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Abstract

While low-precision optimization has been widely
used to accelerate deep learning, low-precision
sampling remains largely unexplored. As a con-
sequence, sampling is simply infeasible in many
large-scale scenarios, despite providing remark-
able benefits to generalization and uncertainty es-
timation for neural networks. In this paper, we
provide the first study of low-precision Stochastic
Gradient Langevin Dynamics (SGLD), showing
that its costs can be significantly reduced with-
out sacrificing performance, due to its intrinsic
ability to handle system noise. We prove that
the convergence of low-precision SGLD with full-
precision gradient accumulators is less affected
by the quantization error than its SGD counter-
part in the strongly convex setting. To further en-
able low-precision gradient accumulators, we de-
velop a new quantization function for SGLD that
preserves the variance in each update step. We
demonstrate that low-precision SGLD achieves
comparable performance to full-precision SGLD
with only 8 bits on a variety of deep learning tasks.

1. Introduction

Low-precision optimization has become increasingly popu-
lar in reducing computation and memory costs of training
deep neural networks (DNNs). It uses fewer bits to represent
numbers in model parameters, activations, and gradients,
and thus can drastically lower resource demands (Gupta
et al., 2015; Zhou et al., 2016; De Sa et al., 2017; Li et al.,
2017). Prior work has shown that using 8-bit numbers in
training DNNs achieves about 4x latency speed ups and
memory reduction compared to 32-bit numbers on a wide
variety of deep learning tasks (Sun et al., 2019; Yang et al.,
2019; Wang et al., 2018b; Banner et al., 2018). As datasets
and architectures grow rapidly, performing low-precision
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optimization enables training large-scale DNNs efficiently
and enables many applications on different hardware and
platforms.

Despite the impressive progress in low-precision optimiza-
tion, low-precision sampling remains largely unexplored.
However, we believe stochastic gradient Markov chain
Monte Carlo (SGMCMC) methods (Welling & Teh, 2011;
Chen et al., 2014; Ma et al., 2015) are particularly suited
for low-precision arithmetic because of their intrinsic ro-
bustness to system noise. In particular: (1) SGMCMC ex-
plores weight space instead of converging to a single point,
thus it should not require precise weights or gradients; (2)
SGMCMC even adds noise to the system to encourage ex-
ploration and so is naturally more tolerant to quantization
noise; (3) SGMCMC performs Bayesian model averaging
during testing using an ensemble of models, which allows
coarse representations of individual models to be compen-
sated by the overall model average (Zhu et al., 2019).

SGMCMC is particularly compelling in Bayesian deep
learning due to its ability to characterize complex and multi-
modal DNN posteriors, providing state-of-the-art general-
ization accuracy and calibration (Zhang et al., 2020; Li et al.,
2016; Gan et al., 2017; Heek & Kalchbrenner, 2019). More-
over, low-precision approaches are especially appealing in
this setting, where at test time we must store samples from a
posterior over millions of parameters, and perform multiple
forward passes through the corresponding models, which
incurs significant memory and computational expenses.

In this paper, we give the first comprehensive study of
low-precision Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011), providing both theoreti-
cal convergence bounds and promising empirical results
in deep learning. On strongly log-concave distributions
(i.e. strongly convex functions for SGD), we prove that
the convergence of SGLD with full-precision gradient ac-
cumulators is more robust to the quantization error than its
counterpart in SGD. Surprisingly, we find that SGLD with
low-precision gradient accumulators can diverge arbitrarily
far away from the target distribution with small stepsizes.
We identify the source of the issue and develop a new quan-
tization function to correct the bias with minimal overhead.
Empirically, we demonstrate low-precision SGLD across
different tasks, showing that it is able to provide superior
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generalization and uncertainty estimation using just 8 bits.
We summarize our contributions as follows:

* We provide a methodology for SGLD to leverage low-
precision computation, including a new quantization
function, while still guaranteeing its convergence to
the target distribution.

* We offer theoretical results which explicitly show how
quantization error affects the convergence of the sam-
pler in the strongly convex setting, proving its robust-
ness to quantization noise over SGD.

* We show SGLD is particularly suitable for low-
precision deep learning over a range of experiments,
including logistic regression, Bayesian neural networks
on image and text classification.

In short, low-precision SGLD is often a compelling alter-
native to standard SGLD, improving speed and memory
efficiency, while retaining accuracy. Moreover, SGLD is ar-
guably more amenable to low-precision computations than
SGD. Our code is available here.

2. Related Work

To speed up SGLD training, most existing work is on dis-
tributed learning with synchronous or asynchronous commu-
nication (Ahn et al., 2014; Chen et al., 2016; Li et al., 2019).
Another direction is to shorten training time by accelerating
the convergence using variance reduction techniques (Dubey
et al., 2016; Baker et al., 2019), importance sampling (Deng
et al., 2020) or a cyclical learning rate schedule (Zhang
et al., 2020). To speed up SGLD during testing, distillation
techniques are often used to save both compute and memory
which transfer the knowledge of an ensemble of models to a
single model (Korattikara et al., 2015; Wang et al., 2018a).

Low-precision computation has become one of the most
common approaches to reduce latency and memory con-
sumption in deep learning and is widely supported on new
emerging chips including CPUs, GPUs and TPUs (Micike-
vicius et al., 2018; Krishnamoorthi, 2018; Esser et al., 2020).
Two main directions to improve low-precision training in-
clude developing new number formats (Sun et al., 2019;
2020) or studying mixed-precision schemes (Courbariaux
et al., 2015; Zhou et al., 2016; Banner et al., 2018). Re-
cently, one line of work applies the Bayesian framework
to learn a deterministic quantized neural network (Soudry
et al., 2014; Cheng et al., 2015; Achterhold et al., 2018; van
Baalen et al., 2020; Meng et al., 2020).

Low-precision computation is largely unexplored for
Bayesian neural networks, despite their specific promise
in this domain. Su et al. (2019) proposes a method to train

binarized variational BNNs, and Cai et al. (2018) devel-
ops efficient hardware for training low-precision variational
BNNs. The only work on low-precision MCMC known
to us is Ferianc et al. (2021), which directly applies post-
training quantization techniques from optimization (Jacob
et al., 2018) to convert BNNs trained by Stochastic Gradi-
ent Hamiltonian Monte Carlo (Chen et al., 2014) into low-
precision models. We instead study training low-precision
models by SGLD from scratch, to accelerate both training
and testing.

3. Preliminaries
3.1. Stochastic Gradient Langevin Dynamics

In the Bayesian setting, given some dataset D, a model with
parameters 6 € Rd, and a prior p(f), we are interested in
sampling from the posterior p(8|D) x exp(—U(#)), where
the energy function is

U®) = - logp(x|0) —logp(6).

xzeD

When the dataset is large, the cost of computing a sum over
the entire dataset is expensive. Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh, 2011) reduces the cost
by using a stochastic gradient estimation VU, which is an
unbiased estimator of VU based on a subset of the dataset D.
Specifically, SGLD updates the parameter 6 in the (k+1)-th
step following the rule

Okr1 =0 — (XVU(Qk) + V2a€k41, (1)

where « is the stepsize and € is a standard Gaussian noise.
Compared to the SGD update, the only difference is that
SGLD adds an additional Gaussian noise in each step, which
essentially enables SGLD to characterize the full distribu-
tion instead of converging to a single point. The close
connection between SGLD and SGD makes it convenient
to implement and run on existing deep learning tasks for
which SGD is the typical learning algorithm.

3.2. Low-Precision Training

We study training a low-precision model by SGLD from
scratch, to reduce both training and testing costs. Specifi-
cally, we follow the framework in prior work to quantize
the weights, activations, backpropagation errors, and gra-
dients (Wu et al., 2018; Wang et al., 2018b; Yang et al.,
2019). We mainly consider the effect of weight and gradient
quantization following previous work (Li et al., 2017; Yang
et al., 2019). Please refer to Appendix A for more details.

3.2.1. NUMBER REPRESENTATIONS

To represent numbers in low-precision, one simple way is to
use fixed point, which has been utilized in both theory and
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practice (Gupta et al., 2015; Lin et al., 2016; Li et al., 2017;
Yang et al., 2019). Specifically, suppose that we use W bits
to represent numbers with F' of those W bits to represent
the fractional part. Then there is a distance between con-
secutive representable numbers, A = 2= F which is called
quantization gap. The representable numbers also have a
lower bound [ and an upper bound u, where

I = _2W—F—1 u:2W—F—1 _2—F.

)
As shown above, when the number of bits decreases, the
accuracy of number representation decreases. We use this
type of number representation in our theoretical analysis
and empirical demonstration following previous work (Li
etal., 2017; Yang et al., 2019).

Another common type of number representation is floating
point where each number has its own exponent part. Be-
tween fixed point and floating point, there is block floating
point which allows all numbers within a block to share the
same exponent (Song et al., 2018). We use block floating
point for deep learning experiments since it has been shown
more favorable for deep models (Yang et al., 2019).

3.2.2. QUANTIZATION

Having low-precision number representation in hand, we
also need a quantization function @ to convert a real-valued
number into a low-precision number. Such functions include
deterministic rounding and stochastic rounding. Particularly,
the deterministic rounding function Q¢ quantizes a number
to its nearest representable neighbor as follows:

o] 1
Q%(#) = sign(d) - clip | A ] +-|,Lu),
A2
where clip(z, [, u) = max(min(z,u), ). Instead, stochas-
tic rounding (Q° quantizes a number with a probability based
on the distance to its representable neighbor:

sin clip(ALgJ,l,u), W.D. {%1—%
@ 0){clip(A[ ],l,u), w.p.l—((% —

D= P

).

An important property of Q° is that E[Q*(0)] = 6, which
means the quantized number is unbiased. @Q)° is generally
preferred over Q¢ in practice since it can preserve gradient
information especially when the gradient update is smaller
than the quantization gap (Gupta et al., 2015; Wang et al.,
2018b). In what follows, we use Qw and Ay, to denote
the weights’ quantizer and quantization gap, Q¢ and Ag to
denote gradients’ quantizer and quantization gap.

Dl

To do the gradient update in low-precision training, there
are two common choices depending on whether we store
an additional copy of full-precision weights. Full-precision
gradient accumulators use a full-precision weight buffer

to accumulate gradient updates and only quantize weights
before computing gradients. SGD with full-precision gra-
dient accumulators (SGDLP-F) updates the weights as the
following,

Ot = 0 — aQa (VO (Qu (60)) )

where we use full-precision 01 and 6y, in the update, and
only quantize the weight for forward and backward propa-
gation (Courbariaux et al., 2015; Li et al., 2017).

However, gradient accumulators have to be frequently up-
dated during training, therefore it will be ideal to also rep-
resent it in low-precision to further reduce the costs. To
achieve it, we could instead do the update as follows,

Okt1 = Qw (9k —aQa (Vﬁ(ak))) ) ()

where 6 is always represented in low-precision. This update
of SGD is called using low-precision gradient accumulators
(SGDLP-L). Both full- and low-precision gradient accu-
mulators have been widely used: low-precision gradient
accumulators are cheaper and faster because of having all
numbers in low-precision, whereas full-precision gradient
accumulators generally have better performance because
of more precisely reflecting small gradient updates (Cour-
bariaux et al., 2015; Li et al., 2017).

4. Low-Precision SGLD

In this section, we first study the convergence of low-
precision SGLD with full-precision gradient accumulators
(SGLDLP-F) on strongly log-concave distributions (i.e. the
energy function is strongly convex) and show that SGLDLP-
F is less affected by the quantization error than its SGD
counterpart. Next we analyze low-precision SGLD with
low-precision gradient accumulators (SGLDLP-L) under
the same setup and prove that SGLDLP-L can diverge ar-
bitrarily far away from the target distribution with a small
stepsize, which however is typically required by SGLD to
reduce asymptotic bias. Finally, we solve this problem by
developing a variance-corrected quantization function and
further prove that with this quantization function, SGLDLP-
L converges with small stepsizes.

4.1. Full-Precision Gradient Accumulators

As shown in Equation (1), the update of SGLD is simply
a SGD update plus a Gaussian noise. Therefore the low-
precision formulation for SGD in Section 3.2 can be nat-
urally extended to SGLD training. Similar to SGDLP-F,
we can do low-precision SGLD with full-precision gradient
accumulators (SGLDLP-F) as the following:

U1 = 0 — aQc (VO (Qw (1)) ) + V2a&ki1, ()
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which can also be viewed as SGDLP-F plus a Gaussian
noise in each step. However, the Gaussian noise turns out
to help counter-effect the noise introduced by quantization,
making SGLDLP-F more robust to inaccurate number repre-
sentation and converging better than SGDLP-F as we show
later in this section.

We now prove the convergence of SGLDLP-F. Our analysis
is built upon the 2-Wasserstein distance bounds of SGLD
in Dalalyan & Karagulyan (2019), where the target distri-
bution is assumed to be smooth and strongly log-concave.
We additionally assume the energy function has Lipschitz
Hessian following recent work in low-precision optimiza-
tion (Yang et al., 2019). In summary, the energy function U
has the following assumptions, V 6,60’ € RY, it satisfies

U®) - U0') — VU (@)T(0 - 0") > (m/2) 10 — ¢/,
IVU(0) — VU@, < M [0 -],
IV2U(8) — V2U(#')||2 < U6 — 6|2,

for some positive constants m, M and ¥. We further as-
sume that the variance of the stochastic gradient is bounded
E[|VU(9) — VU(9)||3] < &? for some constant . For
simplicity, we consider SGLD with a constant stepsize a.
We use stochastic rounding for quantizing both weights and
gradients as it is generally better than deterministic rounding
and has also been used in previous low-precision theoretical
analysis (Li et al., 2017; Yang et al., 2019).

Theorem 1. We run SGLDLP-F under the above assump-
tions and with a constant stepsize o« < 2/(m + M). Let
w be the target distribution, [y be the initial distribution
and g be the distribution obtained by SGLDLP-F after K
iterations, then the 2-Wasserstein distance is

Walpg,m) < (1 — am)XWa(uo, 7) + 1.65(M/m)(ad)/?

© i (xmgvd MAW\/E> +\/(A2c+M2A‘5V)ad+4an2

)

m 2m 4m

This theorem shows that SGLDLP-F converges to the accu-

VAL d MAwVd
d4m 2m

ber of iterations K and small enough stepsize . Besides, if
we further assume that the energy function is quadratic, that
is ¥ = 0, then SGLDLP-F converges to the target distribu-
tion asymptotically. This matches the result of SGDLP-F
on a quadratic function which converges to the optimum
asymptotically (Li et al., 2017). Our theorem also recovers
the bound in Dalalyan & Karagulyan (2019) when the quan-
tization gap is zero (we ignore 1.65M in the denominator
in their bound for simplicity).

racy floor min ( ) given large enough num-

However, when the energy function is not quadratic, the
convergence of SGLDLP-F to the target distribution has
a O(A%,) rate whereas SGDLP-F to the optimum has a

O(Aw) rate (Yang et al., 2019)!. Recall that Ay, = 2~
where F' is the number of fractional bits, our result suggests
that asymptotically, SGLD only needs half the number of
bits as SGD needs to achieve the same convergence accu-
racy! Our comparison between SGLD and SGD also fits
into the literature in comparing sampling and optimization
convergence bounds (Ma et al., 2019; Talwar, 2019) (see
Appendix E for more details). In summary, our theorem
implies how sensitive SGLD is to the quantization error, and
actually suggests that sampling methods are more suitable
with low-precision computation than optimization methods.

4.2. Low-Precision Gradient Accumulators

As mentioned before, it will be ideal to further reduce the
costs using low-precision gradient accumulators. Mimick-
ing the update of SGDLP-L in Equation (2), it is natural to
get the following update rule for SGLD with low-precision
gradient accumulators (SGLDLP-L),

O = Qu (0x — aQa (VU(Or)) +v2a&ki1) . @)

Surprisingly, while we can prove a convergence result for
SGLDLP-L, our theory and empirical results suggest that it
can diverge arbitrarily far away from the target distribution
with small stepsizes.

Theorem 2. We run SGLDLP-L under the same assump-
tions as in Theorem 1. Let g be the initial distribution
and g be the distribution obtained by SGLDLP-L after K
iterations, then

Wa(pg, ™) < (1 — am)SWa(uo, ™) + 1.65(M/m)(ad)'/?

+ min UAZ,d MAwVd AwVd
m 2m 2 ’

>+A+<(1am)K+1)

2 —1 A2 2

where A = \/("AG+C¥ Sy)dtiart

Since the term A contains o~ ! in the numerator, this theo-
rem implies that as the stepsize a decreases, W5 distance
between the stationary distribution of SGLDLP-L and the
target distribution may increase. To test if this is the case,
we empirically run SGLDLP-L on a standard Gaussian dis-
tribution in Figure 1. We use 8-bit fixed point and assign 3
of them to represent the fractional part. Our results verify
that SGLDLP-L indeed diverges from the target distribution
with small stepsizes. In the same time, SGLDLP-F always
converges to the target distribution with different stepsizes,
aligning with the result in Theorem 1.

One may choose a stepsize that minimizes the above W
distance to avoid divergence, however, getting that optimal

"Their bound O(A%,) is stated for the squared norm therefore
we take its square root to compare with our > distance bound
which is stated for the norm.
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Figure 1. Low-precision SGLD with varying stepsizes on a Gaussian distribution. Variance-corrected SGLD with low-precision gradient
accumulators (VC SGLDLP-L) and SGLD with full-precision gradient accumulators (SGLDLP-F) converge to the true distribution,
whereas naive SGLDLP-L diverges and the divergence increases as the stepsize decreases.

stepsize is in general difficult since the constants are un-
known in practice. Moreover, enabling a small stepsize in
SGLD is often desirable, since it is needed to reduce the
asymptotic bias of the posterior approximation (Welling &
Teh, 2011).

4.3. Variance-Corrected Quantization

To approach correcting the problem with the naive SGLD
with low-precision gradient accumulators, we first need to
identify the source of the issue. We show in the following
that the reason is the variance of each dimension of 05
becomes larger due to using low-precision gradient accumu-
lators. Specifically, given the stochastic gradient VU, the
update of full-precision SGLD can be viewed as sampling
from a Gaussian distribution for each dimension %

Opt1i ~ N (Gk,i - aVﬁ(&k)i,2a> fori=1,---,d.

Since stochastic rounding is unbiased, using it as the weight
quantizer Qv and the gradient quantizer () in SGLDLP-L
gives us

Efi1i) = E [Qu (60— aQq (YO(0)) + V2agusns)]
=0k — aVU(O1)i,

which has the same mean as 6y in full-precision. How-
ever, the variance of 01 ; is now essentially larger than
needed. If we ignore the variance from Q)¢ and the stochas-
tic gradient, since they are present and have been shown to

work well in SGLDLP-F, the variance of 0,1 ; is

Var [0x+1,4]
=E [Var [QW (Ok,i —aVU(0r): + \/ﬂékﬂ,i) ’§k+1,i]:|
+ Var [E [QW (Hk,i —aVU(0k); + \/ﬁﬁkﬂ,i) ‘£k+1,i”

2

= ZVXk+1,i+206~

where xx+1,; € [0, 1] depends on the distance of 011 ; to
its discrete neighbor. The above equation shows that the
variance in SGLDLP-L update is larger than the right vari-
ance value 2. Empirically, from Figure 1, we can also
find that naive SGLDLP-L estimates the mean correctly
but variance wrongly. This validates our intuition that low-
precision gradient accumulators with stochastic rounding
adds more variance than needed leading to an inaccurate
variance estimation. Besides, we cannot simply use deter-
ministic rounding to solve the problem, since it is a biased
estimation and generally provides much worse results than
stochastic rounding especially on deep neural networks (see
Appendix F for an empirical demonstration).

To enable SGLD with low-precision gradient accumula-
tors, we propose a new quantization function Q*¢, denoting
variance-corrected quantization, to fix the issue. The main
idea of Q"° is to directly sample from the discrete weight
space instead of quantizing a real-valued Gaussian sample.
First we note that if we want a sample with mean ;2 > 0 and
variance v < A%, /4, we could sample from the following
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Algorithm 1 Variance-Corrected Low-Precision SGLD (VC
SGLDLP-L).

Algorithm 2 Variance-Corrected Quantization Function

Q’UC'

given: Stepsize o, number of training iterations K, gra-

dient quantizer () and quantization gap of weights Ay .

fork=1: Kdo
umhw9H4e—QW<?k—an(Vwa),%LAW>

end for

output: samples {0}

categorical distribution over { Ay, —Ayp/, 0} to get it,

2
A
Aw, w.p.w
2
Cat(p,v) = —Aw, w.p.vwm;zww (5)
w
0, otherwise

Now we show how to use this categorical distribution to pre-
serve the correct mean and variance for quantized 6y ;. We
do so considering two cases: when the Gaussian variance
2« is larger than the largest possible stochastic rounding
variance A%V /4, QV¢ first adds a small Gaussian noise and
uses a sample from Equation (5) to make up the remain-
ing variance; in the other situation, Q)¢ directly samples
from Equation (5) to achieve the target variance. The full
description of Q¢ is outlined in Algorithm 2.

Our variance-corrected quantization function Q"¢ always
guarantees the correct mean, E [0y41 ;] = 0k — an](Gk)i,
and further guarantees the correct variance Var [0y41 ;] =
2a: most of the time except when v = 2a < v,. However
that case rarely happens in practice, because the stepsize has
to be extremely small. Besides, our quantization is simple
to implement and its cost is negligible compared to gradient
computation. Although Q¥ only preserves the correctness
of the first two moments (i.e. mean and variance), we show
that this does not affect the performance much in both theory
and practice.

We now prove that SGLDLP-L using Q"¢, denoting VC
SGLDLP-L, converges to the target distribution up to a
certain accuracy level with small stepsizes.

Theorem 3. We run VC SGLDLP-L as in Algorithm 1. Be-
sides the same assumptions in Theorem 1, we further assume

the gradient is bounded E [HQg(VU(Hk))H } < G. Let
1
vo = AY, /4. Then

Wa (s, m) < (1 — am)XWa(uo, 7) + 1.65(M/m)(ad)/?

AZd + dak?
+min<‘1’A,Mm>+\/a gitdow A

m m am am

+ ((1 —am)¥ + 1) VA,

5vod,
max (2Aw aG, 4ad)

if 2a > vo

otherwise

where A = {

input: (1, v, A) {Q"€ returns a variable with mean p
and variance v}
vo + A%/4  {A?/4 s the largest possible variance
that stochastic rounding can cause}
if v > v, then {add a small Gaussian noise and sample
from the discrete grid to make up the remaining variance }
T 4 j1 + /v — vo&, where € ~ N(0, 1)
r ez — Qx)
for all ¢ do
sample ¢; from Cat(|r;|, vo) as in Equation (5)
end for
0 + Q%(z) + sign(r) © ¢
else {sample from the discrete grid to achieve the target

variance }
T = Q ()
for all ; do

lril

vs (1 —"R% )
if v > v, then
sample ¢; from Cat(0, v — v;) as in Equation (5)
0; < Q°(1)i + ¢
else
0; < Q°(1)i
end if
end for
end if
clip 0 if outside representable range
return 0

24 I (o 4 sign(ri) A)

This theorem shows that when the stepsize o — 0, VC
SGLDLP-L converges to the target distribution up to an error
instead of diverging. Moreover, VC SGLDLP-L converges
to the target distribution in O(y/Ay,) which is equivalent
to the convergence rate of SGD with low-precision gradient
accumulators to the optimum (Li et al., 2017; Yang et al.,
2019). However, we show empirically that VC SGLDLP-L
has a much better dependency on the quantization gap than
SGD. We leave the improvement of the theoretical bound
for future work.

We empirically demonstrate VC SGLDLP-L on the stan-
dard Gaussian distribution under the same setting as in the
previous section in Figure 1. Regardless of the stepsize, VC
SGLDLP-L converges to the target distribution and approx-
imates the target distribution as accurately as SGLDLP-F,
showing that preserving the correct variance is the key to
ensuring correct convergence.

5. Experiments

We demonstrate the generalization accuracy and uncertainty
estimation of low-precision SGLD with full-precision gradi-
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Figure 2. Test NLL on MNIST in terms of different precision. As
the quantization level increases, VC SGLDLP-L and SGLDLP-F
are able to maintain high performance whereas the corresponding
SGD deteriorates quickly.

ent accumulators (SGLDLP-F) and with variance-corrected
low-precision gradient accumulators (VC SGLDLP-L) on
a logistic regression and multilayer perceptron on MNIST
dataset (Section 5.1), ResNet-18 on CIFAR datasets and
LSTM on IMDB dataset (Section 5.2), and ResNet-18 on
ImageNet dataset (Section 5.3). We use gtorch (Zhang
et al., 2019) to simulate low-precision training on these
experiments, and use the same quantization for weights,
gradients, activations, backpropagation errors unless other-
wise stated. For all experiments, SGLD collects samples
from the posterior of the model’s weight, and obtained the
prediction on test data by Bayesian model averaging. We
mainly compare low-precision SGLD with low-precision
SGD which has been used to achieve state-of-the-art results
in low-precision deep learning (Sun et al., 2019; 2020). We
use SGLDFP and SGDFP to denote SGLD and SGD in
full-precision respectively.

5.1. MNIST

Logistic Regression We first empirically verify our the-
orems, including the bias dependence on the quantization
levels and the tightness of the bounds, on a logistic regres-
sion on MNIST dataset. We use A (0,1/6) as the prior
distribution following Yang et al. (2019) and the resulting

posterior distribution is strongly log-concave and satisfies
the assumptions in Section 4. We use fixed point numbers
with 2 integer bits and vary the number of fractional bits
which is corresponding to varying the quantization gap A.
We report test negative log-likelihood (NLL) with different
numbers of fractional bits in Figure 2a.

From the results, we see that SGLDLP-F is more robust
to the decay of the number of bits than its SGD counter-
part since SGLDLP-F outperforms SGDLP-F on all number
of bits and recovers the full-precision result with 6 bits
whereas SGDLP-F needs 10 bits. This verifies Theorem 1
that SGLDLP-F converges to the target distribution up to
an error and is more robust to the quantization gap than
SGDLP-F. This also shows that the bound in Theorem 1
is relatively tight in terms of the quantization gap since
SGLDLP-F needs roughly half number of bits compared to
SGDLP-F to achieve the same convergence accuracy. With
low-precision gradient accumulators, we can see that VC
SGLDLP-L is significantly better than naive SGLDLP-L, in-
dicating that our variance-corrected quantization effectively
reduces the bias of gradient accumulators, which verifies
Theorem 2 and Theorem 3. Moreover, VC SGLDLP-L
outperforms SGDLP-L on all numbers of bits and even out-
performs SGDLP-F when using 2 fractional bits. These ob-
servations demonstrate that with either full- or low-precision
gradient accumulators, SGLD is able to maintain its high
performance whereas SGD deteriorates quickly as the quan-
tization noise increases.

Multilayer Perceptron To test whether these results apply
to non-log-concave distributions, we replace the logistic re-
gression model by a two-layer multilayer perceptron (MLP).
The MLP has 100 hidden units and RELU nonlinearities.
From Figure 2b, we observe similar results as on the logis-
tic regression, suggesting that empirically our analysis still
stands on general distributions and sheds light on the possi-
bility of extending the theoretical analysis of low-precision
SGLD to non-log-concave settings. Please note that as far
as we understand, there is no theoretical convergence result
of low-precision optimization in non-convex settings either.

5.2. CIFAR and IMDB

We consider image and sentiment classification tasks: CI-
FAR datasets (Krizhevsky et al., 2009) on ResNet-18 (He
et al., 2016), and IMDB dataset (Maas et al., 2011) on
LSTM (Hochreiter & Schmidhuber, 1997). We use 8-bit
number representation since it becomes increasingly pop-
ular in training deep models and is powered by the new
generation of chips (Sun et al., 2019; Banner et al., 2018;
Wang et al., 2018b). We report test errors averaged over 3
runs with the standard error in Table 1.
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Table 1. Test errors (%) on CIFAR with ResNet-18 and IMDB with LSTM. Table 2. ECE | (%) on CIFAR with ResNet-18. VC
Low-precision SGLD outperforms low-precision SGD across different SGLDLP-L and SGLDLP-F achieve almost the same or even
datasets, architectures and number representations, and the improvement lower ECE than full-precision SGLD whereas the ECE of

becomes larger when using more low-precision arithmetic.

low-precision SGD increases significantly.

CIFAR-10 CIFAR-100 IMDB CIFAR-10 CIFAR-100
32-BIT FLOATING POINT 32-BIT FLOATING POINT
SGLDFP 4.65 £006  22.58 +0.18  13.43 1021 SGLD 111 3.92
SGDFP 471002 2264013 1388x020 SGD 253 497 _.
CcSGLDFP 4.54 +0.05 21.63 +0.04 13.25 +0.18 CSGLDFP 0.66 1.35
8-BIT FIXED POINT
8-BIT FIXED POINT
- VC SGLDLP-L 0.6 3.19
NATVE SGLDLP-L 7.82 +0.13 27.25 +0.13  16.63 +0.28 SGDLP-L 3.4 10.38
VC SGLDLP-L 7.13 +o.01 26.62 +0.16  15.38 +0.27 SGLDLP-F 1.12 4.42
SGDLP-L 8.53 +0.08 28.86 +0.10 19.28 +0.63 SGDLP-F 3.05 6.80
SGLDLP-F 5.12 +o0.06 23.30 £0.09  15.40 +0.36 8_BIT BLOCK FLOATING POINT
SGDLP-F 5.20 +0.14 23.84 +0.12  15.74 +0.79
VC SGLDLP-L 0.6 5.82
8-BIT BLOCK FLOATING POINT SGDLP-L 4.23 12.97
NAIVE SGLDLP-L 5.85+004 26.38 +0.13  14.64 £0.08 ggLD]EI];PF'F ;;2 35-728
VC SGLDLP-L 5.51 +o0.01 25.22 +0.18  13.99 +024 - == i U e
SGDLP-L 5.86 +£0.18  26.19 +0.11  16.06 +1.81 VC CSGLDLP-L 051 139
’ ’ : ' ’ ' CSGLD-F 0.56 1.33
SGLDLP-F 4.58 +0.07 22.59 +0.18  14.05 +0.33
_SGDLP-E 4754005 229013 14.28 2017
VC cSGLDLP-L 4.97 +o0.10 22.61 +0.12 13.09 +0.27
CcSGLD-F 4.32 +0.07 21.50 +0.14  13.13 +0.37

Fixed Point We use 8-bit fixed point for weights and gra-
dients but full-precision for activations since we find low-
precision activations significantly harm the performance.
Similar to the results in previous sections, SGLDLP-F is
better than SGDLP-F and VC SGLDLP-L significantly out-
performs naive SGLDLP-L and SGDLP-L across datasets
and architectures. Notably, the improvement of SGLD over
SGD becomes larger when using more low-precision arith-
metic. For example, on CIFAR-100, VC SGLDLP-L out-
performs SGDLP-L by 2.24%, SGLDLP-F outperforms
SGDLP-F by 0.54% and SGLDFP outperforms SGDFP by
0.06%. This demonstrates that SGLD is particularly compat-
ible with low-precision deep learning because of its natural
ability to handle system noise.

Block Floating Point We also consider block floating
point (BFP) which is another common number type and
is often preferred over fixed point on deep models due to
less quantization error caused by overflow and underflow
(Song et al., 2018). Following the block design in Yang et al.
(2019), we use small-block for ResNet and big-block for
LSTM. The Q*° function naturally generalizes to BFP and
only needs a small modification (see Appendix G for the
algorithm of Q¢ with BFP). By using BFP, the results of all
low-precision methods improve over fixed point. SGLDLP-
F can match the performance of SGLDFP with all num-
bers quantized to 8-bit except gradient accumulators. VC
SGLDLP-L still outperforms naive SGLDLP-L indicating
the effectiveness of V¢ with BFP. Again, SGLDFP-F and
VC SGLDLP-L outperform their SGD counterparts on all

tasks, suggesting the general applicability of low-precision
SGLD with different number types.

Cyclical SGLD  We further apply low-precision to a recent
variant of SGLD, ¢SGLD, which utilizes a cyclical learning
rate schedule to speed up convergence (Zhang et al., 2020).
We observe that the results of cSGLD-F are very close to
those of cSGLDFP, and VC cSGLDLP-L can match or even
outperforms full-precision SGD with all numbers quantized
to 8 bits! These results indicate that diverse samples from
different modes, obtained by the cyclical learning rate sched-
ule, can counter-effect the quantization error by providing
complementary predictions.

Expected Calibration Error Besides generalization per-
formance, we further report the results of expected cali-
bration error (ECE) (Guo et al., 2017) to demonstrate the
uncertainty estimation of low-precision SGLD. In Table 2,
we observe that SGLDLP-F and VC SGLDLP-L achieve al-
most the same or even lower ECE than full-precision SGLD,
showing the ability of SGLD to give well-calibrated predic-
tions does not degenerate due to using low-precision. VC
SGLDLP-L sometimes gives lower ECE than SGLDLP-
F which may be due to the regularization effect of low-
precision arithmetic. Moreover, cSGLD in low-precision
not only achieves the best accuracy but also has the best
calibration, further suggesting that diverse samples obtained
by a cyclical learning rate schedule have a positive effect on
quantization. In contrast, the ECE of low-precision SGD
increases significantly compared to full-precision SGD, im-
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Table 3. Test errors (%) on ImageNet with ResNet-18. The im-
provement of SGLD over SGD becomes larger in low-precision
than in full-precision.

Topr-1 Topr-5
32-BIT FLOATING POINT
SGLD 30.39 10.76
SGD 30.56  10.97
8-BIT BLOCK FLOATING POINT
SGLDLP-F 31.47 11.77
SGDLP-F 32.23 12.09

plying that the quantization error makes the standard DNNs
even more overconfident, which might lead to wrong deci-
sions in real-world applications.

SGLDLP-F vs VC SGLDLP-L. We have provided two
variants of low-precision SGLD for practical use. In general,
SGLDLP-F has better performance while VC SGLDLP-L
requires less computation, making them suitable for dif-
ferent cases. When the computation resources are very
limited, e.g. on edge devices, VC SGLDLP-L is preferred
for saving computation while when the resources are able
to support full-precision gradient accumulators, SGLDLP-F
is preferred for better performance.

5.3. ImageNet

Finally, we test low-precision SGLD on a large-scale im-
age classification dataset, ImageNet, with ResNet-18. We
train SGD for 90 epochs and train SGLD for 10 epochs
using the trained SGD model as the initialization. In Ta-
ble 3, we observe that the improvement of SGLD over SGD
is larger in low-precision (0.76% top-1 error) than in full-
precision (0.17% top-1 error), showing the advantages of
low-precision SGLD on large-scale deep learning tasks. We
could not achieve reasonable results with low-precision gra-
dient accumulators for SGD and SGLD, which might be
caused by hyper-parameter tuning.

6. Conclusion

We provide the first comprehensive investigation for low-
precision SGLD. With full-precision gradient accumulators,
we prove that SGLD is convergent and can be safely used
in practice, and further show that it has a better dependency
of convergence on the quantization gap than SGD. More-
over, we reveal issues in naively performing low-precision
computation in SGLD with low-precision gradient accumu-
lators, and propose a new theoretically guaranteed quan-
tization function to enable fully quantized sampling. We
conduct experiments on a Gaussian distribution and a logis-

tic regression to empirically verify our theoretical results.
Besides, we show that low-precision SGLD achieves com-
parable results with full-precision SGLD and outperforms
low-precision SGD significantly on several Bayesian deep
learning benchmarks.

MCMC was once the gold standard on small neural net-
works (Neal et al., 2011), but has been significantly limited
by its high costs on large architectures in deep learning. We
believe this work fills an important gap, and will accelerate
the practical use of sampling methods on large-scale and
resource-restricted machine learning problems.

Moreover, low-precision SGLD could broadly be used as
a drop-in replacement for standard SGLD, as it can confer
speed and memory advantages, while retaining accuracy.
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A. Quantization Formulation

We follow the quantization framework in prior work (Wu et al., 2018; Wang et al., 2018b; Yang et al., 2019) to quantize
weights, activations, backpropagation errors, and gradients, as outlined in Algorithm 3.

Algorithm 3 Low-Precision Training for SGLD.
given: L layers DNN {f; ..., fr}. Stepsize a. Weight, gradient, activation and error quantizers Qw, Qg,Qa, QE.
Variance-corrected quantization (Q¢, deterministic rounding Q¢, stochastic rounding ) and quantization gap of weights
Ay . Data batch sequence {(zx, yx) ;. 9}:17 denotes the full-precision buffer of the weight.
fork=1:Kdo
1. Forward Propagation:
a,(fo) = Tk
ay) = Qa(filay” ", 0})), VI € [1,1]
2. Backward Propagation:
e(L) = Va;mﬁ(a;f),yk)

a®
o= = Qp (f;‘;;@klfeé“) Ve, 1]

9 = Qa (;{;&) Vi€ [L,1]
k
3. SGLD Update:

full-precision gradient accumulators: 6% | « 0" — aQ¢ (VU(Gk)) +v2a€, Oy < Qw (H}:ﬁl)

low-precision gradient accumulators: 0, < Q"¢ (Hk —aQq (VU(Gk)) , 2, AW)
end for
output: samples {6}

B. Proof of Theorem 1

Our proofs in the paper follow Theorem 4 in Dalalyan & Karagulyan (2019), which provides a convergence bound of
Langevin dynamics with noisy gradients. We state the result of Theorem 4 in Dalalyan & Karagulyan (2019) below.

We consider Langevin dynamics whose update rule is

Ops1 = Ok — a (VU(Or) + ) + V2ak i1 (6)

The noise in the gradient (;, has the following three assumptions:
E [[E[GI0I5] < 0%, E[lIG —E[GI0kI5] < o, s is independent of (o, -+, Ge),

where 6 > 0 and o > 0 are some constants. Under the same assumptions in Section 4, we have the convergence bound for
the above Langevin dynamics.

Theorem 4 (Theorem 4 in Dalalyan & Karagulyan (2019)). We run the above Langevin dynamics with o < 2/(m + M).
Let 7 be the target distribution, g be the initial distribution and g be the distribution obtained by the Langevin dynamics
in Equation (6) after K iterations. Then

e OVA | oPad)?

Wa(prc,m) < (1= am)  Wa(po, m) + 1.65(M /m)(ad) 1.65M + o/m’

Buit upon this theorem, we now prove Theorem 1.

Proof. We write the SGLDLP-F update as the following
Ok1 = Ok — aQa(VU(Qw (0r))) + V20411
=0 — a(VU(0k) + Ck) + V20511
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where

— VU (6k)
= Qa(VU(Qw(6))) — VU (Qw (6))
k) — VU(Qw (0k)) + VU(Qw (6k)) — VU (6k).

+
<4
Sr
O
=
5

Since E[VU ()] = VU (x) and E[Q(z)] = x, we have
B (G0 = [ Qe (V0 (Qu(61))) = VU (Quw (6:)) 0]

(
+E [VO(Qu(60:) = VU@Quw (0:))|0k] + E[VU(Qw (61)) — VU (8.)16)]
= B[VU(Qw(6)) = VU (6.)]64

By the assumption, we know that

IVU(Qw (8x)) — VU ()5 < M?||Qw (6r) — Ox5 ,

then it follows that

IE (110412 = | E [VU(Qw (68)) — VU (6110412
< E[IVU(@Qw (0) = VU 60)113]01]

< M2E [|Qu(64) — 04 2]
< M?. M

Let f : R — R? denote the function
fla) =VU(O + a(Qw (0) — 6k)).
By the mean value theorem, there will exist an a € [0, 1] (a function of the weight quantization randomness) such that
fQ) = £(0) = f'(a).
So,

E [¢x|0k] = E[VU(Qw (0)) — VU (0k)|0k]
=E [V?U(0x + a(Qw (0x) — 0x))(Qw (0x) — 0x) |04 ]
=E [V2U(6x)(Qw (0k) — k) |6k]
E [(V2U(0r + a(Qw (k) — Ok)) — VU (6k)) (Qw (0k) — 0k)| 0]
=E [(V2U(0r + a(Qw (6x) — 0k)) — VU (0k)) (Qw (6x) — 0)|04] -

Now, by the assumption | V2U (x) — V2U (y)||2 < ¥||z — yl|2, we get

I1E [Ckl6k]lly = | E [(V2U (6K + a(Qw (6k) — 0k)) — VU (61)) (Qw (6x) — 01) |0k ] ||,
<E[||(V?U 0k + a(Qw (k) — 6x)) — VU (0k)) (Qw (k) — 6x)||,|6x]
< E[|V2U 0k + a(Qw (0r) — Or)) — VU (0) ||, 1Qw (k) — Okl | 0]
< E[Va(Qw (k) — Okl |Qw (Or) — 0k)ll516%]
< UE [|Qu(0) — 04 3] 04
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This combined with the previous result gives us

WAZ,d MAVN&>

Now considering the variance of (s,
B I — E [Ge/61]13]
< B[lG3]
< B |oa(votQw @) - vo@wen|

+ B |[vO@wo) - vo@wen)|,| + B [Ivv@wie) - vomls]

2 2
< Afd+/£2+M2~ szd.

Recall that to apply the result of Theorem 4 in Dalalyan & Karagulyan (2019), we need

E [IE[GIonlI3] < 0%, E[IG - ELGlonlI3] < o%d.

We set § and o to be
§ = min (WA%V\/‘E MAW) p2d =BG 2 e Awd _ (Ag+ MPAG)d +4s%

4 2 4 4 4

Since (}, is independent of the Gaussian noise &;, for: = 0, ...,k + 1, we have shown that the assumptions in Theorem 4
in Dalalyan & Karagulyan (2019) are satisfied. Thus we apply the result in Theorem 4 and get

oA o2(ad)?

m 1.65M + oy/m

1/2 + 5\/& + O'2ad
m m

Wolpr, m) < (1 — am) X Wy (o, 7) + 1.65(M/m)(ad)*/? +

< (1 — am)®Wa(uo, ) + 1.65(M/m)(ad)

2
=(1- am)KWQ(,uo, ) + 1,65(M/m)(ad)1/2 + min <\Pf7‘:d’ MA27V:L‘/&>

N \/(Aé + M2A2))ad + 4ak?
4m ’

Note that we ignore the 1.65M/ in the denominator to further simplify the bound. O

C. Proof of Theorem 2

Proof. Recall that the update of SGLDLP-L is
Opr1 = Qw (9k —aQa(VU(y)) + \/2a§k+1) .

To utilize the result in Dalalyan & Karagulyan (2019), we introduce an intermediate dynamic ;1 = 6y — an(VU (0r))+
V2aé&y41. Therefore 0, = Qw (¢x) and

Y1 = Ok — aQa (VU (0y)) + V2a€k i1

= Qw () — aQa(VU(Qw (vr))) + V2041
=y, — a(VU () + G) + V2041
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where
Ck = +Qc(VU(0r)) — VU (1)

- WT—@ +Qa(VU(0:)) — VU (0) + VU(0)) — VU (0r) + VU (61) — VU ().

Py — O
(0

Similar to the previous proof in Section B, we know that
E [Ce|[vr] = E[VU(0k) — VU (i) |[¢] = E[VU(Qw (Y1) — VU () [¥x] ,

SO

2
Bl < min (\Piwd’ MA;N&> |

and it suffices to set § the same as in Section B. On the other hand, the variance will be bounded by

~ ~ 2 ~ 2
B [lo. - BlalllE] < B||avoe) - voe )] + B |[vow) - voe.|)

2

+E + VU (k) — VU (¢y)

Py — O
«

2

AZ,d
< f +r24+E [HVF(?%) - VF(Qk)Hg] ’

where F () = - ||9||§ — U(). Observe that since U is m-strongly convex and M -smooth, and o~ > M/2, F must be
a~1-smooth, and so

o]  AZd 4, 1 2
B[lG — Blelunlls] < 29° + 2+ —F [l — 3]
AZd A%,d
< 2¢ 2 wa
STy T T e
.. . . 5. . . _9 2 AZd 2, A%d
This is essentially replacing the M= in the previous analysis with o™ =. It suffices to set 0°d = == + £* + 25

Supposing the distribution of ¥k 11 is v, applying Theorem 4 in Dalalyan & Karagulyan (2019) will give us the rate of

2
Wa(vi,m) < (1 — am)S Wy (v, 7) 4+ 1.65(M/m)(ad)'/? + min (quwd, MAW\/a)

m 2m

N \/(aAg +a~1A2,)d + dax?
4m ’

We also have

Yz b AwVd
Watr) = (ot [l = ulBasen) < B[l -l < S5

Combining these two results, we get the final bound

Wo(pr,m) < Wo(pk, vi) + Wa(vk, m)

2
<(1- am)KWQ(VoﬂT) + 1,65(M/m)(ad)1/2 + min (ngd7 MAZXL\/a>

\/(aAg +a1A2))d +4ak?  Awd
+ +
dm 2

m 2m

2
< (1= am)KWa(po, 7) + 1.65(M/m) (ad) /2 + min (wad’ MAWﬁ)

AwVd

+((1—am)® +1) 5

N \/(aAé +a~1A%)d + dak?
4m
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D. Proof of Theorem 3
Proof. Recall that the update of VC SGLDLP-L is
0k+1 = QUC (Qk - OLQg(VU(Gk)), 20&, Aw) .

We ignore the variance of )¢ since it is relatively small compared to the weight quantization variance in practice. Q" is
defined as in Algorithm 2 and we have E [051|0;] = 0, — aVU (6).

Let p i1 = 0 — aQa (VU (k) + v2a€k 11 then it follows that
Y1 — k1 = Ok — aQa (VU (6r)) + V208541 — Oxpa,
and
Vi1 = Yk — (VU (k) + () + V2a€g11

where

Y — O
«

Cr = + Qc(VU(8y)) — VU (1)

= P QoY (84)) — VO (B0) + VU (B) — VU (B5) + VU (Br) ~ VU ().

Note that E[¢);, — 6;] = 0. Similar to the previous proof in Section B, we know that

I [Gelwll; = IBIVU(00) ~ VU @I} < M2E [ — 0cll3 ]

A2
=3¢, we have that

[l — 0024
—E {H (011 = 0Qa(VT (1)) + V20 = Q" (0h-1 — aQa (VU (B-1)) + v2a = 108 ) — sign(r H

When 2a > vg =

1/’1«} .
Let
b= Q" (01 — aQa(VU (Bi1) + V20 = uos )
~ (-1 = aQa (VO (B1-1)) + V2o =)
then [b| < 21 and
E [H‘/’k - Gk\\g‘%}
—u| (661~ 0Qa(VT(B11)) + V2aks ~ (81 — aQa(VT (B-1)) + V23— oty ) — b sign(r)e]

]
:E_\ﬁﬁk—\/Zoz—vofk—b—mgn H

W]
<E _ V2ag), — 2o — voly, — sz

]+ Isien(r)clfun]

<E||[v2ag - v2a = ot

< (V3a - VZa w0 Ell&l3) + (V2a - vIa = ) AwE[&l,] + 2u0d
((\/7 V2a—10)? + (V2a — V2o — vo) Aw + 21)0) d

+ ’Uod
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Since 2zy < z2 + 32, we get

(V2o — V2o~ 0)Aw < (V2o — V2o~ 0)* + ~W = (V3a —v2a — w)? + v,
The expression can be further simplified to be
E [Wk - 9k\\§‘¢k} < <2(\/% V2a —vg)* + 3v0)

We also note that

200 — (20 — wg) Vo o
V2a — 2 — vy = = < ,
0 V2a++2a—vg V2a+V2a—v9 T V2«

then the expectation becomes
2 U%
B [l — 03[ ve] < (22 +300 )
Since 2a > vy, it follows that

E [[[gx — 0xl3|6] < (200 +300)d = 500,

Let A = 5vgd. Then we obtain
1B [Gilwellly < M2 - A,

and

|E [Crlvr]ll, < ¥ - A.

Therefore, it suffices to set

& = min (\I/A, M\/Z) .

We now consider the variance which will be bounded by

B [l ~ Blchull] < B [)]Qc;(vﬁ(em -voe.)|;] + B |[vien - voe)

2

Hw’“ kYU - VU(6)
2
2.d
< 260 2 4 LB [l - 0l
ALd p

It suffices to set o02d = % + k% + £ Supposing the distribution of 1 41 is vk, applying Theorem 4 in Dalalyan &
Karagulyan (2019) will give us the rate of

Wa (v, m) < (1 — am)E Wy (g, ) + 1.65(M/m)(ad)/? + m (qij, ]Wr\n/>>

aAZd + dak? A
g T
4m am

We also have

Nl

< VA.

1/2
Waturevi) = (,int [ o=l dre)) < [10xi - vienl
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Combining these two results, we get

Waopr,m) < Wapk,vi) + Wa(vi, m)

U-A MVA
< (1 — am)®Wy(vy, 7) + 1.65(M/m)(ad)*? 4+ min (mv m)
A2 4ak?
4m am
U-A MVA
< (1 — am)®Wy(po, 7) + 1.65(M/m)(ad)*? 4+ min (, )
m m

A2 dak?
+\/aGd+aH+A+((1—am)K+1)\/Z.
4m am

When 2a < %, since we assume that the gradient is bounded by E {HQg(Vﬁ(Hk)) HJ <G,

El|[vx — 0x/13) = E [H (011 = aQa (VT (Br)) ) — b + m@cuj
=E {H (91@71 - aQG(VU(ekfl))) - GkHz] +E [Hm&“”z]

< max <2E M (ak_l - aQG(VU(Hk_l))) — (ak_l - aQG(VU'(&k_l))) Hj ,4ad> .

Using the bound equation (6) in Li & De Sa (2019) gives us,

B (-1 - 0Qa(VOO-1) - @ (611 - aQa(vO6-)

< sws o5t
< AwaG.

It follows that

E [”ﬂ’k - 0kH§i| < max (2Aw aG, 4ad) .

Let A = max (2Aw aG, 4ad). The rest is that same as in the case 2a > wy.

E. Comparison to SGD Bounds

There have been many works on comparing optimization and sampling algorithms since they serve as two main computational
strategies for machine learning (Ma et al., 2019; Talwar, 2019). For example, in Ma et al. (2019), the authors compare
the total variation distance between the approximate distribution and the target distribution (sampling bound), with the
objective gap (optimization bound). Following previous work, we compare our 2-Wasserstein distance bound with previous
SGD bounds. Previous low-precision SGD convergence bounds are shown in terms of the squared distance to the optimum
||§ x —0* ||§ (Yang et al., 2019). In order to compare our bounds with theirs, we consider a 2-Wasserstein distance between
two point distributions. Let yix be the point distribution assigns zero probability everywhere except A and 7 be the point
distribution assigns zero probability everywhere except 8*. Then we get

Nl=

1/2
. _ .12
Watprem) = (int  [llo sl aren) < [lox - o))"
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1
273 . . . .
2} is proportional to Ayy. Therefore, our 2-Wasserstein distance is

From Yang et al. (2019), we know that E [H@( — o>

O(AZ,) whereas SGD’s 2-Wasserstein distance is O(Ayy ), which shows SGLD is more robust to the quantization error.

F. Deterministic Rounding vs Stochastic Rounding

Compared to deterministic rounding, stochastic rounding is unbiased and thus can preserve gradient information even when
the gradient update is smaller than the quantization gap. In theory, deterministic rounding will make the convergence bound
worse due to its bias. For example, in Theorem 1, using deterministic rounding as the weight quantizer makes the bias
term becomes O(A,,), which is worse than the current O(A?2)). In practice, stochastic rounding generally provides much
better results than deterministic rounding especially on deep neural networks (Gupta et al., 2015; Wang et al., 2018b). For
example, on CIFAR10 with 8-bit block floating point, we found that using deterministic rounding to quantize the weight in
SGDLP-L and SGLDLP-L gives test errors 7.44% and 7.37% respectively, which are much worse than using stochastic
rounding (SGDLP-L:5.86%, naive SGLDLP-L: 5.85%, VC SGLDLP-L: 5.51%).

G. Algorithms with (Block) Floating Point Numbers

The qunatization gaps in floating point and block floating point change depending on the number values. Therefore, we need
to compute the qunatization gap in each step in order to apply our variance-vorrected quantization function QV¢. It is easy to
see that the qunatization gap can be computed as

9E[p]—W+2

where E[u] = clip(|logy(max |u|)],{,u) block floating point

7
where E[u] = clip(|logy(|u])] 1, w) floating point. @

Deterministic rounding and stochastic rounding are defined using the above Ay, . Then we obtain Q¢ function with (block)
floating point in Algorithm 5. This algorithm is the same as Algorithm 1 except the lines in red where we recompute the
quantization gap A after adding Gaussian noise to make sure it aligns with the quantization gap of x. VC SGLDLP-L with
(block) floating point is outlined in Algorithm 4.

Algorithm 4 VC SGLDLP-L with (Block) Floating Point.
given: Stepsize o, number of training iterations K, gradient quantizer (), deterministic rounding with (block) floating
point Q¢, stochastic rounding with (block) floating point Q*, F bits to represent the shared exponent (block floating
point) or the exponent (floating point), W bits to represent each number in the block (block floating point) or the mantissa
(floating point).
let | + —2F—1 ¢y« 2F-1_1
fork=1:Kdo

compute 1 < 0, — aQg (Vﬁ(&k_1)>

compute Ay (u) following Equation (7)
update 0k+1 +— Qve (u, 2a, AW(/J))
end for
output: samples {60}
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Algorithm 5 Variance-Corrected Quantization Function V¢ with (Block) Floating Point.
input: (u, v, A)
Vo < A2/4
if v > vg then
T 4 j1 4+ /v — vo&, where € ~ N (0, I7)
rex— Q%x)
recompute A < Ay (z) following Equation (7)
Vo A2/4
for all i do
sample ¢; from Cat(|r;|, vo) as in Equation (5)
end for
0 < Q%(z) + sign(r) ® c
else
the same as in fixed point numbers
end if

H. Experimental Details and Additional Results
H.1. Sampling methods

For both SGLD and low-precision SGLD, we collected samples { Ok}JK:I from the posterior of the model’s weight, and
obtained the prediction on test data {x*, y*} by Bayesian model averaging

J
* * 1 * *
Py, D) & = Y p(y*|a", D, 6)).
j=1
H.2. MNIST

We train all methods on logistic regression and MLP for 20 epochs with learning rate 0.1 and batch size 64. We additionally
report test error comparisons in Figure 3.

16 —=— SGDLP-L 14 —=— SGDLP-L
—=— Naive SGLDLP-L —=— Naive SGLDLP-L
14 —s— VC SGLDLP-L 12 —=— VC SGLDLP-L
—=— SGDLP-F

—a— SGDLP-F
—=— SGLDLP-F
---- SGDFP (2.03%)

. —%— SGLDLP-F
“\_---- SGDFP (7.68%)
- SGLDFP (7.63%)

Test Error (%)
=
N
Test Error (%)
o]

- 0,
10 6 SGLDFP (1.9%)
4
L —— = 2  ======—SEmmm———cSweeee
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Fractional Bits Number of Fractional Bits

Figure 3. Test error on MNIST dataset in terms of different precision.

H.3. CIFAR and IMDB

For CIFAR datasets, we use batch size 128, learning rate 0.5 and weight decay 5e — 4. We train the model for 245 epochs
and used the same decay learning rate schedule as in Yang et al. (2019). We collect 50 samples for SGLD. For cyclical

learning rate schedule, we use 7 cycles and collect 5 models per cycle (35 models in total). We use 10 bins for expected
calibration error (ECE) following prior work (Guo et al., 2017).

For IMDB dataset, we use batch size 80, learning rate 0.3 and weight decay 5e — 4. We use a two-layer LSTM. The
embedding dimension and the hidden dimension are 100 and 256 respectively. We train the model for 50 epochs and used
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the same decay learning rate schedule as on CIFAR datasets. We collect 20 samples for SGLD. For cyclical learning rate
schedule, we use 1 cycles and collect 20 models.

H.4. ImageNet

We use batch size 256, learning rate 0.2 and weight decay le — 4. We use the same decay learning rate schedule as in He
et al. (2016) and collect 20 models for SGLD.



