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1. Introduction

1.1. Background

An orthogonal set of vectors in R
n, that is a set of non-zero vectors with the property that every

pair of distinct vectors is mutually orthogonal, is linearly independent and therefore contains at
most n elements. ErdÆs asked the question of determining the maximum size of a set of almost
orthogonal vectors: a set of non-zero vectors with the property that among any three distinct
vectors, at least two are mutually orthogonal [14]. The union of two disjoint orthogonal sets is
an almost orthogonal set of size 2n. Rosenfeld, confirming a belief of ErdÆs, proved that 2n is the
maximum size of an almost orthogonal subset of Rn [16]. Deaett gave a short and elegant proof of
Rosenfeld’s theorem [6], which has similarities with an argument of Pudlák [15]. Deaett also proved
that for dimension 4 and lower every almost orthogonal set of maximum size is the union of two
orthogonal sets; and provided examples in dimension 5 and higher of almost orthogonal sets of
maximum size that are not the union of two disjoint orthogonal sets.

In C
n, the existence of self-orthogonal vectors (like (1, i) 2 C

2) changes the answer to both
questions. Even in dimension two, the span of (1, i) is an uncountable set of orthogonal vectors.
Deaett proved, however, that in C

n equipped with the Hermitian inner product, the maximum
number of almost orthogonal vectors is 2n, generalising Rosenfeld’s theorem [6].
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Both questions have also been investigated over finite fields. The size of the largest orthogonal set
in (Z/(2Z))n was determined by Berlekamp [5] and the size of the largest orthogonal set in (Z/(pZ))n

for primes p was determined by Zame [23]. There are similarities in their methods. The question
Berlekamp answered is equivalent to solving another question of ErdÆs: determining the size of the
largest family of subsets of {1, 2, . . . , n} with the property that every two distinct elements have
even intersection. ErdÆs’ question was solved independently by Graver [5,8].

A key to Berlekamp’s and Zame’s arguments is the existence of self-orthogonal vectors. Self-
orthogonal vectors exist over any finite field when the dimension is at least 3 or, in dimension 2,
when the order of the field is 2 or is congruent to 1 modulo 4. There are further intricacies when
working in vector spaces over finite fields. For example, as is detailed in the next subsection, in
dimension 6, the dot product is equivalent to the symmetric bilinear form (x, y) 7! x1y1 � x2y2 +
x3y3�x4y4+x5y5�x6y6 when the order of the field is congruent to 1 modulo 4, and to the symmetric
bilinear form (x, y) 7! x1y1�x2y2+x3y3�x4y4+x5y5+x6y6 when the order of the field is congruent
to 3 modulo 4. The difference points to the fact that the largest orthogonal subspace has dimension
that depends on the order of the field [21]. In addition to this, expressing the dot product in these
equivalent ways has the advantage that it makes clear the existence of self-orthogonal vectors.

There does not seem to be a significant difference between studying the dot product and studying
any symmetric non-degenerate bilinear form and this is the approach taken in the literature
recently. Ahmadi and Mohammadian [1], using an argument similar to Berlekamp, determined the
size of the largest orthogonal set with respect to any non-degenerate symmetric bilinear form over
fields of odd order (see also [10,21]). Ahmadi and Mohammadian also made progress on the question
of determining the size of the largest almost orthogonal set with respect to any non-degenerate
symmetric bilinear form.

The main purpose of this paper is to determine the size of the largest almost orthogonal set with
respect to any bilinear form in any vector space over any sufficiently large finite field of odd order;
and also in (Z/(2Z))n for sufficiently large n. It is worth recording here that, unlike Rosenfeld’s and
Deaett’s theorems, it is not always the case that the size of the largest almost orthogonal set equals
twice the size of the largest orthogonal set. The (Z/(2Z))n question has a set system formulation
that can be thought of as an ‘‘almost’’ version of Berlekamp’s theorem: determine the size of the
largest family of subsets of {1, 2, . . . , n} with the property that among every three distinct elements,
at least two have even intersection. We show that the size of the largest family almost doubles. We
also investigate the finite field analogue of another question that ErdÆs asked for Euclidean space:
determine the maximum size of subsets of Rn with the property that among any k of their elements,
at least two are mutually orthogonal [4,7].

1.2. Notation and definitions

Throughout the paper, we use m and n to be positive integers, p a prime and q = pm. We also use
Fq to denote a finite field of order q and write F

⇤
q = Fq \ {0}. A bilinear form over Fn

q is a mapping
B : Fn

q ⇥ F
n
q ! Fq, which takes the form

B(x, y) = x
TAy, for all x, y 2 F

n
q,

for some n ⇥ n matrix A over Fq. We say B is symmetric if A is a symmetric matrix and say B is
degenerate if det(A) = 0. We call two bilinear forms equivalent if their corresponding matrices are
equivalent (A, B are equivalent if A = MTBM for an invertible matrix M).

Fix a non-square element � 2 Fq and let k = b n
2
c. For any bilinear form B over Fn

q , with associated
matrix A, we define

"(B) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, if det(A) = 0;

1, if k is even and det(A) is a non-zero square, or

if k is odd and � det(A) is a non-zero square;

� , if k is even and det(A) is a non-square, or

if k is odd and � det(A) is a non-square.
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For odd q, by a result in [9, p. 79], which also appears as [1, Theorem 1], any non-degenerate
symmetric bilinear form, B, over Fn

q is equivalent to the form

(x, y) 7! x1y1 � x2y2 + · · · + xn�2yn�2 � xn�1yn�1 + "(B)xnyn (1)

for odd n and is equivalent to the form

(x, y) 7! x1y1 � x2y2 + · · · + xn�3yn�3 � xn�2yn�2 + xn�1yn�1 � "(B)xnyn (2)

for even n, where x = (x1, . . . , xn) and y = (y1, . . . , yn).
Given finite-dimensional vector spaces V1 and V2 over Fq, with ni = dim(Vi) for i = 1, 2,

we define the direct sum V1 � V2 to be the vector space V1 ⇥ V2, which may be identified by
F
n1+n2
q . Furthermore, if M1 and M2 are matrices corresponding to bilinear forms over F

n1
q and F

n2
q

respectively, we define the matrix M1 � M2 by

M1 � M2 =

✓

M1 0

0 M2

◆

,

which gives rise to a bilinear form over F
n1+n2
q .

For q = 2, one can infer from (5) in [12, p. 7] that every non-degenerate symmetric bilinear
form in odd dimension is equivalent to the dot product that arises from the n⇥n identity matrix In.
In even dimensions every non-degenerate symmetric bilinear form is either equivalent to the dot
product or to the hyperbolic form H that arises from the matrix H � · · · � H , where

H =

✓

0 1

1 0

◆

.

Definition 1.1. We refer to two vectors v1, v2 2 F
n
q \ {0} as mutually orthogonal if B(v1, v2) = 0. If

v 2 F
n
q \ {0}, satisfies B(v, v) = 0, we refer to it as self-orthogonal. We call a subset S ⇢ F

n
q \ {0} an

orthogonal set if every distinct pair of elements of S are mutually orthogonal and we say S ⇢ F
n
q \{0}

is (k, l)-orthogonal if for any k vectors in S at least l of them are pairwise mutually orthogonal.
Furthermore, we call a subspace V ⇢ F

n
q an orthogonal subspace if V \ {0} is an orthogonal set. We

denote by Sk,l = Sk,l(q, n,B) the maximum size of any (k, l)-orthogonal subset of Fn
q with respect

to B.

Given a set X ⇢ F
n
q , we use hXi to denote the subspace of F

n
q generated by X and write

hv1, . . . , vki, instead of h{v1, . . . , vk}i. We also define the orthogonal complement of X by X? = {v 2

F
n
q : B(v, x) = 0 for all x 2 X}, which constitutes a subspace of Fn

q .
Finally, for sets S, S1, . . . , Sk, where k � 2, we write S = S1 t S2 t · · · t Sk to mean firstly that

S = S1 [ S2 [ · · · [ Sk and secondly that Si \ Sj = ; for 1  i < j  k.

1.3. Previous results for almost orthogonal sets

In [1, Examples 12–15], explicit examples of (3, 2)-orthogonal sets are provided for odd q,
showing that

S3,2(q, n,B) �

8

>

>

>

>

>

<

>

>

>

>

>

:

2q
n�1
2 , if n is odd and "(B) = 1;

2q
n�1
2 � q + 1, if n is odd and "(B) = � ;

2q
n
2 � q � 1, if n is even and "(B) = 1;

2q
n
2
�1 + 2, if n is even and "(B) = � .

(3)

The examples also work for q = 2, showing that

S3,2(2, n, ·) �

(

2
n+1
2 , if n is odd;

2
n
2
+1 � 3, if n is even.

(4)
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The authors further conjectured, in [1, Conjectures 11 and 16], that the inequalities in (3) and
(4) could be replaced by equalities and outlined a proof, in [1, Theorem 17], that for all n and either

choices (1) and (2) of bilinear forms, S3,2  3qb n
2
c.

1.4. Improved lower bounds on S3,2

We proceed to present examples of (3, 2)-orthogonal subsets of Fn
q for odd q that have slightly

more elements than the examples given in (3). Theorem 2.1, which is stated in the next section,
shows that the examples described below are of maximum size. We denote by {e1, . . . , en} the
standard basis of Fn

q .

Example 1.2. Let q be odd and n = 2k + 1 � 3 and B satisfy "(B) 2 {1, � }. Consider the two
mutually disjoint orthogonal sets

S1 =
�

{(x1, x1, . . . , xk, xk, 0) : x1, . . . , xk 2 Fq} \ {0}
�

t {en�2 + en�1 + en}

and

S2 =
�

{(x1, �x1, . . . , xk, �xk, 0) : x1, . . . , xk 2 Fq} \ {0}
�

t {en�2 � en�1 � 2"(B)�1
en}.

Then, the set S = S1 t S2 t {en} is a (3, 2)-orthogonal set of size 2qk + 1 = 2q(n�1)/2 + 1.

Example 1.3. Let q be odd and n = 2k � 2 and B satisfy "(B) = 1. Consider the two mutually
disjoint orthogonal sets

S1 = {(x1, x1, . . . , xk, xk) : x1, . . . , xk 2 Fq} \ {0}

and

S2 = {(x1, �x1, . . . , xk, �xk) : x1, . . . , xk 2 Fq} \ {0}.

Then, the set S = S1 t S2 is a (3, 2)-orthogonal set of size 2qk � 2 = 2qn/2 � 2.

Example 1.4. Let q be congruent to 3 modulo 4 and n = 2k � 4 and B satisfy "(B) = �1 (�1 is
not a square). Consider the three pairwise disjoint orthogonal sets

S1 =
�

{(x1, x1, . . . , xk�1, xk�1, 0, 0) : x1, . . . , xk�1 2 Fq} \ {0}
�

t {en�3 + en�2 + en�1 + en,

en�3 + en�2 + en�1 � en}

and

S2 =
�

{(x1, �x1, . . . , xk�1, �xk�1, 0, 0) : x1, . . . , xk�1 2 Fq} \ {0}
�

t {en�3 � en�2 � en�1 � en,

en�3 � en�2 � en�1 + en},

and

S3 = {en�1 + en, en�1 � en}.

Then, the set S = S1 t S2 t S3 is a (3, 2)-orthogonal set of size 2qk�1 + 4 = 2qn/2�1 + 4. For n = 2,
{e1, 2e1, e2, 2e2} is a (3, 2)-orthogonal set of size 4.

Next, we provide examples for q = 2. Theorem 2.2 shows they are of maximum size. The
following example is obtained by adding a single element to the example given by [1, Example 12].

Example 1.5. Let n = 2k + 1 � 3 and B denote the dot product in F
n
2. Consider the disjoint

orthogonal sets

S1 =
�

{(0, x1, x1 . . . , xk, xk) : x1, . . . , xk 2 F2} \ {0}
�

t {e1}

and

S2 =
�

{(x1, x1, . . . , xk, xk, 0) : x1, . . . , xk 2 F2} \ {0}
�

t {en}.

Then, the set S = S1tS2t{e1+e2+· · ·+en} is a (3, 2)-orthogonal set of size 2k+1+1 = 2(n+1)/2+1.

4
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The example below is the same as [1, Example 14].

Example 1.6. Let n = 2k � 2 and B denote the dot product in F
n
2. Consider the disjoint orthogonal

sets

S1 = {(x1, x1, . . . , xk, xk) : x1, . . . , xk 2 F2} \ {0}

and

S2 = {(xk, x1, x1, . . . , xk�1, xk�1, xk) : x1, . . . , xk 2 F2} \ {0}.

Then, noting (1, 1, . . . , 1, 1) 2 S1 \ S2, it follows that the set S = S1 [ S2 is a (3, 2)-orthogonal set

of size 2k+1 � 3 = 2n/2+1 � 3.

Our final example concerns the hyperbolic form.

Example 1.7. Let n = 2k � 2 and H denote the hyperbolic form in F
n
2. Consider the disjoint

orthogonal sets

S1 = he1, e3, e5, . . . , e2k�1i \ {0}

and

S2 = he2, e4, e6, . . . , e2ki \ {0}.

It follows that the set S = S1 [ S2 is a (3, 2)-orthogonal set of size 2k+1 � 2 = 2n/2+1 � 2.

2. Main results

Our first main result is an upper bound on the size of (3, 2)-orthogonal sets for odd q.

Theorem 2.1. Let n � 0 be an integer and q � 7 be an odd prime power. If S ⇢ F
n
q is (3, 2)-orthogonal

with respect to a non-degenerate symmetric bilinear form B, then

|S| 

8

>

>

>

>

<

>

>

>

>

:

2q
n�1
2 + 1, if n is odd;

2q
n
2 � 2, if n is even and "(B) = 1;

2q
n
2
�1 + 4, if n � 4 is even and "(B) = � ;

4, if n = 2 and "(B) = � .

Combined with Examples 1.2, 1.3, and 1.4, Theorem 2.1 establishes the value of S3,2 for all n,

sufficiently large q, and B:

S3,2(q, n,B) =

8

>

>

>

>

<

>

>

>

>

:

2q
n�1
2 + 1, if n � 3 is odd;

2q
n
2 � 2, if n � 2 is even and "(B) = 1;

2q
n
2
�1 + 4, if n � 4 is even and "(B) = � ;

4, if n = 2 and "(B) = � .

In contrast to the Euclidean space R
n, S3,2 is sometimes larger than twice the size of the largest

orthogonal set (specifically when n � 3 is odd or when n � 4 is even and "(B) = � ). See [1] or

Lemma 3.3 for the size of the largest orthogonal set for the various possibilities of n, q, and B.

The proof of Theorem 2.1 relies on the framework developed by Ahmadi and Mohammadian [1].

It also has similarities with the work of Berlekamp [5] and the paper of Deaett [6]. In Section 5 we

present a different argument for even n with "(B) = 1 that is based on character sum estimates.

The proof in Section 5 works for all odd q.

We also answer the corresponding question for q = 2.

5
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Theorem 2.2. Let n be an integer. If S ⇢ F
n
2 is a (3, 2)-orthogonal with respect to the dot product,

then

|S| 

(

2
n+1
2 + 1, if n � 21 is odd;

2
n
2
+1 � 3, if n � 18 is even.

For even n � 2 and S ⇢ F
n
2 be (3, 2)-orthogonal with respect to the hyperbolic form H,

|S|  2
n
2
+1 � 2.

Combined with Examples 1.5, 1.6, and 1.7, Theorem 2.2 establishes the value of S3,2 for all
sufficiently large n:

S3,2(2, n,B) =

8

>

>

<

>

>

:

2
n+1
2 + 1, if n � 21 is odd and B = · ;

2
n
2
+1 � 3, if n � 18 is even and B = · ;

2
n
2
+1 � 2, if n � 2 is even and B = H.

As highlighted in [1], the quantity S3,2(2, n, ·) may be interpreted as the size of a maximally large
family F of non-empty subsets of an n-element set such that among every three distinct elements
of F , there is a pair of sets whose intersection is of even cardinality. The values above confirm
[1, Conjecture 16] of Ahmadi and Mohammadian for sufficiently large, even n. Although, for odd n,
we have shown that the relevant value is larger by one than what was conjectured. The sufficiently
large n assumption cannot be removed, see Remark 6.7.

We also prove an upper bound for Sk,2(q, n,B). This is the finite field analogue of another
question of ErdÆs [4,7].

Theorem 2.3. Let q be an odd prime power and k � 2 be an integer. Suppose that S ⇢ F
n
q \ {0} is

(k, 2)-orthogonal with respect to a non-degenerate symmetric bilinear form B. Then

|S| 

✓

k � 1 +
(k � 1)2

q � k + 1

◆

(qn/2 + 1).

Theorem 2.3 implies

Sk,2  (k � 1 + oq!1(1))qn/2,

which is asymptotically sharp in some cases. For example for odd q, k = n = 4 and "(B) = 1 the
union of the following three pairwise disjoint orthogonal sets has size 3(q2 � 1):

S1 = {(x1, x1, x2, x2) : x1, x2 2 Fq} \ {0}

and

S2 = {(x1, �x1, x2, �x2) : x1, x2 2 Fq} \ {0}

and

S3 = {(x1, x2, x2, �x1) : x1, x2 2 Fq} \ {0}.

2.1. Outline of the proofs of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on an inductive scheme developed by Ahmadi and
Mohammadian [1]. To outline the argument let us denote by dn = dn(q,B) the dimension of the
largest orthogonal subspace of Fn

q with respect to a non-degenerate symmetric bilinear form B. Both
theorems take the form

S3,2(q, n,B) = 2qdn + f (q, n,B), (5)

where f (q, n,B) 2 {�3, �2, 1, 4}. We show this by proving by induction a weaker statement of
the form S3,2(q, n,B)  (2 + o(1))qdn . Note here that the o(1) term is for q ! 1 for odd q and

6
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n ! 1 for q = 2. A technical difficulty in carrying out the induction is that one must ensure that

the restriction of B to the orthogonal complement considered is non-degenerate.

The inductive argument that proves the weaker bound is based on the basic observation that

for every v 2 S, the set of elements in S \ {v} not orthogonal to v constitute an orthogonal set.

The structure of orthogonal sets has been determined by Berlekamp, and Ahmadi and Mohamma-

dian [1,5]. A key feature is that they contain few elements not in a single orthogonal subspace. We

make repeated use of this fact. The second basic fact we use to our advantage for large odd q is that

a proper subspace of a vector space is significantly smaller than the vector space.

Once the weak bound has been established, it is used to determine f (q, n,B). It is at this point

that different arguments must be used according to (q, n,B). The key observation, implicit in the

literature, is that if an orthogonal set contains just a few elements that are not self-orthogonal, then

it is much smaller than qdn (for large q).

For q = 2, which is not large, slightly different arguments are utilised. The basic fact that drives

the proof is that, unlike for odd q, the set of vectors not orthogonal to any v contains at most half

of any orthogonal subspace.

The proofs of Theorems 2.1 and 2.2 probably yield a characterisation of nearly extremal sets:

they are mostly contained in two disjoint orthogonal subspaces of maximum dimension.

3. Preparations

We begin with some basic facts about Ramsey numbers. Given positive integers s, t the Ramsey

number R(s, t) is the least integer with the property that every graph on R(s, t) vertices either

contains a Ks or the complement of the graph contains a Kt . We will use the following bounds:

R(3, 3) = 6, R(3, 4) = 9, R(s, t) 

✓

s + t � 2

s � 1

◆

. (6)

The connection between Ramsey numbers and almost orthogonal sets goes back to at least the paper

of Deaett [6]. A connection with other similar questions of ErdÆs is detailed in [14]. We deduce the

following elementary observation concerning graphs.

Lemma 3.1. A triangle-free graph with the property that its complement is also triangle-free is either

the 5-cycle or has at most 4 vertices.

Proof. We denote by H the graph. Its order is at most R(3, 3) � 1 = 5 (by (6)).

Suppose now that the order of H is 5. Note that H does not have a vertex of degree at least 3.

This is because if such a vertex existed, then either two of its neighbours would be connected by an

edge, giving rise to a triangle; or none of its neighbours would be connected by an edge, giving a

triangle in the complement. Similarly, the complement has no edge of degree at least 3. Therefore all

vertices of the graph have degree 2. Finite graphs of constant degree 2 contain a cycle. The graph

H has no 3-cycle. It does not contain a 4-cycle (the fifth vertex would be isolated). Therefore it

contains a 5-cycle, which is the entire graph. ⇤

We proceed with results concerning orthogonal sets. The most important is a structural charac-

terisation of orthogonal sets which we take from [1, Lemma 3] – see also [5] for q = 2.

Lemma 3.2. Let B denote a non-degenerate, symmetric bilinear form over F
n
q , where q is a prime

power and n � 2. Suppose that S ⇢ F
n
q is an orthogonal set. Then, there exist an orthogonal subspace

V ⇢ {x 2 F
n
q : B(x, x) = 0} and a set T = {x 2 S : B(x, x) 6= 0}, such that S ⇢ V t T and

2 dim(V ) + |T |  n.

Next, we recall [1, Theorem 4], which relying mainly on Lemma 3.2, obtains the following sharp

bound on orthogonal sets. We note that in [1] S2,2(q, n,B) is denoted by S0(q, n).

7
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Lemma 3.3. For n � 2 and a prime power q � 3, let B denote a non-degenerate symmetric bilinear
form over Fn

q . Then

S2,2(q, n,B) =

8

>

<

>

:

q
n�1
2 , if n is odd;

q
n
2 � 1, if n is even and "(B) = 1;

q
n
2
�1 + 1, if n is even and "(B) = � .

An analogue of Lemma 3.3, for q = 2, was earlier proved by Berlekamp [5]. Also see [8].

Lemma 3.4.

S2,2(2, n, ·) =

8

>

>

<

>

>

:

n, if n  5;

1 + 2
n�1
2 , if n is odd and n � 7;

2
n
2 , if n is even and n � 6.

The following corollary is central to our considerations.

Lemma 3.5. For n � 2 and a prime power q, let S ⇢ F
n
q be a (3, 2)-orthogonal set with respect to a

non-degenerate symmetric bilinear form B over Fn
q . For s 2 S, define

Ss = {x 2 S \ {s} : B(x, s) 6= 0}. (7)

If |Ss| � 2, then Ss is an orthogonal set. In particular, we may write for all s 2 S

Ss = Rs t Ts,

where Ts = {x 2 Ss : B(x, x) 6= 0} and hRsi = Vs, an orthogonal subspace of Fn
q that contains only

self-orthogonal vectors.

Proof. Given two distinct vectors x1, x2 2 Ss, by the (3, 2)-orthogonality of S, two of {x1, x2, s}
must be mutually orthogonal. Thus, given the definition of Ss, we must have B(x1, x2) = 0. The rest
follows from Lemma 3.2 or is immediate when |Ss|  1. ⇤

We also collect some basic facts about orthogonal subspaces as follows.

Lemma 3.6. Let V ⇢ F
n
q denote an orthogonal subspace with at least three elements.

(i) Every vector in V is self-orthogonal.

(ii) Suppose that V is of maximum dimension and V = hRi for some R ⇢ F
n
q . If z /2 V is a

self-orthogonal vector, then z is not orthogonal to R.

Proof. For the first statement, let x be any element of V and y some other element of V . It follows
that x + y 2 V \ {x} and so

0 = B(x, x + y) = B(x, x) + B(x, y) = B(x, x).

For the second statement, we have B(z, z) = 0. Suppose for a contradiction that z ? R. Then
z ? V . Note that by the first part, for all �, µ 2 Fq and x, y 2 V we have

B(�z + x, µz + y) = �µB(z, z) + �B(z, y) + µB(z, x) + B(x, y) = 0.

Hence h{z} [ Ri is an orthogonal subspace that strictly contains V , a contradiction. ⇤

The next result forms the basis of the induction argument in the proof of Theorem 2.1. The
key is to show that if we restrict B to a certain type of orthogonal complement, then it remains
non-degenerate; and that, under a further condition, the equivalence class of B is conserved.

Lemma 3.7. Let n � 2, B be a non-degenerate symmetric bilinear form over Fn
q , and {v, w} ⇢ F

n
q be

linearly independent.

8
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(i) If

B(v, w)2 6= B(v, v)B(w, w),

then the restriction B �{v,w}? of B to the orthogonal complement of {v, w}, is a non-degenerate

symmetric bilinear form.

(ii) If q is odd, v and w are not mutually orthogonal, and w is self-orthogonal (that is B(v, w) 6= 0

and B(w, w) = 0), then "(B �{v,w}? ) = "(B).

(iii) If q = 2, n is even, v and w are not mutually orthogonal, and both v, w are self-orthogonal (that

is B(v, w) 6= 0 and B(v, v) = B(w, w) = 0), then B is equivalent to H if and only if B �{v,w}? is

equivalent to H.

Proof. Throughout the proof we write

a = B(v, v), b = B(v, w), c = B(w, w).

For (i), we first show hv, wi \ {v, w}? = {0} and therefore that Fn
q = hv, wi � {v, w}?. Suppose

�v + µw 2 {v, w}?. Applying B(v, �) and then B(w, �) to both sides gives the linear system
⇢

�a + µb = 0

�b + µc = 0
.

It follows that � = µ = 0 because ac 6= b2.

We write M1 for the matrix of B �hv,wi with respect to the basis {v, w}, M2 for the matrix of

B �{v,w}? with respect to any basis, and M for the matrix of B with respect to the union of these

two bases, then

M =

✓

M1 0

0 M2

◆

.

It follows immediately that if B is non-degenerate, then so is B �{v,w}? .

For (ii), we have b 6= 0 and c = 0. We show

M1 =

✓

a b

b 0

◆

⇠

✓

1 0

0 �1

◆

,

which proves "(B �{v,w}? ) = "(B).

Let ↵,�, � be solutions to ↵2 �� 2 = a and �(↵�� ) = b. Such ↵, � exist because every element

of Fq is the difference of two squares. The characteristic is not 2, so we can always take ↵ 6= �

(even when a = 0). Then there exists a suitable � . Now a simple calculation confirms

✓

↵ �

� �

◆T ✓

1 0

0 �1

◆✓

↵ �

� �

◆

=

✓

↵2 � � 2 �(↵ � � )

�(↵ � � ) 0

◆

=

✓

a b

b 0

◆

;

and det

✓

↵ �

� �

◆

= �(↵ � � ) = b 6= 0.

For (iii), we have b = 1 and a = c = 0. Therefore M1 = H . So B is equivalent to H if and only if

B �{v,w}? is equivalent to H. ⇤

Remark 3.8. The condition in part (i) of Lemma 3.7 is necessary. Take, for example, n = 4 and

B the bilinear form given by the diagonal matrix with diagonal entries (1, �1, 1, �1). B is the dot

product when q = 2. Take v = (1, 0, 0, 0) and w = (1, 1, 1, 0). These are two linearly independent

vectors with the numbers a, b, c defined in the proof of the lemma all equal to 1. Hence ac = b2.

It is not true that hv, wi trivially intersects {v, w}? because the span of w � v = (0, 1, 1, 0) lies in

both subspaces. Furthermore, B restricted to {v, w}? is degenerate because w � v is orthogonal to

both w � v and (0, 0, 0, 1), which span {v, w}?.

9
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The next step is to bound the number of vectors in any (3, 2)-orthogonal subset in F
n
q that are

not self-orthogonal. It may be true that, analogously to the results of Rosenfeld and Deaett [6,16],
there are at most 2n such vectors. We prove a weaker result that suffices for our purposes. As part
of the proof, we require a straightforward adaptation of [6, Proposition 4.4], which we state. The
proof is nearly identical to that in [6].

Lemma 3.9. Let n � 1 be a positive integer, F be a field, and S ⇢ F n be a (3, 2)-orthogonal set with

respect to a symmetric bilinear form. If B ⇢ S is an orthogonal basis for F n, then S \ B is an orthogonal

set.

We state and prove another result that is implicit in [6, Section 4]. It is convenient to phrase
many of the subsequent arguments in terms of the simple graph G with vertex set S and edges
given by pairs of elements of S that are not mutually orthogonal (xy is an edge precisely when
B(x, y) 6= 0).

Lemma 3.10. Let n � 1 be a positive integer, F a field, and D ⇢ F n be a (3, 2)-orthogonal set with

respect to a symmetric bilinear form. If D consists entirely of vectors that are not self-orthogonal, then

|D|  max{2n, R(3, n) � 1}
(6)
=

⇢

2n, if 0  n  4;
n(n+1)

2
� 1, if n � 5.

Proof. We use the graph G described just above the statement of the lemma. The claim is true
for n = 0. For n � 1 we observe that an independent set of vertices is an orthogonal set in F n

and so is linearly independent (we need here that all vectors in D are not self-orthogonal). If G

has an independent set B of size n, then that set is linearly independent and therefore is a basis
for F n. By Lemma 3.9 we get that D \ B is orthogonal and hence contains at most n elements.
Hence |D| = |B| + |D \ B|  2n. If G, which is triangle-free, has no independent set of size n, then
|D| < R(3, n), by the definition of R(3, n). ⇤

Note that by work of Ajtai, Komlós and Szemerédi, and of Kim [2,11]

R(3, n) = (1 + on!1(1))
n2

log n
,

with stronger explicit upper bounds in [17]. This means that |D| = o(n2).
We also extract this consequence of Lemma 3.2 and Lemma 3.9 from the proof of [1, Theorem 17].

Lemma 3.11. Let S ⇢ F
n
q be a (3, 2)-orthogonal set with respect to a non-degenerate symmetric bilinear

form B. If every pair of linearly independent vectors in S is mutually orthogonal (that is B(x, y) = 0 for

every linearly independent {v, w} ⇢ S), then |S|  S2,2(q, n,B) + n.

As the final result of this section, we recall [1, Theorem 17], which is a quantitatively weaker
version of Theorem 2.1. We will use this result in Section 5 and so provide a proof which follows the
same scheme as that introduced in [1], while paying special attention to certain intricacies involved
in carrying out the induction. In particular, the proof relies on Lemma 3.7 to sidestep a potential
issue that appears to have been overlooked in the original proof of [1, Theorem 17]. It also serves
as a prelude to the proof of Theorem 2.1.

We employ for the first of many times a decomposition of a (3, 2)-orthogonal set S that appears
in [1], and so we describe it in detail. Given two distinct elements x, y 2 S, every element of S\{x, y}

is either not orthogonal to x, or not orthogonal to y, or orthogonal to both x and y. Using the notation
of Lemma 3.5 we decompose S as follows

S = Sx [ Sy [ Sxy [ {x, y}, (8)

where Sx and Sy are defined in (7) and Sxy = S\{x, y}?. Note that {x, y} can be left out if B(x, y) 6= 0
because x 2 Sy and vice versa. When bounding |Sxy | by induction it is essential that B �{x,y}? is
non-degenerate.

10
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Proposition 3.12. Let q be odd and let B be a non-degenerate symmetric bilinear form over F
n
q . If

S ⇢ F
n
q \ {0} is (3, 2)-orthogonal, then

|S|  3qb n
2
c.

Proof. We proceed by induction on n. Note that the result is true for n 2 {0, 1} because |S|  2
and assume it is also true for all dimensions strictly less than n.

If every linearly independent pair of vectors in S is mutually orthogonal, by Lemmas 3.11 and
3.3, we have

|S|  S2,2(q, n,B) + n  2qb n
2
c.

Hence suppose there exists a linearly independent pair {x, y} ⇢ S, with B(x, y) 6= 0. If at least
one of these vectors is self-orthogonal, by Lemma 3.7 (i), B �{x,y}? is non-degenerate. Recalling the
decomposition (8) and noting that x 2 Sy and y 2 Sx, we have

|S|  |Sx| + |Sy | + |Sxy |.

Since x and y are linearly independent, {x, y}? constitutes a subspace of Fn
q of dimension n � 2.

Then, using that Sxy ⇢ {x, y}?, for n 2 {2, 3} we have |Sxy |  qn�2  q and for n � 4 we have

|Sxy |  3qb n
2
c�1 by the induction hypothesis. Furthermore, by Lemma 3.3 and Lemma 3.5, we have

|Sx|, |Sy |  qb n
2
c. Adding this all up, we obtain the required result in this case.

Next, suppose that neither x nor y is self-orthogonal and note that in this case, we may no longer
assume B �{x,y}? is non-degenerate (see Remark 3.8). If every pair of elements of Sxy is mutually

orthogonal, by Lemma 3.3, we have |Sxy |  qb n
2
c and the required result follows. Hence suppose

there exist v, w 2 Sxy , with B(v, w) 6= 0. Again, if at least one of {v, w} is self-orthogonal, we may
repeat the arguments of the first case to obtain the required result. Thus assume otherwise. Consider
the decomposition

S = Sx [ Sv [ Sxv [ {x, v}. (9)

By Lemma 3.7 (i), B �{x,v}? is non-degenerate. Employing the notation of Lemma 3.5, note that y 2 Tx
and w 2 Tv. Suppose there exists z 2 Rv, with B(y, z) 6= 0. Then by Lemma 3.7 (i), B �{y,z}? is non-
degenerate and we may repeat the arguments of the first case, with z in place of x, to obtain the
required result. Otherwise, if y is orthogonal to Rv, it follows that Rv t {y, w} is an orthogonal set,
which by Lemma 3.2, implies that dim(Vv)  bn/2c � 1. By a similar argument, we may assume
Rx t {y, w} is an orthogonal set and that dim(Vx)  bn/2c � 1. Furthermore note that w 2 Sxy and
so w 62 Sx and similarly y 62 Sv.

For n 2 {2, 3}, by Lemma 3.2 and the above observations, we have |Sx [ Sv|  2n � 2 and
|Sxv|  q. Thus going back to (9), we get |S|  2n + q  3q as required. For n � 4, we may again
use Lemma 3.2 to see |Sx [ Sv|  2(qbn/2c�1 + 3) � 2. Then

|S|  (2qbn/2c�1 + 4) + 3qb n
2
c�1 + 2

= 5qbn/2c�1 + 6

 3qbn/2c,

for all n � 4 and q � 3. ⇤

4. Proof of Theorem 2.1

We set

dn =

8

>

<

>

:

n�1
2

, if n � 3 is odd;

n
2
, if n � 2 is even and "(B) = 1;

n
2

� 1, if n � 2 is even and "(B) = � .

11
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It was proved in [21] that dn is the dimension of the largest orthogonal subspace of Fn
q (also follows

from Lemma 3.2). Note that dn�2 = dn � 1.

We proceed by induction on n. For n = 0 and n = 1 the size of the largest (3, 2)-orthogonal set

is at most 2, and the theorem follows.

We will show that either |S|  qdn + O(qdn�1) or that S possesses certain properties that make

proving the theorem a matter of case analysis. For sufficiently large q the former upper bound is

smaller than the one in the theorem.

We phrase the argument in terms of the graph G with vertex set S and two vectors adjacent

precisely when they are not mutually orthogonal. The two properties of G we use is that it is triangle

free (follows from S being (3, 2)-orthogonal) and the largest independent set in G having size at

most S2,2(q, n,B) (because an independent set is an orthogonal subset of Fn
q). We will also use the

fact that every orthogonal set in F
n
q has size at most S2,2(q, n,B), a quantity that is determined in

Lemma 3.3.

By Lemma 3.11 we may assume from now on the existence of linearly independent {v, w} ⇢ S

with vw an edge (that is B(v, w) 6= 0). This is because n  qdn � 2 for all n � 2 when q � 5. We

decompose S in the neighbourhood Sv of v, the neighbourhood Sw of w, and the set of vertices Svw

that are not adjacent to either v or w:

S = Sv [ Sw [ Svw,

where Svw ⇢ {v, w}?. We follow the set up of Lemma 3.5 and decompose Sv = Rv t Tv with Rv

spanning the orthogonal vector space Vv.

When n = 2 we get that Svw is a subset of a zero dimensional vector space that does not include

0 and so is empty. Since both Sv and Sw are orthogonal sets, we get |S|  2S2,2(q, 2,B). This proves

the theorem for n = 2.

For n � 3 we have to be more careful when dealing with Svw. We need the following to be able

to apply the second part of Lemma 3.7.

Lemma 4.1. For n � 3, let S ⇢ F
n
q be a (3, 2)-orthogonal set with respect to a non-degenerate

symmetric bilinear form B. If every pair of linearly independent self-orthogonal vectors in S is orthogonal

to one another (that is B(x, y) = 0 for all linearly independent self-orthogonal x, y 2 S), then

|S| 

(

S2,2(q, n,B) + 2n, if 0  n  4;

S2,2(q, n,B) +
n(n+1)

2
� 1, if n � 5.

Proof. Let D be the set of vectors in S, which are not self-orthogonal:

D = {x 2 S : B(x, x) 6= 0}.

By the hypothesis on S we have that S \ D is an orthogonal set. Hence |S \ D|  S2,2(q, n,B). The

claim follows by bounding |D| via Lemma 3.10. ⇤

The upper bound on |S| in Lemma 4.1 is smaller than the bound in Theorem 2.1 for n � 3

when q � 5. From now on we assume the existence of linearly independent vectors {v, w} that are

self-orthogonal but are not mutually orthogonal:

B(v, v) = B(w, w) = 0, but B(v, w) 6= 0.

Recalling the definition of f = f (q, n,B) inferred from Theorem 2.1 and (5), we get from

Lemma 3.7 (ii)

|Svw|  2qdn�2 + f = 2qdn�1 + f . (10)

Therefore |Svw| is much smaller than the bound on |S| we are trying to prove. What drives the proof

is that if either Vv or Vw is not of maximum dimension, then we are done. To see why, suppose Vv

12
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is not of maximum dimension. Then using Lemma 3.2, Lemma 3.3, Lemma 3.5 and (10) we get

|S|  |Sv| + |Sw| + |Svw|

 (qdn�1 + 3) + (qdn + 1) + (2qdn�1 + f )

= qdn + 3qdn�1 + 4 + f .

Since for q � 7 we have 3qdn�1 + 4  qdn , we assume from now on dim(Vv) = dim(Vw) = dn.
One more property we need is that v 2 Vw and w 2 Vv. To confirm, say the latter, note that

there is no edge from w to Rv (because the graph is triangle-free). Therefore w ? hRvi = Vv. By
Lemma 3.6 (ii), and using the fact that w is self-orthogonal, we get w 2 Vv.

We summarise all this in a proposition.

Proposition 4.2. Let q � 7 be an odd prime power, n � 3 and S ⇢ F
n
q be a (3, 2)-orthogonal set with

respect to a non-degenerate symmetric bilinear form. Then |S| satisfies the upper bound of Theorem 2.1
unless there exist linearly independent self-orthogonal vectors v and w with dim(Vv) = dim(Vw) = dn;
and v 2 Vw and w 2 Vv. In this case Svw = S \ {v, w}? satisfies |Svw|  2qdn�1 + f (q, n,B), with
f (q, n,B) inferred from Theorem 2.1 and (5).

The final preparatory result is that for the remaining S described in Proposition 4.2, Rz is
considerably smaller than qdn for all z 2 Svw. The proof is typical of forthcoming considerations.
The key observation is that if a subspace of a vector space does not contain a single element of the
vector space, then it is considerably smaller.

Lemma 4.3. Let q be an odd prime power and let S ⇢ F
n
q be (3, 2)-orthogonal with respect to a

non-degenerate symmetric bilinear form B. Suppose {v, w} ⇢ S is a linearly independent subset that
consists of two self-orthogonal vectors that are not mutually orthogonal (that is B(v, v) = B(w, w) = 0,
but B(v, w) 6= 0). If z 2 Svw = S \ {v, w}?, then

|Rz |  3qdn�1 � 3.

Proof. We have

S ⇢ (Vv \ {0}) [ Tv [ (Vw \ {0}) [ Tw [ Svw.

By Lemma 3.5 we know that Rz contains only self-orthogonal vectors and so is disjoint from Tv [Tw.
Hence

|Rz |  (|Vv \ Vz | � 1) + (|Vw \ Vz | � 1) + |Rz \ Svw|.

Vv 6= Vz because w 2 Vv \ Vz . Hence Vv \ Vz is a proper subspace of Vv and is therefore not of
maximum dimension. This means |Vz \ Vv|  qdn�1. Similarly |Vz \ Vw|  qdn�1. Moreover, note
that Rz \Svw is an orthogonal subset of {v, w}?, on which non-degeneracy and type of B is preserved
by Lemma 3.7 (ii). Thus by Lemma 3.2, we have |Rz \ Svw|  qdn�1 � 1. Putting everything together
gives the desired bound. ⇤

We begin the final stage of the proof of the theorem. We assume we are in the remaining case
detailed in Proposition 4.2. Let

S⇤
vw

= Svw \ (Vv [ Vw).

We distinguish between two different cases.
Case 1: An edge exists between Rv [ Rw and S⇤

vw
.

Suppose uz is an edge with z 2 Svw and, say, u 2 Rv. Our first claim is that {u, z} is linearly
independent. Indeed if z = �u, then we would have B(z, u) = �B(u, u) = 0, which contradicts uz

being an edge. Furthermore, u is self-orthogonal and so by Lemma 3.7 (ii) we get that B �{u,z}? is
non-degenerate and "(B) is preserved.

We have

|S|  |Su| + |Rz | + |Tz | + |Suz |.

13
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We have the following bounds: by Lemma 3.3 and Lemma 3.5 |Su|  qdn + 1; by Lemma 3.2

and Lemma 4.3 (and its proof), |Rz | + |Tz |  3qdn�1 + 1; and by induction, just like in (10),

|Suz |  2qdn�1 + f . In total

|S|  qdn + 5qdn�1 + 2 + f .

We are done because for q � 7 and n � 3, 5qdn�1 + 2  qdn .

Case 2: No edge exists between Rv [ Rw and S⇤
vw

.

There is no edge from S⇤
vw

to Rv and therefore S⇤
vw

is orthogonal to Rv. It follows that S⇤
vw is

orthogonal to Vv = hRvi. Similarly, S⇤
vw is orthogonal to Vw. All vectors in Tv [ Tw [ Svw are not

self-orthogonal by Lemma 3.6 (ii) and dim(Vv) being maximum. We use the decomposition

S ⇢ (Vv \ {0}) [ (Vw \ {0}) [ (Tv [ Tw [ Svw). (11)

We consider the three different possibilities separately.

Even n � 4 and "(B) = 1. Our aim is to show that Tv = Tw = S⇤
vw

= ;. Then by (11)

|S|  (|Vv| � 1) + (|Vw| � 1)  2(qdn � 1) = 2qn/2 � 2.

We may assume Tv = Tw = ; else, by Lemma 3.2, Vv or Vw are not of maximum dimension, which is

not allowed by Proposition 4.2. To show that S⇤
vw

= ;, suppose for a contradiction that z 2 S⇤
vw

, then

Vv [ {z} would be an orthogonal set, forcing, via Lemma 3.2, Vv not to have maximum dimension.

Odd n � 3. We want to show |Tv| + |Tw| + |S⇤
vw

|  3. Then by (11)

|S|  (|Vv| � 1) + (|Vw| � 1) + 3  2qdn + 1 = 2q(n�1)/2 + 1.

For any distinct x, y 2 S⇤
vw

, xy is an edge. This is because if xy were not an edge, then Vv [ {x, y}

would be an orthogonal set of size |Vv| + 2, which, by Lemma 3.2, would force Vv not to have

maximum dimension. Therefore the induced subgraph on S⇤
vw

is complete and triangle-free. Hence

S⇤
vw

must have at most two vertices. Moreover, by Lemma 3.2, |Tv|, |Tw|  1 (else the subspaces do

not have maximum dimension). We are done unless |S⇤
vw

| = |Tv [ Tw| = 2. Suppose S⇤
vw

= {x, y}

with xy an edge, and Tv = {u}. The graph is triangle-free and so one of ux, uy is not an edge.

Suppose that ux is not an edge. Then Vv [{u, x} is an orthogonal set, forcing Vv not to be of maximal

dimension.

Even n � 4 and "(B) = � . We want to show |Tv| + |Tw| + |S⇤
vw

|  6. Then by (11)

|S|  (|Vv| � 1) + (|Vw| � 1) + 6  2qdn + 4 = 2qn/2�1 + 4.

In fact, by Lemma 3.2 and Proposition 4.2, |Tw|  2 and we must show |Tv| + |S⇤
vw

|  4.

Note that every vertex in Tv [S⇤
vw

is orthogonal to Rv and therefore is orthogonal to Vv. Similarly,

S⇤
vw

is orthogonal to hVv [ Vwi = Vv + Vw. Now consider the graph H induced on Tv [ S⇤
vw

. This is

a triangle-free graph. Moreover, it has no independent set of size 3 because otherwise we could

join this set to Vv and obtain an orthogonal set of size |Vv| + 3, which would force Vv not to have

maximum dimension. By Lemma 3.1 we get |Tv [ S⇤
vw

|  5 with equality only when H is a 5-cycle.

Our final task is to rule out this possibility. Suppose for a contradiction that H is a 5-cycle.

We set Tv = {u1, u2} and S⇤
vw

= {z1, z2, z3}. u1u2 is not an edge (because both u1, u2 are

incident to v) and so H can be taken to be the 5-cycle z1u1z2u2z3. The complement of H is the

5-cycle z1z2z3u1u2. In the complement of H vertex adjacency is equivalent to orthogonality, and

so {z1, z2} ⇢ (Vv + Vw)
? is an orthogonal (and hence linearly independent) set in the orthogonal

complement of Vv + Vw.

We make a small digression to investigate the dimension of Vv +Vw. We may assume Vv \Vw =

{0}. This is because if the intersection is non-trivial, then

|S|  |(Vv [ Vw) \ {0}| + |Tv| + |Tw| + |S⇤
vw

|  (2qdn � q) + 7  2qdn + 4,

14
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and we are done. We may therefore assume that dim(Vv + Vw) = 2dn = n � 2 and hence

F
n
q = (Vv + Vw) � hz1i � hz2i.

To complete the argument we exploit the orthogonality relations encoded in the complement

of H and show that z3 = 0, the contradiction we are after. To start note that z3 2 hz1, z2i. As z3 is

orthogonal to z2, we get z3 = �z1. We are left to show � = 0.

We next show u1, u2 2 Vv � hz1, z2i. Let us start with, say, the decomposition

u1 = ↵z1 + �z2 + xv + xw,

for ↵,� 2 Fq, xv 2 Vv, and xw 2 Vw. Suppose for a contradiction that xw 6= 0. By Lemma 3.6 (ii)

and the maximality of dim(Vv) we get that the self-orthogonal vector xw is not orthogonal to Vv.

Therefore there exists y 2 Vv \ {0} such that B(xw, y) 6= 0. But then

B(u1, y) = B(xw, y) 6= 0,

a contradiction to u1 being orthogonal to the whole of Vv. We therefore have

u1 = ↵z1 + �z2 + xv and u2 = ↵0
z1 + � 0

z2 + x
0
v
.

Now, u2 is orthogonal to z1 and so 0 = ↵0
B(z1, z1), which gives ↵0 = 0. Moreover u2 /2 Vv, which

gives � 0 6= 0. Next, u2 is orthogonal to u1 and so 0 = �� 0
B(z2, z2). Hence � = 0 and, similarly to

above, u1 = ↵z1 + xv for ↵ 2 F
⇤
q . Finally, u1 is orthogonal to z3 = �z1. Hence 0 = �↵B(z1, z1),

which implies the desired � = 0.

The graph H is therefore not a 5-cycle and consequently |Tv [ S⇤
vw

|  4. The proof of the theorem

is concluded.

5. Character sum proof of Theorem 2.1 for even n, "(B) = 1 and all odd q

First, we recall some basic facts from the theory of character sums, which we use to give

an alternative proof of Theorem 2.1 for even n and "(B) = 1 that holds for all odd q. See, for

example, [13, Chapter 5] for more details.

Lemma 5.1. Let H be a subgroup of a finite abelian group G and � a character of G, then

X

g2H

� (g) =

(

|H| if � is trivial on H,

0 otherwise.

Let ep(x) = exp(2⇡ ix/p), Tr(x) = x + xp + · · · + xp
m�1

(recalling q = pm) and  (x) = ep(Tr(x)).

Then the functions { (�x) : � 2 Fq} determine all of the characters of Fq.

Lemma 5.2. Let B denote a non-degenerate, symmetric bilinear form over F
n
q , where q is odd and

n � 2. Let V denote a subspace of Fn
q . Suppose that s 62 V?. Then  (B(s, �)) is a nontrivial character

of V .

The next result is a slight extension of Vinogradov’s bound on bilinear character sums, which

appears, for example, in [22, p. 92]. Also see [18, Lemma 5] for the special case, where B is the dot

product.

Lemma 5.3. Given X, Y ⇢ F
n
q , we have

�

�

�

�

X

x2X

X

y2Y

 

⇣

B(x, y)
⌘

�

�

�

�


p

|X k Y |qn.
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Proof. We apply the triangle inequality and then the Cauchy–Schwarz inequality to get
�

�

�

�

X

x2X

X

y2Y

 

⇣

B(x, y)
⌘

�

�

�

�

2

 |X |
X

x2X

�

�

�

�

X

y2Y

 

⇣

B(x, y)
⌘

�

�

�

�

2

 |X |
X

x2Fnq

�

�

�

�

X

y2Y

 

⇣

B(x, y)
⌘

�

�

�

�

2

= |X |
X

x2Fnq

X

y,z2Y

 

⇣

B(x, y � z)
⌘

= |X |
X

y,z2Y

X

x2Fnq

 

⇣

B(x, y � z)
⌘

= |X k Y |qn.

To obtain the last equality, we used the fact that the inner sum in the penultimate line equals qn

if y = z and zero otherwise. This, in turn, follows from the observation that Fn
q
? = {0}, combined

with Lemmas 5.1 and 5.2. ⇤

Proof of Theorem 2.1 for even n and "(B) = 1
Firstly, replace S by S t {0}. This makes calculations easier. We will take away 0 at the end of

the proof. For s 2 S, write S 0
s
= {x 2 S : B(x, s) 6= 0}. Also write D = {x 2 S : B(x, x) 6= 0}. Recalling

(7), note that
X

s2S

|S 0
s
| =

X

s2S

|Ss| + |D|.

Now

|S|2 �
X

s2S

|Ss| � |D| = |S|2 �
X

s2S

|S 0
s
| (12)

=

�

�

�

�

X

s12S

X

s22S\S0
s1

 (B(s1, s2))

�

�

�

�

.

Here, we used just that for s1 2 S and s2 2 S \ S 0
s1
, we have  (B(s1, s2)) = 1. By the triangle

inequality, we also have
�

�

�

�

X

s12S

X

s22S\S0
s1

 (B(s1, s2))

�

�

�

�



�

�

�

�

X

s12S

X

s22S

 (B(s1, s2))

�

�

�

�

+

�

�

�

�

X

s12S

X

s22S0
s1

 (B(s1, s2))

�

�

�

�



�

�

�

�

X

s12S

X

s22S

 (B(s1, s2))

�

�

�

�

+

�

�

�

�

X

s12S

X

s22Ss1

 (B(s1, s2))

�

�

�

�

+ |D|.

Next, let W = {x 2 S : |Sx| � 2}. Then, using Lemmas 3.2 and 3.5, we have
�

�

�

�

X

s12W

X

s22Ss1

 (B(s1, s2))

�

�

�

�



�

�

�

�

X

s12W

X

s22(Vs1tTs1 )

 (B(s1, s2))

�

�

�

�

(13)

+

�

�

�

�

X

s12W

X

s22(Vs1tTs1 )\Ss1

 (B(s1, s2))

�

�

�

�

.

To bound the first sum, on the RHS of (13), we first apply the triangle inequality to obtain
�

�

�

�

X

s12W

X

s22(Vs1tTs1 )

 (B(s1, s2))

�

�

�

�



�

�

�

�

X

s12W

X

s22Vs1

 (B(s1, s2))

�

�

�

�

+

�

�

�

�

X

s12W

X

s22Ts1

 (B(s1, s2))

�

�

�

�

.
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Note that for s 2 W , it follows from the definition of Vs (see Lemma 3.5) that s 62 V?
s
. Thus,

by Lemma 5.2,  (B(s, �)) constitutes a character of F
n
q which is nontrivial on the subspace Vs.

Consequently, by Lemma 5.1, we have
X

x2Vs

 (B(s, x)) = 0 H)
X

s12W

X

s22Vs1

 (B(s1, s2)) = 0.

Then, based on this observation and applications of the triangle inequality, we obtain
�

�

�

�

X

s12W

X

s22(Vs1tTs1 )

 (B(s1, s2))

�

�

�

�



�

�

�

�

X

s12W

X

s22Ts1

 (B(s1, s2))

�

�

�

�


X

s12W

�

�

�

�

X

s22Ts1

 (B(s1, s2))

�

�

�

�


X

s2W

|Ts|.

The second sum, on the RHS of (13), is bounded trivially by
X

s2W

|Vs| + |Ts| � |Ss|.

Going back to (12), we have

|S|2  2|D| +

�

�

�

�

X

s12S

X

s22S

 (B(s1, s2))

�

�

�

�

+
X

s2W

|Vs| + 2|Ts| +
X

s2S\W

2|Ss|.

By Lemma 5.3, we know
�

�

�

�

X

s12S

X

s22S

 (B(s1, s2))

�

�

�

�

 |S|qn/2.

For s 2 W , write ks = dim(Vs). Then by Lemma 3.2, we know |Vs| + 2|Ts|  qks + 2n � 4ks  qn/2.
Furthermore, for s 2 S \ W , we have 2|Ss|  qn/2. So adding it all up,

|S|2  2|S|qn/2 + 2|D|.

At this stage we go back to the original S that does not include 0. The above becomes

|S|  2qn/2 +

j2|D|

|S|

k

� 1. (14)

Note that from (14), one can only deduce the bound |S|  2qn/2 + 1. However, we proceed to
sharpen this bound through an analysis of the set D. Some aspects of the remaining arguments can
certainly be simplified if we are not aiming to prove the theorem for all q. To deal with some small
technicalities that follow, we require the bound

|S|  2(q � 1), (15)

for n = 2, all odd q and either scenarios "(B) 2 {1, � }. This bound has already been established as
the base case of the induction in the proof of Theorem 2.1.1 In particular, henceforth assume n � 4.

First we establish

|S|  2qn/2 � 1, (16)

which follows from (14) if 2|D| < |S|. So suppose otherwise. Using the bound on |D| provided by
Lemma 3.10, we get |S|  16 for n = 4 and |S|  n(n + 1) � 2 with both being better than (16) for
all q � 3 and n � 4.

1 In the proof of Theorem 2.1, when applying Lemma 3.11, to avoid a lengthy multi-case analysis, it is assumed that

q > 3. However one may easily confirm that, for our purposes here, the argument remains valid when q = 3.
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It remains to show (16) may be lowered by one. To this end, we consider a few cases showing
that the assumption |S| = 2qn/2 � 1 leads to contradictions on either the size or the parity of |S|.
In particular, the following observations will be useful.

Claim 5.4. Let S ⇢ F
n
q denote a maximal (3, 2)-orthogonal set. Then |S \ D| ⌘ 0 (mod q � 1).

Proof. Each v 2 S \ D is self-orthogonal and so S must contain the entire punctured line lv = {�v :
� 2 F

⇤
q}, otherwise maximality of S is violated. The result follows noting that lv \ lw is empty if

w 62 lv and of size q � 1 otherwise. ⇤

Claim 5.5. At least one of the following statements holds.

(i) |S|  2qn/2 � 2,

(ii) |D| = 2,

(iii) |Tv|  1 for each v 2 S, where Tv = D \ Sv.

Proof. We suppose that neither (ii) nor (iii) is true and prove (i). Thus, assume there exist v 2 S,
distinct elements w1, w2 2 D \ {v}, with B(v, w1) and B(v, w2) both non-zero, and potentially a
fourth element w3 2 D, which need not be distinct from the previous ones. We consider two main
cases as to whether v is self-orthogonal or not.

First, assume B(v, v) 6= 0, which in particular implies v 2 Tw1
\ Tw2

. By the (3, 2)-orthogonality
of S, we have B(w1, w2) = 0 and so firstly {w1, w2} is linearly independent and secondly by
Lemma 3.7 (i), B �{w1,w2}? is non-degenerate. Write

S = Sw1
[ Sw2

[ Sw1w2
[ {w1, w2}.

For (q, n) = (3, 4), by (15), we have

|S|  2(qn/2�1 + 1) � 1 + 2(q � 1) + 2 = 13 < 16 = 2qn/2 � 2.

For other admissible choices of (q, n), by Proposition 3.12, we have

|S|  2(qn/2�1 + 1) � 1 + 3qn/2�1 + 2 = 5qn/2�1 + 3 < 2qn/2 � 2.

Next, assume B(v, v) = 0. In this case w3 62 {v, w1, w2}. We split this case further by
first assuming that w3 is orthogonal to Rv (using the notation of Lemma 3.5). This implies Rv t
{w1, w2, w3} is an orthogonal set. Further note that {w1, v} is linearly independent and that by
parts (i) and (ii) of Lemma 3.7, B �{w1,v}? is non-degenerate and its equivalence class is preserved.
Write

S = Sw1
[ Sv [ Sw1v.

For (q, n) = (3, 4), by Lemma 3.2 and (15), we have

|S|  (qn/2 � 1) + (qn/2�2 + 3) + 2qn/2�1 � 2 = 16 = 2qn/2 � 2.

For the remaining combinations of (q, n), we use the bound (16) to get

|S|  (qn/2 � 1) + (qn/2�2 + 3) + 2qn/2�1 � 1  2qn/2 � 2.

Finally, suppose there exists some u 2 Rv, such that B(w3, u) 6= 0. By definition B(u, u) = 0 and
B(u, v) 6= 0, from which we may deduce {u, v} is linearly independent and that by parts (i) and (ii)
of Lemma 3.7, B �{u,v}? is non-degenerate and its equivalence class is preserved. Write

S = Su [ Sv [ Suv

and note that w1, w2 2 Tv and w3 2 Tu.
We use the bound (16) to get

|S|  2(qn/2�1 + 1) + 2qn/2�1 � 1 = 4qn/2�1 + 1  2qn/2 � 2

for all odd q and n � 4. ⇤
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Claim 5.6. Suppose that S ⇢ {z}?, where z 2 F
n
q is not self-orthogonal. Then

|S|  3qn/2�1  2qn/2 � 2,

for all n � 4 and odd q.

Proof. Since z is not self-orthogonal, the restriction of B on {z}? remains non-degenerate. Now,
using that S = S \ {z}?, we may use Proposition 3.12, to obtain the required result. ⇤

Writing Q = {v 2 S : v 2 (S \ {v})?}, note that

S =
[

v2S

Sv [ Q .

Now if z 2 D \ Q , then S \ {z} ⇢ {z}?. Thus, by Claim 5.6, we have

|S|  1 + 3qn/2�1  2qn/2 � 2,

for all n � 4 and odd q. In particular, we may assume

D =
[

v2S

Tv. (17)

Suppose |S| = 2qn/2 � 1. Note that, if |D| is even, by Claim 5.4 we must have that |S| is even
leading to a contradiction. Recalling Claim 5.5, if statement (ii) holds, we are done and so assume
statement (iii) is true. Let w 2 D and so, by (17), we have Tv = {w} for some v 2 S. If v is self-
orthogonal, then firstly {v, w} is linearly independent and secondly by parts (i) and (ii) of Lemma 3.7,
B �{v,w}? is non-degenerate and its equivalence class is unchanged. We write

S = Sv [ Sw [ Svw

and use Lemma 3.2 as before, being mindful of the crucial fact that Sv contains exactly one
non-self-orthogonal element. For (q, n) = (3, 4), we have, by (15)

|S|  qn/2�1 + (qn/2 � 1) + 2qn/2�1 � 2 = 3qn/2�1 + qn/2 � 3 = 15 < 16 = 2qn/2 � 2.

For other combinations of (q, n), by (16), we have

|S|  qn/2�1 + (qn/2 � 1) + 2qn/2�1 � 1 = 3qn/2�1 + qn/2 � 2  2qn/2 � 2.

Both bounds above contradict the presumed size of S. Then, we must have that v is not self-
orthogonal. It follows that Tw = {v}, which in turn implies that elements of D occur in pairs. As
explained above, this contradicts the presumed parity of |S|, concluding the proof. ⇤

6. Proof of Theorem 2.2

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1. The differences arise from having
characteristic 2 (the theory of bilinear forms is different) and not being able to assume that q is large
enough. We are however free to assume that n is large enough. A fact special to F

n
2 that we use is

that every two distinct non-zero vectors are linearly independent. In particular the requirement for
{v, w} to be linearly independent in Lemma 3.7 becomes redundant.

From now on we use the notation in Lemmas 3.2 and 3.5. The following simple inequality will
be useful. It is specific to F

n
2, is true for all n, and is sharp.

Lemma 6.1. For n � 2, let S ⇢ F
n
2 be a (3, 2)-orthogonal set with respect to a non-degenerate

symmetric bilinear form B. If v 2 S, then in the notation of Lemma 3.5, |Rv|  |Vv|/2.

Proof. Note that Rv is disjoint from Rv + Rv. Indeed, if x, y 2 Rv, then B(v, x) = B(v, y) = 1.
Therefore B(v, x + y) = 1 + 1 = 0. This means that x + y /2 Rv.

Now, Vv is a vector space containing Rv. Therefore Rv and Rv +Rv are two disjoint sets contained
in Vv. Hence

2|Rv|  |Rv| + |Rv + Rv|  |Vv|. ⇤
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We derive a bound on |Sv|.

Lemma 6.2. For n � 2, let S ⇢ F
n
2 be a (3, 2)-orthogonal set with respect to a non-degenerate

symmetric bilinear form B. If v 2 S, then in the notation of Lemma 3.5:

• If B = ·, then

|Sv| 

8

>

>

<

>

>

:

n, if n  7;

1 + 2
n�1
2

�1, if n is odd and n � 9;

2
n
2
�1, if n is even and n � 8.

• If B = H and n is even, then |Sv|  2
n
2
�1.

Proof. We begin with B = ·. By Lemma 3.5 and Lemma 6.1, we have

|Sv|  |Rv| + |Tv| 
|Vv|

2
+ |Tv|.

By Lemma 3.2 we have dim(Vv)  b(n � |Tv|)/2c. Setting t = |Tv| we get

|Sv|  2b n�t
2

c�1 + t.

A routine calculation confirms that, for n  7, the right side is maximum when t = n. Otherwise,
the maximum is achieved when t = 1 for odd n and when t = 0 for even n.

If B = H, there are no non-self-orthogonal vectors and so, similarly to above, |Sv|  |Vv|/2 

2
n
2
�1. ⇤

We first prove the theorem for the hyperbolic form H.

Proposition 6.3. Let n � 2 be even and S ⇢ F
n
2 be a (3, 2)-orthogonal set with respect to the hyperbolic

form H. Then

|S|  2
n
2
+1 � 2.

Proof. We prove the claim by induction. For n = 2, F2
2 \ {0} is not (3, 2)-orthogonal. So the claim

is true for n = 2.
For the inductive step, we may assume there exist linearly independent v, w such that v ·w = 1.

If not, then S is an orthogonal set and by Lemma 3.2, we have the better bound |S|  2
n
2 � 1. By

Lemma 3.7 (iii), H �{v,w}? is non-degenerate and is equivalent to H (in this lower dimensional vector
space). By the induction hypothesis we have

|Svw|  2
n
2 � 2.

Hence by Lemma 6.2,

|S|  |Sv| + |Sw| + |Svw|  2
n
2
�1 + 2

n
2
�1 + (2

n
2 � 2) = 2

n
2
+1 � 2. ⇤

From now on we mainly restrict our attention to the dot product, though we will use Proposi-
tion 6.3 for even n because we sometimes use Lemma 3.7 (i) and the restriction of the dot product
may be equivalent to H. To prove the theorem we consider two cases separately depending on
whether S contains a vector that is not self-orthogonal or not. We first prove the theorem when all
vectors in S are self-orthogonal. The proof is similar to that of Proposition 6.3.

Proposition 6.4. For n � 1, let S ⇢ F
n
2 be a (3, 2)-orthogonal set with respect to the dot product. If S

consists entirely of self-orthogonal vectors, then

|S| 

(

2
n+1
2 � 2, if n is odd;

2
n
2
+1 � 3, if n is even.
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Proof. We prove the claim by induction. For n = 1, |S| = 0. For n = 2, we have S ⇢ {(1, 1)} and
the claim follows.

For the inductive step, we may assume there exist linearly independent v, w such that v ·w = 1.
If not, then S is an orthogonal set and by Lemma 3.4, we have a better bound on |S| than required.
Furthermore, by Lemma 3.7 (iii), the dot product restricted to {v, w}? is equivalent to the (lower
dimensional) dot product and Svw contains only self-orthogonal vectors. For even n, by the induction
hypothesis we have

|Svw|  2
n
2 � 3.

All vectors in S are self-orthogonal and so Tv = Tw = ;. Therefore Sv = Rv. Lemma 6.1 gives

|Rv|  2
n
2
�1.

The same holds for w. Putting everything together gives

|S|  2
n
2
�1 + 2

n
2
�1 + (2

n
2 � 3) = 2

n
2
+1 � 3.

For odd n, the induction hypothesis gives

|Svw|  2
n�1
2 � 2.

Again Tv = Tw = ; and so by Lemma 6.2, we have

|Sv|, |Sw|  2
n�1
2

�1.

This gives

|S|  2
n�1
2

�1 + 2
n�1
2

�1 + (2
n�1
2 � 2) = 2

n+1
2 � 2,

as required. ⇤

The next step is to prove a bound for all S that is weaker than that in Theorem 2.2. It will be
used to prove the theorem when S contains a vector that is not self-orthogonal.

Lemma 6.5. For n � 1, let S ⇢ F
n
2 be a (3, 2)-orthogonal set with respect to a non-degenerate

symmetric bilinear form. Then

|S| 

8

>

>

>

>

>

<

>

>

>

>

>

:

2
n+1
2 + 2n � 2, if n = 1, 3;

2
n+1
2 +

n(n+1)

2
� 3, if n � 5 is odd;

2
n
2
+1 + 2n � 3, if n = 2, 4;

2
n
2
+1 +

n(n+1)

2
� 4, if n � 6 is even.

Proof. If the bilinear form is equivalent to H, the result follows from Proposition 6.3.
If the bilinear form is equivalent to the dot product, we let D ⇢ S be the collection of vectors in S

that are not self-orthogonal. The claim follows by applying Proposition 6.4 to S \D and Lemma 3.10
to D. ⇤

We continue with the case when there is a vector that is non-self-orthogonal. The proof is longer
because we cannot initiate the induction (for example, Remark 6.7 shows S3,2(2, 4, ·) � 7 > 23 �3)
and because we can no longer assume, say, Tv = ;.

Proposition 6.6. Let n be an integer and S ⇢ F
n
2 be a (3, 2)-orthogonal with respect to the dot product.

If S contains a vector that is not self-orthogonal, then

|S| 

(

2
n+1
2 + 1, if n � 21 is odd;

2
n
2
+1 � 3, if n � 18 is even.
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Proof. We begin with familiar notation. We let G be the simple graph with vertex set S and edges
given by not mutually orthogonal pairs of vertices, and

D = {v 2 S : v · v = 1}.

Even n. Let z 2 D. We consider two separate cases according to whether there exists an edge
between z and S \ D or not.

Suppose first that there is no edge between z and S \ D. Then S \ D ⇢ {z}?. The dot product
restricted to {z}? is non-degenerate (because z is not self-orthogonal). The dimension of {z}? is odd
and so the restriction is equivalent to the (lower dimensional) dot product. Moreover, all elements

of S \ D are self-orthogonal. Therefore by Proposition 6.4 we get |S \ D|  2
n
2 � 2. By Lemma 3.10

we have |D| 
n(n+1)

2
� 1. Hence (because n � 14)

|S|  (2
n
2 � 2) + ( n(n+1)

2
� 1)  2

n+1
2 � 3.

Next we suppose that there exists an edge vz with v 2 S \ D. We have

|S|  |Sv| + |Sz | + |Svz |.

By Lemma 3.7 (i), the dot product restricted to {v, z}? is non-degenerate. Lemma 6.5 gives

|Svz |  2
n
2 +

(n�2)(n�1)

2
� 4.

To bound |Sv| note z 2 Tv. Writing t = |Tv|, and applying Lemma 3.5 and Lemma 6.1 we get (using
n � 12)

|Sv|  2b n�1�t
2

c�1 + t  2
n
2
�2 + 1.

By Lemma 6.2 we get |Sz |  2
n
2
�1.

Putting everything together gives (using n � 18)

|S|  2
n
2
+1 � 3 � (2

n
2
�2 �

(n�2)(n�1)

2
)  2

n
2
+1 � 3.

Odd n. If D contains up to three elements, the required result follows from Proposition 6.4. Let
x, y, z 2 D denote three distinct elements and let H be the graph induced on {x, y, z}. The graph H

is not a triangle because D is a subset of a (3, 2)-orthogonal set. We consider three cases based on
the number of edges in H .

Suppose H is the empty graph. First, assume a pair of the sets Rx, Ry, Rz has non-empty
intersection. Namely, say v 2 Rx \ Ry . Consider the decomposition

S = Sx [ Sv [ Sxv. (18)

Note that x, y 2 Tv and that by Lemma 3.7 (i), we may apply Lemma 6.5 to obtain

|S|  (2
n�1
2

�2 + 3) + (2
n�1
2

�1 + 1) + (2
n�1
2 +

(n�2)(n�1)

2
� 3)  2

n+1
2 + 1, (19)

for n � 21. Thus suppose Rx, Ry, Rz are pairwise disjoint. This means that Rz [ {x, y} is orthogonal.
Since z 2 Sxy and the dot product restricted to {x, y}? is non-degenerate (by Lemma 3.7 (i)),
Lemma 6.2 gives

|Sz | = |Sz \ Sxy |  1 + 2
n�1
2

�2.

Considering the decomposition

S = Sx [ Sz [ Sxz [ {x, z}, (20)

and using Lemma 3.7 (i), Lemma 6.2 (as well as its proof), and Lemma 6.5, we have

|S|  (2
n�1
2

�1 + 1) + (2
n�1
2

�2 + 3) + (2
n�1
2 +

(n�2)(n�1)

2
� 3) + 2  2

n+1
2 + 1 (21)

for n � 21. (We can do better but will refer later to (21)).
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Next, suppose H has exactly one edge. Without loss of generality take yx to be the edge. We split
this case further. First suppose there exists an edge between z and Rx [ Ry . Say, an edge between z

and v 2 Rx. We consider the decomposition (18) Then noting that x, z 2 Tv and that Lemma 3.7 (i)
allows one to apply Lemma 6.5, one recovers the same bound on |S| as (19). Next, suppose there
is no edge between z and Rx [ Ry . In particular, Rx [ {y, z} is an orthogonal set. It follows that Vx

does not have the maximum dimension that is possible for orthogonal subspaces. Thus, using the
decomposition (20) and using Lemma 3.7 (i), Lemma 3.2, Lemma 6.1 and Lemma 6.5, we may obtain
the same bound on |S| as (21).

Finally, suppose H has two edges. Without loss of generality let yxz be the path of length 2. Here,
we proceed to show that we may assume |D| = 3, which, as pointed out earlier, gives the required
result.

Suppose there exists a fourth vector w 2 D. If w forms an edge with x, then there is no edge
between any two of {y, z, w} and we are done by the arguments of the first case. If, on the other
hand, w does not form an edge with x, by Lemma 3.7 (i), dot product is non-degenerate on {x, w}?,
so we use

S = Sx [ Sw [ Sxw [ {x, w}.

Then, noting |Tx| � 2 and arguing as before, we obtain

|S|  (2
n�1
2

�2 + 3) + (2
n�1
2

�1 + 1) + (2
n�1
2 +

(n�2)(n�1)

2
� 3) + 2  2

n+1
2 + 1,

which is the same as (21). ⇤

The proof of Theorem 2.2 is completed by combining Propositions 6.3, 6.4 and 6.6.

Remark 6.7. Theorem 2.2 is false for small n. For n = 2, S3,2(2, 2, ·) = 3 as we see by taking
S = F

2
2 \ {0}. For n = 4 the example below shows S3,2(2, 4, ·) � 7:

S = {(1, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1), (0, 0, 0, 1), (0, 1, 1, 1), (0, 1, 1, 0), (1, 1, 0, 1)}.

The graph of S is indeed triangle-free: using the implicit order on the vertices, it is the union of the
6-cycle 234567 with the edges 12 and 47.

7. Proof of Theorem 2.3

The following is essentially the same as [10, Equation 2.4] and [18, Lemma 5]. Also see [3] or
apply the point-hyperplane incidence bound in [20].

Lemma 7.1. For X, Y ⇢ F
n
q , define

O(X, Y ) = |{(x, y) 2 X ⇥ Y : B(x, y) = 0}|.

Then
�

�

�

�

O(X, Y ) �
|X k Y |

q

�

�

�

�


p

|X k Y |qn.

The following result is due to Turán [19].

Lemma 7.2. Any graph of n vertices, which is Kr+1-free contains at most (1 � 1/r)(n2/2) edges.

Proof of Theorem 2.3. Let G = G(S, E1) be the simple graph, where (s1, s2) 2 S2 forms an edge in
E1 if s1 6= s2 and B(s1, s2) 6= 0. Then using the fact that S is (k, 2)-orthogonal, we know that G is
Kk-free and thus by Lemma 7.2,

|E1| 
k � 2

k � 1

|S|2

2
.
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Denoting G0 = G(S, E2) as the complement of G, we deduce that

|E2| �
|S|(|S| � 1)

2
� |E1| �

|S|2

2(k � 1)
�

|S|

2
.

Now, clearly O(S, S) � 2|E2|. Hence, applying Lemma 7.1, we have

|S|2

k � 1
�

|S|2

q
� |S|  |S|qn/2,

which gives

|S| 

✓

q(k � 1)

q � k + 1

◆

(qn/2 + 1). ⇤
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