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1. Introduction
1.1. Background

An orthogonal set of vectors in R", that is a set of non-zero vectors with the property that every
pair of distinct vectors is mutually orthogonal, is linearly independent and therefore contains at
most n elements. Erddés asked the question of determining the maximum size of a set of almost
orthogonal vectors: a set of non-zero vectors with the property that among any three distinct
vectors, at least two are mutually orthogonal [14]. The union of two disjoint orthogonal sets is
an almost orthogonal set of size 2n. Rosenfeld, confirming a belief of Erdés, proved that 2n is the
maximum size of an almost orthogonal subset of R" [16]. Deaett gave a short and elegant proof of
Rosenfeld’s theorem [6], which has similarities with an argument of Pudlak [15]. Deaett also proved
that for dimension 4 and lower every almost orthogonal set of maximum size is the union of two
orthogonal sets; and provided examples in dimension 5 and higher of almost orthogonal sets of
maximum size that are not the union of two disjoint orthogonal sets.

In C", the existence of self-orthogonal vectors (like (1,i) € C?) changes the answer to both
questions. Even in dimension two, the span of (1, i) is an uncountable set of orthogonal vectors.
Deaett proved, however, that in C" equipped with the Hermitian inner product, the maximum
number of almost orthogonal vectors is 2n, generalising Rosenfeld’s theorem [6].
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Both questions have also been investigated over finite fields. The size of the largest orthogonal set
in (Z/(27))" was determined by Berlekamp [5] and the size of the largest orthogonal set in (Z/(pZ))"
for primes p was determined by Zame [23]. There are similarities in their methods. The question
Berlekamp answered is equivalent to solving another question of Erdds: determining the size of the
largest family of subsets of {1, 2, ..., n} with the property that every two distinct elements have
even intersection. Erdés’ question was solved independently by Graver [5,8].

A key to Berlekamp’s and Zame’s arguments is the existence of self-orthogonal vectors. Self-
orthogonal vectors exist over any finite field when the dimension is at least 3 or, in dimension 2,
when the order of the field is 2 or is congruent to 1 modulo 4. There are further intricacies when
working in vector spaces over finite fields. For example, as is detailed in the next subsection, in
dimension 6, the dot product is equivalent to the symmetric bilinear form (x,y) — x1y1 — X2y +
X3Y3—X4Y4+X5y5 —XsYs When the order of the field is congruent to 1 modulo 4, and to the symmetric
bilinear form (X, y) > x1¥1—X2Y2 +X3Y3 —X4Y4+Xs5Y5 +XsYs When the order of the field is congruent
to 3 modulo 4. The difference points to the fact that the largest orthogonal subspace has dimension
that depends on the order of the field [21]. In addition to this, expressing the dot product in these
equivalent ways has the advantage that it makes clear the existence of self-orthogonal vectors.

There does not seem to be a significant difference between studying the dot product and studying
any symmetric non-degenerate bilinear form and this is the approach taken in the literature
recently. Ahmadi and Mohammadian [1], using an argument similar to Berlekamp, determined the
size of the largest orthogonal set with respect to any non-degenerate symmetric bilinear form over
fields of odd order (see also [10,21]). Ahmadi and Mohammadian also made progress on the question
of determining the size of the largest almost orthogonal set with respect to any non-degenerate
symmetric bilinear form.

The main purpose of this paper is to determine the size of the largest almost orthogonal set with
respect to any bilinear form in any vector space over any sufficiently large finite field of odd order;
and also in (Z/(2Z))" for sufficiently large n. It is worth recording here that, unlike Rosenfeld’s and
Deaett’s theorems, it is not always the case that the size of the largest almost orthogonal set equals
twice the size of the largest orthogonal set. The (Z/(27Z))" question has a set system formulation
that can be thought of as an “almost” version of Berlekamp’s theorem: determine the size of the
largest family of subsets of {1, 2, ..., n} with the property that among every three distinct elements,
at least two have even intersection. We show that the size of the largest family almost doubles. We
also investigate the finite field analogue of another question that Erdds asked for Euclidean space:
determine the maximum size of subsets of R" with the property that among any k of their elements,
at least two are mutually orthogonal [4,7].

1.2. Notation and definitions

Throughout the paper, we use m and n to be positive integers, p a prime and g = p™. We also use
Fq to denote a finite field of order q and write F; = Fq \ {0}. A bilinear form over Fy is a mapping
B : Fg x Fg — Fg, which takes the form

B(x,y) = x"Ay, for all x,y € F",

for some n x n matrix A over F,. We say B is symmetric if A is a symmetric matrix and say B is
degenerate if det(A) = 0. We call two bilinear forms equivalent if their corresponding matrices are
equivalent (A, B are equivalent if A= MTBM for an invertible matrix M).

Fix a non-square element y € Fy and let k = | 7 ]. For any bilinear form B over Fy, with associated
matrix A, we define

0, if det(A) =0;

1, if kis even and det(A) is a non-zero square, or
e(B) = if k is odd and — det(A) is a non-zero square;
y, if kis even and det(A) is a non-square, or

if k is odd and — det(A) is a non-square.
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For odd g, by a result in [9, p. 79], which also appears as [1, Theorem 1], any non-degenerate
symmetric bilinear form, B, over Fy is equivalent to the form

(®,¥) > X1y1 — X2Y2 + -+ + Xn—2Vn—2 — Xn—1Yn—1 + &(B)XnYn (1)
for odd n and is equivalent to the form
(X,¥) = X1y1 —X2Y2 + -+ + Xn3Yn-3 — Xn—2Yn—2 + Xn—1Yn—1 — €(B)XnYn (2)
for even n, where X = (x1,...,x,)andy = (y1, ..., ¥n).
Given finite-dimensional vector spaces V; and V, over Fy, with n; = dim(V;) for i = 1,2,
we define the direct sum V; & V, to be the vector space V; x V,, which may be identified by
Fy' ™. Furthermore, if M; and M, are matrices corresponding to bilinear forms over Fy' and Fy?

respectively, we define the matrix M; & M, by

M; 0
M @& M, = o M)
2
ni+ny

which gives rise to a bilinear form over Fg' ™.

For ¢ = 2, one can infer from (5) in [12, p. 7] that every non-degenerate symmetric bilinear
form in odd dimension is equivalent to the dot product that arises from the n x n identity matrix I,,.
In even dimensions every non-degenerate symmetric bilinear form is either equivalent to the dot
product or to the hyperbolic form H that arises from the matrix H & - - - & H, where

0 1
H = .

1 0
Definition 1.1. We refer to two vectors vy, v € IFg \ {0} as mutually orthogonal if B(vq, v3) = 0. If
vE ]FZ \ {0}, satisfies B(v, v) = 0, we refer to it as self-orthogonal. We call a subset S C IFZ \ {0} an
orthogonal set if every distinct pair of elements of S are mutually orthogonal and we say S C Fg\ {0}
is (k, )-orthogonal if for any k vectors in S at least [ of them are pairwise mutually orthogonal.
Furthermore, we call a subspace V C Fy an orthogonal subspace if V \ {0} is an orthogonal set. We

denote by Sy = Ski(q, n, B) the maximum size of any (k, I)-orthogonal subset of Fy with respect
to B.

Given a set X C [Fg, we use (X) to denote the subspace of Fy generated by X and write

(v1, ..., v), instead of ({vq, ..., v}). We also define the orthogonal complement of X by X+ = {v
Iy : B(v, x) = 0 for all ¥ € X}, which constitutes a subspace of Fy.
Finally, for sets S, Sy, ..., Sk, where k > 2, we write S = S; U S, U --- U S, to mean firstly that

S=5USU---US,and secondly that S; N S; =@ for 1 <i<j<k
1.3. Previous results for almost orthogonal sets

In [1, Examples 12-15], explicit examples of (3, 2)-orthogonal sets are provided for odd g,
showing that

2an_l, if n is odd and ¢(B) = 1,
n—1

2g 2 —q+1, ifnisodd and &(B) = y;

S32(q,n, B) > n o (3)
2q2 —q—1, if nis even and ¢(B) = 1;
2q2 ' +2, if n is even and &(B) = y.

The examples also work for g = 2, showing that

2%71, if n is odd;

S32(2,1, ) = o (4)
2271 — 3 ifnis even.
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The authors further conjectured, in [1, Conjectures 11 and 16], that the inequalities in (3) and
(4) could be replaced by equalities and outlinedna proof, in [1, Theorem 17], that for all n and either
choices (1) and (2) of bilinear forms, S5, < 3q'27.

1.4. Improved lower bounds on Ss ;

We proceed to present examples of (3, 2)-orthogonal subsets of F” for odd g that have slightly
more elements than the examples given in (3). Theorem 2.1, which 1s stated in the next section,
shows that the examples described below are of maximum size. We denote by {eq, ..., e,} the
standard basis of [Fy.

Example 1.2. Let g be odd and n = 2k + 1 > 3 and B satisfy ¢(B) € {1, y}. Consider the two
mutually disjoint orthogonal sets

S1=({(x1. X1, .., Xks Xk, 0) 1 X1, .., Xk € Fo} \ {0}) LU {en—2 + en_1 + €}
and
So = ({(x1, =X1, ... Xk, =Xk, 0) 1 X1, ..., X € Fg} \ {0}) U {en—» — en_1 — 25(B) ey}
Then, the set S = S; U'S, U {e,} is a (3, 2)-orthogonal set of size 2¢X + 1 = 2q"""V/2 + 1.
Example 1.3. Let g be odd and n = 2k > 2 and B satisfy ¢(B) = 1. Consider the two mutually
disjoint orthogonal sets
St ={(X1, X1, ..., Xp, X)) 1 X1, ..., Xk € Fg} \ {0}
and
Sy = {(X1, =X1, ..., Xk, =Xk) 1 X1, ..., Xk € Fg} \ {0}
Then, the set S = S; LS, is a (3, 2)-orthogonal set of size 2¢* — 2 = 2¢"/% — 2.
Example 1.4. Let g be congruent to 3 modulo 4 and n = 2k > 4 and B satisfy ¢(B) = —1 (—1 is
not a square). Consider the three pairwise disjoint orthogonal sets
S1= ({(x1, %1, .-, Xkm1, Xk=1, 0, 0) 1 X1, ... X1 € F} \ {0}) Ui {ens + e,z + e + e,
e3+er+e 1 — e}
and
Sy = ({(x1, —=X1, -+ X1, —X4-1,0,0) 1 X1, ... X1 € F} \ {0}) Li{en—3 —en — €1 — ey,
€3 — €y — e 1+e},
and
S3 ={en—1+en, en1 —en}.

Then, the set S = S; LS, LI S5 is a (3, 2)-orthogonal set of size 2q*~' + 4 = 2¢"/?~1 + 4. For n = 2,
{eq, 2eq, €5, 2e,} is a (3, 2)-orthogonal set of size 4.

Next, we provide examples for ¢ = 2. Theorem 2.2 shows they are of maximum size. The
following example is obtained by adding a single element to the example given by [1, Example 12].
Example 1.5. Letn = 2k + 1 > 3 and B denote the dot product in F}. Consider the disjoint
orthogonal sets

S1=({(0, %1, X1 ..., X, X) 1 X1, ..., X € Fa} \ {0}) U {eq}
and
So = ({(x1, %1, .., Xk, Xk, 0) 1 X1, ..., X € Fo} \ {0}) U {ey).
Then, the set S = S;uS, L{e; +e,+---+e,} is a (3, 2)-orthogonal set of size 2k+1 41 = 2("+1/2 4 1,
4
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The example below is the same as [1, Example 14].

Example 1.6. Let n = 2k > 2 and 5 denote the dot product in F’. Consider the disjoint orthogonal

sets
S1=1{(X1, X1, -+, Xk, X)) T X1, ..., Xk € Fa} \ {0}
and
So = {(Xk, X1, X1, -+, Xk—1, Xk—1, Xk) © X1, - .., X € Fo} \ {0}.
Then, noting (1, 1,...,1, 1) € S N S, it follows that the set S = S; U S, is a (3, 2)-orthogonal set

of size 2kt1 — 3 = pn/2+1 _ 3

Our final example concerns the hyperbolic form.

Example 1.7. Let n = 2k > 2 and #H denote the hyperbolic form in F}. Consider the disjoint
orthogonal sets

S] = (e]9e3’ eSa AR e2k71> \ {0}

and

52 = <e29 e4’ eﬁa ey ezk) \ {0}

It follows that the set S = S; US, is a (3, 2)-orthogonal set of size 2k+1 — 2 = 2%/2+1 _ 3,
2. Main results

Our first main result is an upper bound on the size of (3, 2)-orthogonal sets for odd q.

Theorem 2.1. Let n > 0 be an integer and q > 7 be an odd prime power. If S C Fy is (3, 2)-orthogonal
with respect to a non-degenerate symmetric bilinear form B, then

2qn% + 1, ifnisodd,

2q2 —2, ifni — 1.
S| < qz , ifnisevenand ¢(B)=1;

n

2q27' 44, ifn>4isevenand ¢(B) = y;

4, ifn=2 and e(B) = y.

Combined with Examples 1.2, 1.3, and 1.4, Theorem 2.1 establishes the value of S, for all n,
sufficiently large g, and B:

Zq%—i—l, if n > 3 is odd;

Zq% -2, if n > 2 is even and ¢(B) = 1;
33,2(51’ n, B) = n_q . .

2q27 "' +4, ifn>4isevenand &(B) = y;

4, ifn=2 and ¢(B) = y.

In contrast to the Euclidean space R", S;, is sometimes larger than twice the size of the largest
orthogonal set (specifically when n > 3 is odd or when n > 4 is even and &¢(B) = y). See [1] or
Lemma 3.3 for the size of the largest orthogonal set for the various possibilities of n, g, and B.

The proof of Theorem 2.1 relies on the framework developed by Ahmadi and Mohammadian [1].
It also has similarities with the work of Berlekamp [5] and the paper of Deaett [6]. In Section 5 we
present a different argument for even n with ¢(B) = 1 that is based on character sum estimates.
The proof in Section 5 works for all odd g.

We also answer the corresponding question for g = 2.

5
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Theorem 2.2. Let n be an integer. If S C F} is a (3, 2)-orthogonal with respect to the dot product,
then
n+1

5| < 22 +1, if n>21isodd,
|22t =3, if n> 18 is even.

For even n > 2 and S C I}, be (3, 2)-orthogonal with respect to the hyperbolic form H,
IS| <22t — 2.

Combined with Examples 1.5, 1.6, and 1.7, Theorem 2.2 establishes the value of S3, for all

sufficiently large n:
2nzj+1, ifn>21lisodd and B = -;
S32(2,n,B)=122"1—3, ifn>18isevenand B =-;
2212, ifn>2isevenand B = #.

As highlighted in [ 1], the quantity S3 »(2, n, -) may be interpreted as the size of a maximally large
family 7 of non-empty subsets of an n-element set such that among every three distinct elements
of F, there is a pair of sets whose intersection is of even cardinality. The values above confirm
[1, Conjecture 16] of Ahmadi and Mohammadian for sufficiently large, even n. Although, for odd n,
we have shown that the relevant value is larger by one than what was conjectured. The sufficiently
large n assumption cannot be removed, see Remark 6.7.

We also prove an upper bound for Sk (g, n, B). This is the finite field analogue of another
question of Erdés [4,7].

Theorem 2.3. Let q be an odd prime power and k > 2 be an integer. Suppose that S C Fy \ {0} is
(k, 2)-orthogonal with respect to a non-degenerate symmetric bilinear form B. Then

(k —1)? n/2
- 1).
qg—k+1 (@ +1)
Theorem 2.3 implies

Sk2 < (k=14 0g0e(1))q"?,

which is asymptotically sharp in some cases. For example for odd q, k = n = 4 and &(B) = 1 the
union of the following three pairwise disjoint orthogonal sets has size 3(q*> — 1):

|S|§<k—1+

St ={(x1,X1, X2, X2) : X1, X € Fg} \ {0}
and

Sy = {(x1, X1, X2, —X2) : X1, X € Fg} \ {0}
and

S3 = {(X1, X2, X2, —X1) : X1, X2 € Fg} \ {0}.
2.1. Outline of the proofs of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on an inductive scheme developed by Ahmadi and
Mohammadian [1]. To outline the argument let us denote by d,, = d,(q, B) the dimension of the
largest orthogonal subspace of Iy with respect to a non-degenerate symmetric bilinear form 5. Both
theorems take the form

83,2(q’ n, B) = qu" +f(qs n, B)v (5)

where f(q,n, B) € {—3, —2, 1, 4}. We show this by proving by induction a weaker statement of
the form Ss5(q, n, B) < (2 + o(1))g™. Note here that the o(1) term is for ¢ — oo for odd q and

6
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n — oo for g = 2. A technical difficulty in carrying out the induction is that one must ensure that
the restriction of B to the orthogonal complement considered is non-degenerate.

The inductive argument that proves the weaker bound is based on the basic observation that
for every v € S, the set of elements in S \ {v} not orthogonal to v constitute an orthogonal set.
The structure of orthogonal sets has been determined by Berlekamp, and Ahmadi and Mohamma-
dian [1,5]. A key feature is that they contain few elements not in a single orthogonal subspace. We
make repeated use of this fact. The second basic fact we use to our advantage for large odd q is that
a proper subspace of a vector space is significantly smaller than the vector space.

Once the weak bound has been established, it is used to determine f(q, n, B). It is at this point
that different arguments must be used according to (q, nn, B). The key observation, implicit in the
literature, is that if an orthogonal set contains just a few elements that are not self-orthogonal, then
it is much smaller than ¢ (for large q).

For g = 2, which is not large, slightly different arguments are utilised. The basic fact that drives
the proof is that, unlike for odd g, the set of vectors not orthogonal to any v contains at most half
of any orthogonal subspace.

The proofs of Theorems 2.1 and 2.2 probably yield a characterisation of nearly extremal sets:
they are mostly contained in two disjoint orthogonal subspaces of maximum dimension.

3. Preparations

We begin with some basic facts about Ramsey numbers. Given positive integers s, t the Ramsey
number R(s, t) is the least integer with the property that every graph on R(s, t) vertices either
contains a K; or the complement of the graph contains a K;. We will use the following bounds:

s+t—2

R(3,3) = 6, R(3,4) = 9, R(s, ) s( o ) (6)
S J—

The connection between Ramsey numbers and almost orthogonal sets goes back to at least the paper

of Deaett [6]. A connection with other similar questions of Erd6s is detailed in [14]. We deduce the

following elementary observation concerning graphs.

Lemma 3.1. A triangle-free graph with the property that its complement is also triangle-free is either
the 5-cycle or has at most 4 vertices.

Proof. We denote by H the graph. Its order is at most R(3,3) — 1 = 5 (by (6)).

Suppose now that the order of H is 5. Note that H does not have a vertex of degree at least 3.
This is because if such a vertex existed, then either two of its neighbours would be connected by an
edge, giving rise to a triangle; or none of its neighbours would be connected by an edge, giving a
triangle in the complement. Similarly, the complement has no edge of degree at least 3. Therefore all
vertices of the graph have degree 2. Finite graphs of constant degree 2 contain a cycle. The graph
H has no 3-cycle. It does not contain a 4-cycle (the fifth vertex would be isolated). Therefore it
contains a 5-cycle, which is the entire graph. O

We proceed with results concerning orthogonal sets. The most important is a structural charac-
terisation of orthogonal sets which we take from [1, Lemma 3] - see also [5] for g = 2.

Lemma 3.2. Let B denote a non-degenerate, symmetric bilinear form over Fy, where q is a prime
power and n > 2. Suppose that S C Fy is an orthogonal set. Then, there exist an orthogonal subspace
V C {x € IFZ : B(x,%) = 0}andasetT = {x € S : B(x,x) # 0}, such that S ¢ VuT and
2dim(V)+ |T| <n.

Next, we recall [1, Theorem 4], which relying mainly on Lemma 3.2, obtains the following sharp
bound on orthogonal sets. We note that in [1] S;.2(q, n, B) is denoted by Sy(q, n).

7
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Lemma 3.3. For n > 2 and a prime power q > 3, let B denote a non-degenerate symmetric bilinear
form over Fg. Then

q%, if nis odd;
S202(q,1n,B) = {q2 — 1, if nis even and e(B) = 1,
q%_1 4+ 1, ifnisevenand e(B)=y.

An analogue of Lemma 3.3, for ¢ = 2, was earlier proved by Berlekamp [5]. Also see [8].

Lemma 3.4.
n, ifn <5;
Spa(2,m, )= 31427, ifnis odd and n > 7;
2%, if nis even and n > 6.
The following corollary is central to our considerations.

Lemma 3.5. For n > 2 and a prime power q, let S C Fy be a (3, 2)-orthogonal set with respect to a
non-degenerate symmetric bilinear form B over Fy. For s € S, define

Ss={xeS\{s}: B(x,s)#0}. (7)
If |Ss| > 2, then Ss is an orthogonal set. In particular, we may write for all s € S
Ss = Rs U Ty,

where Ts = {x € 55 : B(x,X) # 0} and (Rs) = Vs, an orthogonal subspace of Fy, that contains only
self-orthogonal vectors.

Proof. Given two distinct vectors X1, X, € Ss, by the (3, 2)-orthogonality of S, two of {xq, X3, s}
must be mutually orthogonal. Thus, given the definition of S5, we must have B(xq, x;) = 0. The rest
follows from Lemma 3.2 or is immediate when |Sg| < 1. O

We also collect some basic facts about orthogonal subspaces as follows.

Lemma 3.6. Let V C Iy denote an orthogonal subspace with at least three elements.

(i) Every vector in V is self-orthogonal.
(ii) Suppose that V is of maximum dimension and V. = (R) for some R C Fy. Ifz ¢ Visa
self-orthogonal vector, then z is not orthogonal to R.

Proof. For the first statement, let ¥ be any element of V and y some other element of V. It follows
that x+y € V \ {x} and so
0=B8Bxx+y)=Bx x)+ Bx,y) = B(x,x).

For the second statement, we have B(z,z) = 0. Suppose for a contradiction that z L R. Then
z 1 V. Note that by the first part, for all A, u € F; and X,y € V we have

B(Az + X, uz +y) = auB(z,z) + AB(z,y) + nB(z, x) + B(x,y) = 0.
Hence ({z} UR) is an orthogonal subspace that strictly contains V, a contradiction. O

The next result forms the basis of the induction argument in the proof of Theorem 2.1. The
key is to show that if we restrict B to a certain type of orthogonal complement, then it remains
non-degenerate; and that, under a further condition, the equivalence class of B is conserved.

Lemma 3.7. Let n > 2, B be a non-degenerate symmetric bilinear form over Fy, and {v, w} C Fy be
linearly independent.
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(i) If
B(v, w)2 % B(v, v)B(w, w),

then the restriction B Iy, ,,1 of B to the orthogonal complement of {v, w}, is a non-degenerate
symmetric bilinear form.

(ii) If q is odd, v and w are not mutually orthogonal, and w is self-orthogonal (that is B(v, w) # 0
and B(w, w) = 0), then &(B [, L) = &(B).

(iii) If g = 2, nis even, v and w are not mutually orthogonal, and both v, w are self-orthogonal (that
is B(v, w) # 0 and B(v, v) = B(w, w) = 0), then B is equivalent to H if and only if B I, 41 is
equivalent to H.

Proof. Throughout the proof we write
a=B(v,v),b=DBv,w),c=B8Bw,w).

For (i), we first show (v, w) N {v, w}* = {0} and therefore that F; = (v, w) & {v, w}*. Suppose
A+ uw € {v, w}t. Applying B(v, —) and then B(w, —) to both sides gives the linear system

ra+pb=0
Ab+puc=0"

It follows that A = p = 0 because ac # b?.

We write M; for the matrix of B [, ,, with respect to the basis {v, w}, M, for the matrix of
B [(y.py- With respect to any basis, and M for the matrix of B with respect to the union of these
two bases, then

My O
M = .
0 M

It follows immediately that if B is non-degenerate, then so is B [, ;.-
For (ii), we have b # 0 and ¢ = 0. We show

M_ab 1 0
'“\b o 0 —1)°

which proves &(B [, 1) = &(B).

Let «, 8, v be solutions to a? —y? = a and B(a —y) = b. Such «, y exist because every element
of Fy is the difference of two squares. The characteristic is not 2, so we can always take o # y
(even when a = 0). Then there exists a suitable 8. Now a simple calculation confirms

G266 DG )=6 o)

y B8) \0 —1)\y B} \Bla-y) 0 ~\b o)’
o p

and det 8 =pBa—y)=b#0.

14
For (iii), we have b = 1 and a = ¢ = 0. Therefore M; = H. So B is equivalent to  if and only if

B [(ywyL IS equivalent to H. O

Remark 3.8. The condition in part (i) of Lemma 3.7 is necessary. Take, for example, n = 4 and
B the bilinear form given by the diagonal matrix with diagonal entries (1, —1, 1, —1). B is the dot
product when q = 2. Take v = (1,0, 0,0) and w = (1, 1, 1, 0). These are two linearly independent
vectors with the numbers a, b, ¢ defined in the proof of the lemma all equal to 1. Hence ac = b?.
It is not true that (v, w) trivially intersects {v, w}* because the span of w — v = (0, 1, 1, 0) lies in
both subspaces. Furthermore, B restricted to {v, w}* is degenerate because w — v is orthogonal to
both w — v and (0, 0, 0, 1), which span {v, w}*.
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The next step is to bound the number of vectors in any (3, 2)-orthogonal subset in Fy that are
not self-orthogonal. It may be true that, analogously to the results of Rosenfeld and Deaett [6,16],
there are at most 2n such vectors. We prove a weaker result that suffices for our purposes. As part
of the proof, we require a straightforward adaptation of [6, Proposition 4.4], which we state. The
proof is nearly identical to that in [6].

Lemma 3.9. Let n > 1 be a positive integer, F be a field, and S C F" be a (3, 2)-orthogonal set with
respect to a symmetric bilinear form. If B C S is an orthogonal basis for F", then S \ B is an orthogonal
set.

We state and prove another result that is implicit in [6, Section 4]. It is convenient to phrase
many of the subsequent arguments in terms of the simple graph G with vertex set S and edges
given by pairs of elements of S that are not mutually orthogonal (xy is an edge precisely when

B(x,y) # 0).

Lemma 3.10. Let n > 1 be a positive integer, F a field, and D C F" be a (3, 2)-orthogonal set with
respect to a symmetric bilinear form. If D consists entirely of vectors that are not self-orthogonal, then

© |2n, fo<n<4

Proof. We use the graph G described just above the statement of the lemma. The claim is true
for n = 0. For n > 1 we observe that an independent set of vertices is an orthogonal set in F"
and so is linearly independent (we need here that all vectors in D are not self-orthogonal). If G
has an independent set B of size n, then that set is linearly independent and therefore is a basis
for F". By Lemma 3.9 we get that D \ B is orthogonal and hence contains at most n elements.
Hence |D| = |B| 4+ |D \ B| < 2n. If G, which is triangle-free, has no independent set of size n, then
|ID| < R(3, n), by the definition of R(3, n). O

Note that by work of Ajtai, Komlés and Szemerédi, and of Kim [2,11]

2
R(37 Tl) = (1 + 0n—>oo(1))

logn’

with stronger explicit upper bounds in [17]. This means that |D| = o(n?).
We also extract this consequence of Lemma 3.2 and Lemma 3.9 from the proof of [ 1, Theorem 17].

Lemma 3.11. LetS C F} be a (3, 2)-orthogonal set with respect to a non-degenerate symmetric bilinear
form B. If every pair of linearly independent vectors in S is mutually orthogonal (that is B(x,y) = 0 for
every linearly independent {v, w} C S), then |S| < S;2(q, n, B) + n.

As the final result of this section, we recall [1, Theorem 17], which is a quantitatively weaker
version of Theorem 2.1. We will use this result in Section 5 and so provide a proof which follows the
same scheme as that introduced in [1], while paying special attention to certain intricacies involved
in carrying out the induction. In particular, the proof relies on Lemma 3.7 to sidestep a potential
issue that appears to have been overlooked in the original proof of [1, Theorem 17]. It also serves
as a prelude to the proof of Theorem 2.1.

We employ for the first of many times a decomposition of a (3, 2)-orthogonal set S that appears
in [1], and so we describe it in detail. Given two distinct elements X,y € S, every element of S\ {x, y}
is either not orthogonal to X, or not orthogonal to y, or orthogonal to both x# and y. Using the notation
of Lemma 3.5 we decompose S as follows

S =S5y USy USy U {x,y}, (8)

where Sy and S, are defined in (7) and Sy, = SN{x, y}*. Note that {x, y} can be left out if B(x,y) # 0
because ¥ € Sy and vice versa. When bounding |Syy| by induction it is essential that B [, 1 is
non-degenerate.

10
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Proposition 3.12. Let q be odd and let B be a non-degenerate symmetric bilinear form over Fy. If
S C Fg\ {0} is (3, 2)-orthogonal, then

S| < 3¢'3/.

Proof. We proceed by induction on n. Note that the result is true for n € {0, 1} because |S| < 2
and assume it is also true for all dimensions strictly less than n.

If every linearly independent pair of vectors in S is mutually orthogonal, by Lemmas 3.11 and
3.3, we have

IS| < S22(q, n, B) +n < 2¢'3),

Hence suppose there exists a linearly independent pair {x,y} C S, with B(x,y) # 0. If at least
one of these vectors is self-orthogonal, by Lemma 3.7 (i), B [, 1 is non-degenerate. Recalling the
decomposition (8) and noting that x € Sy and y € S, we have

ISI =< ISkl + ISyl + [Sxy |-

Since x and y are linearly independent, {x,y}* constitutes a subspace of Iy of dimension n — 2.
Then, using that Sy, C {x,y}+, for n € {2, 3} we have ISsy| < ¢"* < q and for n > 4 we have
[Sxy| < 3qL%J_1 by the induction hypothesis. Furthermore, by Lemma 3.3 and Lemma 3.5, we have
ISk, ISy < qL%J. Adding this all up, we obtain the required result in this case.

Next, suppose that neither x nor y is self-orthogonal and note that in this case, we may no longer
assume B [, 1 is non-degenerate (see Remark 3.8). If every pair of elements of Sy, is mutually

orthogonal, by Lemma 3.3, we have [Syy| < qL%J and the required result follows. Hence suppose
there exist v, w € Syy, with B(v, w) # 0. Again, if at least one of {v, w} is self-orthogonal, we may
repeat the arguments of the first case to obtain the required result. Thus assume otherwise. Consider
the decomposition

S =5, US, U Sy U {x, v}. 9)

By Lemma 3.7 (i), B [y 4+ is non-degenerate. Employing the notation of Lemma 3.5, note thaty € Ty
and w € T,. Suppose there exists z € R,, with B(y, z) # 0. Then by Lemma 3.7 (i), B [ ;1 is non-
degenerate and we may repeat the arguments of the first case, with z in place of x, to obtain the
required result. Otherwise, if y is orthogonal to R,, it follows that R, LI {y, w} is an orthogonal set,
which by Lemma 3.2, implies that dim(V,) < [n/2] — 1. By a similar argument, we may assume
Ry U {y, w} is an orthogonal set and that dim(Vy) < [n/2] — 1. Furthermore note that w € S, and
so w ¢ Sy and similarly y ¢ S,.

For n € {2, 3}, by Lemma 3.2 and the above observations, we have |S, US,| < 2n — 2 and
|Sx»| < q. Thus going back to (9), we get |S| < 2n + q < 3q as required. For n > 4, we may again
use Lemma 3.2 to see |Sy US,| < 2(q'"?)=1 + 3) — 2. Then

S| < (2q"2 1 +4) + 3¢l T 2
=5q¢"2-1 16
< 3an/2J’

foralln>4andq>3. O

4. Proof of Theorem 2.1

We set
1l ifn>3is odd;
dy =135, if n> 2 iseven and ¢(B) = 1;
53— 1, ifn>2isevenand &(B) = y.

11
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It was proved in [21] that d, is the dimension of the largest orthogonal subspace of Iy, (also follows
from Lemma 3.2). Note that d,_, = d, — 1.

We proceed by induction on n. For n = 0 and n = 1 the size of the largest (3, 2)-orthogonal set
is at most 2, and the theorem follows.

We will show that either [S| < g% + 0(q% ") or that S possesses certain properties that make
proving the theorem a matter of case analysis. For sufficiently large q the former upper bound is
smaller than the one in the theorem.

We phrase the argument in terms of the graph G with vertex set S and two vectors adjacent
precisely when they are not mutually orthogonal. The two properties of G we use is that it is triangle
free (follows from S being (3, 2)-orthogonal) and the largest independent set in G having size at
most S, »(q, n, B) (because an independent set is an orthogonal subset of IF;). We will also use the
fact that every orthogonal set in Fy has size at most S;2(q, n, B), a quantity that is determined in
Lemma 3.3.

By Lemma 3.11 we may assume from now on the existence of linearly independent {v, w} C S
with vw an edge (that is B(v, w) # 0). This is because n < g% — 2 for all n > 2 when q > 5. We
decompose S in the neighbourhood S, of v, the neighbourhood S,, of w, and the set of vertices S,,,
that are not adjacent to either v or w:

S =S, USy U Sy,

where S,, C {v, w}*. We follow the set up of Lemma 3.5 and decompose S, = R, LI T, with R,
spanning the orthogonal vector space V,,.

When n = 2 we get that S,,, is a subset of a zero dimensional vector space that does not include
0 and so is empty. Since both S, and S,, are orthogonal sets, we get |S| < 2S,.,(q, 2, B). This proves
the theorem for n = 2.

For n > 3 we have to be more careful when dealing with S,,,. We need the following to be able
to apply the second part of Lemma 3.7.

Lemma 4.1. Forn > 3, let S C Fy be a (3, 2)-orthogonal set with respect to a non-degenerate
symmetric bilinear form B. If every pair of linearly independent self-orthogonal vectors in S is orthogonal
to one another (that is B(x,y) = O for all linearly independent self-orthogonal x,y € S), then

5| < {Sz,z(q, n, B)+ 2n, ifo<n<4

S2.2(q,n, B) + @ -1, ifn>5.

Proof. Let D be the set of vectors in S, which are not self-orthogonal:
D={xeS:B(x, x)#0}.

By the hypothesis on S we have that S \ D is an orthogonal set. Hence |S \ D| < S;.(q, n, B). The
claim follows by bounding |D| via Lemma 3.10. O

The upper bound on |S| in Lemma 4.1 is smaller than the bound in Theorem 2.1 for n > 3
when g > 5. From now on we assume the existence of linearly independent vectors {v, w} that are
self-orthogonal but are not mutually orthogonal:

B(v, v) = B(w, w) = 0, but B(v, w) # 0.

Recalling the definition of f = f(q, n, B) inferred from Theorem 2.1 and (5), we get from
Lemma 3.7 (ii)

|Sow| < 2q%2 4+ f = 2q" 1 4 f. (10)

Therefore |S,,| is much smaller than the bound on |S| we are trying to prove. What drives the proof
is that if either V, or V,, is not of maximum dimension, then we are done. To see why, suppose V,

12
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is not of maximum dimension. Then using Lemma 3.2, Lemma 3.3, Lemma 3.5 and (10) we get
ISI < 1Sol + [Swl| + [Sywl
<@ +3)+ (@™ + 1)+ 2¢" " + )
=qh 43¢ T+ 4+f.

Since for g > 7 we have 3¢%~! 4+ 4 < g, we assume from now on dim(V,) = dim(V,) = d,.

One more property we need is that v € V,, and w € V,. To confirm, say the latter, note that
there is no edge from w to R, (because the graph is triangle-free). Therefore w 1L (R,) = V,. By
Lemma 3.6 (ii), and using the fact that w is self-orthogonal, we get w € V,,.

We summarise all this in a proposition.

Proposition 4.2. Let q > 7 be an odd prime power,n > 3 and S C ]FZ be a (3, 2)-orthogonal set with
respect to a non-degenerate symmetric bilinear form. Then |S| satisfies the upper bound of Theorem 2.1
unless there exist linearly independent self-orthogonal vectors v and w with dim(V,) = dim(V,,) = d,;
and v € V, and w € V,. In this case Sy, = S N {v, w}* satisfies |Syw| < 2q™~1 + f(q, n, B), with
f(q, n, B) inferred from Theorem 2.1 and (5).

The final preparatory result is that for the remaining S described in Proposition 4.2, R, is
considerably smaller than g% for all z € S,,. The proof is typical of forthcoming considerations.
The key observation is that if a subspace of a vector space does not contain a single element of the
vector space, then it is considerably smaller.

Lemma 4.3. Let q be an odd prime power and let S C IFZ be (3, 2)-orthogonal with respect to a
non-degenerate symmetric bilinear form B. Suppose {v, w} C S is a linearly independent subset that
consists of two self-orthogonal vectors that are not mutually orthogonal (that is B(v, v) = B(w, w) = 0,
but B(v, w) # 0). If z € Sy = S N {v, w}*, then

IRz| <3¢ ' —3.

Proof. We have
SC(Vu\{0})UT, U(Vy \ {0})UTy USyy.

By Lemma 3.5 we know that R, contains only self-orthogonal vectors and so is disjoint from T, U T,,.
Hence

|Rz| = (|Vv ﬁVzl - 1)+(|Vw ﬂVz| - 1)+ |Rz ﬁva|-

V, # V, because w € V, \ V,. Hence V, NV, is a proper subspace of V, and is therefore not of
maximum dimension. This means |V, NV,| < ¢%~'. Similarly |V, NV,| < g%~!. Moreover, note
that R,NS,,, is an orthogonal subset of {v, w}*, on which non-degeneracy and type of B is preserved
by Lemma 3.7 (ii). Thus by Lemma 3.2, we have |R; N Syp| < q%~! — 1. Putting everything together
gives the desired bound. O

We begin the final stage of the proof of the theorem. We assume we are in the remaining case
detailed in Proposition 4.2. Let

S:w = va \ (Vv ) Vw)'

We distinguish between two different cases.

Case 1: An edge exists between R, UR,, and S},,.

Suppose uz is an edge with z € S,,, and, say, u € R,. Our first claim is that {u, z} is linearly
independent. Indeed if z = Au, then we would have B(z, u) = AB(u, u) = 0, which contradicts uz
being an edge. Furthermore, u is self-orthogonal and so by Lemma 3.7 (ii) we get that B [, ;1 is
non-degenerate and ¢(B) is preserved.

We have

ISI < [Sul + IRz + Tz ] + [Suzl-
13
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We have the following bounds: by Lemma 3.3 and Lemma 3.5 |S,| < ¢% + 1; by Lemma 3.2
and Lemma 4.3 (and its proof), |R;| + |T;|] < 3¢%~! 4+ 1; and by induction, just like in (10),
Suz| < 2¢*™~' +f. In total

S| < g% +5¢™ " +2 4 f.

We are done because for ¢ > 7 and n > 3, 5q¢%~' 4+ 2 < q%.

Case 2: No edge exists between R, UR,, and S;,,.

There is no edge from S}, to R, and therefore S, is orthogonal to R,. It follows that S is
orthogonal to V, = (R,). Similarly, S}, is orthogonal to V,,. All vectors in T, U T,, U S,,, are not
self-orthogonal by Lemma 3.6 (ii) and dim(V,) being maximum. We use the decomposition

S C(Vu\{0}) U (Vy \ {0}) U (T, UTy U Syw). (11)
We consider the three different possibilities separately.

Even n > 4 and ¢(B) = 1. Our aim is to show that T, =T, = S}, = ¥. Then by (11)
IS < (IVal = D)+ (Vo] = 1) < 2(g" = 1) = 2¢"* - 2.

We may assume T, = T,, = @ else, by Lemma 3.2, V,, or V,, are not of maximum dimension, which is
not allowed by Proposition 4.2. To show that S}, = @, suppose for a contradiction that z € S, then

w’

V, U {z} would be an orthogonal set, forcing, via Lemma 3.2, V,, not to have maximum dimension.

Odd n > 3. We want to show |T,| + |Ty| + |S;,,| < 3. Then by (11)
ISI < (Val = 1)+ (Val = 1)+ 3 < 2% +1=2¢"""2 4 1.

For any distinct X,y € S}, Xy is an edge. This is because if xy were not an edge, then V, U {x, y}
would be an orthogonal set of size |V,| + 2, which, by Lemma 3.2, would force V, not to have
maximum dimension. Therefore the induced subgraph on S}, is complete and triangle-free. Hence
Sy, must have at most two vertices. Moreover, by Lemma 3.2, |T,|, |T,,| < 1 (else the subspaces do
not have maximum dimension). We are done unless |S;, | = |T, UTy| = 2. Suppose S;, = {x,y}
with xy an edge, and T, = {u}. The graph is triangle-free and so one of ux, uy is not an edge.
Suppose that ux is not an edge. Then V, U {u, x} is an orthogonal set, forcing V, not to be of maximal

dimension.

Even n > 4 and ¢(B) = y. We want to show |T,| + |Ty| + |S},| < 6. Then by (11)
|S| = (|Vv| - 1)+(|Vw| - 1) +6< 2qd“ 44 = 2q”/2_l + 4,

In fact, by Lemma 3.2 and Proposition 4.2, |T,,| < 2 and we must show [T,| + |S},| < 4.

Note that every vertex in T, US},, is orthogonal to R, and therefore is orthogonal to V,. Similarly,
Sy, is orthogonal to (V, UV,) =V, + V,,. Now consider the graph H induced on T, U S;,,. This is
a triangle-free graph. Moreover, it has no independent set of size 3 because otherwise we could
join this set to V, and obtain an orthogonal set of size |V,| + 3, which would force V, not to have
maximum dimension. By Lemma 3.1 we get |T, U S;,| < 5 with equality only when H is a 5-cycle.
Our final task is to rule out this possibility. Suppose for a contradiction that H is a 5-cycle.

We set T, = {uy,u} and S;, = {z1,23,23}. uqu, is not an edge (because both uy, u, are
incident to v) and so H can be taken to be the 5-cycle z u,z,u,z3. The complement of H is the
5-cycle z1z,z3uqu;. In the complement of H vertex adjacency is equivalent to orthogonality, and
so {z1,2,} C (V, + Vy)* is an orthogonal (and hence linearly independent) set in the orthogonal
complement of V, + V.

We make a small digression to investigate the dimension of V, + V,,. We may assume V,N\V,, =
{0}. This is because if the intersection is non-trivial, then

IS] < |(Vy U V) \ {0} + [Tyl + [T + IS5,1 < (2™ — q) 4+ 7 < 2q™ + 4,
14
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and we are done. We may therefore assume that dim(V, + V,,) = 2d,, = n — 2 and hence
]FZ = (Vv + Vw) > (21) S <22>-

To complete the argument we exploit the orthogonality relations encoded in the complement
of H and show that z3 = 0, the contradiction we are after. To start note that z3 € (zq, z5). As z3 is
orthogonal to z,, we get z3 = Az;. We are left to show A = 0.

We next show uq, u, € V, ® (z1, z5). Let us start with, say, the decomposition

U = oz +,37.2 + X, + Xy,

for o, B € Fy, X, € V,, and x,, € V,,. Suppose for a contradiction that x,, 7= 0. By Lemma 3.6 (ii)
and the maximality of dim(V,) we get that the self-orthogonal vector x,, is not orthogonal to V,.
Therefore there exists y € V, \ {0} such that B(x,,y) % 0. But then

B(uy,y) = B(xw,y) # 0,
a contradiction to u; being orthogonal to the whole of V,. We therefore have
U =0z, + fz; +x,and u, = o'z + f'z; +x,,.

Now, u; is orthogonal to z; and so 0 = «’B(z1, z1), which gives &’ = 0. Moreover u, ¢ V,, which
gives B’ # 0. Next, u, is orthogonal to u; and so 0 = 88'B(z;, z;). Hence 8 = 0 and, similarly to
above, u; = @z, +x, fora € IFZ Finally, u; is orthogonal to z3 = Az;. Hence 0 = \aB(z1, z1),
which implies the desired A = 0.

The graph H is therefore not a 5-cycle and consequently |T, U S}, | < 4. The proof of the theorem
is concluded.

5. Character sum proof of Theorem 2.1 for even n, ¢(3) = 1 and all odd q

First, we recall some basic facts from the theory of character sums, which we use to give
an alternative proof of Theorem 2.1 for even n and ¢(B) = 1 that holds for all odd g. See, for
example, [13, Chapter 5] for more details.

Lemma 5.1. Let H be a subgroup of a finite abelian group G and x a character of G, then

|H| if yx is trivial on H,

D xg)= .

otherwise.
geH

Let ep(x) = exp(2mix/p), Tr(x) = x +xP + --- + X (recalling g = p™) and ¥ (x) = ep(Tr(x)).
Then the functions {y/(Ax) : A € F;} determine all of the characters of Fj.

Lemma 5.2. Let B denote a non-degenerate, symmetric bilinear form over IFZ where q is odd and
n > 2. Let V denote a subspace of ]FZ Suppose that s & V. Then (B(s, —)) is a nontrivial character
of V.

The next result is a slight extension of Vinogradov’s bound on bilinear character sums, which
appears, for example, in [22, p. 92]. Also see [18, Lemma 5] for the special case, where B is the dot
product.

Lemma 5.3. Given X,Y C ]FZ we have

> Y w(sxy)| = VKT Vid"

xeX yeY

15
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Proof. We apply the triangle inequality and then the Cauchy-Schwarz inequality to get

ZZw(B(x,y))‘ =IXIY | 2w (s xy))‘

xeX yeY xeX ' yey

=X | 2 v(Bxy) 2

xeFg = yeY

=XI> > v(sy-2)

xelFg y.zeY

(
= X1 Y Y w(sxy -2)

y.zeY xe]Fg

=X Ylg".

To obtain the last equality, we used the fact that the inner sum in the penultimate line equals g"
if y = z and zero otherwise. This, in turn, follows from the observation that Fgl = {0}, combined
with Lemmas 5.1 and 5.2. O

Proof of Theorem 2.1 for even n and e(B) = 1

Firstly, replace S by S U {0}. This makes calculations easier. We will take away 0 at the end of
the proof. For s € S, write S; = {x € S : B(x, s) # 0}. Also write D = {x € S : B(x, X) # 0}. Recalling
(7), note that

> Isil = Issl + 1D

seS seS
Now

ISI2 = " 1Ssl — 1D = ISI> = ) IS¢l (12)

seS seS

=D D ws sl,sz»‘

S1€5 5€5\S5,

Here, we used just that for s; € Sand s, € S\ S;], we have (B(s1, s2)) = 1. By the triangle

inequality, we also have
DO w(B(si.s2)| +

> ) wss,

D0 w(Bs1, )

S1€S s, 65\5;1 NN s1€S szes;]
YO wBs )|+ | > Y w(Bsi.s2)| + DI
s1€S sp€S $1€S 52€5s4

Next, let W = {x € S : |S¢| > 2}. Then, using Lemmas 3.2 and 3.5, we have

Yo v <Y, > ws sl,sm‘ (13)

s1eW sy eSs s1eW spe Vs |_|Ts1

> D W(B(Shsz))‘-

$1€W s3€(Vsy UTs; )\Ssy

To bound the first sum, on the RHS of (13), we first apply the triangle inequality to obtain

o) wBEsLa)| | D] D wBsLs))|+| D> Y v(Bs, )|

S1EW sp€(Vsy UTs,) S1EW s3€Vs, S1EW 53€Ty,

16



A. Mohammadi and G. Petridis European Journal of Combinatorics 103 (2022) 103515

Note that for s € W, it follows from the definition of V; (see Lemma 3.5) that s ¢ V.. Thus,
by Lemma 5.2, ¥(B(s, —)) constitutes a character of F; which is nontrivial on the subspace V.
Consequently, by Lemma 5.1, we have

ZW(B(&X))=0 = Z Z Vv (B(s1,82)) = 0.

xeVs s1eW sy€Vsy
Then, based on this observation and applications of the triangle inequality, we obtain

YooY wBsLs)| =YY w(Bsi.5)

S1€EW sp€(Vsy UTsy) $1€W s,€Ts,

<Y | Y v(Bsh,5)

=<

s1eW SzETsl
<) ITl.
seW

The second sum, on the RHS of (13), is bounded trivially by
D Vel + [Tl — IS

sew
Going back to (12), we have

D0 w(Bs, Sz))‘ + ) Vsl 42T+ ) 21Sl.

s1€S speS seWw seS\W

IS|> < 2|D| +

By Lemma 5.3, we know

D v(Bls1, 52))

s1€S sp€S

< ISlg".

For s € W, write ks = dim(V;). Then by Lemma 3.2, we know |Vs| + 2|Ts| < ¢* + 2n — 4k, < q"/2.
Furthermore, for s € S \ W, we have 2|Ss| < ¢"/2. So adding it all up,

ISI” < 2IS1g"* + 2|D|.
At this stage we go back to the original S that does not include 0. The above becomes
2|D
|ﬂ§2fﬂ+L%%J—L (14)

Note that from (14), one can only deduce the bound |S| < 2¢"/? + 1. However, we proceed to
sharpen this bound through an analysis of the set D. Some aspects of the remaining arguments can
certainly be simplified if we are not aiming to prove the theorem for all q. To deal with some small
technicalities that follow, we require the bound

S| < 2(q — 1), (15)

for n = 2, all odd q and either scenarios ¢(B) € {1, y}. This bound has already been established as
the base case of the induction in the proof of Theorem 2.1." In particular, henceforth assume n > 4.
First we establish

S| <2¢"* -1, (16)

which follows from (14) if 2|D| < |S|. So suppose otherwise. Using the bound on |D| provided by
Lemma 3.10, we get |S| < 16 for n = 4 and |S| < n(n + 1) — 2 with both being better than (16) for
allg >3 and n > 4.

1 In the proof of Theorem 2.1, when applying Lemma 3.11, to avoid a lengthy multi-case analysis, it is assumed that
q > 3. However one may easily confirm that, for our purposes here, the argument remains valid when g = 3.
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It remains to show (16) may be lowered by one. To this end, we consider a few cases showing
that the assumption |S| = 2¢"/? — 1 leads to contradictions on either the size or the parity of |S|.
In particular, the following observations will be useful.

Claim 54. Let S C Fy, denote a maximal (3, 2)-orthogonal set. Then |S\ D| =0 (mod q — 1).

Proof. Each v € S\ D is self-orthogonal and so S must contain the entire punctured line [, = {Av :
A € FF7}, otherwise maximality of S is violated. The result follows noting that I, N I, is empty if
w ¢ I, and of size ¢ — 1 otherwise. O

Claim 5.5. At least one of the following statements holds.

(i) IS| < 2¢9"* -2,
(ii) D] =2,
(iii) |T,| < 1 for each v € S, where T, = DN S,.

Proof. We suppose that neither (ii) nor (iii) is true and prove (i). Thus, assume there exist v € S,
distinct elements wq, w, € D\ {v}, with B(v, w;) and B(v, w,) both non-zero, and potentially a
fourth element w3 € D, which need not be distinct from the previous ones. We consider two main
cases as to whether v is self-orthogonal or not.

First, assume B(v, v) # 0, which in particular implies v € T,,, N Ty, . By the (3, 2)-orthogonality
of S, we have B(wq, w;) = 0 and so firstly {wq, w,} is linearly independent and secondly by
Lemma 3.7 (i), B I{y, w,)+ is non-degenerate. Write

S = Sw, USw, USy,w, U{wy, wy}.
For (g, n) = (3, 4), by (15), we have

S| <2(@"* "+ 1) = 1+2(q-1D+2=13 < 16 = 2¢"? - 2.
For other admissible choices of (g, n), by Proposition 3.12, we have

IS <2(q"* "+ 1) = 143¢"* " +2=5¢"*" +3 <2¢"* - 2.

Next, assume B(v,v) = 0. In this case w3 ¢ {v, wi, wy}. We split this case further by
first assuming that ws is orthogonal to R, (using the notation of Lemma 3.5). This implies R, LI
{wq, wp, w3} is an orthogonal set. Further note that {w;, v} is linearly independent and that by
parts (i) and (ii) of Lemma 3.7, B [y, ,. is non-degenerate and its equivalence class is preserved.
Write

S =S, USy USu,v.
For (g, n) = (3, 4), by Lemma 3.2 and (15), we have
SI< (@2 = 1)+ (@2 +3)+2¢"*" —2=16 = 2¢"* - 2.
For the remaining combinations of (q, n), we use the bound (16) to get
S| < (V% = 1)+ (@V* 2 +3)+2¢"* ' — 1 < 2¢"* - 2.

Finally, suppose there exists some u € R,, such that B(ws, u) # 0. By definition B(u, u) = 0 and
B(u, v) # 0, from which we may deduce {u, v} is linearly independent and that by parts (i) and (ii)
of Lemma 3.7, B [y 4. is non-degenerate and its equivalence class is preserved. Write

S=SuUSvUSuv

and note that wq, wy € T, and w3 € Ty.
We use the bound (16) to get

ISI<2(g* "+ 1)+2¢"* " —1=4¢"""+1<2¢"* -2
foralloddgand n > 4. O
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Claim 5.6. Suppose that S C {z}*, where z € Iy is not self-orthogonal. Then
S| <3¢"* " <2¢"* -2,
forall n > 4 and odd q.

Proof. Since z is not self-orthogonal, the restriction of B on {z}* remains non-degenerate. Now,
using that S = S N {z}*, we may use Proposition 3.12, to obtain the required result. O

Writing Q = {v € S : v € (S \ {v})*}, note that
s=Js,ua.

ves

Now if z € DN Q, then S \ {z} C {z}*. Thus, by Claim 5.6, we have
S| < 1+3¢"*7" < 2¢"% -2,

for all n > 4 and odd q. In particular, we may assume

D= UT,,. (17)

vesS

Suppose |S| = 2q™? — 1. Note that, if [D| is even, by Claim 5.4 we must have that |S| is even

leading to a contradiction. Recalling Claim 5.5, if statement (ii) holds, we are done and so assume
statement (iii) is true. Let w € D and so, by (17), we have T, = {w} for some v € S. If v is self-
orthogonal, then firstly {v, w} is linearly independent and secondly by parts (i) and (ii) of Lemma 3.7,
B [(y )L is non-degenerate and its equivalence class is unchanged. We write

S=5USyUSw

and use Lemma 3.2 as before, being mindful of the crucial fact that S, contains exactly one
non-self-orthogonal element. For (q, n) = (3, 4), we have, by (15)

S| < @2 4+ (g2 = 1) +2¢"* ' —2=3¢"*"+¢"* -3 =15 < 16 = 2¢"% - 2.
For other combinations of (g, n), by (16), we have
|S| < qn/2—] 4 (qn/z _ 1) 4 zqn/z—] 1= 3q11/2—1 4 qn/2 -2 < zqn/z —2.

Both bounds above contradict the presumed size of S. Then, we must have that v is not self-
orthogonal. It follows that T,, = {v}, which in turn implies that elements of D occur in pairs. As
explained above, this contradicts the presumed parity of |S|, concluding the proof. O

6. Proof of Theorem 2.2

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1. The differences arise from having
characteristic 2 (the theory of bilinear forms is different) and not being able to assume that q is large
enough. We are however free to assume that n is large enough. A fact special to F} that we use is
that every two distinct non-zero vectors are linearly independent. In particular the requirement for
{v, w} to be linearly independent in Lemma 3.7 becomes redundant.

From now on we use the notation in Lemmas 3.2 and 3.5. The following simple inequality will
be useful. It is specific to FJ, is true for all nn, and is sharp.

Lemma 6.1. Forn > 2, let S C F} be a (3, 2)-orthogonal set with respect to a non-degenerate
symmetric bilinear form B. If v € S, then in the notation of Lemma 3.5, |R,| < |V,|/2.

Proof. Note that R, is disjoint from R, + R,. Indeed, if x,y € R,, then B(v,x) = B(v,y) = 1.
Therefore B(v,x +y) = 1+ 1 = 0. This means that x +y ¢ R,.

Now, V, is a vector space containing R,. Therefore R, and R, + R, are two disjoint sets contained
in V,. Hence

2[Ry| = [Ry| + [Ry + Ry| < [Vo|. O
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We derive a bound on |S,|.

Lemma 6.2. Forn > 2, let S C T} be a (3, 2)-orthogonal set with respect to a non-degenerate
symmetric bilinear form B. If v € S, then in the notation of Lemma 3.5:
e If B="- then
n, ifn<7,
1S, < {14221, if nis odd and n > 9;
2271 if nis even and n > 8.

e If B = and n is even, then |S,| <27~

Proof. We begin with B = -. By Lemma 3.5 and Lemma 6.1, we have
\4
2
By Lemma 3.2 we have dim(V,) < |(n — |Ty|)/2]. Setting t = |T,| we get

1So] < [Ry| + ITo| < + |Tol.

IS,| <2771 ¢,

A routine calculation confirms that, for n < 7, the right side is maximum when t = n. Otherwise,
the maximum is achieved when t = 1 for odd n and when t = 0 for even n.

. If B = H, there are no non-self-orthogonal vectors and so, similarly to above, |S,| < |V,|/2 <
2271 O

We first prove the theorem for the hyperbolic form #.

Proposition 6.3. Letn > 2 beevenand S C F} be a (3, 2)-orthogonal set with respect to the hyperbolic
form H. Then

IS| <22t — 2.

Proof. We prove the claim by induction. For n = 2, F3 \ {0} is not (3, 2)-orthogonal. So the claim
is true for n = 2.

For the inductive step, we may assume there exist linearly independent v, w such that v-w = 1.
If not, then S is an orthogonal set and by Lemma 3.2, we have the better bound |S| < 27 — 1. By
Lemma 3.7 (iii), H Iy, 4 is non-degenerate and is equivalent to # (in this lower dimensional vector
space). By the induction hypothesis we have

|va| = 2% -2
Hence by Lemma 6.2,
IS < 1Sol + ISw| + S| <227 ' +227 1422 —2)=22""'—-2. O

From now on we mainly restrict our attention to the dot product, though we will use Proposi-
tion 6.3 for even n because we sometimes use Lemma 3.7 (i) and the restriction of the dot product
may be equivalent to #. To prove the theorem we consider two cases separately depending on
whether S contains a vector that is not self-orthogonal or not. We first prove the theorem when all
vectors in S are self-orthogonal. The proof is similar to that of Proposition 6.3.

Proposition 6.4. Forn > 1, let S C F} be a (3, 2)-orthogonal set with respect to the dot product. If S
consists entirely of self-orthogonal vectors, then

5| < 2%1 — 2, ifnisodd,
~ |22t =3, ifniseven.
20
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Proof. We prove the claim by induction. For n = 1, |S| = 0. For n = 2, we have S C {(1, 1)} and
the claim follows.

For the inductive step, we may assume there exist linearly independent v, w such that v-w = 1.
If not, then S is an orthogonal set and by Lemma 3.4, we have a better bound on |S| than required.
Furthermore, by Lemma 3.7 (iii), the dot product restricted to {v, w}* is equivalent to the (lower
dimensional) dot product and S,,, contains only self-orthogonal vectors. For even n, by the induction
hypothesis we have

ISuw| <22 3.

All vectors in S are self-orthogonal and so T, = T,, = @. Therefore S, = R,. Lemma 6.1 gives
IRy < 257",

The same holds for w. Putting everything together gives
S| <2271 423714 (22 —3) =221 3,

For odd n, the induction hypothesis gives

Sowl <2'7 — 2.

Again T, = T, = ¥ and so by Lemma 6.2, we have
1Sul. 15wl < 2°7 7.

This gives
S| <27 1422 T4 (2T —2)=2"F —2,

as required. O

The next step is to prove a bound for all S that is weaker than that in Theorem 2.2. It will be
used to prove the theorem when S contains a vector that is not self-orthogonal.

Lemma 6.5. Forn > 1, let S C F} be a (3, 2)-orthogonal set with respect to a non-degenerate
symmetric bilinear form. Then

2" +2n — 2, ifn=1,3;

5| < 27 4 M) 3 ifn > 5 s odd;
2271 4 2n — 3, ifn=2,4;

25+ 4 n(n2+1) — 4, ifn>6iseven.

Proof. If the bilinear form is equivalent to H, the result follows from Proposition 6.3.

If the bilinear form is equivalent to the dot product, we let D C S be the collection of vectors in S
that are not self-orthogonal. The claim follows by applying Proposition 6.4 to S\ D and Lemma 3.10
toD. O

We continue with the case when there is a vector that is non-self-orthogonal. The proof is longer
because we cannot initiate the induction (for example, Remark 6.7 shows S3 (2,4, -) > 7 > 23 —3)
and because we can no longer assume, say, T, = .

Proposition 6.6. Let n be an integer and S C F}, be a (3, 2)-orthogonal with respect to the dot product.
If S contains a vector that is not self-orthogonal, then

2" 41, ifn>21is odd;
IS| <

221 — 3, ifn > 18 is even.
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Proof. We begin with familiar notation. We let G be the simple graph with vertex set S and edges
given by not mutually orthogonal pairs of vertices, and

D={veS:v-v=1}.

Even n. Let z € D. We consider two separate cases according to whether there exists an edge
between z and S \ D or not.

Suppose first that there is no edge between z and S \ D. Then S \ D C {z}*. The dot product
restricted to {z}* is non-degenerate (because z is not self-orthogonal). The dimension of {z}* is odd
and so the restriction is equivalent to the (lower dimensional) dot product. Moreover, all elements
of S\ D are self-orthogonal. Therefore by Proposition 6.4 we get |S \ D| < 27 — 2. By Lemma 3.10
we have |D| < w — 1. Hence (because n > 14)

n+1

ISl < (22 —2)+ (M —1) <275 -3,
Next we suppose that there exists an edge vz with v € S\ D. We have
IS| < [Sol 4 1Sz] 4 [Suz -
By Lemma 3.7 (i), the dot product restricted to {v, z}* is non-degenerate. Lemma 6.5 gives
1Suz| < 22 4 2=2n=D) g,

To bound |S,| note z € T,. Writing t = |T,|, and applying Lemma 3.5 and Lemma 6.1 we get (using
n>12)

n—1-t

IS, <22 -1yt <2372 4 1.

By Lemma 6.2 we get |S;| < 2371,
Putting everything together gives (using n > 18)

IS| <221 -3 (2272 (n-2n-1)) < i+l _ 3

Odd n. If D contains up to three elements, the required result follows from Proposition 6.4. Let
X,¥,z € D denote three distinct elements and let H be the graph induced on {x, y, z}. The graph H
is not a triangle because D is a subset of a (3, 2)-orthogonal set. We consider three cases based on
the number of edges in H.

Suppose H is the empty graph. First, assume a pair of the sets Ry, Ry, R; has non-empty
intersection. Namely, say v € Ry N Ry. Consider the decomposition

S =S¢ US, U Syo. (18)
Note that %,y € T, and that by Lemma 3.7 (i), we may apply Lemma 6.5 to obtain
S| <27 2 43)+ ("7 T+ 1)+ (27 4 02 3y <% 4, (19)

for n > 21. Thus suppose Ry, Ry, R, are pairwise disjoint. This means that R, U {x, ¥} is orthogonal.
Since z € Sy, and the dot product restricted to {x,y} is non-degenerate (by Lemma 3.7 (i)),
Lemma 6.2 gives

1S;] = IS N Sy < 1427 2.
Considering the decomposition
S =S5y US, USy U {x, 2z}, (20)
and using Lemma 3.7 (i), Lemma 6.2 (as well as its proof), and Lemma 6.5, we have
S < ("7 T+ )+ "7 2 43)+ (27 + CAD 3y 42 <2" 4 (21)
for n > 21. (We can do better but will refer later to (21)).
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Next, suppose H has exactly one edge. Without loss of generality take yx to be the edge. We split
this case further. First suppose there exists an edge between z and Ry URy,. Say, an edge between z
and v € Ry. We consider the decomposition (18) Then noting that x, z € T, and that Lemma 3.7 (i)
allows one to apply Lemma 6.5, one recovers the same bound on [S| as (19). Next, suppose there
is no edge between z and Ry U Ry. In particular, Ry U {y, z} is an orthogonal set. It follows that V,
does not have the maximum dimension that is possible for orthogonal subspaces. Thus, using the
decomposition (20) and using Lemma 3.7 (i), Lemma 3.2, Lemma 6.1 and Lemma 6.5, we may obtain
the same bound on |S| as (21).

Finally, suppose H has two edges. Without loss of generality let yxz be the path of length 2. Here,
we proceed to show that we may assume |D| = 3, which, as pointed out earlier, gives the required
result.

Suppose there exists a fourth vector w € D. If w forms an edge with x, then there is no edge
between any two of {y, z, w} and we are done by the arguments of the first case. If, on the other
hand, w does not form an edge with x, by Lemma 3.7 (i), dot product is non-degenerate on {x, w}*,
SO we use

S =Sy USy U Sy U {x, w}.
Then, noting |Ty| > 2 and arguing as before, we obtain

S| <7 2 43)+ 27 T+ 1)+ (27 + 02 _3y4 9 <" 4
which is the same as (21). O

The proof of Theorem 2.2 is completed by combining Propositions 6.3, 6.4 and 6.6.

Remark 6.7. Theorem 2.2 is false for small n. For n = 2, S33(2,2,-) = 3 as we see by taking
S = T2\ {0}. For n = 4 the example below shows S3 (2,4, ) > 7:

S == {(17 1’ 17 0)9 (17 0’ 07 O)’ (1’ 01 17 1)’ (0? 07 07 ])7 (0’ 1’ 17 1)9 (07 17 1’ 0)7 (19 ]9 07 1)}'
The graph of S is indeed triangle-free: using the implicit order on the vertices, it is the union of the
6-cycle 234567 with the edges 12 and 47.
7. Proof of Theorem 2.3

The following is essentially the same as [10, Equation 2.4] and [18, Lemma 5]. Also see [3] or
apply the point-hyperplane incidence bound in [20].

Lemma 7.1. ForX,Y C IFZ define
0X,Y)=[{(x,y) e X x Y : B(x,y) = 0}].
Then

IX || Y]
0X,Y)— J =VIXIYlqg".
The following result is due to Turan [19].
Lemma 7.2. Any graph of n vertices, which is K, 1-free contains at most (1 — 1/r)(n?/2) edges.

Proof of Theorem 2.3. Let G = G(S, E;) be the simple graph, where (sq, s3) € S? forms an edge in
E, if s # s and B(s1, $2) # 0. Then using the fact that S is (k, 2)-orthogonal, we know that G is
Ki-free and thus by Lemma 7.2,

k—21S?

E| < Ll
Bl=7—37
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Denoting G’ = G(S, E,) as the complement of G, we deduce that

ISICIS] — 1) NE IS|
E2| 2 ———— — |kl =2 50— — =
2 2k—1) 2
Now, clearly O(S, S) > 2|E,|. Hence, applying Lemma 7.1, we have
SI2|IS?
bl Bl S| < IS|g™>,
k—1 q

which gives

k—1
IS| < (qq(_T)l)(q”/z +1). O
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