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Figure 1: On the left: Authors A, B, and C collaborate on a paper in 2020. In 2021, C works on another paper with D and E, while B works
on a third paper with E. A collaboration network like this can be easily represented as a hypergraph where hyperedges denote co-authoring a
paper. We show the network with a layered hypergraph visualization in which every layer corresponds to a year. In order to obtain a readable
visualization, though, we need a layout algorithm, and to apply the algorithm to a hypergraph, we transform it into a graph. Yet, there are
many methods for transforming a hypergraph into a layered graph, each with different layout readability and computational performance.

Abstract
Hypergraphs are a generalization of graphs in which edges (hyperedges) can connect more than two vertices—as opposed to
ordinary graphs where edges involve only two vertices. Hypergraphs are a fairly common data structure but there is little con-
sensus on how to visualize them. To optimize a hypergraph drawing for readability, we need a layout algorithm. Common graph
layout algorithms only consider ordinary graphs and do not take hyperedges into account. We focus on layered hypergraphs, a
particular class of hypergraphs that, like layered graphs, assigns every vertex to a layer, and the vertices in a layer are drawn
aligned on a linear axis with the axes arranged in parallel. In this paper, we propose a general method to apply layered graph
layout algorithms to layered hypergraphs. We introduce six different transformations for layered hypergraphs. The choice of
transformation affects the subsequent graph layout algorithm in terms of computational performance and readability of the
results. Thus, we perform a comparative evaluation of these transformations in terms of number of crossings, edge length, and
impact on performance. We also provide two case studies showing how our transformations can be applied to real-life use
cases. A copy of this paper with all appendices and supplemental material is available at osf.io/grvwu.

CCS Concepts
• Human-centered computing → Graph drawings; Visualization theory, concepts and paradigms;
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1. Introduction

In an ordinary graph, each edge connects exactly two vertices. Hy-
pergraphs relax this constraint and allow each hyperedge to con-
nect one or more vertices. Given the vast number of real-life appli-
cations of hypergraphs in fields as diverse as circuit design [PM07],
databases [BFMY83], and machine learning [HZY15], it is particu-
larly important to visualize them effectively. However, the problem
of how to visualize a hypergraph still does not have a clear answer,
and research on graph layout algorithms for hypergraphs is strug-
gling to keep up with the need to visualize them.

In general, to draw a graph in a node-link style, we take the set of
vertices and the set of edges contained in the graph and apply a lay-
out algorithm to them to map every vertex to a coordinate in space.
After the coordinates are mapped, we can finally render the graph,
using any desired mark for vertices and any desired line, spline, or
polyline for edges. With hypergraphs, though, we first need to agree
on a way to display a hyperedge. Multiple hyperedge representa-
tions have been proposed, such as using polygons or introducing
aggregate vertices (a.k.a. metanodes) [FFKS21], and each one has
advantages and disadvantages. Indeed, even simple representations
such as the one in Figure 1 must first transform the hypergraph into
an ordinary graph to draw hyperedges. There, each hyperedge is
replaced with a centroid, which is connected by ordinary two-way
edges to each of the original incident vertices.

The vast majority of proposed hypergraph layout techniques rely
on transforming the hypergraph into a graph [AB17]. More specif-
ically, this paper uses the term transformation to refer to a process
for creating a graph G1 = (V1,E) from a hypergraph G = (V,H).
Figure 2 illustrates how this transformation fits into the process for
creating a node-link visualization of a hypergraph.

The choice of transformation technique (Figure 2, step 1 ) can
result in wildly different graphs. In particular, the number of ver-
tices, number of edges, and degree distribution of the vertices in the
output graph will dramatically impact the time and memory perfor-
mance of the subsequent layout algorithm 2 . If we assume a time
complexity of O(|V1| ∗ |E|)—for example, the standard barycen-
tric method used in Sugiyama’s layout for layered graphs [STT81]
shown in Figure 3—the complexity of the same layout algorithm
applied to a hypergraph would be O(| f (V )| ∗ |g(H)|), in which the
functions f ,g are defined by the chosen transformation. In addition,
standard graph layout methods will behave differently in the face
of the varied size and connectivity of these transformed graphs and
result in different coordinate assignments. After converting back
to a hypergraph representation in the final visualization 3 , the re-
sult may not necessarily be the most readable according to standard
readability criteria, such as number of crossings and edge length as
outlined in [WPCM02, DRSM15, Pur97].

With this paper, we discuss the challenges involved in the still
unexplored field of transformations and graph layout algorithms
applied to layered hypergraphs. In a layered graph, each vertex in
the graph is assigned to a layer. Visualizations of them usually align
horizontally or vertically the vertices that share a layer and arrange
the layers in parallel rows or columns [BETT98, Tam16]. The def-
inition for layered hypergraph is identical, substituting hypergraph
for graph. Visualizing them, though, is not as straightforward.

Figure 2: Steps to be taken from hypergraph defintion to drawing.

Layered graphs are widely studied and used, for instance, for
Sankey diagrams [KS98, MBT∗20], neural networks [CMJK20],
and SQL visualizations [DBRGD21, LZD∗20, GDR22]. Layered
hypergraphs are particularly useful for modeling dynamic social
networks, as in PAOHvis [VBP∗21]. Valdivia et al. did not address
how transformations affect the final layout, which led to issues scal-
ing to larger hypergraphs, but they heavily inspired our direction.
Our motivating case study is likewise the representation of collab-
orations between groups of researchers over time, shown in Fig-
ure 1. The methods we propose are not meant to replace PAOHvis
or other similar hypergraph representations, but rather to be used
in combination with them. We take special interest in dynamic hy-
pergraphs, in which every hyperedge has an associated time step.
If we consider every time step t as a layer in the hypergraph, and
assign vertices to layers based on their t, we can consider this style
of dynamic graphs as a special case of layered hypergraphs.

Our proposed process for visualizing layered hypergraphs (Fig-
ure 2) is to 1 transform the layered hypergraph into a layered
graph, then 2 apply a traditional layered graph layout algorithm
(e.g., [STT81,GKNV93]), and, ultimately, 3 post-process the lay-
out and visualize the result. The focus of this paper is on the trans-
formation step 1 —and what effect it has on the successive step.

We analyze six methods: split-clique, split-path,
aggregate-collapse, aggregate-summarize, centroid-

within-layer, centroid-across-layer. These methods were se-
lected based on pre-existing techniques [AB17, Kap10, PT11] and
variations over them. For each of these methods, we are interested
in comparing the impact on performance and quality of the final
layouts. In particular, we contribute:

• Six hypergraph-to-graph transformation algorithms and a com-
parison of their benefits and drawbacks for laying out hypergraph
visualizations using the barycentric method;

• A free and open-source implementation of the transformations;
• Two case studies using real data demonstrating the practical util-

ity of these transformations; and
• Benchmark datasets, performance metrics, and computational

results comparing the six transformation approaches.

A copy of this paper with all appendices, supplemental material,
and the implementation can be found at osf.io/grvwu.
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Figure 3: One iteration of the barycentric method over two layers.
Every vertex on the free layer is positioned according to the posi-
tion of the mean of its neighboring vertices on the fixed layer. The
process is repeated over many iterations, alternating the direction
in which layers are traversed until the crossings stop improving.

2. Background

Graph layout algorithms: A graph layout algorithm maps ver-
tices and edges in a graph to coordinates in space. Graph layout
algorithms have a number of different purposes and use cases, but
their general objective is to improve the readability of a node-link
visualization by optimizing a number of criteria, either directly or
indirectly. A large amount of work has already been done on lay-
out algorithms, giving birth to many popular and widely used algo-
rithms (e.g. [EAD84, STT81, KK89, FR91]).

Perhaps one of the most popular and intuitive of these algorithms
is Sugiyama’s layered graph layout algorithm [STT81]. It relies on
the barycentric method, a heuristic that positions every vertex u at
the barycenter (or mean position in their layer) of all the vertices
v which share an incident edge with u. It is usually applied in
an iterative layer-by-layer sweep, where the vertex positions in the
preceding layer are kept fixed and used to inform the position of
vertices in the current free layer (Figure 3). It is generally regarded
as a simple, standard way to minimize crossings and reduce edge
length in a layered graph, but using the same approach on hyper-
graphs requires some adjustments that we explore in this paper.

The design space of hypergraph visualizations: Mäkinen
[Mäk90] defines two ways to represent hyperedges: edge-standard
and subset-standard. Both methods represent vertices as points
in space, but while edge-standard uses a representation inspired
classical graph drawing (e.g. Sander [San04] and Eschbach et al.
[EGB04]), subset-standard replaces each hyperedge with an en-
closure containing the set of its incident vertices (e.g. Bertault &
Eades [BE00]). More recent approaches include subdivision draw-
ings [KvKS09], in which vertices are represented as regions in
space and a hyperedge is a set of contiguous subdivisions, matrix-
style representations [FAS∗21], or PAOHvis [VBP∗21], in which
vertices are aligned vertically and hyperedges are represented as
vertical lines connecting them. More broadly, other creative tech-
niques, such as storyline-style visualizations [PAXP∗21,BZSD21],
can be included in the design space for hypergraphs as well. Several
of these hypergraph representations are compared in Figure 4.

In their 2021 survey, Fischer et al. [FFKS21] use a different clas-
sification of hypergraph visualization techniques: node-link, time-
line, and matrix. Their survey highlights concerns about the scala-
bility of the different representations for general (not layered) hy-
pergraphs, claiming that the node-link representation is the least
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Figure 4: Four representations of the hypergraph in Figure 1.

scalable. We argue that scalability assessments should take into ac-
count the layout method chosen for the representation, and with it,
the transformation that needs to be applied to a hypergraph for the
layout algorithm to be applicable—which we discuss in this paper.

As our focus is on visualizing layered hypergraphs, the discus-
sions, and examples in this paper use node-link representations.
Edge-standard and matrix-based representations are not well-suited
to be used with layered graphs (see Figure 4). All the concepts in
this paper are relevant to PAOHvis-style representations as well.

Transforming hypergraphs to graphs: Many node-link-based
visualization techniques seem to favor transforming a hypergraph
into a graph at first [PT11, FVPR22]. After this transformation, an
algorithm such as Fruchterman-Reingold’s force-directed method
[FR91] can be applied to the resulting bipartite graph—examples of
this approach are found in [AB17] and [Kap10]. Although intuitive,
this method, as well as clique expansion, adds many new edges for
the layout computation to address. The bipartite approach adds one
edge for each of the N vertices incident to a hyperedge h, while
clique expansion adds N ∗ (N−1)/2 edges for every h.

Concerned with the poor scalability of clique expansion meth-
ods, Ouvrard et al. [OGM17] propose a clustering-based method
using Louvain clustering [BGLL08] followed by the ForceAtlas2
layout algorithm [JVHB14]. This particular transformation is sim-
ilar to what we propose in our aggregate class of transformations,
but still needs careful analysis when applied: first of all, the heavy
lifting of the computation is moved to the clustering algorithm in-
stead of the layout algorithm. Second, it is unclear whether the lay-
out algorithm applied to the aggregate version of the graph will

© 2022 The Author(s)
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best represent the underlying topology of the original graph after
transforming back to the non-aggregate version.

3. Transformation methods and benchmarks

In the barycentric method, vertices are arranged in their layer ac-
cording to the mean position of their neighbors [STT81]. The pro-
cess is repeated over many sweeps back and forth across the layers.
This usually results in fewer crossings and reduced edge length.
Being designed for ordinary graphs, the barycentric method does
not directly apply to hypergraphs and requires caution when han-
dling hyperedges. One can imagine ways to adapt layout algorithms
to work with hyperedges: one option that comes to mind is to con-
sider hyperedges as connections between all the pairs of vertices
incident to a hyperedge, thus replacing the hyperedge with a clique
between the vertices, but this could skew the results giving exces-
sive weight to a single hyperedge. Another option could be to in-
troduce a centroid for every hyperedge and connect all the vertices
incident to the hyperedge to the centroid, but this is going to affect
the performance of the layout algorithm. As the barycentric method
deals with layered graphs, all the methods we present assume a pre-
existing layering in the hypergraph.

All these approaches ultimately transform the hypergraph into a
graph that a standard layout algorithm can be applied to. However,
deciding which transformation to apply requires careful considera-
tion, as they all affect results and performance in different ways. In
this section, we analyze six transformations (step 1 in Figure 2),
divided into three classes, and compare them in terms of impact on
computational performance and the readability of the visualization
(as defined by metrics discussed in Section 3.4.1).

Each method contains a description, a visual example, and a
small discussion including how it affects the performance. The pur-
pose of every method is to transform a hypergraph into a graph. Af-
ter sorting the graph through a layout algorithm, we might want to
revert the representation back to the original representation for dis-
play through a post-processing step [YPP21]. Each class of meth-
ods contains a brief description of how to post-process the graph,
with pseudocode given Appendix A.

Table 2 illustrates an overview of the complexity of the transfor-
mations, their effect on the complexity of the barycentric method,
and the post-processing cost. Table 1 contains definitions of the no-
tation used in the formulas.

3.1. Split methods

3.1.1 Split-clique: This first method replaces every hyperedge
hi with edges between every pair of vertices incident to hi. The re-
sult of the transformation of a hyperedge effectively forms a clique
between all vertices incident to hi. In the example below, hyper-
edge ABC becomes edges AB, BC, and AC, while hyperedge CDE
becomes CD, DE, and CE.

E = {e : vi,v j ∈ I(e) ∀vi,v j ∈ I(hk), ∀hk ∈ H} (1)

V1 =V (2)

Definitions

G = (V,H)
A hypergraph containing a set of vertices vi ∈ V and a
set of hyperedges hi ∈ H.

G1 = (V1,E)
A graph resulting from one of our proposed transfor-
mations, containing a set of vertices vi ∈ V and a set of
edges ei ∈ E.

`0, ..., `k ∈ L Layers in G. Each layer contains a set of vertices vi ∈ `k .
N(vi) The set of neighbors of vertex vi.

I(hi)
The set of vertices incident to hyperedge hi. Can be
used for edges as well.

a(hi) Aggregate vertex for hyperedge hi.
c(hi) Centroid of hyperedge hi.
x(vi) Horizontal position of vertex vi.

Table 1: Definitions and notation used throughout the paper

A B C D E ⇒ A B C D E

Discussion: Split-clique does not add vertices but adds many
edges, and the number of edges scales up very fast depending on
the number of vertices incident to a hyperedge. This will naturally
worsen computational performance. Moreover, as every hyperedge
h becomes |I(h)| ∗ (|I(h)| − 1)/2 edges, the transformation might
have an unintended effect on the influence of hyperedges over the
layout algorithm—if every edge has the same weight, vertices in
cliques will end up trying to be as close as possible. The prob-
lem can be mitigated by assigning to the newly created edges a
weight equal to the weight of the hyperedge divided by the number
of newly created edges.

3.1.2 Split-path: Every hyperedge hi is split into |I(hi)| − 1
edges, in which |I(hi)| is the number of vertices incident to hi,
forming a single path between all the incident vertices. In the exam-
ple, hyperedge ABC becomes edges AB and BC, while hyperedge
CDE becomes CD and DE.

E = {e : vi,vi+1 ∈ I(e),∀vi ∈ I(hk),∀hk ∈ H} (3)

V1 =V (4)

A B C D E ⇒ A B C D E

Discussion: This is an attempt at reducing the previous method’s
side effects on performance and hyperedge weights. However, this
method does not specify a unique set of edges to create: hyper-
edge ABC could become either AB and BC, or AC and BC. Refer to
Appendix B for a discussion of how the choice of which edges to
create influences the output.

Post-processing for split methods: In the case of split methods,
it is sufficient to keep the vertices in the same positions obtained
through the sorting algorithm and replace the newly-added edges
with a hyperedge.

© 2022 The Author(s)
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Transform complexity Layout complexity Post-processing complexity
split-clique O(|H| ∗ |I|2) O(|H| ∗ |V | ∗ |I|2) O(|H| ∗ |I|)

split-path O(|H| ∗ |I|) O(|H| ∗ |V | ∗ |I|) O(|H| ∗ |I|)
aggregate-collapse O(|H|2 ∗ |I|2) O(|H|3) O(|V |2 ∗ |C|!∗ |H|)

aggregate-summarize variable—O(|I|3) O(|H| ∗ |V |) O(|V |2 ∗ |C|!∗ |H|)
centroid-within-layer O(|H| ∗ |I|) O(|H| ∗ |I| ∗ (|V |+ |H|)) O(|H| ∗ |I|)
centroid-across-layer O(|H| ∗ |I|) O(|H| ∗ |I| ∗ (|V |+ |H|)) O(|H| ∗ |I|)

Table 2: Worst-case complexities of all the transformation methods and their impact on the complexity of the barycentric method. In this
table, |I| indicates the maximum number of vertices incident to a single hyperedge. The complexity of the barycentric method is defined
as O(|V | ∗ |E|) [STT81], and the impact of the transformation is computed by replacing V and E with the corresponding elements after the
transformation. “Variable” in the transform complexity of aggregate-summarize is specified because it depends on the chosen summarization
algorithm—O(|I|3) is the one corresponding to the algorithm used in our example [NRS08]. |C| indicates the number of vertices competing
for the same position in the post-processing step of aggregate-collapse and aggregate-summarize—in the worst-possible case, all the vertices
in the graph might be competing for the same position, but this occurrence would only be happening if all the hyperedges in the hypergraph
are incident to all the vertices, thus extremely rare.

3.2. Aggregate methods

Aggregate methods rely on creating aggregate vertices (a.k.a.
metanodes) so that the final result does not contain hyperedges.
These methods shift the weight onto a preprocessing step needed to
compute how to aggregate the graph. The resulting graph is much
smaller and the layout faster to compute, but the preprocessing can
still be expensive. In addition, aggregate graphs are more complex
to transform back into the original hypergraph.

3.2.3 Aggregate-collapse: Every hyperedge hi is transformed
into an aggregate vertex a(hi), which aggregates all vertices inci-
dent to hi. The original vertices in the hypergraph are removed,
replaced by aggregate vertices. We call every vertex stored in an
aggregate a member of said aggregate. M(a(hi)) = I(hi) is thus
the set of members of aggregate vertex a(hi), and corresponds to
the vertices incident to hi. Vertices are allowed to exist as mem-
bers of more than one aggregate vertex and are stored within the
aggregate vertices. We then add edges between aggregate vertices
that share member vertices. In other words, all the aggregate ver-
tices a(hi) and a(h j) are connected by an edge iff the intersection
of vertices incident to their corresponding hyperedges is not empty
I(hi)∩ I(h j) 6= ∅. In the example below, aggregate vertices ABD
and CDE are connected by an edge because they share vertex D.

V1 ={a(hi) ∀hi ∈ H} (5)

E ={e : a(hi),a(h j) ∈ I(e),

I(hi)∩ I(h j) 6= ∅, ∀hi,h j ∈ H} (6)

A B C D E ⇒ ABD CDE

Discussion: Aggregate-collapse replaces all the vertices in the
original hypergraph in addition to the hyperedges. Although it suc-
cessfully removes hyperedges and can reduce the number of ele-
ments, the number of new vertices and new edges introduced can
in some cases be very large. This depends on the connectedness of
the graph: a very connected hypergraph will have a large number
of new edges, while a sparsely connected hypergraph will be much
smaller than the starting graph.

3.2.4 Aggregate-summarize: Aggregate-summarize uses a
graph summarization algorithm to reduce the number of vertices
to sort, while also eliminating hyperedges. For our tests, we chose
Navlakha et al.’s graph summarization algorithm [NRS08], which
aggregates vertices based on the amount of information about the
structure of the graph lost when aggregating two vertices. Other
summarization techniques can be considered. This aggregation
technique does not allow for vertices to be members of more than
one aggregate vertex, as opposed to aggregate-collapse, and al-
ways produces a smaller graph than the one we started with.

A B C D E ⇒ E AB CD

Discussion: The choice of using [NRS08] as an algorithm is just
an example of using a summarization algorithm. Different algo-
rithms that have the same purpose can be used as a replacement, and
will give different results and different output graph size. The com-
plexity for the transformation we state in Table 2 corresponds to the
complexity of [NRS08]. The resulting graph, though, will always
be smaller than the original hypergraph, making the worst-case sce-
nario for the barycentric method’s complexity remain O(|V | ∗ |H|).

Post-processing for aggregate methods: In the case of aggre-
gate methods, we store in an aggregate vertex ai every vertex rep-
resented by it. When, at the end of the layout computation, these
aggregate vertices need to be removed, we can then collect the list
of original vertices and assign to each vertex vi a weight wi based
on the position of the aggregate vertices it belongs to, then sort
the vertices in the layer based on the weights. In the case of
aggregate-summarize, it will be one single vertex, while in the
case of aggregate-collapse, it will be more than one. In any
case, vertices’ positions are subject to collisions: more than one
vertex might end up having the same wi, leaving us with doubt on
how to order them. This issue can be solved in a post-processing
step (whose pseudocode can be found in Appendix A) in which we
collect every vertex with the same wi and test every permutation of
the vertices in the set to find the one which produces the least num-
ber of crossings.The cost of this process depends on the number of
vertices with colliding weights, which can become high (Table 2).

© 2022 The Author(s)
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3.3. Centroid methods

This class of methods adds aggregate vertices to the graph, which
take the place of hypothetical centroids of the vertices incident to a
hyperedge. We alternatively refer to this class as bipartite methods
as they rely on viewing a hypergraph as a bipartite graph. Bipar-
tite graphs are graphs made of two distinct types of vertices where
links can only exist between vertices of different types. This type of
graph can be seen as an alternative representation of a hypergraph
if we consider the hyperedges as vertices of a specific type, which
connect the original vertices of the hypergraph.

In centroid methods, we create a new aggregate vertex—that we
will refer as centroid vertex—c(hi) for every hyperedge hi ∈ H,
then replace hi with edges connecting every vertex incident to hi to
the newly created centroid vertex c(hi).

E = {e : c(hi),n j ∈ I(e) ∀n j ∈ I(hi),∀hi ∈ H} (7)

V1 =V ∪{c(hi) ∀hi ∈ H} (8)

Once the replacement is done, as we are dealing with layered
graphs we need to consider which layer these newly created cen-
troid vertices should belong to. This decision will affect the layout
algorithm. One option is to consider centroid vertices as belong-
ing to the same layer of all the vertices incident to hi (centroid-
within-layer), while the other is to consider the centroid vertices as
belonging to a separate layer (centroid-outside-layer).

3.3.5 Centroid-within-layer: Here, c(hi) is inserted into the
same layer as I(hi). This will make the layout algorithm sort the
new centroid vertices together with the rest of the vertices.

A B C D E ⇒ A B ABD C CDE D E

3.3.6 centroid-across-layer: Here the centroid vertices are
sorted on a different and new pseudo-layer, making the layout al-
gorithm sort vertices and centroid vertices on different layers.

A B C D E ⇒ A B C D E

ABD CDE

Discussion: Both methods add the same number of new edges
and new vertices. Although the transformation is not costly com-
pared to other methods, the addition of new vertices might add a
relevant overhead to the computation of the layout algorithm.

Post-processing for centroid methods: As with split methods,
we keep the order of the vertices in the same order obtained through
the layout algorithm, then we remove the centroids and replace the
newly introduced edges with their respective hyperedges. Having
computed the layout algorithm with additional edges, the final re-
sult might benefit from an additional step that compacts the layout
wherever unneeded space was created.

3.4. Multiple layers

All the methods we have seen work with a hyperedge joining ver-
tices within a single layer. How can we extend these ideas to work
with hyperedges across multiple layers? We will call hyperedges
with all vertices on a single layer 1-layer hyperedges and hyper-
edges with vertices on more than one layer n-layer hyperedges.

In general, there is no need to change anything in the case of
1-layer hyperedges, as they can go through exactly the same trans-

1 Original

ETH

The original hypergraph without a
layout algorithm applied. Vertices are
in file order.

crossings: 16
edge length: 42
number of hyperedges: 6
number of edges: 10

2 Transform— split-clique

ETH

A transformation (here split-
clique) is applied to the hypergraph.

number of edges: 23
time to transform: 0 ms

3 After applying layout algorithm

ETH

A standard algorithm for computing
layouts of layered graphs is applied
(here Gansner et al. [GKNV93]),
making it much cleaner.

time to sort: 37 ms

4 Final result

2017

2018

2019 ETH

The transformation is reversed, going
back to the original hypergraph struc-
ture. A post-processing step is applied
to clean up edge bendiness. The result
has fewer crossings and lower edge
lengths compared to the starting hy-
pergraph.

crossings: 2
edge length: 14
time to postprocess: 1 ms

Figure 5: Steps involved to transform and apply a layout algo-
rithm to a layered hypergraph using the split-clique method.
This example represents the collaboration network of ETH Zurich:
vertices represent research groups in given years, each layer cor-
responds to a year, and vertices representing the same group in
different years are connected with a dashed edge. Gray hyperedges
represent collaborations between multiple groups. Collaboration
can only happen within a year/layer as publications have only one
publication date, so the hyperedges are all horizontal. The same
steps would be applied with any other of our proposed methods. A
summarized view of the process is shown in Figure 2.
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formations seen in the previous section. In collaboration networks
such as the ones in our case studies, every collaboration happens in
a given year. Therefore, the hypergraph only contains 1-layer hy-
peredges, plus a number of n-layer ordinary edges which do not
require transformation. Figure 5 illustrates the process. More rea-
soning is needed when dealing with n-layer hyperedges.

In the case of the split class of methods, there is little difference:
the new edges generated will just link vertices according to their
layers. The example below shows split-clique applied to hy-
peredge h, in which {A,B,C,D}= I(h) and {A,B,D} ∈ `0, C ∈ `1.

A B D

C

l
0

l
1

Hyperedges with incident vertices that are more than one layer
apart can be further divided through the use of anchors a.k.a.
dummy vertices [GKNV93].

In the case of methods with new aggregate vertices being cre-
ated, instead, we have to reason more on what layers will contain
the newly created aggregate vertex. One option is to create a new
pseudolayer between the ones containing vertices incident to the
hyperedge, as shown in the example below:

A B D

C

ABCD

l
0

l
1

p
0,1

Once the layout algorithm has been applied, the pseudolayers
can be removed together with the aggregate vertices.

3.4.1. Metrics

In order to characterize one approach as better than another one,
we have to define appropriate readability metrics. A number of
these metrics have been defined in previous research [WPCM02,
DRSM15, Pur97]. Minimizing the number of crossings (also re-
ferred to as planarity [AB17]) is generally regarded as having the
most negative effect on readability [Pur97]. Other metrics take into
account symmetry in the graph structure, minimizing edge length
and bendiness, optimization of crossing angles, etcetera. In this pa-
per, we evaluated our results based on number of crossings and
edge length (which also takes into account edge bendiness), as
those are the metrics optimized by the barycentric method.

Number of crossings: We consider two hyperedges h1 and h2 to
cross if some of the vertices incident to one hyperedge falls between
two vertices incident to the other hyperedge, but not all of them
together.

c(h1,h2) =



0, if ∀vi ∈ I(h1),v j ∈ I(h2), x(vi)≤ x(v j)

0, if ∀vi ∈ I(h1),v j ∈ I(h2), x(vi)≥ x(v j)

0, if ∀ vi ∈ I(h1), ∃ v j,vk ∈ I(h2)
s. t. x(v j)≥ x(vi)≥ x(vk)

0, if ∀ vi ∈ I(h2), ∃ v j,vk ∈ I(h1)
s. t. x(v j)≥ x(vi)≥ x(vk)

1, otherwise.

The case of one edge completely comprised between two vertices
of a hyperedge is not considered a crossing, as shown below:

a crossing a crossing not a crossing

Edge length: We measure the length of a hyperedge h as the
maximum horizontal distance between two vertices incident to h.
This measure of edge length also takes into account the bendiness
of an edge—how much the edge is curved.

len(h) = max(abs(x(vi)− x(v j))) ∀vi,v j ∈ I(h),∀h ∈ H

In the examples and benchmarks, one unit of distance is equal to
the minimum distance between two vertices.

3.4.2. Benchmark

We ran a benchmark to test the effect on performance and quality
of the results of each one of the methods. The hypergraphs used in
the benchmark are ego-centered slices from our two case studies:
we computed all hypergraphs with one, two, and three degrees of
separation for each one of the vertices in the datasets.

After preprocessing each hypergraph with the methods described
in Section 3, we applied the barycentric method using our own im-
plementation based on [GKNV93]. (Other layered graph layout al-
gorithms would also be suitable, e.g., the optimal integer linear pro-
gramming solution in Stratisfimal Layout [DBRGD21].) For each
one of the graphs, we measured the time required to complete the
computation of the layout and the number of crossings in the final
result, using the definition for the number of crossings and edge
length described in Section 3.4.1. All the results were computed
with node.js on a 2020 Macbook Pro with a quad-core Intel Core i5
and 32 GB of RAM. The results presented in Table 3 show timing,
number of crossings, and total number of vertices on hypergraphs
containing increasing numbers of hyperedges, split by method.

Implementation: We implemented the six methods in
JavaScript to test and compare results, using D3 [BOH11] to pro-
duce the visualizations. A live comparison of the transformation
methods applied to hypergraphs of different sizes and features can
be found at picorana.github.io/hypergraph_layouts, while our im-
plementation, as well as the rest of our supplemental material, can
be found at osf.io/grvwu.

4. Case studies

Research institute collaboration network: Inria is a research in-
stitute comprised of hundreds of research groups. Throughout the
years, these groups collaborate on a number of projects. In our visu-
alization, hyperedges are used to model collaborations between two
or more groups. The temporal aspect of the dataset is also important
to visualize, as one of the desired tasks is to be able to see changes
in the relationships between groups over time. Thus, vertices are
aligned in layers, which represent years in the visualization. The
color of a vertex represents its scientific domain of research.

Figure 6 (top section) shows the results of the six methods ap-
plied to the collaborator of group AVIZ between 2017 and 2020.
This section of the dataset contains 69 nodes (average degree: 3.1,
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Inria collaboration network, collaborators of group AVIZ, 2017 to 2020
total number of edges: 34, total number of hyperedges: 71

split-clique split-path aggregate-collapse
2017

2018

2019

2020

2017

2018

2019

2020

2017

2018

2019

2020

crossings: 61 crossings: 56 crossings: 27
edge length: 284 edge length: 308 edge length: 195

time to transform: 1 ms time to transform: 1 ms time to transform: 5 ms
time to sort: 1268 ms time to sort: 842 ms time to sort: 31137 ms

time to postprocess: 6 ms time to postprocess: 4 ms time to postprocess: 31 ms

aggregate-summarize centroid-within-layer centroid-across-layer
2017

2018

2019

2020

2017

2018

2019

2020

2017

2018

2019

2020

crossings: 38 crossings: 83 crossings: 131
edge length: 238 edge length: 330 edge length: 498

time to transform: 79 ms time to transform: 1 ms time to transform: 2 ms
time to sort: 380 ms time to sort: 10105 ms time to sort: 20172 ms

time to postprocess: 33 ms time to postprocess: 3 ms time to postprocess: 6 ms

VIS global collaboration network, collaborators of Harvard university, 2016 to 2019
total number of edges: 64, total number of hyperedges: 45
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crossings: 155 crossings: 93 crossings: 110
edge length: 466 edge length: 290 edge length: 304

time to transform: 0 ms time to transform: 0 ms time to transform: 10 ms
time to sort: 5337 ms time to sort: 3699 ms time to sort: 125197 ms

time to postprocess: 13 ms time to postprocess: 8 ms time to postprocess: 62 ms
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crossings: 104 crossings: 153 crossings: 186
edge length: 339 edge length: 385 edge length: 454

time to transform: 82 ms time to transform: 1 ms time to transform: 2 ms
time to sort: 1723 ms time to sort: 13724 ms time to sort: 28683 ms

time to postprocess: 90 ms time to postprocess: 6 ms time to postprocess: 13 ms

Figure 6: Comparison of the transformation methods on the Inria and Harvard collaboration networks. Each layer represents a year and
each vertex indicates a research group publishing that year. Dashed edges connect the same research group throughout the years. Gray
hyperedges represent collaborations between different research groups. All methods show noticeable clustering of the groups, as expected.
In the Inria collaboration network, aggregate-collapse produces the best result, while in the VIS collaboration network the best one is
obtained with split-path.
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Split Aggregate Centroid
split-clique split-path aggregate-collapse aggregate-summarize centroid-across-layer centroid-outside-layer

2 layers
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number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→
5 layers

tim
e

(m
s)

cr
os

si
ng

s
ed

ge
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ng
th

number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→ number of hyperedges→

Table 3: Benchmark comparison. Graphs with an increasing number of hyperedges are tested for processing time when applying the barycen-
tric method, number of crossings, and edge length obtained. For each number of hyperedges, we tested 26 hypergraphs, for a total of 1300
samples. We set a maximum timeout of 20 seconds and stopped the computation whenever we could not complete the layout algorithm
within that time. The line represents the median values. Charts are cut wherever we could not compute the layout for at least half the
hypergraphs in the dataset with a given number of hyperedges within the timeout. High variance in the aggregate methods (which causes
aggregate-summarize to not be able to complete most 5-layer samples) is from instances in which multiple vertices are competing for the same
position—resulting in the need for a post-processing step. The fastest and most consistent method in delivering good results is split-path.

median: 3), 34 edges, and 71 hyperedges (average number of in-
cident nodes: 2.1, median: 2). aggregate-collapse gives the best
results both in term of number of crossings (27) and edge length
(195). It is, however, the slowest method, taking 31137 ms to sort.
These results match with visually assessing the layout, which ap-
pears more readable than with other methods, mainly because there
are fewer long edges and vertices which are connected together are
often positioned closer. We can therefore better detect patterns in
the layout, such as the group of several vertices which collaborate
frequently at the right of the figure.

VIS collaboration network: This second case study represents
publications at the VIS conference throughout the years, taken from

the Visualization Publication Dataset [IHK∗17]. Similar to our first
case study, vertices represent research institutes, and their color
corresponds to the country in which they are located. Hyperedges
model research collaboration between two or more institutes.

The bottom section of Figure 6 shows the results of the six trans-
formation methods in a section of the full dataset, which includes
all nodes up to 2 degrees of separation from Harvard University.
The section contains 103 nodes (average degree: 2.4, median: 2),
64 edges, and 45 hyperedges (average number of incident nodes:
2.5, median: 2). This time the split-path gives the best metrics
with a number of crossings of 93 and edge length of 290. It was
also the second-fastest method after aggregate-summarize. We
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Figure 7: Collaborations in papers published at VIS between a set
of universities—in particular, these are the collaborators of Har-
vard University and the collaborators of the collaborators (up to 2
degrees of separation). This figure shows the result of the applica-
tion of aggregate-collapse.

can clearly see that there are fewer crossings in the resulting lay-
out, allowing us to better detect patterns. When the hyperedges are
packed together, we can see that there are fewer collaborations each
year. We can, however, detect a group of vertices in the middle of
the layout which seems to be in more collaborations than the rest
of the hypergraph, and are often collaborating between them.

5. Discussion

Our benchmarks show some interesting takeaways: although the
most intuitive of the two split methods seems to be the first one,

split-clique, the results of the benchmarks show that the differ-
ence in resulting crossings between the two is not large, but perfor-
mance improves considerably with the second method, split-
path. The difference between the two becomes especially evident
wherever hyperedges with a large number of incident vertices are
transformed, as they create large cliques.

Aggregate-collapse produces good results, but the processing
time required increases quickly—as the number of new edges cre-
ated increases steeply with the connectedness of the hypergraph. It
works well for small hypergraphs only. Conversely, aggregate-
summarize transforms the hypergraph into a smaller graph com-
pared to the one we start with, leading to faster mean times, but has
a high variance in the results. Indeed, it requires a post-processing
step to move vertices with colliding positions, which is costly in
cases where several vertices are competing for the same position.
This effect becomes very noticeable in our benchmark (Table 3),
where a high variance in computing times shows up for aggregate-
summarize, and it is even more evident for 5-layer graphs, where
collisions prevent the computation from terminating quickly even
for relatively small graphs.

Among centroid methods, centroid-within-layer is the one
that performs best, while still being slower than split-path.
centroid-outside-layer performs worse than centroid-within-
layer, but ends up obtaining fewer crossings.

As a general recommendation, we believe split-path to be the
best option to try first, due to its simplicity, efficiency, and consis-

tency in processing times. In any case, the structure of the hyper-
graph should be taken into account when choosing the transforma-
tion method, giving particular attention to the average hyperedge
degree (the number of nodes incident to a hyperedge) and the num-
ber of hyperedges. Indeed, cases with a high average edge degree
should avoid methods that scale steeply in complexity with the av-
erage degree (such as split-clique and aggregate-collapse),
and cases with a large number of hyperedges should avoid meth-
ods that scale quadratically with the number of hyperedges (such
as centroid-within-layer and centroid-across-layer). The
post-processing step is optional, but it should be a concern if meth-
ods such as aggregate-collapse and aggregate-summarize are
used, as it can become expensive quickly based on the number of
colliding nodes.

It is important to keep in mind that our considerations and results
are based on the barycentric method, which might be limiting for
larger graphs. Our choice was motivated by the method’s popular-
ity in the graph drawing community, and thus its utility as a gen-
eral case study. While methods adjacent to the barycentric method
will give similar results to our transformation methods, different
layout algorithms might require different considerations. Our main
intention with this study was to open up a larger conversation on
how we apply layout algorithms to hypergraphs, and focusing on a
widespread layout algorithm such as the barycentric method gave
us a representative example to discuss the outcomes of choosing a
transformation method over another one.

6. Conclusion and future work

We claimed that in order to apply a standard layout algorithm to
a layered hypergraph, the hypergraph must be transformed into a
graph. We proposed six different transformation techniques, then
studied their effects on the performance and quality of the results,
using the barycentric method as a layout algorithm. We measured
the number of crossings, edge length, and impact on the computa-
tional performance of the barycentric method used in combination
with all the proposed transformation techniques. We found that no
method gives a generally better solution, but some methods have a
better trade-off between computational performance and readabil-
ity of the resulting visualization. An exploration of how these trans-
formations interact with layout algorithms other than the barycen-
tric method, and an exploration of the effectiveness of the methods
on hypergraphs with no layers, are left for future work.
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Appendix A: Post-processing for aggregate methods

The following pseudocode describes the post-processing step we
used to reverse aggregate methods. In aggregate methods, when
trying to turn the graph back to its original hypergraph representa-
tion, two or more nodes might be competing for the same position.
For this reason, we test all the permutations of the colliding nodes
to figure out which order returns the smallest amount of crossings.
Although this can become costly very quickly, the number of com-
peting nodes is usually very small.

Algorithm 1 Post-processing—Reversing aggregation

for v of graph.vertices
a← aggregate_vertices.filter(a => a.members.includes(v))
v.w← avg(y(a))

graph.vertices.sort((v1, v2) => v1.w > v2.w)
cur_crossings← count_crossings()

for v of graph.vertices
collisions← graph.vertices.filter(vertex => vertex.w == v.w)
for p of permutations(collisions)

if count_crossings(p) < cur_crossings
best = p
cur_crossings← count_crossings(p)

apply(best)

Appendix B: Discussion on the set of edges being created with
split-path

The order in which the path in split-path is built slightly influences
the results. We show different ways of splitting hyperedges in Fig-
ure 8. One countermeasure is to attempt every possible path for ev-
ery hyperedge, but that becomes costly quickly. In our experiments,
the best results were obtained by starting the path from the vertex
with the highest degree from other edges—so that those would end
up closer to the edges of the hyperedge. Overall, though, no vari-
ation on the path chosen will cause large disruption in the layout,
and the variation in the results will not be large with any choice.

Appendix C: Zoom-in on the visualizations of Figure 6
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Figure 8: Different ways of forming a path between vertices involved in a hyperedge, starting from the same graph. This is only a subset of
the possible combinations.
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(a) The original hypergraph, before any transformation or layout algorithm. It contains 45 hyperedges and 64 edges. The ordering of the
vertices is the order in which they are read from the dataset with no modifications. This produces 450 crossings and an edge length of 879.
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(b) The same graph as the image above, after a transformation and the application of the layout algorithm. In particular, this is the result
obtained with aggregate-collapse. The higher readability is evidenced by the much lower amount of crossings (110) and much lower edge
length (304).

Figure 9: Harvard University collaboration network. The graph includes all research groups within two degrees of separation from Harvard
between 2016 and 2019. Different colors indicate different continents. The node label containing the name of the research group is only
shown on the most recent node corresponding to the given research group.
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