
Journal of Scientific Computing (2023) 95:33
https://doi.org/10.1007/s10915-023-02148-y

Accelerated Sparse Recovery via Gradient Descent with
Nonlinear Conjugate Gradient Momentum

Mengqi Hu1 · Yifei Lou2 · Bao Wang3 ·Ming Yan4,5 · Xiu Yang1 ·Qiang Ye6

Received: 22 July 2022 / Revised: 5 February 2023 / Accepted: 6 February 2023 /
Published online: 8 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper applies an idea of adaptive momentum for the nonlinear conjugate gradient to
accelerate optimization problems in sparse recovery. Specifically, we consider two types
of minimization problems: a (single) differentiable function and the sum of a non-smooth
function and a differentiable function. In the first case, we adopt a fixed step size to avoid
the traditional line search and establish the convergence analysis of the proposed algorithm
for a quadratic problem. This acceleration is further incorporated with an operator splitting
technique to deal with the non-smooth function in the second case. We use the convex �1
and the nonconvex �1 − �2 functionals as two case studies to demonstrate the efficiency of
the proposed approaches over traditional methods.

Keywords Accelerated gradient momentum · Operator splitting · Fixed step size ·
Convergence rate

Mathematics Subject Classification 41A25 · 65K10

1 Introduction

Traditional methods for reconstructing signals from measured data follow the well-known
Nyquist-Shannon sampling theorem [65],which guarantees the exact recovery if the sampling
rate is at least twice the highest frequency of the underlying signal. Similarly, the fundamental
theorem of linear algebra suggests that the number of linearmeasurements of a discrete finite-
dimensional signal should be at least as large as its ambient dimension to ensure a stable
reconstruction. Nyquist-Shannon theorem serves as the underlying principle of most devices
[6] such as analog-to-digital conversion, medical imaging, and video processors, but it is a
sufficient condition for the exact recovery of any signal that requires an overly large number
of measurements to be collected.

B Yifei Lou
yifei.lou@utdallas.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02148-y&domain=pdf
http://orcid.org/0000-0003-1973-5704

33 Page 2 of 21 Journal of Scientific Computing (2023) 95 :33

To acquire and process datamore economically, the paradigmof compressive sensing (CS)
[16]–also known as compressed sensing, or compressive sampling–provides a fundamentally
new approach that reconstructs certain signals fromwhat was believed in the past to be highly
incomplete measurements (information). CS relies on an empirical observation that most
signals can be well approximated by a sparse expansion under a properly chosen basis, that
is, by only a small number of non-zero coefficients. The number of non-zero entries of a
vector x ∈ R

N is denoted by ‖x‖0. Note that ‖ · ‖0 is named the “�0 norm” in [16], although
it is not even a semi-norm. The vector x is called s-sparse if ‖x‖0 ≤ s, and it is considered
a sparse vector if s � N . Note that few practical systems are truly sparse through direct
observations, but rather compressible, i.e., only a few entries contribute significantly to its �1
norm under certain transformations.

For simplicity, we assume linear measurements; otherwise one can always linearize the
data collection process. Consequently, we consider a data vector b ∈ R

M obtained by

b = Ax + n, (1)

where A ∈ R
M×N is called a sensing matrix, x ∈ R

N is an underlying signal to be recovered,
and n ∈ R

M is the noise term. We assume the noise follows i.i.d. Gaussian distribution. To
find a sparse vector x from (1), one formulates an unconstrained minimization problem,

x̂0 = argminx λ‖x‖0 + 1

2
‖Ax − b‖22, (2)

where λ is a positive parameter to be tuned such that ‖Ax̂0 − b‖2 ≤ ε for a pre-set error
tolerance ε that often corresponds to the standard deviation of the random Gaussian noise.
For other types of noise, e.g., Poisson noise, then the least-squares formulation ‖Ax−b‖22 is
not a good choice of the data misfit. As the �0 minimization (2) is NP-hard [44], one replaces
it by the convex �1 norm, i.e.,

x̂1 = argminx λ‖x‖1 + 1

2
‖Ax − b‖22. (3)

In this paper, we consider a general formulation for sparse recovery

min
x

λ f (x) + g(x), (4)

where f (·) is a regularization term and g(·) is a (convex and differentiable) data fidelity term,
e.g., g(x) = 1

2‖Ax − b‖22. We assume that f is a continuous (possibly non-differentiable)
function that can enhance the sparsity of x. For instance, the non-convex metric �p for
p ∈ (0, 1) can be viewed as a continuation effort to approximate �0 as p → 0 [10, 31, 34].
Another regularization that achieves a continuation from �0 to �1 is the error function (ERF)
[23] by changing its internal parameter. Some non-convex regularizations derived from �1
include capped �1 [40, 61, 75], transformed �1 (TL1) [22, 42, 73, 74], and sorted �1 [32].
A combination of different norms can also be served as a sparsity promoting sparsity, e.g.,
�1 − �2 [38, 39, 71] and �1/�2 [56, 67]. To the best of our knowledge, only �1 − �2 and
TL1 have the exact sparse recovery guarantees based on the RIP type of conditions [72, 74],
which are actually more strict compared to the one for the �1 model. As these RIP conditions
are sufficient and unverifiable, many works reported the empirical advantages of non-convex
regularizations over the convex �1 approach in promoting sparsity. A major difficulty in
minimizing (4) for a nonconvex regularization f (·) is that many algorithms may be stuck at
the local optimal solutions.

As f (·) is non-differentiable, gradient-based optimization methods can not be directly
applied tominimize (4), not to mention some acceleration techniques by adaptivemomentum

123

Journal of Scientific Computing (2023) 95 :33 Page 3 of 21 33

[18, 30, 53, 54]. One remedy involves a smooth approximation of f such as using the Huber
function [28, 33, 63] to approximate the �1 norm. In general, several papers reported using
smoothing to approximate non-smooth functions to improve the performance of non-linear
conjugate algorithms [11, 43, 49, 70]. Another alternative is based on operator splitting to deal
with the non-smooth term f (·) and the smooth function g(·) separately, for example, forward-
backward splitting (FBS) [12], the alternative direction method of multipliers (ADMM) [7],
and iteratively reweighted L1 [8, 41].

We propose to combine the operator splitting with the momentum acceleration. In partic-
ular, we incorporate the momentum update in the gradient descent when minimizing the data
fitting term g(·) for speed-up, while relying on proximal operators [50] to deal with the non-
differentiable function f (·). Starting by f (·) = ∅, i.e., minimizing a single differentiable
function g(·), we promote the choice of fixed step size in the momentum-based gradient
descent algorithm and analyze its convergence rate for a quadratic problem. To deal with
the non-smooth function f (·), we further adopt a splitting technique and consider two case
studies when the proximal operator according to f (·) has a closed-form solution. We con-
duct experiments on a quadratic problem, �1 and �1 − �2 minimization problems to compare
among different momentum update formulas and showcase the speed-up of the proposed
approach with simple implementation over the traditional gradient-based approaches.

The remaining of this paper is organized as follows. Section 2 examines the case of
minimizing a single differentiable function. In particular, we advocate a constant step size
and prove the convergence for a quadratic problem. The proposed marriage of FBS and
momentum acceleration is discussed in Sect. 3 with experiments on two case studies of �1
and �1 − �2 regularizations, showing the faster convergence of the proposed method than
existing approaches. Finally, conclusions and future works are presented in Sect. 4.

2 Minimizing a Single Function

We review in Sect. 2.1 gradient-based algorithms that minimize a single function, includ-
ing gradient descent, conjugate gradient, and adaptive momentum methods. We propose to
combine the Fletcher-Reeve moment and gradient descent with a fixed step size in Sect. 2.2.
The convergence of the proposed scheme can be established for a quadratic problem. Lastly,
experimental comparison is presented in Sect. 2.3.

2.1 Literature Review

Gradient descent is a class of first-order iterative optimization algorithms for finding a local
minimum of a differentiable function. This type of algorithms involves repeated moving
along the opposite direction of the gradient of the objective function at the current point,
since it is the direction where function value decreases at the fastest rate.

Given a differentiable function g(·), a general form of gradient descent (GD) that
minimizes g(x) can be described as,

{
p(l+1) = −∇g(x(l))

x(l+1) = x(l) + α(l+1)p(l+1),
(5)

where l indexes the iteration number and α(l+1) > 0 is a step size that can be fixed or updated
iteratively. There are many variations of GD depending on how the step size is determined

123

33 Page 4 of 21 Journal of Scientific Computing (2023) 95 :33

and/or the descending direction is chosen. For example, steepest descent (SD) is perhaps one
of the simplest variations, which goes as⎧⎪⎪⎨

⎪⎪⎩
p(l+1) = −∇g(x(l))

α(l+1) = arg min
α

g(x(l) + αp(l+1))

x(l+1) = x(l) + α(l+1)p(l+1).

(6)

In each iteration, SD performs an exact line search to achieve the maximum descent along
the gradient direction, i.e., the descent is the steepest. However, empirically it does not work
well in most cases, since such a local descending property does not necessarily coincide with
the overall descending of the original function.

Notice that the search direction in each iteration of (6) only utilizes the information at the
current step x(l) without any information from previous iterations. Adding them back leads to
momentum-based algorithms, which are also called as heavy ball algorithms [54]. The term
“momentum” is an analogy of a heavy ball sliding on the surface of values of the function
being minimized when the update of each step is memorized in the process. To this end, we
refer the following iteration{

p(l+1) = −∇g(x(l)) + β(l+1)p(l)

x(l+1) = x(l) + α(l+1)p(l+1),
(7)

as gradient descent with momentum (GDM). Both α(l+1) and β(l+1) in (7) can be fixed or
adaptively chosen according to a certain scheme. For instance, if we update α(l+1) in the
same way as SD (6), the corresponding algorithm⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β(l+1) = ‖∇g(x(l))‖2
‖∇g(x(l−1))‖2

p(l+1) = −∇g
(
x(l)

) + β(l+1)p(l)

α(l+1) = arg min
α

g(x(l) + αp(l+1))

x(l+1) = x(l) + α(l+1)p(l+1),

(8)

is identical to the classic nonlinear conjugate gradient (CG). The β update for momen-
tum coefficient is called Fletcher-Reeves (FR) momentum in nonlinear conjugate gradient
algorithms [18, 30]. In addition to FR, other popular momentum updates include

– Polak-Ribière (PR) [53]

β
(l+1)
PR = 〈∇g(x(l)),∇g(x(l)) − ∇g(x(l−1))〉

‖∇g(x(l−1))‖2 ; (9)

– Hestenes-Stiefel (HS) [29]

β
(l+1)
HS = 〈∇g(x(l)),∇g(x(l)) − ∇g(x(l−1))〉

−〈p(l),∇g(x(l)) − ∇g(x(l−1))〉 ; (10)

– Dai-Yuan (DY) [13]

β
(l+1)
DY = ‖∇g(x(l))‖2

−〈p(l),∇g(x(l)) − ∇g(x(l−1))〉 . (11)

123

Journal of Scientific Computing (2023) 95 :33 Page 5 of 21 33

Another type of momentum-based algorithms was developed by Yurii Nesterov [46, 47].
Starting from t (0) = 1, Nesterov’s accelerated gradient (NAG) is expressed as,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t (l+1) = 1+
√

4(t (l))2+1
2 ,

p(l+1) = −∇g
(
x(l)

)
,

y(l+1) = x(l) + α(l+1)p(l+1),

x(l+1) = y(l+1) + t (l)−1
t (l+1) (y(l+1) − y(l)).

(12)

Similarly to other gradient-based algorithms, the step size α(l+1) in NAG can be fixed or
updated during the iteration. For convex function g(·), NAG achieves a convergence rate of
O(1

l2
), as opposed to O(1l) obtained by standard gradient-based methods. This momentum

scheme can be further accelerated by a proper restart with provable guarantees in certain
circumstances [20, 45, 59, 62].

2.2 FRMomentumGradient Descent

Exact line search is not necessarily optimal, as the gradient descent direction may not be a
good search direction. As a result, the steepest descent algorithm (6) bounces back and forth
in the valley formed by the objective function rather than down the valley. Similar conclusion
can be drawn for certain momentum based algorithms. As pointed out in [25, 55], exact line
search would lead to a very small step size in such a way that two consecutive iterates do not
vary too much; this phenomenon is called jamming. To avoid jamming, one can use a hybrid
momentum scheme [2, 14, 48] or an inexact line search [24, 57]. Instead of exact search as
used in SD, an inexact search refers to finding a step size α that satisfies theWolfe conditions
[1, 13, 19, 24], i.e.,{

g(x(l) + α(l)p(l)) ≤ g(x(l)) + c1〈α(l)p(l),∇g(x(l))〉,
〈−p(l),∇g(x(l) + α(l)p(l))〉 ≤ c2〈−p(l),∇g(x(l))〉, (13)

for two constants 0 < c1 < c2 < 1. The first equation of (13) is also called Armijo-
Goldenstein condition [3, 5], which is usually used in back-tracking step sizes. These
conditions play an important role in establishing a descent property and global convergence
of conjugate descent. Instead of designing a update scheme for α, we consider a fixed step
size α in the gradient descent that is combined with the FR moment, i.e.,⎧⎪⎪⎨

⎪⎪⎩
β(l+1) = ‖∇g(x(l))‖2

‖∇g(x(l−1))‖2
p(l+1) = −∇g

(
x(l)

) + β(l+1)p(l)

x(l+1) = x(l) + αp(l+1),

(14)

which is referred to as FR gradient descent (FRGD). By fixing α, most properties used in
the convergence analysis of conjugate gradient no longer hold. Fortunately, we can borrow a
technique used in an inexact conjugate gradient (due to round off errors) or inexact precon-
ditioning [21, 64] to analyze the convergence of FRGD (14). Theorem 1 characterizes the
convergence analysis of the proposed FRGD for a quadratic problem,

min
x

g(x) = 1

2
xTAx + xTb, (15)

123

33 Page 6 of 21 Journal of Scientific Computing (2023) 95 :33

where A is a strictly symmetric positive definite matrix. To this end, we define the condition
number of A as κ(A) = |λmax(A)/λmin(A)|, i.e., the ratio between the largest and smallest
eigenvalues.

Theorem 1 Suppose {x(l),p(l)} be generated by (14)with a fixed step size α when minimizing
(15). Let r(l) = ∇g(x(l)), ρ = max0≤ j≤i≤l−1 ‖r(i)‖2/‖r(j)‖2, z(l) = r(l)/‖r(l)‖2 and Z (l) =
[z(0), z(1), · · · , z(l−1)]. If z(0), z(1), · · · , z(l) are linearly independent, then there exists a
constant

Kl ≤ l(1 + lρ

2
)‖A‖2κ(Z (l+1)), (16)

such that

‖r(l)‖2 ≤ 2(1 + Kl)

(√
κ(A) − 1√
κ(A) + 1

)l

‖r(0)‖2. (17)

Proof Denote R(l) = [r(0), · · · , r(l−1)] and D(l) = diag{‖r(0)‖2, · · · , ‖r(l−1)‖2}, then
Z (l) = R(l)(D(l))−1. We further denote P(l) = [p(0), · · · ,p(l−1)]. It follows from r(l+1) =
r(l) − αAp(l) that

αAP(l) = [r(0) − r(1), · · · , r(l−1) − r(l)]
= R(l)L(l) − r(l)eT(l),

= Z(l)D(l)L(l) − r(l)eT(l), (18)

where e(l) = [0, · · · , 0, 1]T is an l × 1 column vector and L(l) is the l × l lower bidiagonal
matrix with 1 on the diagonal and −1 on the subdiagonal. Similarly using the p update of
p(l) = r(l) + β(l)p(l−1), we have

Z (l) = R(l)(D(l))−1 = P(l)U (l)(D(l))−1, (19)

whereU (l) is the l×l upper bidiagonal matrix with 1 on the diagonal and−β(1), · · · ,−β(l−1)

on the subdiagonal. Combining (18) (19), we obtain

AZ (l) = Z (l)T (l) − r(l)eT(l)
α̂‖r(0)‖ , (20)

where T (l) = 1
α
D(l)L(l)U (l)(D(l))−1 and α̂ = α‖r(l−1)/‖r(0)‖. It is straightforward to verify

that α̂ = eT(l)(T
(l))−1e(1). By [64, Theorem 3.5] we have

‖r(l)‖2 ≤ (1 + Kl) min
p∈Pl ,p(0)=1

‖p(A)r(0)‖2, (21)

where Kl = ‖AZ (l)T (l)[I(l), 0]Z (l+1)
† ‖2 ≤ ‖A‖2‖T (l)‖2‖Z (l)‖2‖Z (l+1)

† ‖2, Z (l+1)
† is the

pseudo-inverse of Z (l+1), and Pl is the space of polynomials of degree l. By definition
β(l) = ‖r(l)‖22/‖r(l−1)‖22, we can rewrite

T (l) = 1

α
D(l)L(l)(D(l))−1D(l)U (l)(D(l))−1 = 1

α
L̃(l)Ũ (l), (22)

where

123

Journal of Scientific Computing (2023) 95 :33 Page 7 of 21 33

L̃(l) = D(l)L(l)(D(l))−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−‖r(1)‖
‖r(0)‖ 1

−‖r(2)‖
‖r(1)‖ 1

. . .
. . .

−‖r(l−1)‖
‖r(l−2)‖ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−√

β(1) 1
−√

β(2) 1
. . .

. . .

−√
β(l−1) 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

Ũ (l) = D(l)U (l)(D(l))−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −β(1) ‖r(0)‖
‖r(1)‖

1 −β(2) ‖r(1)

r(2)‖
. . .

. . .

1 −β(l−1) ‖r(l−2)‖
‖r(l−1)‖

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −√
β(1)

1 −√
β(2)

. . .
. . .

1 −√
β(l−1)

1

⎤
⎥⎥⎥⎥⎥⎥⎦

= (L̃(l))T. (24)

We can see that (L̃(l))−1 is a lower triangular matrix with 1 on its diagonal and (i, j)-th entry
be

√
β(j)β(j+1) · · · β(i) = ‖r(i−1)‖2/‖r(j−1)‖2 for all i > j . Let ρ be an upper bound of

‖r(i−1)‖2/‖r(j−1)‖2, then we have ‖(L̃(l))−1‖2F ≤ l + l(l − 1)ρ/2 and therefore

‖(T (l))−1‖2 = α‖(L̃(l)(L̃(l))T)−1‖2 = α‖(L̃(l))−1‖22 (25)

≤ α‖(L̃(l))−1‖2F ≤ αl(1 + lρ/2). (26)

Combining with the fact ‖Z (l)‖2‖Z (l+1)
† ‖2 ≤ ‖Z (l+1)‖2‖Z (l+1)‖2 = κ(U (l+1)) yields Kl ≤

lα(1+ lρ/2)‖A‖2κ(Z(l+1)). Finally, it follows the standard conjugate gradient convergence
bound [60] that gives

min
p∈Pl ,p(0)=1

‖p(A)r(0)‖2 ≤ min
p∈Pl ,p(0)=1

max
i

|p(λi)|‖r(0)‖2

≤ 2

(√
κ(A) − 1√
κ(A) + 1

)l

‖r(0)‖2,

where λi are the eigenvalues of matrix A and the result follows. �

123

33 Page 8 of 21 Journal of Scientific Computing (2023) 95 :33

We see that this convergence rate (17) is similar to the one of the classic conjugate gradient
algorithm, which is given by

‖r(l)‖A−1 ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)l

‖r(0)‖A−1 . (27)

The difference between (17) and (27) lies in the additional term of 1+ Kl introduced by the
fixed step size. Similar to other accelerated gradient schemes and Krylov subspace methods,
this convergence rate of (17) and (27) is achieved only when the current position is not in
the neighborhood of a stationary point. In other words, the convergence is only achieved at
the first few iterations, not when the iteration number goes to infinity. We will demonstrate
such a phenomenon later in the numerical examples. In practice, the vectors p, Ap, · · · Akp
usually form an ill-conditioned basis for the Krylov subspace. As k → ∞, Akp points to
nearly the same direction, which is the eigenvector corresponding to the dominant eigenvalue
of A according to the power method. As a result, the acceleration is less effective. This is
a common drawback for all Krylov subspace based algorithms [36, 68] such as Arnoldi,
Lanczos, conjugate gradient, etc. There are methods designed to address this issue, which
falls outside our paper’s scope.

Theorem 1 is based on the structure of momentum iterations, which is applicable to other
formulations ofmomentum such as PR (9), HS (10), andDY (11). The effect of these different
formulations ofmomentum is on the quality of the basis z(0), z(1), · · · , z(l) constructed,which
is more complicated to analyze and will be left as future work.

We observe empirically that the FR formulation of β(l+1) is most stable among the four.
Note that all four formulations are equivalent for a quadratic function 1

2x
TAx+xTb and they

all enforce the A-orthogonality of {p(l)} and hence the orthogonality of {z(l)} when exact
search

α(l+1) = arg min
α

g(x(l) + αp(l+1)),

is used. However, the HS and DY formulations use the search direction p(l) in addition to
the gradient. As a result, the perturbation on β(l+1) for HS and DY is affected through both
the gradient and the search direction, when using a fixed step size α. We observe empirically
that the range of the step size required by HS and DY to converge is usually one to two
orders of magnitude smaller than the one for FR and PR. Thus, the FR version, having the
simplest formulation, has the least first-order perturbation errors and can be expected to be
more stable.

2.3 Experimental Results

2.3.1 Rosenbrock Function

We start with a textbook example of the Rosenbrock function defined by

f (x, y) = 100(y − x2)2 + (1 − x)2,

as a test problem. This function has a long parabolic-shaped flat valley, depicted in Fig. 1,
which causes difficulty for any algorithm to converge to the global minimum of f (x, y).

We examine the momentum-based gradient descent methods. FRGD is defined in (14).
We can also replace the FR momentum by PR, HS, DY, as defined in (9)-(11), respectively.
The step size α plays an important role in the performance of these algorithms, as it is tricky

123

Journal of Scientific Computing (2023) 95 :33 Page 9 of 21 33

Fig. 1 Iterative solutions (red circles) for minimizing the Rosenbrock function via various momentum-based
methods. The initial point is indicated by a green circle and the final solution is circled in blue. FR and DY
quickly move towards the global minimum (1, 1) within a few hundred iterations, while PR and HS can not
get close to (1, 1) even after thousands of iterations

to find a proper step size so that the solution does not sway across the parabolic valley y = x2;
otherwise it is almost impossible to converge. We carefully tune the step size of each method
so that all the algorithms converge in a few hundred steps except for HS and PR which barely
converge to the global minimum even after thousands of iterations, as illustrated in Fig. 1.We
also compare these four momentum-based methods to gradient descent (5), gradient descent
with momentum (7), and Nesterov’s gradient (12). All these algorithms start from the initial
point (1.2, 1.2) and stop when the difference of two consecutive iterates is less than 10−8

or a maximum number of iterations are achieved. Table 1provides the relative errors to the
global optimal solution (1, 1) and the computational time required by each method, showing
that both FR and DY yield the highest accuracy with a reasonable amount of computational
time.

2.3.2 Quadratic Problem

Following the work of [27], we consider the quadratic problem (15) with A ∈ R
500×500

being the Laplacian matrix of a circular graph and b ∈ R
500 being a vector whose first entry

123

33 Page 10 of 21 Journal of Scientific Computing (2023) 95 :33

Table 1 Relative errors and
computational time of various
methods in minimizing the
Rosenbrock function. The best
results are highlighted in bold

Method Error Time

GD 3.5546e-03 2.0594e-01

GDM 2.8409e-03 7.8236e-02

NAG 1.0201e-03 1.7319e-02

FRGD 7.0804e-04 2.6686e-02

PRGD 1.8049e-02 1.5069e-01

HSGD 1.6816e-01 2.8645e-01

DYGD 9.0094e-04 4.1789e-03

is 1 and the remaining entries are 0. It is straightforward to verify that g(x) is convex with
Lipschitz constant 4. We compare GD (5), GDM (7) with a fixed value of β = 0.9, NAG
(12), and FRGD (14) in terms of relative errors to the ground truth and objective decay. For
each competing method, we consider two ways to choose α(l+1): a fixed value of 0.3 and
an adaptive update via line search (6), indicated by “fx” and “ls” respectively. For example,
FRGD/fx refers to FRGD method with a fixed value, and FRGD/ls refers to FRGD with
updating α(l+1) by an exact line search. Note that FRGD/ls is equivalent to the conjugate
gradient for any quadratic problem.

We plot the relative errors and the objective functions with respect to iteration numbers of
all the competingmethods in Fig. 2.All the plots are in a logarithmic scale.As expected,GDM
yields slightly better performance thanSD/GD,whileNAGconverges significantly faster than
GDM, but in an oscillatory manner. It is worth noting in Fig. 2b that the objective values
of GD/fx, GDM/fx, NAG/fx (with a fixed step size) become stagnant after 500 iterations,
whereas FRGD/fx continues to decay until the machine accuracy. When the step size is
adaptive, FRGD/ls reduces to the classic conjugate gradient that quickly falls into a local
minimum, while all the other algorithms require more iterations to converge. In summary,
FRGD converges at a rate much faster than regular GD and its variants.

3 Minimizing the Sum of Two Functions

In this section, we focus on minimizing the sum of two functions defined in (4). Specifically,
we consider two different functions of f : the �1 norm ‖x‖1 and the �1 − �2 regularization
‖x‖1 − ‖x‖2, to promote the sparsity of the vector x. As f is not differentiable, we adopt
the regular subdifferential for a general (not necessary convex) function [58, Definition 8.3],
defined by

∂ f (x) =
{
p| lim

z→x

f (z) − f (x) − pT(z − x)
‖z − x‖ ≥ 0

}
, (28)

instead of the standard gradient ∇ f . We discretize the gradient flow

d

dt
x(t) ∈ −λ∂ f (x(t)) − ∇g(x(t)), (29)

that minimizes (4) by a semi-implicit scheme as follows,

x(l+1) − x(l)

δ
∈ −λ∂ f (x(l+1)) − ∇g(x(l)), (30)

123

Journal of Scientific Computing (2023) 95 :33 Page 11 of 21 33

Fig. 2 Comparison of gradient based methods on a quadratic problem with a fixed step size (top) and an
adaptive step size by line search (bottom)

where δ > 0 is a step size. The iteration of (30) is often referred to as forward-backward split-
ting [12], as one uses a forward solution in ∇g and a backward one in ∂ f . After rearranging
(30), we obtain

x(l+1) ∈ (
I + δλ∂ f

)−1(x(l) − ∇g(x(l))
)
,

which implies that x(l+1) is an optimal solution to

x(l+1) ∈ argminx δλ f (x) + 1

2
‖x − x(l) + δ∇g(x(l))‖22. (31)

The solution to (31) can be expressed by the corresponding proximal operator. Recall that a
proximal operator [50] of a functional J (·) with a positive parameter μ > 0 is defined by

proxJ (x;μ) = argminy
(
μJ (y) + 1

2
‖x − y‖22

)
. (32)

Now by relating Equation. (32) (31), we have an iterative update,

x(l+1) ∈ prox f

(
x(l) − δ∇g(x(l)); δλ

)
. (33)

For f (x) = ‖x‖1, its proximal operator is given by

prox�1
(x;μ) = sign(x) ◦ max(|x| − μ, 0), (34)

123

33 Page 12 of 21 Journal of Scientific Computing (2023) 95 :33

where ◦ denotes the Hadamard operator for componentwise operation. As the proximal
operator for �1 is called soft shrinkage, the corresponding iteration (33) is referred to as
iterative soft-thresholding algorithm (ISTA) [9, 15, 17, 26, 66, 69]. One accelerated scheme
of ISTA is called fast iterative soft-thresholding algorithm (FISTA) [4]. It is a momentum
based algorithm that utilized the Nesterov’s update (12) on the step size, having the form,⎧⎪⎪⎨

⎪⎪⎩
t (l+1) = 1+

√
4(t (l))2+1
2

y(l+1) = x(l) + t (l)−1
t (l+1) (x(l) − x(l−1))

x(l+1) = prox�1

(
y(l+1) − δ∇g(y(l+1)); δλ

)
.

(35)

The momentum term in FISTA is proven to be efficient, but the algorithm exhibits oscillatory
patterns during the minimization process. To have a guaranteed descent, the accelerated
proximal gradient (APG) algorithm [35] compares the objective function at two proximal
solutions and selects the smaller one. In short, the APG algorithm goes as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t (l+1) = 1+
√

4(t (l))2+1
2

y(l+1) = x(l) + t (l)

t (l+1) (u
(l) − x(l)) + t (l)−1

t (l+1) (x(l) − x(l−1))

u(l+1) = prox f

(
y(l+1) − δ∇g(y(l+1)); δλ

)
v(l+1) = prox f

(
x(l) − δ∇g(x(l)); δλ

)
x(l+1) = arg min

z∈{u(l+1),v(l+1)}
λ f (z) + g(z).

(36)

We propose to combine adaptive momentum formula and FISTA for minimizing the general
problem of (4). In particular, we replace the FISTA momentum update (35) in terms of FR,
thus leading to ⎧⎪⎪⎨

⎪⎪⎩
β(l+1) = ‖∇g(x(l))‖2

‖∇g(x(l−1))‖2 ,
y(l+1) = x(l) + β(l+1)(x(l) − x(l−1)),

x(l+1) ∈ prox f

(
y(l+1) − δ∇g(y(l+1)); δλ

)
.

(37)

Similarly we can use other momentum terms given in (9)-(11). The proximal operator for
the �1 norm is given in (34), while the proximal operator for �1 − �2 [38] can be defined
separately into the following cases,

– If ‖ y‖∞ > λ, one has prox�1−2
(y; λ) = z(‖z‖2+λ)

‖z‖2 , where z = prox�1
(y; λ).

– If ‖ y‖∞ ≤ λ, then c∗ := prox�1−2
(y; λ) is an optimal solution if and only if c∗

i = 0 for
|yi | < ‖ y‖∞, ‖c∗‖2 = ‖ y‖∞, and c∗

i yi ≥ 0 for all i . The optimality condition implies
infinitely many solutions of c∗, among which we choose c∗

i = sign(yi)‖ y‖∞ for the
smallest i satisfies |yi | = ‖ y‖∞ and the rest coefficients set to be zero.

In what follows, we present experimental results on the convex �1 minimization in Sect.
3.1 and the non-convex �1 − �2 minimization in Sect. 3.2, respectively.

3.1 Convex �1 Minimization

We test the performance of various methods to minimize the �1 norm with the least-squares
fitting term, i.e.,

x∗ = argminx λ‖x‖1 + 1

2
‖Ax − b‖22. (38)

123

Journal of Scientific Computing (2023) 95 :33 Page 13 of 21 33

We generate the sensing matrix A from Gaussian random matrices and a ground-truth sparse
vector x of sparsity 5. Compressive sensing often involves an under-determined linear system,
which implies that the matrix A has more columns than rows (a fat matrix). Here we examine
both under-determined (fat) and over-determined (tall) matrices with size 256 × 1024 and
1024 × 256, respectively.

We consider two ways to generate the data vector b. One is a standard sparse recovery
setting, in which b is obtained by matrix-vector multiplication (Ax) with additive Gaussian
noise of 30 dB. Another is referred to as a constructed case following the work of [37]. In
particular, we construct a data vector b such that a specific sparse vector x∗ is a stationary
point of (38) when given a positive parameter λ and a matrix A. Any non-zero stationary
point satisfies the following first-order optimality condition:

λp∗ + AT(Ax∗ − b) = 0, (39)

where p∗ ∈ ∂‖x∗‖1. Denote Sign(·) as the multi-valued sign, i.e.,

y ∈ Sign(x) ⇐⇒ yi

⎧⎨
⎩

= 1, if xi > 0,
= −1, if xi < 0,
∈ [−1, 1], if xi = 0.

(40)

Given A, λ, and x∗, we want to find x ∈ Sign(x∗) and x ∈ Range(AT). If y satisfies ATy = x
and b is defined by b = λy + Ax∗, then x∗ is a stationary point to (38). To find x ∈ R

N , we
adopt the iteration

x(k+1) = PSign(x∗)

(
UU T

(
x(k)

))
, (41)

until a stopping criterion is reached. Please refer to [37] for more details.
The constructed setting is examined in Fig. 3that contains both fat and tall matrices. We

use a fixed value of λ for all the algorithms so that they solve the same problem and we tune
δ to achieve the fastest convergence. Specifically we choose the best δ among the set {10−4,
10−3, · · · , 101} that achieves the smallest objective function value when convergent. The
proposed method with the FR momentum converges the fastest among all the other methods.
FISTA initially converges faster than APG and PR/HS, while it always oscillates no matter
whether the matrix A is fat or tall.

We examine a standard sparse recovery setting where the data b is obtained by matrix-
vector multiplication with additive noise. Again two types of matrices are considered, a
256 × 1024 (fat) matrix and a 1024 × 256 (tall) one. We use the proposed algorithm with
a small step size δ = 10−3 to find the optimal λ value among the set {10−4, 10−3, · · · ,
101} that yields the smallest objective function value. Then we fix this optimal λ for all the
competing algorithmswhile tuning the δ parameter in the sameway as in the constructed case.
The results are presented in Fig. 4. We observe that our proposed algorithm has still some
advantages over FISTA andAPG. Interestingly, in Fig. 4a, we observe that theAPG algorithm
performs worse than FISTA until about 40th iteration due to the oscillatory nature of FISTA.
This phenomenon implies that APG is less robust than FISTA in certain applications, which
is somewhat counter-intuitive. In this set of experiments, all the methods can not reach the
accuracy of 10−3 in terms of relative errors, as compared to the constructed cases (10−8).
This is because the ground-truth solution may not be a stationary point to the corresponding
minimization problem.

The CPU time required by various methods is reported in Table 2, which includes different
shapes of the sensing matrix A (a 256× 1024 fat matrix or a 1024× 256 tall matrix) as well
two testing scenarios (a constructed case and a standard setting in spare recovery). The

123

33 Page 14 of 21 Journal of Scientific Computing (2023) 95 :33

Fig. 3 Comparison of �1 minimization methods using a 256× 1024 (top) and 1024× 256 (bottom) matrix A
in a constructed case

Table 2 CPU time for various �1 minimization methods using a 256 × 1024 (fat) matrix A or a 1024 × 256
(tall) matrix under either a constructed or standard setting

Method Constructed fat Standard fat Constructed tall Standard tall

FISTA 1.5727e-01 2.1449e-01 2.6440e-02 1.7032e-02

APG 1.8135e-01 3.7542e-01 3.5753e-02 2.1801e-02

FR 6.7575e-02 1.2839e-01 1.9097e-02 1.7562e-02

PR 2.6586e-01 3.1863e-01 3.8764e-02 1.9722e-02

HS 1.6053e-01 3.0457e-01 2.5498e-02 1.8789e-02

DY 9.2728e-02 1.5137e-01 2.1915e-02 1.7746e-02

computational time of a larger dimension of 1024 × 4096 and 4096 × 1024 is recorded in
Table 3 . Both FR and DY are the winners in terms of computational efficiency, which is
consistent with our observation in the Rosebrock function.

123

Journal of Scientific Computing (2023) 95 :33 Page 15 of 21 33

Fig. 4 Comparison of �1 minimization methods using a 256× 1024 (top) and 1024× 256 (bottom) matrix A
in a standard sparse recovery setting

Table 3 CPU time for various �1 minimization methods using a 1024× 4096 (fat) matrix A or a 4096× 1024
(tall) matrix under either a constructed or standard setting

Method Constructed fat Standard fat Constructed tall Standard tall

FISTA 4.6661e+00 4.6932e+00 8.7736e-01 6.7252e-01

APG 4.8702e+00 4.9007e+00 1.0459e+00 6.9235e-01

FR 1.6858e+00 2.4300e+00 5.5734e-01 6.4436e-01

PR 6.9300e+00 5.7933e+00 1.1392e+00 6.4442e-01

HS 3.7369e+00 5.9089e+00 7.2674e-01 7.0761e-01

DY 2.2746e+00 2.8957e+00 6.1895e-01 5.7265e-01

3.2 Non-convex �1 − �2 Minimization

Lastly, we consider the non-convex �1 − �2 minimization problem,

F(x) = λ(‖x‖1 − ‖x‖2) + 1

2
‖Ax − b‖22, (42)

which was originally solved by the difference of convex algorithm (DCA) [51, 52]. As a
baseline algorithm for comparison, we give a brief description of DCA. After decomposing

123

33 Page 16 of 21 Journal of Scientific Computing (2023) 95 :33

Fig. 5 Comparison of �1 − �2 minimization methods using a 256 × 1024 (top) and 1024 × 256 (bottom)
matrix A in a constructed case

F into a difference of two convex functions, DCA further relies on the linearization at the
current step x(l) to advance to the next one, i.e.,

x(l+1) = argminx∈Rn
1

2
‖Ax − b‖22 + λ‖x‖1 −

〈
x,

λx(l)

‖x(l)‖2

〉
. (43)

To generate a constructed solution for the �1 − �2 problem, we only need to replace the
iteration (41) for constructing the �1 solution by

x(k+1) = PSign(x∗)

(
UU T

(
x(k) − x∗

‖x∗‖2
)

+ x∗

‖x∗‖2
)

. (44)

Due to the non-convex nature of F(x), the iteration (44) may not converge and x∗ may not
exist. The results of �1 − �2 minimization methods on a constructed case are illustrated
in Fig. 5 for matrix sizes of 256 × 1024 and 1024 × 256. Note that DCA is a doule-loop
algorithm and its iteration number is counted as inner loop iterations, and yet the original
DCA implementation [40, 72] is the slowest, followed by APG. Our proposed algorithm is
the fastest, having a clear advantage over all the other algorithms.

Figure 6shows the results for a sparse recovery problem. DCA is still the slowest, while
our method is the fastest. The proposed method is worse than DCA for a tall matrix. This

123

Journal of Scientific Computing (2023) 95 :33 Page 17 of 21 33

Fig. 6 Comparison of �1 − �2 minimization methods using a 256 × 1024 (top) and 1024 × 256 (bottom)
matrix A in a standard sparse recovery setting

Table 4 CPU time for various �1−�2 minimizationmethods using a 256×1024 (fat) matrix A or a 1024×256
(tall) matrix under either a constructed or standard setting

Method Constructed fat Random fat Constructed tall Random tall

DCA 1.2112e-02 5.4499e-02 7.3475e-02 8.5999e-02

APG 9.5120e-03 2.1489e-01 3.3662e-02 2.1801e-02

FR 6.0010e-03 1.2058e-01 2.0455e-02 6.2328e-02

PR 7.3012e-03 1.7407e-01 2.3123e-02 6.1710e-02

HS 1.0967e-02 2.4206e-01 2.9486e-02 5.4402e-02

DY 5.9523e-03 1.6031e-01 2.4117e-02 4.4513e-02

may attribute to the fact that the ground-truth signal is not the optimal solution to (42), and
as a result, the performance is rather random. The CPU time for these �1 − �2 minimiza-
tion methods is listed in Table 4. We observe that all the momentum-based methods seem
comparable in computational time, while DCA is the slowest.

123

33 Page 18 of 21 Journal of Scientific Computing (2023) 95 :33

4 Conclusion

In this paper, we leveraged adaptivemomentum fromnonlinear conjugate gradient algorithms
for the purpose of acceleration. Unlike the existing works that rely on line search to establish
convergence of gradient-based algorithms, we proposed the use of a fix step size and proved
the convergence of FRGD on a quadratic problem. In addition, we combined the adaptive
momentum with FISTA to deal with non-smooth objective function. The resulting algorithm
has a relatively simple FISTA-like structure. We demonstrated the accelerated phenomena of
the proposed approach over FISTA and APG on a convex �1 minimization and a nonconvex
�1 − �2 problem for sparse recovery.

Funding YL acknowledges the support from NSF CAREER DMS-1846690. BW is supported by NSF
DMS-1924935, DMS-1952339, DMS-2152762, and DMS-2208361. BW also acknowledges support
from the office of Science of the department of energy under grant number DE-SC0021142 and DE-
SC0002722. MY was supported by the NSF DMS-2012439 and Shenzhen Science and Technology Program
ZDSYS20211021111415025. XY acknowledges the support from NSF CAREER DMS-2143915. XY was
also partly supported by DOE, Office of Science, Office of Advanced Scientific Computing Research (ASCR)
as part of Multifaceted Mathematics for Rare, Extreme Events in Complex Energy and Environment Systems
(MACSER). QY acknowledges the support from the NSF grant DMS-1821144.

Data Availability TheMATLAB codes and datasets generated during and/or analysed during the current study
will be available under https://sites.google.com/site/louyifei/Software after publication.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

1. Al-Baali, M.: Descent property and global convergence of the Fletcher-Reeves method with inexact line
search. IMA J. Numer. Anal. 5(1), 121–124 (1985)

2. Andrei, N.: Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algor.
47(2), 143–156 (2008)

3. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math.
16(1), 1–3 (1966)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imag. Sci. 2(1), 183–202 (2009)

5. Bertsekas, D.: Nonlinear programming. Athena Scientific (1999)
6. Boggess, A., Narcowich, F.J.: A first course in wavelets with Fourier analysis. John Wiley & Sons, USA

(2015)
7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
8. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. J. Fourier

Anal. Appl. 14(5–6), 877–905 (2008)
9. Chambolle, A., De Vore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: variational

problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3),
319–335 (1998)

10. Chan, R.H., Liang, H.X.: Half-quadratic algorithm for �p-�q problems with applications to tv-�1 image
restoration and compressive sensing. In: Efficient algorithms for global optimizationmethods in computer
vision, pp. 78–103. Springer (2014)

11. Chen, X., Zhou, W.: Smoothing nonlinear conjugate gradient method for image restoration using
nonsmooth nonconvex minimization. SIAM J. Imag. Sci. 3(4), 765–790 (2010)

12. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model
Simulation 4(4), 1168–1200 (2005)

123

https://sites.google.com/site/louyifei/Software

Journal of Scientific Computing (2023) 95 :33 Page 19 of 21 33

13. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property.
SIAM J. Optim. 10(1), 177–182 (1999)

14. Dai, Y.H., Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann.
Oper. Res. 103(1), 33–47 (2001)

15. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Commun. Pure Appl. Math.: A J. Issued Courant Inst. Math. Sci. 57(11),
1413–1457 (2004)

16. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
17. Figueiredo, M.A., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans.

Image Process. 12(8), 906–916 (2003)
18. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154

(1964)
19. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization.

SIAM J. Optim. 2(1), 21–42 (1992)
20. Giselsson, P., Boyd, S.: Monotonicity and restart in fast gradient methods. In: 53rd IEEE Conference on

Decision and Control, pp. 5058–5063. IEEE (2014)
21. Golub, G.H., Ye, Q.: Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM

J. Sci. Comput. 21(4), 1305–1320 (1999)
22. Guo, L., Li, J., Liu, Y.: Stochastic collocation methods via minimisation of the transformed l1-penalty.

East Asian J. Appl. Math. 8(3), 566–585 (2018)
23. Guo, W., Lou, Y., Qin, J., Yan, M.: A novel regularization based on the error function for sparse recovery.

J. Sci. Comput. 87(1), 1–22 (2021)
24. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line

search. SIAM J. Optim. 16(1), 170–192 (2005)
25. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2(1), 35–58

(2006)
26. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with

applications to compressed sensing. CAAM TR07-07, Rice University 43, 44 (2007)
27. Hardt, M.: Robustness versus acceleration (2014). http://blog.mrtz.org/2014/08/18/robustness-versus-

acceleration.html
28. Hermey, D., Watson, G.A.: Fitting data with errors in all variables using the huber m-estimator. SIAM J.

Sci. Comput. 20(4), 1276–1298 (1999)
29. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.

Stand. 49, 409–436 (1952)
30. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems. NBS

Washington, DC (1952)
31. Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: Majorization-minimization generalized krylov

subspacemethods for �p-�q optimization applied to image restoration. BITNumer.Math. 57(2), 351–378
(2017)

32. Huang, X.L., Shi, L., Yan, M.: Nonconvex sorted �1 minimization for sparse approximation. J. Oper. Res.
Soc. China 3(2), 207–229 (2015)

33. Huber, P.J.: The place of the l1-norm in robust estimation. Comput. Stat. Data Anal. 5(4), 255–262 (1987)
34. Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: A generalized Krylov subspace method for �p-�q

minimization. SIAM J. Sci. Comput. 37(5), S30–S50 (2015). https://doi.org/10.1137/140967982
35. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. Adv. Neural. Inf.

Process. Syst. 28, 379–387 (2015)
36. Liesen, J., Strakos, Z.: Mathematical characterisation of some Krylov subspace methods. Oxford

University Press, UK (2013)
37. Lorenz, D.A.: Constructing test instances for basis pursuit denoising. IEEE Trans. Signal Process. 61(5),

1210–1214 (2013)
38. Lou, Y., Yan, M.: Fast l1–l2 minimization via a proximal operator. J. Sci. Comput. 74(2), 767–785 (2018)
39. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dictionary based

on difference of L1 and L2. J. Sci. Comput. 64(1), 178–196 (2015)
40. Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex l1 based methods. J. Sci. Comput.

68, 1082–1100 (2016)
41. Lu, Z.: Iterative reweighted minimization methods for �p regularized unconstrained nonlinear program-

ming. Math. Program. 147(1), 277–307 (2014)
42. Lv, J., Fan, Y., et al.: A unified approach to model selection and sparse recovery using regularized least

squares. Ann. Stat. 37(6A), 3498–3528 (2009)

123

http://blog.mrtz.org/2014/08/18/robustness-versus-acceleration.html
http://blog.mrtz.org/2014/08/18/robustness-versus-acceleration.html
https://doi.org/10.1137/140967982

33 Page 20 of 21 Journal of Scientific Computing (2023) 95 :33

43. Narushima, Y.: A smoothing conjugate gradient method for solving systems of nonsmooth equations.
Appl. Math. Comput. 219(16), 8646–8655 (2013)

44. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
45. Nemirovski, A.S., Nesterov, Y.E.: Optimal methods of smooth convex minimization. Zhurnal Vychisli-

tel’noi Matematiki i Matematicheskoi Fiziki 25(3), 356–369 (1985)
46. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o (1/k2). In:

Soviet Mathematics Doklady, vol. 27, pp. 372–376 (1983)
47. Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science &

Business Media, UK (2003)
48. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Media, UK (2006)
49. Pang, D., Du, S., Ju, J.: The smoothing fletcher-reeves conjugate gradient method for solving finite

minimax problems. ScienceAsia 42(1), 40–45 (2016)
50. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Opt. 1(3), 127–239 (2014)
51. Pham-Dinh, T., Le-Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem.

SIAM J. Optim. 8(2), 476–505 (1998)
52. Pham-Dinh, T., Le-Thi, H.A.: The DC (difference of convex functions) programming and DCA revisited

with DC models of real world nonconvex optimization problems. Annals Oper. Res. 133(1–4), 23–46
(2005)

53. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. ESAIM Math.
Model. Numer. Anal-Modélisation Mathématique et Analyse Numérique 3(R1), 35–43 (1969)

54. Polyak, B.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phys. 4(5), 1–17 (1964)

55. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Math. Program. 12(1), 241–254
(1977)

56. Rahimi, Y., Wang, C., Dong, H., Lou, Y.: A scale invariant approach for sparse signal recovery. SIAM J.
Sci. Comput. 41(6), A3649–A3672 (2019)

57. Rivaie, M., Mamat, M., Abashar, A.: A new class of nonlinear conjugate gradient coefficients with exact
and inexact line searches. Appl. Math. Comput. 268, 1152–1163 (2015)

58. Rockafellar, R.T., Wets, R.J.B.: Variational analysis, vol. 317. Springer Science & Business Media, UK
(2009)

59. Roulet, V., d’Aspremont, A.: Sharpness, restart, and acceleration. SIAM J. Optim. 30(1), 262–289 (2020)
60. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)
61. Shen, X., Pan,W., Zhu, Y.: Likelihood-based selection and sharp parameter estimation. J. Am. Stat. Assoc.

107(497), 223–232 (2012)
62. Su,W., Boyd, S., Candes, E.: A differential equation formodeling nesterov’s accelerated gradient method:

Theory and insights. Adv. Neural. Inf. Process. Syst. 27, 2510–2518 (2014)
63. Sun, Q., Zhou, W.X., Fan, J.: Adaptive huber regression. J. Am. Stat. Assoc. 115(529), 254–265 (2020)
64. Tong, C., Ye, Q.: Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear

systems. Math. Comput. 69(232), 1559–1575 (2000)
65. Unser, M.: Sampling − 50 years after shannon. In: Proceedings of the IEEE, pp. 569 – 587. IEEE (2000)
66. Vonesch, C., Unser, M.: A fast iterative thresholding algorithm for wavelet-regularized deconvolution.

In: Wavelets XII, vol. 6701, p. 67010D. International Society for Optics and Photonics (2007)
67. Wang, C., Yan, M., Rahimi, Y., Lou, Y.: Accelerated schemes for the L1/L2 minimization. IEEE Trans.

Signal Process. 68, 2660–2669 (2020)
68. Watkins, D.S.: Subspace iteration and simultaneous iteration, pp. 420–428. John Wiley & Sons, UK

(2010)
69. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE

Trans. Signal Process. 57(7), 2479–2493 (2009)
70. Wu, C., Zhan, J., Lu, Y., Chen, J.S.: Signal reconstruction by conjugate gradient algorithm based on

smoothing l1-norm. Calcolo 56(4), 1–26 (2019)
71. Yin, P., Esser, E., Xin, J.: Ratio and difference of l1 and l2 norms and sparse representation with coherent

dictionaries. Comm. Inf. Syst. 14(2), 87–109 (2014)
72. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of �1−2 for compressed sensing. SIAM J. Sci. Comput.

37(1), A536–A563 (2015)
73. Zhang, S., Xin, J.: Minimization of transformed L1 penalty: closed form representation and iterative

thresholding algorithms. Comm. Math. Sci. 15, 511–537 (2017)
74. Zhang, S., Xin, J.: Minimization of transformed L1 penalty: theory, difference of convex function

algorithm, and robust application in compressed sensing. Math. Program. 169(1), 307–336 (2018)
75. Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In: Adv. Neural Inf.

Proces. Syst. (NIPS), pp. 1929–1936 (2009)

123

Journal of Scientific Computing (2023) 95 :33 Page 21 of 21 33

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Mengqi Hu1 · Yifei Lou2 · Bao Wang3 ·Ming Yan4,5 · Xiu Yang1 ·Qiang Ye6

Mengqi Hu
meh621@lehigh.edu

Bao Wang
bwang@sci.utah.edu

Ming Yan
myan@msu.edu

Xiu Yang
xiy518@lehigh.edu

Qiang Ye
qye3@uky.edu

1 Department of Industrial and Systems Engineering, Lehigh University, 200 West Packer Avenue,
Bethlehem, PA 18015, USA

2 Department of Mathematical Sciences, The University of Texas at Dallas, 800 W. Campbell Rd,
Richardson, TX 75080, USA

3 Department of Mathematics and Scientific Computing and Imaging Institute, The University of
Utah, 72 Central Campus Dr, Salt Lake City, Utah 84102, USA

4 School of Data Science, The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Blvd,
Shenzhen, Guangdong, China

5 Department of Computational Mathematics, Science and Engineering and Department of
Mathematics, Michigan State University, 428 South Shaw Lane, East Lansing, MI 48824, USA

6 Department of Mathematics, University of Kentucky, Lexington, Kentucky 40513, USA

123

http://orcid.org/0000-0003-1973-5704

	Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum
	Abstract
	1 Introduction
	2 Minimizing a Single Function
	2.1 Literature Review
	2.2 FR Momentum Gradient Descent
	2.3 Experimental Results
	2.3.1 Rosenbrock Function
	2.3.2 Quadratic Problem

	3 Minimizing the Sum of Two Functions
	3.1 Convex ell1 Minimization
	3.2 Non-convex ell1-ell2 Minimization

	4 Conclusion
	References

