategy over

these points, [24] provides a piece-wise linear outer bound for

all values of 0 < δ < 1− 1
q .

b) Insertion-only case.: In an insertion channel, the

received word contains the sent codeword as a subsequence.

To provide an outer bound on the highest achievable rate

by insertion codes, [24] used the probabilistic method: For

a given codeword x ∈ [q]n, [24] computes the probability of

a random string y ∈ [q]n(1+γ) containing x as a subsequence.

Having this quantity, one can compute the expected number

of codewords of a given code C with rate r that are contained

in a random string y ∈ [q]n(1+γ). Note that if r is so high that

this expectation is exponentially large in terms of n, then, by

linearity of expectation, there exists some string ȳ ∈ [q]n(1+γ)

which contains exponentially many codewords of C which is

a contradiction to its list-decodability from γn insertions. This

implies an outer bound for the communication rate which we

describe in more details below.

4) General Case: Liu et al. [28] was the first and only other

work studying the rate of list-decodable insertion-deletion

codes in full generality, like this paper. After direct con-

tradictions between the results reported here and the claims

in [28] were discovered, several correctness issues with key

approaches of [28] for outer bounds were identified. These

results have been removed in [29], the final version of [28].

The underlying issues seem hard to fix without substantially

new ideas, as also reported in the acknowledgements of [29].

As a result, [29] is less directly relevant to this work, with

the largest overlap being the inner bounds, similarly derived

via a simple analysis of random insertion-deletion codes. Our

bound is stronger for all pairs (γ, δ) when q ≥ 3. (See the full

version for a proof.)

II. OUTER BOUND

We start by reminding the following outer bound for the

insertion-only case from [24].

Theorem II.1 (From [24]). For any alphabet size q and error

rate γ < q − 1, any family of q-ary codes C which is list-

decodable from a γ fraction of insertions has a rate of no

more than 1− logq(γ + 1)− γ
(

logq
γ+1
γ − logq

q
q−1

)

.

Next, we show how to use Theorem II.1 in a black-box

fashion to give a very clean and easily statable outer bound

for settings with both insertions and deletions, but in which

the fraction of deletions has a nice form. (a multiple of 1
q )

This outer bound forms the backbone of our final result.

Theorem II.2. For any fixed alphabet size q, any inser-

tion rate γ < q − 1 and any deletion rate δ = d
q for

some integer d < q, it is true that any family of q-ary

codes C which is (γ, δ)-list-decodable has a rate of at most

(1− δ)
[(

1 + γ
1−δ

)

logq
q−d
γ

1−δ
+1 − γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]

.

Proof. Consider a code C that is (γ, δ)-list-decodable and

assume that δ = d
q for some integer d. Assume that we restrict
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the adversary to utilize its deletions in the following manner:

The adversary uses the d
q deletion to remove all occurrences

of the d-least frequent symbols of the alphabet. If there are

remaining deletions, the adversary removes symbols from the

end of the transmitted word.

Let us define the code C ′ that is obtained from C by deleting

a δ fraction of symbols from each codeword of C as described

above. Note that the block length of C ′ is n′ = n(1 − δ)
and each of its codewords consist of up to q′ = q(1 − δ) =
q−d symbols of the alphabet though this subset of size q−d
may be different from codeword to codeword. We partition the

codewords of C ′ into
(

q
q−d

)

sets C ′
1, C

′
2, · · · , C

′

( q
q−d)

based on

which (q − d)-subset of the alphabet they consist of.

Since C is (γ, δ)-list-decodable, each of the C ′
is

are list-decodable from γn insertions. Therefore, Theo-

rem II.1 implies that the size of each code C ′
i is no

larger than q
′n′

[

1−logq′ (γ
′+1)−γ′

(

logq′
γ′+1
γ′

−logq′
q′

q′−1

)]

where

q′ = q − d, n′ = n(1 − δ), and γ′ = γ
1−δ .

Therefore, the size of the code C is no larger than
(

q
q−d

)

q
n(1−δ)

[

logq q′−logq(γ
′+1)−γ′

(

logq
γ′+1
γ′

−logq
q′

q′−1

)]

which

implies the theorem statement.

Given the nice and explicit form of Theorem II.2 for any q
and γ with multiple specific values of δ, it seems tempting

to conjecture that the restriction of δ is unnecessary mak-

ing (1− δ)
[(

1 + γ
1−δ

)

logq
q−d
γ

1−δ
+1 − γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]

a

valid outer bound for any value of δ (and γ). This, however,

could not be further from the truth. Indeed, for any δ not of the

form restricted to by Theorem II.2, there exists a γ for which

this extended bound is provably wrong because it contradicts

the existence of the list-decodable codes constructed in [14].

In fact, for the valid points where δ is a multiple of
1
q , the rate bound of Theorem II.2 hits zero at exactly the

corner points of the piece-wise linear resilience region Fq

characterized by [14]. Taking this as an inspiration, one could

try to extend the bound of Theorem II.2 to all values of δ by

considering for each q and each rate r the roughly q
r points

where Theorem II.2 hits the plane corresponding to rate r and

extend these points in a piece-wise linear manner to a complete

2D-curve for this rate r. This would give a rate bound for any

γ, δ, and q as desired, which reduces to a piece-wise linear

function for any fixed r and correctly reproduce Fq for r = 0.

It turns out that this is indeed a correct outer bound. How-

ever, a stronger form of convexity, which takes full 3D-convex

interpolations between any points supplied by Theorem II.2

and in particular combines points with different rates, also

holds and is needed to give our final outer bound.

Theorem II.3. For a fixed q, suppose that (γ0, δ0 = d0

q )

and (γ1, δ1 = d1

q ) are two error rate combinations for which

Theorem II.2 implies a maximal communication rate of r0 and

r1, respectively. For any 0 ≤ α ≤ 1 consider the following

convex combinations of these quantities: γ = αγ0+(1−α)γ1,

δ = αδ0 +(1−α)δ1, and r = αr0 +(1−α)r1. It is true that

any (δ, γ)-list-decodable q-ary code has a rate of at most r.

Fig. 2: Outer bound for rate for q = 5. The special case where δ = d
q

for

some integer d is indicated with red lines.

See Figure 2 for an illustration of this bound for q = 5.

Red curves indicate the outer bound described above for the

special values of δ of the form d
q as given by Theorem II.2.

Theorem II.3 together with Theorem II.2 gives a conceptu-

ally very clean description of our outer bound. However, an

(exact) evaluation of the outer bound as given by Theorem II.3

is not straightforward since there are many convex combi-

nations which all produce valid bound but how to compute

or select the one which gives the strongest guarantee on the

rate for a given (γ, δ) pair is not clear. This is particularly

true since, as already mentioned above, the optimal points to

combine do not lie on the same rate-plane. To remedy this,

we give, as an alternative statement to Theorem II.3, the next

theorem which produces an explicit outer bound for any (γ, δ)
as an α-convex combination of two points (γ0, δ0) and (γ1, δ1)
only in dependence on the free parameter γ0. We then show

in Theorem II.5 an explicit expression for the optimal value

for γ0. Together, this produces a significantly less clean but on

the other hand fully explicit description of our outer bound.

Theorem II.4. Let C be a q-ary insertion-deletion code that is

list-decodable from γ ∈ [0, q−1] fraction of insertions and δ ∈
[0, 1− 1

q ] fraction of deletions. Then, the rate of C is no larger

than α
(

1− d
q

)(

(1 + γ0) logq
q−d
1+γ0

− γ0 logq
q−d−1

γ0

)

+

(1 − α)
(

1− d+1
q

)(

(1 + γ1) logq
q−d−1
1+γ1

− γ1 logq
q−d−2

γ1

)

for d = bδqc, α = 1 − δq + d, and all γ0, γ1 ≥ 0 where

α(1− d
q )γ0+(1−α)(1− d+1

q )γ1 = γ. We present the optimal

choice of γ0 in Theorem II.5.

Proof of Theorems II.3 and II.4. We first note that the

statements of Theorem II.4 and Theorem II.3 are merely a

rephrasing of each other with the exception that Theorem II.4

only allows and optimizes over convex combinations of

neighboring spokes of Theorem II.2, namely the ones for

d0 = d and d1 = d+1 for d = bδqc. This restriction, however,

is without loss of generality. Indeed, for any values from the

domain
{

(γ, δ) | δ = d
q , 0 ≤ d ≤ q − 1, d ∈ Z

}

, Theorem II.2

gives values which come from the function f(γ, δ) =

(1 − δ)
[(

1 + γ
1−δ

)

logq
q(1−δ)

γ
1−δ

+1 − γ
1−δ ·

(

logq
q(1−δ)−1

γ
1−δ

)]

.

This function is convex. (proof in [21].) Any value given as a

convex combination between two non-neighboring spokes can

therefore be at least matched (and actually improved due to
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strict convexity) by choosing a different convex combination

between neighboring spokes. This justifies the “restricted”

formulation of Theorem II.4, which helps in reducing the

number of parameters and simplifies calculations.

In order to prove Theorem II.4 we, again, fix a specific

strategy for the adversary’s use of deletions. In particular, the

adversary will use nαd
q deletions on the first nα symbols

of the transmitted codeword to eliminate all instances of

the d least-frequent symbols there. Similarly, he removes all

instances of the respective d+ 1 least frequent symbols from

the last n(1 − α) symbols of the codeword. The resulting

string is one out of some Σ
nα(1− d

q
)

0 ×Σ
n(1−α)(1− d+1

q
)

1 where

Σ0,Σ1 ⊆ [q], q0 = |Σ0| = q − d, q1 = |Σ1| = q − d− 1.

Note that while the adversary can convert any codeword

of C to a string of such form, the sub-alphabets Σ0 and Σ1

will likely be different between different codewords of C.

Let (Σ0,Σ1) be the pair of the most frequently reduced to

alphabets and let C0 be the set of codewords of C that, after

undergoing the above-described procedure, turn into a string

out of Σ
nα(1− d

q
)

0 × Σ
n(1−α)(1− d+1

q
)

1 . Note that
|C|

(qd)(
q

d+1)
≤

|C0| ≤ |C|. Further, let D0 be the set of codewords in C0 after

undergoing the alphabet reduction procedure mentioned above.

To give an outer bound of the rate of C it thus suffices to bound

from above the size of C0–or equivalently, D0; Since C is

(L = poly(n))-list-decodable, no more than L members of C0

can be mapped to a single member of D0 thus |D0| ≥
|C0|

poly(n) .

We bound above the size of D0 by showing that if |D0|
is too large, there will be some received word that can be

obtained by exponentially many words in D0 after nγ inser-

tions. Similar to [24], we utilize the linearity of expectation

to derive this. Let us pick a random string Z = (Z0, Z1) that

consists of nα(1− d
q )(1 + γ0) symbols chosen uniformly out

of Σ0 (referred to by Z0) and n(1 − α)(1 − d+1
q )(1 + γ1)

symbols uniformly chosen out of Σ1 (referred to by Z1). We

have that α(1− d
q )γ0+(1−α)(1− d+1

q )γ1 = γ. (γ0 and γ1 will

be determined later.) We calculate the expected number of the

members of D0 that are subsequences of such string – denoted

by X . In the following, we describe members of D0 like y as

the concatenation (y0, y1) where |y0| = n0 = nα(1− d
q ) and

|y1| = n1 = n(1− α)(1− d+1
q ).

We have E[X] =
∑

y=(y0,y1)∈D0
Pr{y is a subseq. of Z}.

Note that Pr{y is a subseq. of Z} is not smaller than
∏

j=0,1 Pr{yj is a subseq. of Zj}. Also, conditioning

on the leftmost occurrence of Zj in yj , we

can write down the Pr{yj is a subseq. of Zj} as
∑

1≤a1<···<anj
≤nj(1+γj)

1
|Σj |

nj

(

1− 1
|Σj |

)anj
−nj

. We

use this expression in [21] to bound below E[X] by

L = |D0|q
∑

j=0,1 nj

(

γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

+o(1)
)

.

This means that there exists some realization of Z to

which at least L codewords of C are subsequences. In

order for C to be list-decodable, this quantity needs to

be sub-exponential. Therefore, rC =
logq |D0|+O(1)

n ≤
∑

j=0,1
nj

n

(

(1 + γj) logq
qj

1+γj
− γj logq

qj−1
γj

)

. This leads

to the upper bound stated in Theorem II.4 for rC . (see the

full version [21] for a complete calculation and proof.)

Theorem II.5. The optimal choice for γ0 in Theo-

rem II.4 satisfies (1 + 1/γ1) (1− 1/(q − d− 1)) =
(1 + 1/γ0) (1− 1/(q − d)) . Together with the equation

α(1− d
q )γ0 + (1−α)(1− d+1

q )γ1 = γ, this gives an explicit

expression for γ0 in terms of q,γ, d = bδqc, and α = 1−δq+d
which can be found in the full version [21].

III. INNER BOUND VIA ANALYZING RANDOM CODES

In this section, we provide an inner bound on the high-

est rate achievable by list-decodable insertion-deletion codes.

Throughout this section, we define Bi(S, ni) or the insertion

sphere of radius ni as the set of all strings that can be obtained

by ni insertions from S. Bd(S, nd) and B(S, ni, nd) are

similarly defined for deletions and combination of insertions

and deletions.

Lemma III.1 (From [27]). Let n, ni, and q be positive integers

and S ∈ [q]n. Then, |Bi(S, ni)| =
∑ni

i=0

(

n+ni

i

)

(q − 1)i.

Lemma III.2. Let x ∈ [q]n, δ ∈
[

0, 1− 1
q

]

and γ ∈

[0, (q − 1)(1 − δ)]. The size of the insertion-deletion sphere

of insertion-radius γn and deletion-radius δn around x is

no larger than qn(Hq(δ)+(1−δ+γ)Hq( γ
1−δ+γ )−δ logq(q−1))+o(n)

where Hq(·) denotes the q-ary entropy function defined as

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) .

Proof Sketch (Full proof available in [21]).

|B(x, γn, δn)| ≤
∑

x0∈Bd(x,δn)

|Bi(x0, γn)|

≤
( n

δn

)

γn
∑

i=0

(n(1− δ + γ)

i

)

(q − 1)i (1)

≤ nγ
( n

nδ

)(n(1− δ + γ)

nγ

)

(q − 1)γn (2)

= q
n
(

Hq(δ)+(1−δ+γ)Hq

(

γ
1−δ+γ

)

−δ logq(q−1)
)

+o(n)

Note that (1) follows from Lemma III.1 and (2) is true because

the term in summation reaches its maximum when i = nγ.

Using the bound on the size of the insertion-deletion radius

presented above, we give the following inner bound on the

highest achievable rate for (γ, δ)-list-decodable codes derived

by analysis of the list-decodability of random codes.

Theorem III.3. For any integer q ≥ 2, δ ∈
[

0, 1− 1
q

]

and

γ ∈ [0, (q − 1)(1 − δ)], a family of random q-ary codes with

rate R < 1−(1−δ+γ)Hq

(

γ
1−δ+γ

)

−Hq (δ)+γ logq(q−1)

is list-decodable from γn insertions and δn deletions WHP.

Proof Sketch (Full proof in [21]). We use Lemma III.2 to

bound the probability of a fixed string falling within a certain

ball around a codeword of a random code. We then bound

above the probability of such string being close to l+1 code-

words, i.e., violating the l-list-decodability condition. Taking

an upper bound over all such center strings, we bound above

the probability of a random code not being list-decodable and

find a range for R where such probability is negligible.
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