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A General Framework of Rotational Sparse Approximation in Uncertainty
Quantification∗
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Abstract. This paper proposes a general framework for estimating coefficients of generalized polynomial chaos
(gPC) used in uncertainty quantification (UQ) via rotational sparse approximation. In particular,
we aim to identify a rotation matrix such that the gPC expansion of a set of random variables after
the rotation has a sparser representation. However, this rotational approach alters the underlying
linear system to be solved, which makes finding the sparse coefficients more difficult than in the
case without rotation. To solve this problem, we examine several popular nonconvex regulariza-
tions in compressive sensing (CS) that perform better than the classic `1 approach empirically. All
these regularizations can be minimized by the alternating direction method of multipliers (ADMM).
Numerical examples show superior performance of the proposed combination of rotation and non-
convex sparsity-promoting regularizations over those with and without rotation but using the convex
`1 approach.
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alternating direction, nonconvex regularization
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1. Introduction. A surrogate model (also known as a “response surface”) plays an im-
portant role in uncertainty quantification (UQ), as it can efficiently evaluate the quantity of
interest (QoI) of a system given a set of inputs. Specifically, in parametric uncertainty studies,
the input usually refers to a set of parameters in the system, while the QoI can be observables
such as mass, density, pressure, and velocity, or even a trajectory of a dynamical system. The
uncertainty in the system’s parameters typically originates from the lack of physical knowl-
edge, inaccurate measurements, etc. Therefore, it is common to treat these parameters as
random variables, and statistics, e.g., mean, variance, and the probability density function
(PDF) of the QoI with respect to such random parameters, are crucial in understanding the
behavior of the system.
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1411

The generalized polynomial chaos (gPC) expansion [23, 59] is a widely used surrogate
model in applied mathematics and engineering studies, which use orthogonal polynomials
associated with measures of the aforementioned random variables. Under some conditions,
the gPC expansion converges to the QoI in a Hilbert space as the number of polynomials
increases [9, 21, 43, 59]. Both intrusive (e.g., stochastic Galerkin) and nonintrusive (e.g.,
probabilistic collocation) methods [4, 23, 53, 58, 59] have been developed for computing gPC
coefficients. The latter are particularly desirable for studying a complex system, as it does
not require modifying the computational models or simulation codes. For example, the gPC
coefficients can be calculated based on input samples and corresponding output using least
squared fitting, the probabilistic collocation method, etc.

However, in many practical problems, it is prohibitive to obtain a large amount of output
samples in the nonintrusive methods, because it is costly to measure the QoI in experiments
or to conduct simulations using a complicated model. Consequently, one should consider an
underdetermined linear system (matrix), denoted as Ψ, of size M ×N with M < N (or even
M � N), where M is the size of available output samples and N is the number of basis
functions used in the gPC expansion. When the solution to the underdetermined system is
sparse, compressive sensing (CS) techniques [8, 10, 11, 19] are effective. Recent studies have
shown some success in applying CS to UQ problems [2, 20, 33, 34, 45, 50, 61, 62, 65]. For
example, sampling strategies [3, 27, 30, 47] can improve the property of Ψ to guarantee sparse
recovery via the `1 minimization. Computationally, the weighted `1 minimization [1, 13, 44,
48, 65] assigns larger weights to smaller components (in magnitude) of the solution, and hence
minimizing the weighted `1 norm leads to a sparser solution than the vanilla `1 minimization
does. Additionally, adaptive basis selection [3, 6, 16, 28, 29] as well as dimension reduction
techniques can be adopted to reduce the number of unknown variables [56, 68], which thus
improves computational efficiency.

In this paper, we focus on a sparsity-enhancing approach, referred to as iterative rotation
[34, 66, 67, 69], that intrinsically changes the structure of a surrogate model to make the gPC
coefficients more sparse. However, this method tends to deteriorate properties of Ψ that are
favored by CS algorithms, e.g., low coherence, which may counteract the benefit of the en-
hanced sparsity. Since the polynomials in the gPC expansion may not be orthogonal after the
rotation of the random variables, the coherence of Ψ may not converges to zero asymptotically,
leading to an amplified coherence after the rotation. To remedy this drawback, we innova-
tively combine the iterative rotation technique with a class of nonconvex regularizations to
improve the efficiency of CS-based UQ methods. Specifically, our new approach uses rotations
to increase the sparsity while taking advantage of the nonconvex formalism for dealing with
a matrix Ψ that is highly coherent. In this way, we leverage the advantages of both methods
to exploit information from limited samples of the QoI more efficiently and to construct gPC
expansions more accurately.

The main contributions of this work are twofold. On the one hand, we propose a unified
and flexible framework that combines iterative rotation and sparse recovery together with an
efficient algorithm. On the other hand, we empirically validate the rule of thumb in CS that
nonconvex regularizations often lead to better performance compared to the convex approach.

The rest of the paper is organized as follows. We briefly review gPC, CS, and rotational
CS in section 2. We describe the combination of sparse signal recovery and rotation matrix
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1412 MENGQI HU, YIFEI LOU, AND XIU YANG

estimation in section 3. Section 4 is devoted to numerical examples, showing that the pro-
posed approach significantly outperforms the stateoftheart. Finally, conclusions are given in
section 5.

2. Prior works. In this section, we briefly review gPC expansions, useful concepts in CS,
and our previous work [66, 69] on the rotational CS for gPC methods.

2.1. Generalized polynomial chaos expansions. We consider a QoI u that depends on
location x, time t, and a set of random variables ξ with the following gPC expansion:

u(x, t; ξ) =

N∑
n=1

cn(x, t)ψn(ξ) + ε(x, t; ξ),(2.1)

where cn(x, t) = E{u(x, t; ξ)ψn(ξ)} and ε denotes the truncation error. Here, {ψn}Nn=1 are
orthonormal with respect to the measure of ξ, i.e.,∫

Rd

ψi(ξ)ψj(ξ)ρ(ξ)dξ = δij ,(2.2)

where ρ(ξ) is the PDF of ξ, δij is the Kronecker delta function, and we usually set ψ1(ξ) ≡ 1.
We study systems relying on d-dimensional independent and identically distributed (i.i.d.)
random variables ξ = (ξ1, . . . , ξd), and the gPC basis functions are constructed by tensor
products of univariate orthonormal polynomials associated with ξi. Specifically for a multi-
index α = (α1, . . . , αd) with each αi ∈ N ∪ {0}, we set

ψα(ξ) = ψα1
(ξ1)ψα2

(ξ2) · · ·ψαd
(ξd),(2.3)

where ψαi
are univariate orthonormal polynomial (with respect to the PDF of ξi) of degree

αi. For two different multi-indices α = (α
1
, . . . , α

d
) and β = (β

1
, . . . , β

d
), we have∫

Rd

ψα(ξ)ψβ(ξ)ρ(ξ)dξ = δαβ = δα1β1
δα2β2

· · · δαdβd
,(2.4)

with ρ(ξ) = ρ1(ξ1)ρ2(ξ2) · · · ρd(ξd), where ρi(ξi) is the PDF of ξi. Specifically, in this work,
since ξi are i.i.d., ρi are of the same form. Typically, a pth order gPC expansion involves all
polynomials ψα satisfying |α| ≤ p for |α| =

∑d
i=1 αi, which indicates that a total number of

N =
(
p+d
d

)
polynomials are used in the expansion. For simplicity, we reorder α in such a way

that we index ψα by ψn, which is consistent with (2.1).
In this paper, we focus on time independent problems in which the gPC expansion (2.1)

at a fixed location ξ reduces to

u(ξ) =

N∑
n=1

cnψn(ξ) + ε(ξ).(2.5)

In practice, we collect M sample pairs {(ξq, u(ξq))}Mq=1 (e.g., via running Monte Carlo simu-
lations), and according to (2.5) we have

u(ξq) =

N∑
n=1

cnψn(ξq) + ε(ξq), q = 1, 2, . . . ,M.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1413

Here, each ξq is a sample of ξ, e.g., ξ1 = (ξ11 , . . . , ξ
1
d). We rewrite the above expansion in

terms of the matrix-vector notation, i.e.,

Ψc = u− ε,(2.6)

where u = (u1, . . . , uM )T is a vector of output samples, c = (c1, . . . , cN )T is a vector of gPC
coefficients, Ψ is an M × N matrix with Ψij = ψj(ξ

i), and ε = (ε1, . . . , εM )T is a vector of
errors with εq = ε(ξq). We are interested in identifying sparse coefficients c = (c1, . . . , cN )T

among the solutions of an underdetermined system with M < N in (2.6), which is the focus
of compressive sensing [12, 17, 22].

2.2. Compressive sensing. We review the concept of sparsity , which plays an important
role in error estimation for solving the underdetermined system (2.6). The number of nonzero
entries of a vector c = (c1, . . . , cN ) is denoted by ‖c‖0. Note that ‖ · ‖0 is named the “`0
norm” in [17], although it is neither a norm nor a seminorm. The vector c is called s-sparse if
‖c‖0 ≤ s, and it is considered a sparse vector if s� N . Few practical systems have truly sparse
gPC coefficients but rather compressible ones, i.e., only a few entries contributing significantly
to its `1 norm. To this end, a vector cs is defined as the best s-sparse approximation, which is
obtained by setting all but the s-largest entries of c in magnitude to zero, and subsequently,
c is regarded as sparse or compressible if ‖c− cs‖1 is small for s� N .

In order to find a sparse vector c from (2.6), one formulates the problem

ĉ0 = arg min
c

1

2
‖Ψc− u‖22 + λ‖c‖0,(2.7)

where λ is a positive parameter to be tuned such that ‖Ψĉ0−u‖2 ≤ ε. As the `0 minimization
(2.7) is NP-hard to solve [42], one often uses the convex `1 norm to replace `0, i.e.,

ĉ1 = arg min
c

1

2
‖Ψc− u‖22 + λ‖c‖1.(2.8)

A sufficient condition of the `1 minimization for exactly recovering the sparse signal was
proved based on the restricted isometry property (RIP) [11]. Unfortunately, RIP is numerically
unverifiable for a given matrix [5, 54]. Instead, a computable condition for `1’s exact recovery
is coherence, which is defined as

µ(Ψ) = max
i6=j

|〈ψi,ψj〉|
‖ψi‖‖ψj‖

, with Ψ = [ψ1, . . . ,ψN ].(2.9)

Donoho and Elad [18] and Gribonval and Nielsen [24] proved independently that if

‖ĉ1‖0 <
1

2

(
1 +

1

µ(Ψ)

)
,(2.10)

then ĉ1 is indeed the sparsest solution to (2.8). Although the inequality condition in (2.10) is
not sharp, the coherence of a matrix Ψ is often used as an indicator to quantify how difficult
it is to find a sparse vector from a linear system governed by Ψ in the sense that the larger the
coherence, the more challenging the problem of finding the sparse vector c [37, 71]. Apparently

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1414 MENGQI HU, YIFEI LOU, AND XIU YANG

if the samples ξq are drawn independently according to the distribution of ξ, µ(Ψ) for the
gPC expansion converges to zero as M → ∞ [20]. However, the rotation technique tends to
increase the coherence of the matrix, leading to unsatisfactory performance of the subsequent
`1 minimization as discussed in [69].

In this work, we promote the use of nonconvex regularizations to find a sparse vector when
the coherence of Ψ is relatively large, referred to as a coherent linear system. There are many
nonconvex alternatives to approximating the `0 norm that give superior results over the `1
norm, such as `1/2 [14, 60, 32], capped `1 [74, 51, 38], transformed `1 [40, 72, 73, 25], `1-`2
[70, 37, 36], `1/`2 [46, 57], and error function (ERF) [26]. We formulate a general framework
that works for any regularization whose proximal operator can be found efficiently. Recall
that a proximal operator proxJ(·) of a functional J(·) is defined by

proxJ(c;µ) ∈ arg min
y

(
µJ(y) +

1

2
‖y − c‖22

)
,(2.11)

where µ is a positive parameter. We provide the formula of the aforementioned regularizations,
together with their proximal operators, as follows:

• The `1 norm of y is ‖y‖1, with its proximal operator given by

prox`1(y;µ) = sign(y) ◦max(|y| − µ, 0),(2.12)

where ◦ denotes the Hadamard operator for componentwise multiplication.
• The `1/2 norm is defined as ‖y‖1/2 = (

∑
j

√
|yj |)2. The proximal operator of the

square-root of the `1/2 norm has a closed-form solution [60],

prox`1/2(y;µ) =
3y

4
◦
[
cos

(
π

3
− φ(y)

3

)]2
◦max

(
y − 3

4
µ2/3, 0

)
,(2.13)

where φ(y) = arccos(µ8 ( 3
|y|)

3/2), and the square is also computed componentwise.

• Transformed `1 (TL1) is defined as
∑

j
(γ+1)|yj |
γ+|yj | for a positive parameter γ, and its

proximal operator [72] is given by

proxTL1(y;µ) =

{[
2
3(γ + |y|) cos φ(y)3 −

2
3γ + |y|

3

]
if |y| > θ,

0 if |y| ≤ θ,
(2.14)

with

φ(y) = arccos

(
1− 27µγ(γ + 1)

2(γ + |y|)3

)
and θ =

{
µγ+1

γ if µ ≤ γ2

2(γ+1) ,√
2µ(γ + 1)− γ

2 if µ > γ2

2(γ+1) .

• The `1-`2 regularization is defined by ‖y‖1 − ‖y‖2, and its proximal operator [36] is
given by the following cases:

– If ‖y‖∞ > µ, one has prox`1−2
(y;µ) = z(‖z‖2+µ)

‖z‖2 , where z = prox`1(y;µ).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1415

– If ‖y‖∞ ≤ µ, c∗ := prox`1−2
(y;µ) is an optimal solution if and only if c∗i =

0 for |yi| < ‖y‖∞, ‖c∗‖2 = ‖y‖∞, and c∗i yi ≥ 0 for all i. The optimality
condition implies infinitely many solutions of c∗, among which we choose c∗i =
sign(yi)‖y‖∞ for the smallest i that satisfies |yi| = ‖y‖∞, and the remaining
coefficients are set to zero.

• The ERF [26] is defined by

JERF
σ (y) :=

n∑
j=1

∫ |yj |
0

e−τ
2/σ2

dτ(2.15)

for σ > 0. Though there is no closed-form solution for this problem, one can find the
solution via Newton’s method. In particular, the optimality condition of (2.11) for
the ERF reads as

v ∈ µ∂JERF
σ (y) + y = µ exp

(
−y

2

σ2

)
◦ ∂|y|+ y.

When |vi| ≤ µ, we have xi = 0. Otherwise, the optimality condition becomes

vi = µ exp

(
− y

2
i

σ2

)
sign(vi) + yi,

which can be found by Newton’s method.

2.3. Rotational compressive sensing. To further enhance the sparsity, we aim to find a
linear map A : Rd 7→ Rd such that a new set of random variables η, given by

η = Aξ, η = (η1, η2, . . . , ηd)
T,(2.16)

leads to a sparser polynomial expansion than ξ does. We consider A as an orthogonal matrix,
i.e., AAT = I with the identity matrix I, such that the linear map from ξ to η can be regarded
as a rotation in Rd. Therefore, different from the approximation u(ξ) ≈

∑N
n=1 cnψn(ξ) in (2.5),

we have the new polynomial expansion for u,

u(ξ) ≈ ug(ξ) =

N∑
n=1

c̃nψn(Aξ) =

N∑
n=1

c̃nψn(η) = vg(η),(2.17)

where c̃n are expansion coefficients. Ideally, c̃ is sparser than c, i.e., we aim to obtain a sparser
representation of u. In previous works [34, 66], it is assumed that ξ ∼ N (0, I), so η ∼ N (0, I).
For general cases where {ξi}di=1 are not i.i.d. Gaussian, {ηi}di=1 are not necessarily independent.
Moreover, {ψn}Nn=1 are not necessarily orthogonal to each other with respect to ρη. Therefore,
vg(η) may not be a standard gPC expansion of v(η) but rather a polynomial equivalent to
ug(ξ), with potentially sparser coefficients [69].

We can identify A using the gradient information of u based on the framework of active
subspace [15, 49]. In particular, we define

W =
1√
M

[∇u(ξ1),∇u(ξ2), . . . ,∇u(ξM )].(2.18)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1416 MENGQI HU, YIFEI LOU, AND XIU YANG

Note that W is a d ×M matrix, and we consider M ≥ d in this work. The singular value
decomposition (SVD) of W yields

W = UΣVT,(2.19)

where U is a d×d orthogonal matrix, Σ is a d×M matrix whose diagonal consists of singular
values σ1 ≥ · · · ≥ σd ≥ 0, and V is an M ×M orthogonal matrix. If u is known, we set the
rotation matrix as A = UT projecting ξ in the direction of the principle components of ∇u.
Unfortunately, u is unknown, and thus the samples of ∇u are not available. In this case, we
approximate (2.18) by a computed solution ug that can be obtained by the `1 minimization
[66]. In other words, we have

W ≈Wg =
1√
M

[∇ug(ξ1),∇ug(ξ2), . . . ,∇ug(ξM )],(2.20)

and the rotation matrix is constructed based on the SVD of Wg:

Wg = UgΣgV
T
g , A = UT

g .(2.21)

Defining η = Aξ, we compute the corresponding input samples as ηq = Aξq and construct
a new measurement matrix Ψ(η) as (Ψ(η))ij = ψj(η

i). We then solve the minimization
problem in (2.8) to obtain c̃. If some singular values of Wg are much larger than others, we
can expect to obtain a sparser representation of u with respect to η, which is dominated by the
eigenspace associated with these larger singular values. On the other hand, if all the singular
values σi are of the same order, the rotation does not enhance the sparsity. In practice, this
method can be designed as an iterative algorithm, in which A and c̃ are updated separately
following an alternating direction manner.

It is worth noting that the idea of using a linear map to identify a possible low-dimensional
structure is also used in sliced inverse regression (SIR) [35], the active subspace method
[15, 49], basis adaptation [55], etc., but with different manners of computing the matrix. In
contrast to these methods, the iterative rotation approach does not truncate the dimension
in the sense that A is a square matrix. As an initial guess may not be sufficiently accurate,
reducing the dimension before the iterations terminate may lead to suboptimal results. The
dimension reduction was integrated with an iterative method in [63], while another iterative
rotation method with SIR-based dimension reduction was proposed in [68]. We refer the
interested reader to the respective literature.

3. The proposed approach. When applying the rotational CS techniques, the measure-
ment matrix Ψ(η) may become more coherent compared with Ψ. This is because popular
polynomials ψi used in the gPC method, e.g., Legendre and Laguerre polynomials, are not
orthogonal with respect to the measure of η, so µ(Ψ(η)) converges to a positive number in-
stead of zero as µ(Ψ) does. Under such a coherent regime, we advocate the minimization of
a nonconvex regularization to identify the sparse coefficients.

To start, we generate input samples {ξq}Mq=1 based on the distribution of ξ and select the

gPC basis functions {ψj}Nj=1 associated with ξ in order to generate the measurement matrix

Ψ by setting Ψij = ψj(ξ
i) as in (2.6), while initializing A(0) = I and η(0) = ξ. Then we pro-

pose an alternating direction method (ADM) that combines the nonconvex minimization and

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1417

rotation matrix estimation. Specifically, given {ξq}Mq=1, {ψj}Nj=1, and u := {uq = u(ξq)}Mq=1,
we formulate the minimization problem

arg min
c,˜A

λJ(c)+
1

2
‖Ψc− u‖22, AAT = I and Ψij = ψj(Aξ

i),(3.1)

where J(·) denotes a regularization functional and λ > 0 is a weighting parameter. For
example, our early work [66] considered J(c) = ‖c‖1, i.e., the `1 approach. We can minimize
(3.1) with respect to c and A in an alternating direction manner. When A is fixed, we
minimize a sparsity-promoting functional J(·) to identify the sparse coefficients c, as detailed
in section 3.1. When c is fixed, optimizing A is computationally expensive, unless a dimension
reduction technique is used, e.g., as in [56]. Instead, we use the rotation estimation introduced
in section 2.3 to construct A. Admittedly, this way of estimating A may not be optimal, but
it can potentially promote the sparsity of c and thus improve the accuracy of the sparse
approximation of the gPC expansion.

3.1. Finding sparse coefficient via ADMM. We focus on the c-subproblem in (3.1),
whose objective function is defined as

c̃ := arg min
c
λJ(c) +

1

2
‖Ψc− u‖22.(3.2)

We adopt the ADMM [7] to minimize (3.2). In particular, we introduce an auxiliary variable
y and rewrite (3.2) as the equivalent problem

min
c,y

λJ(c) +
1

2
‖Ψy − u‖22 s.t. c = y.(3.3)

This new formulation (3.3) makes the objective function separable with respect to two variables
c and y to enable efficient computation. Specifically, the augmented Lagrangian corresponding
to (3.3) can be expressed as

Lρ(c,y;w) = λJ(c) +
1

2
‖Ψy − u‖22 + 〈w, c− y〉+

ρ

2
‖c− y‖22,(3.4)

wherew is an Lagrangian multiplier and ρ is a positive parameter. Then the ADMM iterations
indexed by k consist of three steps,

ck+1 = arg min
c
λJ(c) +

ρ

2
‖c− yk +

wk

ρ
‖22(3.5)

yk+1 = arg min
y

1

2
‖Ψy − u‖22 +

ρ

2
‖ck+1 − y +

wk

ρ
‖22(3.6)

wk+1 = wk + ρ(ck+1 − yk+1).(3.7)

Depending on the choice of J(·), the c-update (3.5) can be given by its corresponding proximal
operator, i.e.,

ck+1 = proxJ

(
yk −

wk

ρ
;
λ

ρ

)
.(3.8)
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1418 MENGQI HU, YIFEI LOU, AND XIU YANG

Algorithm 3.1 The ADMM framework for solving a general sparse coding problem (3.2).
1: Input: measurement matrix Ψ and observed data u.
2: Parameters: λ, ρ, ε ∈ R+, and kmax ∈ Z+.
3: Initialize: c,y,v,w, and k = 0.
4: while k ≤ kmax or ‖ck − ck−1‖ > ε do

5: ck+1 = proxJ

(
yk − wk

ρ ; λρ

)
6: yk+1 = (ΨTΨ + ρI)−1(ΨTu+ ρck+1 +wk)
7: wk+1 = wk + ρ(ck+1 − yk+1)
8: k = k + 1
9: end while

10: Return c̃ = ck

Please refer to section 2.2 for detailed formula of proximal operators.
As for the y-update, we take the gradient of (3.6) with respect to y, thus leading to

ΨT (Ψy − u) + ρ(y − ck+1 −
wk

ρ
) = 0.(3.9)

Therefore, the update for y is given by

yk+1 = (ΨTΨ + ρI)−1
(
ΨTu+ ρck+1 +wk

)
.(3.10)

Note that ΨTΨ + ρI is a positive definite matrix and there are many efficient numeral algo-
rithms for matrix inversion. Since Ψ has more columns than rows in our case, we further use
the Woodbury formula to speed up,

ρ(ΨTΨ + ρI)−1 = I− 1

ρ
ΨT(ΨΨT + ρI)−1,(3.11)

as ΨΨT has a smaller dimension than ΨTΨ to be inverted. In summary, the overall mini-
mization algorithm based on ADMM is described in Algorithm 3.1.

3.2. Rotation matrix update. Suppose we obtain the gPC coefficients c̃(l) at the lth

iteration via Algorithm 3.1 with l ≥ 1. Given v
(l)
g (η) with input samples {(η(l))q}Mq=1 for

(η(l))q = A(l−1)(η(l−1))q, we collect the gradient of v
(l)
g , denoted by

W(l)
g =

1√
M

[
∇ξv(l)g

(
(η(l))1

)
, . . . ,∇ξv(l)g

(
(η(l))M

)]
,(3.12)

where ∇ξ· = (∂ · /∂ξ1, ∂/̇∂ξ2, · · · , ∂ · /∂ξd)T. It is straightforward to evaluate ∇ψn at (η(l))q,
as we construct ψn using the tensor product of univariate polynomials (2.3), and derivatives
for widely used orthogonal polynomials, e.g., Hermite, Laguerre, Legendre, and Chebyshev,

are well studied in the UQ literature. Here, we can analytically compute the gradient of v
(l)
g

with respect to ξ using the chain rule
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1419

∇
ξ
v(l)g

(
(η(l))q

)
= ∇

ξ
v(l)g

(
A(l)ξq

)
= (A(l))T∇v(l)g (x)

∣∣∣∣
x=A(l)ξq

= (A(l))T∇
N∑
n=1

c̃(l)n ψn(x)

∣∣∣∣
x=A(l)ξq

= (A(l))T
N∑
n=1

c̃(l)n ∇ψn(x)

∣∣∣∣
x=A(l)ξq

.

(3.13)

Then, we have an update for A(l+1) = (U
(l)
g )T, where U

(l)
W is from the SVD of

W(l)
g = U(l)

g Σ(l)
g

(
V(l)
g

)T
.(3.14)

Now we can define a new set of random variables as η(l+1) = A(l+1)ξ and compute their
samples accordingly as (η(l+1))q = A(l+1)ξq. These samples are then used to construct a new

measurement matrix Ψ(l+1) as Ψ
(l+1)
ij = ψj((η

(l+1))i) to feed into Algorithm 3.1 to obtain

c(l+1).
We summarize the entire procedure in Algorithm 3.2.

The stopping criteria we adopt are l ≤ lmax and the relative difference of coefficients
between two consecutive iterations less than 10−3. As the sparsity structure is problemdepen-
dent (see examples in section 4), more iterations do not grant significant improvements for
many practical problems.

4. Numerical examples. In this section, we present four numerical examples to demon-
strate the performance of the proposed method. Specifically, in section 4.1 we examine a
function with low-dimensional structure, which has a truly sparse representation. Section 4.2
discusses an elliptic equation widely used in the UQ literature whose solution is not exactly
sparse. The example discussed in section 4.3 has two dominant directions, even though the
solution is not exactly sparse. Lastly, we present a high-dimensional example in section 4.4.
These examples revisit some numerical tests in previous works [66, 69] and hence provide a
direct comparison of the newly proposed approaches with the original one.

We compare the proposed framework to the rotation with the `1 approach (by setting
J(c) = ‖c‖1 in (3.1)) and the one without rotation (by setting lmax = 1 in Algorithm 3.2).

The performance is evaluated in terms of relative error (RE), defined as ‖u−ug‖2
‖u‖2 , where u

is the exact solution, ug is a reconstructed solution as a gPC approximation of u, and the
integral in computing the norm ‖ · ‖2 is approximated with a high-level sparse grid method
based on one-dimensional Gaussian quadrature and the Smolyak structure [52].

We set lmax = 9. To tune for the other two parameters (λ, ρ), we generate 10 indepen-
dent random variables {ξq}Mq=1 and the corresponding function value u := {uq = u(ξq)}Mq=1

independent of the actual experiment to reconstruct the gPC expansion of the correspond-
ing system. We begin by setting each component of (λ, ρ) to 10−4, 10−3,. . . ,101. For each
combination of λ and ρ in this range, we apply Algorithm 3.2 for every regularization func-
tional that is mentioned in section 2.2 and record all the relative errors. We find the two
scalars r1, r2 ∈ {−4,−3, . . . , 1} such that λ = 10r1 and ρ = 10r2 give the smallest averaged
RE over these 10 random sets. We then fine-tune the parameters by multiplying 10r1 and
ρ = 10r2 by 0.5, 1, . . . , 9.5 individually. Denote a1, a2 ∈ {0.5, 1, . . . , 9.5} such that λ̄ = a110r1

and ρ̄ = a210r2 achieve the best result; these are regarded as the optimal parameters for

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1420 MENGQI HU, YIFEI LOU, AND XIU YANG

Algorithm 3.2 Alternating direction method of minimizing (3.1).
1: Generate input samples {ξq}Mq=1 based on the distribution of ξ.

2: Generate corresponding output samples u := {uq = u(ξq)}Mq=1 by solving the

complete model, e.g., running simulations, solvers, etc.
3: Select gPC basis functions {ψn}Nn=1 associated with ξ and set counter

l = 0. Set A(0) = I, c̃(0) = 0, e = 1, and η(0) = ξ.

4: Generate the measurement matrix Ψ(l) by setting Ψ
(l)
ij = ψj(ξ

i).

5: while l < lmax and e ≥ 10−3 do
6: if l > 0 then

7: Construct W(l) in (3.12) with v
(l)
g =

∑N
n=1 c̃

(l)ψn(ξ(l)).

8: Compute SVD of W
(l)
g : W

(l)
g = U

(l)
g Σ

(l)
g

(
V

(l)
g

)T
.

9: Set A(l+1) =
(
U

(l)
g

)T
and η(l+1) = A(l+1)ξ.

10: Construct the new measurement matrix Ψ(l+1) with Ψ
(l+1)
ij = ψj

(
(η(l+1))i

)
.

11: end if
12: Solve the minimization problem via ADMM (Algorithm 3.1):

c̃(l+1) = arg min
c
λJ(c) +

1

2
‖Ψ(l+1)c− u‖22.

13: Calculate root square mean error of coefficients between two consecutive iterations

e =
‖c̃(l+1) − c̃(l)‖2
‖c̃(l+1)‖2

.

14: l = l + 1.
15: end while

16: Construct gPC expansion as u(ξ) ≈ ug(ξ) = v
(l)
g (η(l)) =

N∑
n=1

c̃
(l)
n ψn(A(l)ξ).

subsequent experiments. We specify the parameter pair (λ̄, ρ̄) for each testing case in the cor-
responding section. After (λ̄, ρ̄) are identified, we conduct another 100 independent random
trials (not including trials for the parameter tuning procedure) and report the average RE. In
practice, these parameters can be determined by the k-fold cross-validation following the work
of [20]. Empirically, we did not observe a significant difference between these two parameter
tuning procedures for our numerical experiments, so we used a fixed set of (λ, ρ) for all 100
trials in each example.

In the first example, we do not terminate the iteration when e > 10−3 in Algorithm 3.2 but
finish nine iterations to compare the performance of different approaches when a truly sparse
representation is available after a proper rotation. In the remaining examples, we follow the
termination criterion (i.e., line 5 in Algorithm 3.2).
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1421

Table 4.1
Parameters (λ̄, ρ̄) for different regularization models in the case of ridge function.

Legendre Hermite Laguerre

UQ setting λ̄ ρ̄ λ̄ ρ̄ λ̄ ρ̄

`1 6 × 10−4 6 × 10−1 1 × 10−2 1 × 10−1 5 × 10−2 5 × 100

l1/2 5 × 10−3 1.6 × 101 1.8 × 10−2 6 × 10−1 6 × 10−2 1.2 × 100

TL1 1 × 10−8 1 × 10−7 1 × 10−8 1 × 10−7 1 × 10−8 1 × 10−7

ERF 1.5 × 10−1 1.6 × 103 1 × 100 1.2 × 101 1.1 × 100 1.5 × 103

`1 − `2 3 × 10−4 5 × 10−1 1 × 10−4 1 × 10−2 5 × 10−1 1 × 100

4.1. Ridge function. Consider the following ridge function:

u(ξ) =

d∑
i=1

ξi + 0.25

(
d∑
i=1

ξi

)2

+ 0.025

(
d∑
i=1

ξi

)3

.(4.1)

As {ξi}di=1 are equally important in this example, adaptive methods [41, 64, 75] that build
surrogate models hierarchically based on the importance of ξi may not be effective. We
consider a rotation matrix in the form of

A =

(
d−

1

2 d−
1

2 · · · d−
1

2

Ã

)
,(4.2)

where Ã is a d × (d − 1) matrix designed to guarantee the orthogonality of the matrix A,
e.g., A can be obtained by the Gram–Schmidt process. With this choice of A, we have
η1 = d−

1

2

∑d
i=1 ξi, and u can be represented as

u(ξ) = v(η) = d
1

2 η1 + 0.25dη21 + 0.025d
3

2 η31.(4.3)

In the expression u(ξ) =
∑N

n=1 c̃nψn(Aξ) =
∑N

n=1 c̃nψn(η), all of the polynomials that are
not related to η1 make no contribution to the expansion, which guarantees the sparsity of
c̃ = (c̃1, . . . , c̃N ).

By setting d = 12 (hence, the number of gPC basis functions is N = 455 for p = 3),
we compare the accuracy of computing gPC expansions by minimizing different regulariza-
tion functionals with and without rotations. We consider gPC expansion using a Legendre
polynomial (assuming ξi are i.i.d. uniform random variables), Hermite polynomial expansion
(assuming ξi are i.i.d. Gaussian random variables), and a Laguerre polynomial (assuming ξi
are i.i.d. exponential random variables), respectively. The number of samples M ranges from
100 to 180, with each repeated 100 times to compute the average RE. The parameters λ̄, ρ̄ for
all the regularization models are listed in Table 4.1.

Figure 4.1 plots relative errors corresponding to the ratios of M/N , showing that noncon-
vex regularizations outperform the convex `1 approach in most cases. In particular, the best
regularizations for different polynomials are different, but `1-`2 and ERF generally perform
very well (within top two). TL1 and `1/2 work well in the cases of Legendre and Hermite
polynomials, but they are less accurate for the Laguerre polynomial case. Please refer to
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1422 MENGQI HU, YIFEI LOU, AND XIU YANG

(a) Legendre (b) Hermite (c) Laguerre

Figure 4.1. Relative errors of Legendre, Hermite, and Laguerre polynomial expansions for ridge function
against ratio M/N . Solid lines represent experiments with rotations applied, whereas the dashed line references
the `1 test result without rotation. “ ◦” is the marker for `1 minimization, “ ∗” is the marker for `1/2, “�” is
the marker for TL1, “ ?” is the marker for ERF, and “♦” is the marker for `1 − `2.

section 4.5 for in-depth discussions on the performance of these regularizations with respect
to the matrix coherence.

Figure 4.1 also indicates that the standard `1 minimization without rotation is not ef-
fective, as its relative error is close to 50% even when M/N approaches 0.4. Our iterative
rotation methods with any regularization yield much higher accuracy, especially for a larger
M value. The reason can be partially explained by Figure 4.2. Specifically, the plots (a),
(b), and (c) of Figure 4.2 are about the absolute values of exact coefficients |cn| of Legendre,
Hermite, and Laguerre polynomials, while the plots (d), (e), and (f) show corresponding co-
efficients |c̃n| after nine iterations with the `1-`2 minimization using 120 samples randomly
chosen from the 100 independent experiments; we exclude c̃n, whose absolute value is smaller
than 10−3, since they are sufficiently small (more than two magnitudes smaller than the dom-
inating ones). As demonstrated in Figure 4.2, the iterative update on the rotation matrix
significantly sparsifies the representation of u, and, as a result, the efficiency of CS meth-
ods is substantially enhanced. Moreover, c̃n for the Laguerre polynomial is not as sparse as
the ones for the Legendre and Hermite polynomials. Consequently, the Laguerre polynomial
shows less accurate results in Figure 4.1(c) compared with the other two polynomials in Fig-
ure 4.1(a),(b). The phenomenon can be partially explained by the coherence of Ψ for different
polynomials, i.e., the coherence in the Laguerre case is much larger (> 0.94 before rotation
and > 0.99 after rotation) than in the other two, which thus makes any sparse regression algo-
rithms less effective. For more detailed discussions on coherence, please refer to Table 4.5 and
section 4.5.

4.2. Elliptic equation. Next we consider a one-dimensional elliptic differential equation
with a random coefficient [20, 66],

− d

dx

(
a(x; ξ)

du(x; ξ)

dx

)
= 1, x ∈ (0, 1),

u(0) = u(1) = 0,

(4.4)
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1423

(a) Legendre |cn| (b) Hermite |cn| (c) Laguerre |cn|

(d) Legendre |c̃n| (e) Hermite |c̃n| (f) Laguerre |c̃n|

Figure 4.2. (Ridge function.) Absolute values of exact coefficients cn (first row) and coefficients c̃n after 9
rotations with the `1-`2 minimization (second row) using 120 samples.

where a(x; ξ) is a log-normal random field based on Karhunen–Loève (KL) expansion,

a(x; ξ) = a0(x) + exp

(
σ

d∑
i=1

√
λiφi(x)ξi

)
,(4.5)

{ξi} are i.i.d. random variables, and {λi, φi(t)}di=1 are eigenvalues/eigenfunctions (in descend-
ing order in λi) of an exponential covariance kernel,

C(x, x′) = exp

(
|x− x′|
lc

)
.(4.6)

The value of λi and the analytical expressions for φi are given in [31]. We set a0(x) ≡ 0.1, σ =
0.5, lc = 0.2, and d = 15 such that

∑d
i=1 λi > 0.93

∑∞
i=1 λi. For each input sample ξq, the

solution of the deterministic elliptic equation can be obtained by [65] as follows:

u(x) = u(0) +

∫ x

0

a(0)u(0)′ − y
a(y)

dy.(4.7)

By imposing the boundary condition u(0) = u(1) = 0, we can compute a(0)u(0)′ as

a(0)u(0)′ =

(∫ 1

0

y

a(y)
dy

)/(∫ 1

0

1

a(y)
dy

)
.(4.8)

The integrals in (4.7) and (4.8) are obtained by highly accurate numerical integration. For
this example, we choose the quantity of interest to be u(x; ξ) at x = 0.35. We aim to build a
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1424 MENGQI HU, YIFEI LOU, AND XIU YANG

Table 4.2
Parameters (λ̄, ρ̄) for different regularization models in the case of the elliptic equation.

Legendre Hermite

UQ setting λ̄ ρ̄ λ̄ ρ̄

`1 6 × 10−4 1 × 10−1 1.3 × 10−3 3 × 100

l1/2 8 × 10−5 1 × 102 3 × 10−4 1.2 × 102

TL1 1 × 10−8 1 × 10−7 1 × 10−8 1 × 10−7

ERF 2 × 10−2 2 × 104 9 × 10−3 1.3 × 103

`1 − `2 1 × 10−3 6 × 10−2 1.9 × 10−3 2.3 × 10−2

(a) Legendre (b) Hermite

Figure 4.3. Relative error of Legendre and Hermite polynomial expansions for an elliptic equation against
ratio M/N . Solid lines represent experiments with rotations applied, whereas the dashed line references the `1
test result without rotation. “ ◦” is the marker for `1 minimization, “ ∗” is the marker for `1/2, “�” is the
marker for TL1, “ ?” is the marker for ERF, and “♦” is the marker for `1 − `2.

third-order Legendre (or Hermite) polynomial expansion, which includes N = 816 basis func-
tions. The relative error is approximated by a level-6 sparse grid method. The parameters
(λ̄, ρ̄) are given in Table 4.2.

Relative errors of the Legendre and Hermite polynomial expansions are presented in Fig-
ure 4.3. All the methods with rotation perform almost the same, except that `1/2 may yield
unstable results, especially when sample size is small as shown in Figure 4.3(a). This phe-
nomenon is consistent with previous works [37, 71]. In this elliptic equation case, we do not
observe a significant improvement in the nonconvex regularizations over the convex `1 model,
as opposed to Figure 4.1. `1-`2 and ERF perform the best for both Legendre and Hermite
polynomials. In this case, the solution does not have an underlying low-dimensional structure
under rotation as in the previous example, and the truncation error exists, which is common
in practical problems. This is why the improvement by the rotational method is minor.

4.3. Korteweg–de Vries equation. As an example of a more complicated and nonlinear
differential equation, we consider the Korteweg–de Vries (KdV) equation with time-dependent
additive noise,

ut(x, t; ξ)− 6u(x, t; ξ)ux(x, t; ξ) + uxxx(x, t; ξ) = f(t; ξ), x ∈ (−∞,∞),

u(x, 0; ξ) = −2 sech2(x).
(4.9)
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1425

Here f(t; ξ) is modeled as a random field represented by the Karhunen–Loève expansion,

f(t; ξ) = σ

d∑
i=1

√
λiφi(t)ξi,(4.10)

where σ is a constant and {λi, φi(t)}di=1 are eigenvalues/eigenfunctions (in descending order)
of the exponential covariance kernel equation (4.6). We set lc = 0.25 and d = 10 in (4.6) such
that

∑d
i=1 λi > 0.96

∑∞
i=1 λi. Under this setting, we have an analytical solution given by

u(x, t; ξ) = σ

d∑
i=1

√
λiξi

∫ t

0
φi(y)dy − 2 sech2

(
x− 4t+ 6σ

d∑
i=1

√
λiξi

∫ t

0

∫ z

0
φi(y)dydz

)
.

(4.11)

We choose the QoI to be u(x, t; ξ) at x = 6, t = 1, and σ = 0.4. Thanks to analytical
expressions of φi(x), we can compute the integrals in (4.11) with high accuracy. Denote

Ai =
√
λi

∫ 1

0
φi(y)dy and Bi =

√
λi

∫ 1

0

∫ z

0
φi(y)dydz, i = 1, 2, . . . , d;(4.12)

the analytical solution can be written as

u(x, t; ξ)|x=6,t=1 = σ

d∑
i=1

Aiξi − 2 sech2

(
2 + 6σ

d∑
i=1

Biξi

)
.(4.13)

We use a fourth-order gPC expansion to approximate the solution, i.e., p = 4, and the number
of gPC basis functions is N = 1001. The experiment is repeated 50 times to compute the
average relative error for each gPC expansion. Parameters chosen for different regularizations
are given in Table 4.3. Relative errors of the Legendre and Hermite polynomial expansions
are presented in Figure 4.4, which illustrates the combined method of iterative rotation, and
nonconvex minimization outperforms the simple `1 approaches. The coherence µ of Ψ for the
Legendre polynomial is around 0.6/0.85 before/after the rotation, while it increases to over
0.92 for the Hermite polynomial. In such a highly coherent regime, `1/2 does not work very
well, and other nonconvex regularizations, i.e., ERF, TL1, and `1-`2, perform better than `1
in the Hermite polynomial case (especially ERF).

4.4. High-dimensional function. We illustrate the potential capability of the proposed
approach for dealing with higher-dimensional problems, referred to as the HD function. Specif-
ically, we select a function similar to the one in section 4.1 but with a much higher dimension,

u(ξ) =

d∑
i=1

ξi + 0.25

(
d∑
i=1

ξi/
√
i

)2

, d = 100.(4.14)

The total number of basis functions for this example is N = 5151. The experiment is repeated
20 times to compute the average relative errors for each polynomial. Parameters for this set
of experiments are given in Table 4.4. The results are presented in Figure 4.5, showing that
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(a) Legendre (b) Hermite

Figure 4.4. (KdV equation.) Relative error of Legendre and Hermite polynomial expansions for the KdV
equation against ratio M/N . Solid lines represent experiments with rotations applied, whereas the dashed line
references the `1 test result without rotation. “ ◦” is the marker for `1 minimization, “ ∗” is the marker for
`1/2, “�” is the marker for TL1, “ ?” is the marker for ERF, and “♦” is the marker for `1 − `2.

Table 4.3
Parameters (λ̄, ρ̄) for different regularization models in the case of the KdV function.

Legendre Hermite

Method λ̄ ρ̄ λ̄ ρ̄

`1 1 × 10−4 1 × 10−2 1 × 10−2 4 × 10−4

l1/2 5 × 10−3 1.6 × 101 1.8 × 10−2 6 × 10−1

Transformed `1 1 × 10−8 1 × 10−7 1 × 10−8 1 × 10−7

ERF 1.5 × 10−1 1.6 × 103 1 × 100 1.2 × 101

`1 − `2 1 × 10−4 1 × 10−2 1 × 10−4 1 × 10−2

all nonconvex methods with rotation outperform the `1 approach except for ERF under the
Hermite basis when sample size is small. Different from previous examples (ridge, elliptic, and
KdV), `1/2 achieves the best result, as the corresponding coherence is relatively small, being
around 0.2/0.3 before/after rotation for the Legendre polynomial and 0.3 for the Hermite
polynomial. In addition, Figure 4.5(b) suggests that the ERF method is stable with respect
to sampling ratios for the Hermite basis.

4.5. Discussion. We intend to discuss the effects of coherence and the number of rotations
on the performance of the `1 and other nonconvex approaches. As reported in [26, 37, 71],
the `1-`2 and ERF methods perform particularly well for coherent matrices (i.e., large µ),
and `p performs well for incoherenct matrices (i.e., small µ), which motivates us to compute
the coherence values and report them in Tables 4.5 and 4.6 using the `1-`2 method for ridge
function and elliptic equation/KdV equation/HD function, respectively. Here, we use µ of
each iteration by `1-`2 as an example, and its values for other regularizations (including `1)
are similar. Both tables confirm that applying rotation increases the coherence level of the
sensing matrix Ψ except for the Hermite basis. As we show in numerical examples, when the
coherence is large (e.g., around 0.9 or even larger in the Hermite polynomial for KdV) `1-`2

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1427

(a) Legendre (b) Hermite

Figure 4.5. (High-dimensional function.) Relative error of Legendre and Hermite polynomial expansions
for the high-dimensional function against sampling ratio M/N . Solid lines represent experiments with rota-
tions applied, whereas the dashed line references the `1 test result without rotation. “ ◦” is the marker for `1
minimization, “ ∗” is the marker for `1/2, “�” is the marker for TL1, “ ?” is the marker for ERF, and “♦” is
the marker for `1 − `2. All results with rotations are plotted with a threshold of 10−3.

Table 4.4
Parameters (λ̄, ρ̄) for different regularization models in the case of HD function.

Legendre Hermite

UQ setting λ̄ ρ̄ λ̄ ρ̄

`1 1.2 × 100 5 × 10−2 1 × 10−2 1 × 10−3

l1/2 1 × 10−1 1 × 102 5 × 10−2 1 × 102

TL1 1 × 10−6 1 × 10−7 4 × 10−6 1 × 10−7

ERF 1.5 × 10−1 1.6 × 103 5 × 10−2 1 × 102

`1 − `2 5 × 10−2 1 × 102 1 × 10−3 9 × 10−2

and ERF perform better than the convex `1 method. When the coherence is small (e.g., . 0.3
in the high-dimensional case), `1/2 gives the best results among all the competing methods.
One the other hand, `1/2 may lead to unstable and unsatisfactory results, sometimes even
worse than those of the convex `1 method, when the coherence of the sensing matrix is large.
In the extreme case when the coherence is close to 1 (e.g., Laguerre in the ridge function),
the best result is only slightly better than `1, which seems difficult for any sparse recovery
algorithms to achieve. This series of observations coincide with the empirical performance
in CS; i.e., `1/2 works the best for incoherent matrices, while `1-`2 and ERF work better for
coherent cases.

We then examine the effect of the number of rotations in Figure 4.6. Here we use the
ridge function and the KdV equation as examples and show the results by `1-`2. For the ridge
function, more rotations lead to better accuracy, while it stagnates at 3–5 rotations for the
KdV equation. This is because the ridge function has a very good low-dimensional structure,
i.e., the dimension can be reduced to one using a linear transformation η = Aξ, while the
KdV equation does not have this property. Also, there is no truncation error ε(ξ) when using
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Table 4.5
Average coherence of matrix Ψ (size 160 × 455) for the ridge function.

Ridge function

Rotations Legendre Hermite Laguerre

0 0.4692 0.7622 0.9448
3 0.6833 0.7527 0.9910
6 0.6822 0.7519 0.9911
9 0.6762 0.7657 0.9911

Table 4.6
Average coherence of matrix Ψ for elliptic equation (matrix size 160 × 816), KdV equation (matrix size

160 × 1001), and HD function (matrix size 1000 × 5151).

Elliptic equation KdV equation HD function

Rotations Legendre Hermite Legendre Hermite Legendre Hermite

0 0.5014 0.7770 0.6079 0.9121 0.2117 0.2852
1 0.6958 0.7830 0.8825 0.9223 0.2580 0.3075
2 0.6943 0.7719 0.8487 0.9167 0.2664 0.2956
3 0.6896 0.7710 0.8677 0.9214 0.2522 0.3003

the gPC expansion to represent the ridge function, as we use a third order expansion, while
ε(ξ) exists for the KdV equation. In most practical problems, the truncation error exists,
and the linear transform may not yield the optimal low-dimensional structure so that it has
sparse coefficients of the gPC expansion. Therefore, we empirically set a maximum number
of rotations lmax to terminate iterations in the algorithm.

We present the computation time in Table 4.7. All the experiments were performed
on an AMD Ryzen 5 3600, 16 GB RAM machine running Windows 10, versions 1904 and
2004, with MATLAB 2018b. The major computation comes from two components: one is
the `1-`2 minimization, and the other is finding the rotation matrix A. The computation
complexity for every iteration of the `1-`2 algorithm is O(M3 + M2N), which reduces to
O(M2N) as we assume M � N. In practice, we choose the maximum outer/inner numbers in
Algorithm 3.1 as nmax = 10, kmax = 2N, respectively, and hence the complexity for the `1-
`2 algorithm is O(M2N2). To find the rotation matrix A, one has to construct a matrix
W using (3.12) with a complexity of O(M3N), followed by an SVD with a complexity of
O(M3N +M2N2). Therefore, the total complexity of our approach is O(M2N2) per rotation.
We divide the time of the Legendre polynomial reported in Table 4.7 by lmax(MN)2, getting
1.39e−10, 1.95e−10, and 0.25e−10. As the ratios are of the same order, the empirical results are
consistent with the complexity analysis.

Furthermore, since the weighted minimization is an effective approach in the sparse-
regression-based UQ study (e.g., [65, 44]), we compare the ADMM approach to reweighted
algorithms to minimize a log-sum regularization [13] and the `p norm [39]. The reweighted
framework requires solving a weighted `1 subproblem iteratively, which is thus computation-
ally more expensive than ADMM. In addition, the reweighted algorithms are more sensitive
to parameters than ADMM and hence require more elaborate parameter tuning. We com-
pare the performance of ADMM and weighted minimization using the ridge function and
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ROTATIONAL SPARSE APPROXIMATION IN UQ 1429

(a) Ridge Legendre (b) Ridge Hermite

(c) KdV Legendre (d) KdV Hermite

Figure 4.6. Relative error vs. rotation. The size of Ψ is 160× 455 in the ridge problem and 160× 1001 in
the KdV problem.

Table 4.7
Computation time per each random realization, averaged over 20 trials. (N/A means a certain case is not

available.)

Time (sec.) Dimension Rotations Legendre Hermite Laguerre

Ridge function 160 × 455 9 6.53 4.31 16.19
Elliptic equation 220 × 816 3 5.26 11.96 N/A
KdV equation 160 × 1001 3 15.03 14.33 N/A
HD function 1000 × 5151 3 2041.82 2102.04 N/A

elliptic equation cases. Here, the ridge function has a low-dimensional structure under rota-
tion which leads to a very sparse representation without truncation error, and we can inves-
tigate the efficiency of different algorithms at identifying this low-dimensional structure for
different polynomials. On the other hand, the elliptic equation case does not have a very
good low-dimensional structure under rotation, and the truncation error ε exists. Both fac-
tors imply that the elliptic equation is a more difficult problem for the rotation method. The
comparison results shown in Figure 4.7 illustrate that both the ADMM and reweighted ap-
proaches provide similar results for the Legendre and Hermite polynomial expansions. The
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(a) Ridge Legendre (b) Ridge Hermite (c) Ridge Lagurre

(d) Elliptic Legendre (e) Elliptic Hermite

Figure 4.7. Comparison between ADMM and reweighted frameworks. Relative error of Legendre, Hermite,
and Lagurre polynomial expansions for ridge function and elliptic equation against ratio M/N . The dashed
lines are generated by reweighted algorithms, and the solid lines are results from nonreweighted algorithms. “ ◦”
is the marker for `1 minimization, and “ ∗” is the marker for `1/2.

improvement by the reweighted approaches is more significant for the Laguerre polynomial
probably because its extremely high coherence (almost 1) leads to different behaviors of the
minimization algorithms. Of note, the Legendre and Hermite polynomials are associated with
the uniform and normal random variables, which are the most widely used random variables
in scientific and engineering problems. For these two polynomials, the reweighted algorithms
are only marginally better than ADMM despite high computational costs and the burden on
parameter tuning. Therefore, we advocate the use of ADMM for solving the sparse coding
problem.

5. Conclusions. In this work, we proposed an alternating direction method to identify a
rotation matrix iteratively in order to enhance the sparsity of gPC expansion. We followed
this with several nonconvex minimization schemes to efficiently identify the sparse coefficients.
We used a general framework to incorporate any regularization whose proximal operator can
be found efficiently (including `1) into the rotational method. As such, our method improves
the accuracy of the compressive sensing method in constructing the gPC expansions from
a small amount of data. In particular, the rotation is determined by seeking the directions
of maximum variation for the QoI through the SVD of the gradients at different points in
the parameter space. The linear system after rotations becomes ill-conditioned—specifically,
more coherent—which motivated us to choose the nonconvex method instead of the convex
`1 approach for sparse recovery. We conducted extensive simulations under various scenarios,
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including a ridge function, an elliptic equation, the KdV equation, and an HD function with
Legendre, Hermite, and Laguerre polynomials, all of which are widely used in practice. Our
experimental results demonstrated that the proposed combination of rotation estimation and
nonconvex methods significantly outperforms the standard `1 minimization (without rotation).
In different coherence scenarios, there are different nonconvex regularizations (combined with
rotations) that outperform the rotational CS with the `1 approach. Specifically, `1-`2 and
ERF work well for coherent systems, while `1/2 excels in incoherent ones. These conclusions
align with the observations in CS studies.
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