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Abstract
In the past 30 years, our knowledge of how nonexpressor of
pathogenesis-related genes 1 (NPR1) serves as a master
regulator of salicylic acid (SA)-mediated immune responses in
plants has been informed largely by molecular genetic studies.
Despite extensive efforts, the biochemical functions of this
protein in promoting plant survival against a wide range of
pathogens and abiotic stresses are not completely understood.
Recent breakthroughs in cellular and structural analyses of
NPR1 and its paralogs have provided a molecular framework
for reinterpreting decades of genetic observations and have
revealed new functions of these proteins. Besides NPR1’s
well-known nuclear activity in inducing stress-responsive
genes, it has also been shown to control stress protein ho-
meostasis in the cytoplasm. Structurally, NPR4’s direct binding
to SA has been visualized at the molecular level. Analysis of
the cryo-EM and crystal structures of NPR1 reveals a bird-
shaped homodimer containing a unique zinc finger. Further-
more, the TGA32-NPR12-TGA32 complex has been imaged,
uncovering a dimeric NPR1 bridging two TGA3 transcription
factor dimers as part of an enhanceosome complex to induce
defense gene expression. These new findings will shape future
research directions for deciphering NPR functions in plant
immunity.
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Introduction
Nonexpressor of pathogenesis-related genes 1

(NPR1)da master immune regulatordwas discovered
through genetic screens for Arabidopsis mutants
compromised in pathogen resistance mediated by sali-
cylic acid (SA) [1e5]. Arabidopsis npr1 mutants display
decreased expression of pathogenesis-related (PR)
genes and increased disease susceptibility. Conversely,
overexpressing the Arabidopsis NPR1 (AtNPR1) or its
orthologs in both dicot and monocot plants could
enhance disease resistance against a variety of pathogens
[6,7]. These studies highlight a central role of NPR1 in
plant immunity, allowing its potential use in engineering

broad-spectrum disease resistance in crops.

AtNPR1 is the founding member of a unique family of
proteins (clade I: NPR1 and NPR2; clade II: NPR3 and
NPR4; and clade III: NPR5/BOP2 and NPR6/BOP1) in
plants (Figure 1). In Arabidopsis, clades I and II are
mainly involved in defense [1,4,5,8,9], whereas clade III
mainly functions in leaf morphogenesis [10]. Orthology
analysis revealed that these three clades had already
diverged in the common ancestor of angiosperms and are
retained in most angiosperm species. However, in early

diverging land plants, such as mosses and ferns, only
orthologs of clade III NPR genes could be found,
suggesting their early emergence during land plant
evolution (Figure 1). Though NPR-like sequences with
defense activities have been found in a moss species
[11], more data will be needed to determine whether
they are orthologs of clade I or II NPRs. Unlike clades II
and III, clade I gene ortholog occurs as a single copy in
most of the angiosperm species sampled, indicating its
functional conservation across lineages.

In response to SA-induced redox changes, the
AtNPR1 protein is released from a quiescent oligomer to
translocate into the nucleus [12e14], where it serves as
a coactivator in complex with transcription factors
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Figure 1

Origin of NPR gene family across land plants. A phylogenetic tree was constructed, and whole-genome duplication (WGD) events were annotated
according to the 1 KP and other phylogenetic studies [46]. Full-length protein sequences from 62 representative algae and land plants (excluding
Gymnosperms) with high-quality genome sequence data were downloaded from Phytozome v12. All-against-all BLASTP [47] were performed, and
ortholog groups (OGs) were identified using OrthoMCL [48] (Supplemental Table 1). For simplicity, 22 of the 62 species were shown in the figure. From the
analysis, AtNPR1, AtNPR2, and their 69 orthologs from 46 species were classified into one orthologous group (named here as the NPR1/2 clade);
AtNPR3, AtNPR4, and their 121 orthologs from 47 species were classified into another orthologous group (named here as the NPR3/4 clade); AtNPR5,
AtNPR6, and their 120 orthologs from 53 species were classified into the third orthologous group (named here as the NPR5/6 clade) (Supplemental
Table 2). The number of rectangles represents the number of gene copies. Gene copies with the same color belong to the same orthologous group. The
NPR genes not classified as orthologs are not shown.

2 Biotic interactions
(TFs), such as TGAs [15e18]. However, how NPR1
activates transcription remains a mystery. Opposite of
NPR1, NPR3 and NPR4 are negative regulators of de-

fense genes [8], whose activities are responsive to SA
binding [19]. Two nonexclusive modes of actions have
been proposed to explain their roles: one as transcription
repressors based on the presence of the “EAR motif”
known in other transcription repressors [20] and the
other as adaptors for the Cullin 3 RING ubiquitin ligase
(CRL3) complex to degrade substrates, such as NPR1
and JAZ1 [19,21]. Then, there were questions of
whether NPR1, the bona fide SA receptor based on the
genetic data, directly binds SA in vivo, despite its low
binding efficiency in vitro when compared with NPR3

and NPR4 side by side [19,22], and how SA binding
modulates the NPR1 transcriptional activity. Here, we
describe advances made at cellular and structural levels
in the past two years, which begin to address these
fundamental questions.
Current Opinion in Plant Biology 2023, 73:102352
Conservation of NPRs as SA receptors in
diverse plant species
Although NPR proteins were discovered based on a loss
of function in SA-mediated plant immunity response,
how NPR proteins serve as SA receptors has been hotly
debated [19,20,22e24]. The recent structural analysis
of the C-terminal region of NPR4 showed that it con-

tains an SA-binding core (SBC) consisting of a four-helix
bundle, in which SA is embedded [22]. In particular, the
R419 residue in the SBC of NPR4 binds SA by forming
bidentate hydrogen bonds with the carboxylate group of
the hormone, thus explaining its critical role in SA
perception (Figure 2). As the SA-interacting residues are
highly conserved within NPR proteins of immunity
clades I and II, the structural analysis of the NPR4 SBC
led to the classification of these NPRs as general SA
receptors. It is worth noting that this SBC does not
include the SA-binding residues, C521 and C529,

identified in a previous report [24].
www.sciencedirect.com
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Figure 2

The enhanceosome model of the NPR1 dimer bridging two dimeric TGA transcription factors which recognize the as-1 (activation sequence 1) cis-
element in the promoters of defense genes. SA-induced SBD–ANK docking creates a new interface to facilitate post-translational modifications and/or
recruitment of transcriptional regulators (X) for the activation of defense genes. The position of key residues in NPR1 (left) and the corresponding
activation steps (right) are shown.

Understanding functions of NPR1 and its paralogs Zhou et al. 3
Despite the central role of NPR1 in plant immunity,
details of its molecular features have remained elusive
until recently. The combined use of single-particle cryo-

EM and crystal structure analysis has revealed NPR1 as
a bird-shaped homodimer [25] (Figure 2). It consists of
the Broad-complex, Tramtrack, and Bric-à-brac (BTB)
dimer in the middle, followed by the back-helix-bundle
(BHB), and four ankyrin repeats (ANKs) forming the
wings of the bird. A prominent feature of NPR proteins
is the presence of a conserved cysteine cluster within
the BTB domain. These cysteine residues together with
a conserved histidine (C150, C155, C160, and H157 in
AtNPR1) form a previously unrecognized zinc finger
motif that bridges the BTB domain with the ANKs

(Figure 2). Unlike the zinc coordinating cysteines, the
surface exposed C156 residue of AtNPR1, involved in
the redox-sensitive oligomer formation, is not conserved
in species beyond the crucifer family, an observation
supported by sequences recently reported for several
additional plant species (note: in these studies, AtNPR1
C155 was mislabeled as C156) [26e28]. Thus, whether
and how NPR1 orthologs in other plant species form
redox-sensitive oligomers remain to be tested.

The cryo-EM structure of apo NPR1 shows the C-ter-

minal region as disordered, whereas the protein refolded
in the presence of SA shows the SA-binding domain
(SBD) docked onto ANKs [25], with a conformation
similar to that of the SA-bound SBD of NPR4 [22].
Importantly, crosslinking of this SBD-ANK docking
conformation enhanced the NPR1-mediated PR1 gene
expression, providing the first evidence that SA plays a
direct role in regulating the NPR1 conformation
required for its transcriptional activity [25] (Figure 2).
This initial conclusion needs to be further solidified by
www.sciencedirect.com
the identification of the possible chaperon/modification
that would explain how SA gets into the enclosed SBD
in vivo and how divergent residues between NPR1 and

NPR4 affect their SA-binding efficiency and result in
distinct outcomes in transcriptional regulation.

NPR1 as a transcription cofactor
NPR1 has been known to interact with both tran-
scription activators (e.g., TGA) as well as repressors
(e.g., certain WRKYs) to reprogram the transcriptome
upon induction [15e18,29,30]. The crystal structure of
the NPR1-interaction domain (NID) in TGA3 reveals a
homodimer, each consisting of five long helices and
three short helices with a palmitic acid embedded
within [25]. Although the mechanistic connection of
fatty acid and plant immunity requires further investi-

gation, this observation provides strong support for the
genetic relationship between lipid metabolism and
plant immunity reported previously [31,32]. It has been
suggested that TGA1 and TGA4 activity is regulated by
a redox-mediated intramolecular disulfide bond be-
tween two cysteine residues (C260 and C266 in TGA1
and C256 and C263 in TGA4) [33] located in the NID,
though this model has recently been challenged [34].
Based on the corresponding residues in the TGA3
structure, the cysteine residues in TGA1/4 are located
on the same helix and separated by nearly two helical

turns, which makes them unlikely to be engaged in
disulfide bond formation. However, it remains possible
that oxidized cysteines in TGA1/4 may perturb the
folding and stability of their NID, thus affecting
interaction with NPR1. Importantly, the cryo-EM
structure of the NPR1-TGA3 complex shows that the
NPR1 dimer activates transcription by bridging dimeric
TGA3 molecules on each side (Figure 2). With its
Current Opinion in Plant Biology 2023, 73:102352
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4 Biotic interactions
dimeric architecture as well as the observation of the
(NPR1)2-(TGA3)2 intermediate, it is conceivable that
NPR1 could form a variety of TF complexes in a
combinatorial manner, thus achieving a fine regulation
of gene expression and crosstalk with other plant hor-
mone signaling pathways [35,36]. Such a model is
compatible with reported simultaneous interactions of
NPR1 with multiple TFs revealed by pulldown studies,

including both positive (e.g., TGA) [15e18] and
negative (e.g., NIMINs) regulators [37] as well as
histone modifiers (e.g., HAC1, histone acetyltransfer-
ase 1) [38], mediator components, and other key
immune regulators, such as CDK8 [39] and EDS1 [40].
NPR1 has also been reported to interact with TFs
involved in transcription mediated by other plant hor-
mones, such as MYC2 required for jasmonic acid (JA)-
responsive genes and EIN3 for ethylene signaling
[35,36]. However, these components may not all be
present in the same NPR1 complex. For example, the

NPR1-WRKY interaction was observed in SA-induced
NPR1 condensates (SINCs) in the cytoplasm rather
than in the nucleus [30], as previously assumed [29].
Given its scaffolding role, NPR1 likely functions as a
platform to nucleate multiple TFs in an enhanceosome
complex. The core components of the NPR1 enhan-
ceosome await to be revealed.

Examination of the (TGA3)2-(NPR1)2-(TGA3)2 com-
plex raises new questions: (1) Is there a component or
modification that connects SBD to TGA activity? (2)

How does the palmitate found in the TGA3 dimer
regulate SA-mediated gene expression?

NPR1 and NPR4 in SA-mediated protein
degradation
Another fascinating question about the NPR proteins is
what makes the evolutionarily divergent NPR1/2-clade
and NPR3/4-clade having opposing roles in defense
gene transcription. The proposed EAR motif found in
AtNPR4, but absent in AtNPR1, turned out to be pre-
sent in NPR1 orthologs from other plant species, such as

rice OsNH1 [22]. Moreover, while the presence of SA
affects deuterium exchange in the SBD fragment of
NPR4, it has no effect on fragments containing the EAR
motif [22], suggesting that the EAR-motif in NPR4 is
unlikely to be regulated by SA, and NPR4 may repress
defense gene expression through a different mechanism.

The presence of the BTB domain in all NPRs suggests
that they may be substrate adaptors for CRL3, like
other BTB domain-containing proteins [41e44]. In
contrast to the EAR motif, for which an SA-induced

conformational change has not been observed, NPR3
and NPR4 interactions with NPR1 are enhanced and
disrupted, respectively, by their binding to SA. These
SA-mediated NPR3/4-NPR1 interactions have been
demonstrated through multiple approaches, including
yeast two-hybrid analysis, in vitro pull-down,
Current Opinion in Plant Biology 2023, 73:102352
AlphaScreen competition and titration assays, and IP-
MS [9,22,30]. Moreover, NPR1 is by no means the
only substrate for NPR3/4. During the effector-
triggered immunity, both NPR1 and JAZ1 (a repressor
of the defense hormone JA) are degraded in an SA-
dependent manner to allow programmed cell death
(PCD) to occur at the site of infection [21]. In contrast
to the cell death zone, NPR1, a protein that promotes

cell survival, accumulates in neighboring cells. The
attempt to “see” NPR1 in these cells through micro-
scopy has led to the surprising discovery that NPR1 not
only forms SINCs in the nucleus but also in the cyto-
plasm [30] (Figure 3). Interestingly, these SA-induced
cytoplasmic NPR1 condensates are not detected for
other NPRs when expressed at similar levels [30]. Cell
fractionation experiments showed that in the nucleus,
where NPR3/4 are constitutively present, NPR1 is a
major target of SA-induced ubiquitination, whereas, in
the cytoplasm, NPR1 mediates SA-induced ubiquiti-

nation of other proteins. Consistent with its role in
promoting cell survival in response to stress, IP-MS
analysis showed that cytoplasmic SINCs contain
many stress-response proteins, including nucleotide-
binding leucine-rich repeat immune receptors and
their downstream signaling components, such as EDS1,
together with protein quality control and degradation
machineries [30]. Therefore, NPR1 not only induces
defense gene expression in the nucleus but also con-
trols stress protein homeostasis through SINC forma-
tion in the cytoplasm.

In support of NPR1 serving as a CRL3 substrate adaptor,
the plant growth hormone gibberellin (GA) receptor,
GID1, was recently found to be another target, whose
ubiquitination and degradation by NPR1 explain the
reduced plant growth during the immune response [45].
This study, together with the report of SA-mediated
degradation of the JA co-receptor JAZ1 by NPR3/4
during ETI [21] and the reports of NPR1 interactions
with the MYC2 TF in JA signaling [35] as well as the
EIN3 TF in ethylene signaling [36], provides additional
examples for how plants could use a handful of hor-

mones and their limited number of receptors and TFs to
generate a myriad of regulatory activities through cross-
talks, an important layer of regulation that has yet to be
systemically studied (Figure 4).

In summary, different facets of NPR proteins have been
revealed through the recent cellular and structural
studies. In both the nucleus and the cytoplasm, NPR1,
which functions as a dimer, serves as a scaffolding plat-
form to organize large numbers of proteins in the form of
protein condensates for the regulation of gene tran-

scription and protein homeostasis. Since these phase-
separated membraneless entities have specific physical
and biochemical properties, new approaches will be
needed to further understand the functions of NPRs in
these biomolecular condensates.
www.sciencedirect.com
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Figure 3

Subcellular localization npr1sim3-GFP during ETI. The npr1sim3-GFP/npr1-2 transgenic plant was infected at the tip with Psm ES4326/AvrRpt2. At 24 hpi,
tissue was sampled from the cell death-survival boundary (diagram). GFP signal was collected across the boundary between dead and surviving regions
(dashed line). Enlargements from regions adjacent to and distant from the cell death zone (dashed rectangles) are shown in bottom panels. Scale
bar = 100 mm (top panel); 20 mm (bottom panels). Modified from Ref. [30].

Figure 4

Proposed model for the hormone signaling network in plants. Based on the recent studies of NPR functions highlighted in this review, together with
reports on other plant hormones, it is conceivable that a myriad of signaling diversity can be generated through combinatorial effects of interactions at the
levels of hormone (H) production [21]; hormone receptor (R) cross-reactions [21,45]; and cross-binding of hormone receptors with TFs (TF) [35,36].

Understanding functions of NPR1 and its paralogs Zhou et al. 5
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6 Biotic interactions
NPR1 has already been introduced into many crop
species to enhance resistance against a variety of path-
ogens in both laboratory and field settings [6,7]. A better
understanding of all its molecular functions will allow
broader use of NPR1 to engineer crops resilient against
both biotic and abiotic stresses without compro-
mising yield.
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