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Snow traction is a key performance characteristic for tire design. Designing snow tires requires extensive
testing on snow-covered proving grounds. Thus, numerical simulation could be a more efficient and less
costly method of improving tire designs. Various numerical approaches, such as analytical methods, grid-
based methods, and particle-based methods were employed for compacted snow modeling in literature.
Analytical models of compacted snow were developed based on various assumptions about snow
mechanics and tire-snow interaction. With increasing the computational power, grid-based methods
(especially Arbitrary Lagrangian Eulerian method) showed to provide effective modeling of complex
tire-snow interaction behavior. However, these approaches showed some limitations in modelling large
and discontinuous deformation problems associated with tire-snow interaction. Therefore, recently, the
use of particle-based methods, which overcome these limitations, has recently sparked interest in tire-
snow modeling. The numerical studies related to the modeling tire-snow interaction are briefly reviewed
in this paper. Furthermore, various constitutive snow material models and different failure theories used
in literature, which are essential for numerical tire-compacted snow simulations, are also reviewed.
Overall, this review paper could be useful for researchers interested in modeling the tire – snow interac-
tions and even tire-deformable soil interaction.
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Nomenclature

P Pressure
k/ Friction angle constant
Z Sinkage
frr Rolling resistance
W Weight of hammer
Sn Sinkage after ‘n’ blows
w Strain rate
C Material cohesion
Q Deviatoric Stress
q Density
soct octahedral shear stress
R Cap eccentricity parameter
k Consolidation index
N Specific volume at unit hydrostatic pressure
q0 Pre-consolidation pressure
J2 Second invariant of the stress deviator tensor
Fs Share failure surface
p Hydrostatic pressure stress
p

0
Effective mean stress

m Specific volume
k
0

Slope of the normal compression
FS Shear force of snow in void
FB Braking force
rn Normal stress
Fx drawbar pull

kc Cohesion constant
b Width of contact patch
j Shear Displacement
n Number of blows
h Height of hammer drop
Q Weight of assembly
s Shear stress
/ Material angle of friction
E Young’s Modulus
rc Unconfined compressive strength
roct octahedral normal stress
G Shear modulus
k swelling recompression index
M Slope of critical state line
l coefficient of internal friction
I
0
1 The first invariant of the stress tensor
Fc Compression cap
q Deviatoric stress measure, or Von Mises equivalent

stress
q

0
Deviatoric (shear stress)

j Slope of swelling line
C specific volume of the CSL
Fl Frictional force between tire and snow
FD digging force
Fsx Traction Force
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1. Introduction

Snow traction is an important key performance parameter for
tires. However, the highly nonlinear properties of compacted snow,
flexible tires, and the contact mechanics at the tire-snow interface
provides significant challenges in predicting snow traction. There
are many factors that influences the tire–snow interaction, includ-
ing interfacial slips, normal load on the wheel, friction coefficient
at the interface, and snow depth. Accurate numerical prediction
of snow traction is challenging mainly due to the lack of reliable
material models of compressed snow and accurate modelling of
tire-snow interaction (Lee, 2011a, Lee 2013). Snow shows highly
complex characteristics under normal conditions, exhibiting non-
linear viscoelasticity and undergoing large strains, both volumetric
and deviatoric (Mellor 1975, Shenvi et al., 2022). As a result, for-
mulating rigorous constitutive equations and failure criteria in
the context of continuum mechanics, which are necessary for
numerical simulations, has proven to be challenging. Several
researchers suggested the need for the development of improved
material models as present state-of-the-art snow material models
defined in FEA software perform poorly (Hambleton and Drescher
2008, Terziyski 2010).

There are several methods in the literature for modeling snow-
tire interaction behavior, such as analytical and semi-analytical
methods (Nakajima 2003), finite element methods (Mundl et al.,
1997, Seta et al., 2010, Terziyski 2010) and the recently developed
particle-based methods (Xu et al., 2020, Bui and Nguyen 2021).
Each method has its own advantages and disadvantages, which
are thoroughly discussed in this study. In analytical and semi-
analytical methods, mathematical relationships are used to calcu-
late the forces and moments at the tire–snow interaction
(Nakajima 2003, Lee and Liu 2006). Then, snow traction are pre-
dicted using braking force due to snow compression, shear force
of snow in the void, frictional force, and digging force. In finite ele-
ment methods (FEM), the snow is modeled using various material
models (e.g., Mohr-Coulomb yield model, a modified Drucker–Pra-
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ger with a cap, and Cam-Clay yield model, etc.) which are suitable
for capturing the highly compressible behavior of snow (Meschke
et al., 1996, Shoop 2001, Seta et al., 2003). Before to be used in
the numerical simulations of complex tire-snow interactions, these
material models should be validated/calibrated against simple
compression/shear tests (e.g. compression and shear tests). The
particle-based methods are appropriate when dealing with free
surface flow and large deformation and have recently attracted
attention in snow modeling. These methods are divided into two
types: continuum methods and discrete methods (Karajan et al.,
2014). The continuum methods requires no background mesh for
numerical integration of governing equations, avoiding some of
the drawbacks of computational mesh when dealing with large
deformation or even complete detachment. The Smoothed Particle
Hydrodynamics (SPH) method (Bui et al., 2007, El-Sayegh and El-
Gindy, 2018, Bui and Nguyen, 2021) is the most commonly used
continuum particle-based method for tire-snow interaction stud-
ies. In a discrete particle-based method, particles interact with
other particles using Newton’s equation of motion and a contact
law to determine the inter-particle contact forces. The Discrete Ele-
ment Method (DEM) (Johnson and Hopkins 2005, Theile et al.,
2020, Xu et al., 2020) is one of the most widely used discrete
approaches in tire-snow interaction modeling. Hence, SPH and
DEM approaches appears to be a promising alternative for model-
ing snow behavior among the particle-based methods.

The aim of this literature review is to acquire a better under-
standing of the present state of knowledge about various modeling
methodologies for compacted snow-tire interaction studies. The
study starts with a brief review of material properties of snow,
constitutive material model proposed to model snow and corre-
sponding failure theories. Then, the numerical methods proposed
in literature to investigate tire-snow interaction are reviewed with
a special interest in snow modelling. Finally, some conclusions are
provided which could be the basis for future improvements
of snow modelling for better numerical prediction of snow
traction.



Fig. 1. The relationship between the uniaxial compressive strength and density
from different studies (1) compacted snow (Wang et al., 2021), (2) processed snow
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2. Snow properties and material models

Snow is a cellular form of ice crystals bound together, which
forms in the atmosphere because of the deposition of water vapor
into ice. The deposition of water vapor requires the presence of a
nucleus, which is present in the air in the form of dust particles.
Snow consists of three different phases: ice, water, and air, with
the water phase being minimal at subzero temperatures. Depend-
ing on its density, the most common types of snow are fresh snow,
soft packed snow, medium packed snow, hard packed snow and
slush (Janowski 1980).

There are various characteristics that need to be considered
while analyzing snow material. Its hardness, type, and density
are all affected by the metamorphic process. As a result of the den-
sification process, the snow particles transform from flakes to
granular particles. The moisture content of snow changes accord-
ing on temperature and climate. Furthermore, when the tire moves
across the snow, the material property changes. As a result of all of
these variables, developing an accurate snow model is challenging.
(Abele, 1990), (3) natural snow (Kinosita, 1967), (4) Natural densification of snow
deposits (Mellor, 1975). Redrawn in agreement to plot in (Wang et al., 2021).
2.1. Snow properties

Many researchers compiled a lot of knowledge related of snow
mechanics study (Bader 1963, Mellor 1975, Mellor 1977). While
main mechanical properties of snow and methods to identify them
are briefly presented in the following sections, the reader is
referred to comprehensive reviews in literature for more detailed
treatment of snowmechanics (Shapiro et al., 1997) and of the snow
measurement methods (Shenvi et al., 2022).
2.1.1. Snow density and mechanical properties
Snow density is an important physical property of snow and

varies from 100 kg/m3 for fresh snow to 600 kg/m3 for snowpack
subjected to melt-freeze cycles. The maximum density of snow
may reach up to 900 kg/m3 (ice density). The compacted snow that
automobiles can experience is typically classified as having a den-
sity ranging from 370 to 560 kg/m3 (Shoop et al., 2010).

Numerous research tried to quantify the macroscopic mechan-
ical behavior of various snow types under different loading condi-
tions and temperatures (Mellor 1975, Shapiro et al., 1997).
However, no strong correlation between mechanical properties
and snow density was observed (Mellor 1975). As a result, it seems
that density alone is insufficient to completely characterize the
mechanical behavior of snow (Voitkovsky et al., 1975, Shapiro
et al., 1997), including compressive strength, and intergranular
bonding (Fukue 1979, Shapiro et al., 1997).

Snow deformations are primarily controlled by grain rearrange-
ments, which are caused by bond failure and creation. This kind of
deformation occurs when slab avalanches are released (Schweizer
2003), when a snow profile is characterized using an indenter
(Schneebeli et al., 1999), or during tire- snow ground interaction
(Schneebeli et al., 1999). If the snow has been compressed, well-
bonded and of high density, then even comparatively large stresses
can be sustained without considerable deformation. In these cases,
linear relations are possibly applicable over a relatively large range
of stresses (Abele and Gow 1976, Shapiro et al., 1997).

The relationship between the uniaxial compressive strength
and density of snow were investigated by different studies
(Kinosita 1967, Mellor 1975, Abele 1990). In compression process,
as density increases, the compressive strength of snow increases
(Fig. 1). A similar trend was observed for natural densification of
snow, as density increased (100–600 kg/m3) the compressive
strength of snow increases (10-4 to 10-1 MPa). By comparison
(Fig. 1), the strength of natural and compacted snow (Fig. 1: Plot
1, 3, 4) is obviously higher than that the strength of snow produced
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by the slow compression of snow under natural conditions (Fig. 1:
Plot 2). The ultimate uniaxial compressive strength of compacted
snow was also increasing at higher snow densities and lower tem-
peratures (�5 �C to �20 �C, Fig. 2). The rate of change in ultimate
uniaxial compressive strength is low in the density range of 350
to 450 kg/m3, while it is greater in the density range of 450 to
600 kg/m3(Wang et al., 2021).
2.1.2. Young’s modulus of snow
Young’s modulus of snow is an important parameter for tire

traction (Choi et al., 2012). However, determination of the elastic
modulus of snow is challenging (Mellor 1975), mainly due to com-
plex snow properties, such as its strain-rate dependency, and
microstructural effect. Many researchers used uniaxial compres-
sion test, micro-computed tomography (lCT) and FEM to calculate
elastic modulus (E) of snow (Köchle and Schneebeli 2014, Wautier
et al., 2015, Srivastava et al., 2016). Generally, uniaxial compres-
sion experiments conducted at very low strain rates (less than
4x10-4 per sec), the elastic modulus was reported in the range of
0.2 to 20 MPa (Fig. 3: Plot 1) for density between 100 to 350 kg/
m3 (Mellor 1975). Similar values were observed from quasi-static
triaxial compression tests with strain rate less than 10-3 per sec
(Fig. 3: Plot 5 (Scapozza 2004)). The complex microscale geometry
of snow samples on a millimeter scale are reconstructed from lCT
scans (Köchle and Schneebeli, 2014; Lundy et al., 2002) Then the FE
models of these samples are derived, and a porous cohesive mate-
rial is assigned using ice material properties (Sanderson, 1988).
Then, the effective elastic modulus is determined based on FE axial
compression simulations.

In dynamic loading experiments, the higher values of Young’s
modulus (from 20 to 70 MPa) were determined at high strain rates
(greater than 10-2 per sec) for snow densities ranging from 210 to
360 kg/m3 (Fig. 3: Plot 3 (Sigrist 2006)). The elastic modulus values
calculated from the micro-computed tomography (lCT) were
found in the range of 14 to 340 MPa and were close to the values
(range of 11 to 275 MPa) which are obtained from the acoustic
wave propagation experiments (AC) (Fig. 3: Plot 8 and 9). On the
other hand, Snow Micro- Pen Measurements (SMP) values were
ranging from 0.6 to 2.4 MPa, which were more than an order of
lower magnitude. (Fig. 3: Plot 10).

The effective elastic modulus of the snow slab and the specific
fracture energy of the underlying weak layer were reported for
80 different snowpack configurations (Van Herwijnen et al.,



Fig. 2. The relationship between the Ultimate uniaxial compressive strength and
density of compacted snow. Redrawn in agreement to plot in (Wang et al., 2021).
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2016). The effective elastic modulus were ranging from 0.08 to
34 MPa and showed to follow a power law variation relative to
snow density (Fig. 3: Plot 4) (Van Herwijnen et al., 2016).
E qð Þ ¼ 0:93q2:8 ð1Þ
On other hand, the elastic modulus was fit to an exponential

relationship relative to snow density when snow density was in
a range of 250 kg/m3 up to 450 kg/m3 (Köchle and Schneebeli
2014).
E qð Þ ¼ 6:0457e0:011q ð2Þ
The model reported (Camponovo and Schweizer, 2001) based

on laboratory measurements performed at 1 Hz (Fig. 3: Plot 11)
and (Fig. 3: Plot 12) estimates from SMP measurements (red cir-
cles) (Schweizer, 2011).

In conclusion, different values of Young’s modulus were
reported for the same density range (Table 1 and Fig. 4). This
inconsistency could be explained by the differences in experimen-
tal methodology, as well as variation in strain rate and snow tem-
perature used in the experimental studies. Furthermore, the
empirical relationship between density and elastic modulus
changes depending on the assumptions and theories used in each
study (Eqs. (1) and (2)).
Fig. 3. Relation between Elastic Modulus and Density of Snow
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2.2. Snow material models

A wide range of material models, including elastic, elastic–plas-
tic, and elastic-visco-plastic, have been used to model the snow
and its interaction to tire loads. The linear elastic approach for
snow modelling was used in several studies (Smith 1971,
Habermann et al., 2008, Heierli and Zaiser, 2008) with Young’s
modulus of snow ranging from 0.15 to 7.5 MPa, density from 100
to 400 kg/m3, and Poisson’s ratio between 0.1 and 0.3 (Table 2).
Since snow is complex in nature, material models with higher
complexity than simple elastic model were tried as well.

The elasto-plastic material model of snow based on Capped
Drucker-Prager model was used to simulate plate sinkage tests
and the Cam-Clay yield model was used to simulate shear box tests
(Seta et al., 2003). Many studies used Drucker–Prager cap model
for modelling fresh snow as well as compacted snow. For low den-
sity snow (density from 200 to 250 kg/m3) the material cohesion
values were varied from 5 to 30 kPa and internal friction angle
was 22.52�. (Shoop 2001, Haehnel and Shoop 2004). For compacted
snow (density 500 kg/m3), the material cohesion value was
130 kPa and internal friction angle was ranging from 60 to 70�
(Mundl et al., 1997, Choi et al., 2012)(Table 3). Similarly, the
Cam-Clay yield model was used also used for modelling snow
behavior in few studies (Salm 1982, Narita 1984). The visco-
plastic characteristic of snow, representing by its rate-
dependency, showed to play an important role in the long-term
densification of the snowpack mostly through microscale ice skele-
ton deformation. The mechanisms of deformation and degradation
of the intergranular linkages are assumed to be connected to snow
viscosity and yielding. The formation of intergranular bonds may
be represented at the macroscopic scale (Nova 1992). Many
researchers have used different strain rate values in their studies
(Desrues et al., 1980, Meschke et al., 1996, Moos et al., 2003,
Scapozza and Bartelt, 2003a, Scapozza and Bartelt, 2003b,
Cresseri and Jommi 2005, Cresseri et al., 2010). Depending on the
strain rate, snow shows two different kinds of mechanical behavior
(Schulson and Duval 2009). Large deformations at high strain rates
(greater than 10-4 per sec) are primarily exhibits snow bond fail-
ures and grain rearrangements, whereas at very low strain rates
(less than 10-5 per sec) snow exhibits visco-plastic behavior. The
important parameters that are required to generate the visco-
plastic model of snow are listed in Table 4. As density of snow sam-
ple changes, the value of shear modulus changes, however, very lit-
tle change in the value of consolidation index & swelling
recompression index was observed.
. Redrawn in agreement to plot in mentioned references.



Table 1
Selection of previous studies reporting the elastic modulus (E) of seasonal snow by mechanical testing, finite element simulations (FEM) of 3-D micro-computed tomography
(lCT) (Reuter et al., 2019).

Contribution Method Strain rate (s�1) N Density
(kg/m3)

Temperature (�C) Young’s Modulus E (MPa)

(Mellor 1975, Cresseri et al., 2010) Various 10-3 to 10-2 – �100 to 500 �25 to � 6.5 0.1 to 1000
(Köchle and Schneebeli 2014) lCT, FEM – 89 100 to 500 – 1 to 1000
(Cresseri et al., 2010, Wautier et al., 2015) lCT, FEM – 31 100 to 550 – 45 to 3600
(Srivastava et al., 2016) lCT, FEM – 25 97 to 533 – 1 to 1800
(Scapozza 2004) Uniaxial compression test 10-6 to 10-3 �200 180–440 �18.7 to � 1.8 3 to 120

Strain rate, number of experiments (N), average density and snow temperature are listed if reported.

Fig. 4. Mohr diagram and failure envelopes. Redrawn in agreement to the
schematic in (Labuz and Zang, 2012).
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2.3. Snow failure models

Material failure theories tried to predict the conditions under
which the solid materials fail. The material failure, defined as los-
ing the load carrying capacity under external loads which are spec-
ified in ductile and brittle materials by the initiating of yielding and
by fracture, respectively. Several failure theories, used mostly in
soil mechanics, were tried to be used in predicting snow failure
and are reviewed in this section.

2.3.1. Mohr-Coulomb failure criterion
The Mohr-Coulomb failure criteria has been extensively used to

geotechnical engineering. This failure criterion is usually combined
with an elastically-perfectly plastic material model called some-
time, Mohr-Coulomb material model. The failure is regulated by
the maximum shear stress and this failure shear stress is a function
of the normal stress. This may be shown by drawing Mohr’s circle
for states of stress at failure in terms of the principal stresses (max-
imum and minimum). The best straight line that touches these
Mohr’s circles is the Mohr-Coulomb failure line. This failure crite-
Table 2
Snow material properties used in the finite element model for elastic model.

Contribution Young’s Modulus, E (MPa)

(Smith 1971,Cresseri et al., 2010) 0.2 to 1.2
(Smith 1972, Cresseri et al., 2010) 0.2
(Habermann et al., 2008) 0.15 to 7.5
(Sigrist 2006) 5, 20
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rion is a set of linear equations between normal stress r and shear
stress s describing the conditions for which an isotropic brittle
material will fail (Labuz and Zang, 2012). Thus, the Mohr-
Coulomb criterion can be written as.

sj j ¼ C þ r tan/ ð3Þ
From Mohr’s circle, s ¼ smcos/, r ¼ rm þ smsin/, sm ¼ ðrI�rIIIÞ

2

and,.rm ¼ ðrIþrIIIÞ
2 where s is the shear stress, r is the normal stress

and two material constants included in the criteria are c is the
cohesion of the material and / is the angle of internal friction with
coefficient of internal friction l ¼ tan/. In the Mohr diagram
(Fig. 4), this criterion is represented by a straight line inclined to
the r axis by the angle /. By plotting a Mohr circle tangent to
the line and applying trigonometric relations, the alternative form
of eqn. (3) in terms of principal stresses is obtained.

ðrI � rIIIÞ ¼ ðrI þ rIIIÞ sin/þ 2S0cos/ ð4Þ
Mohr’s failure criteria may be also expressed as:

sm ¼ f ðrmÞ ð5Þ
The Mohr envelope may be created on the plane (Fig. 4), using

the relationship provided by Eq. (5), and failure occurs if the stress
state at failure, the circle of diameter ðrI � rIIIÞ is tangent to the
failure envelope, s ¼ g rð Þ:

Therefore, Coulomb’s criteria are equal to the assumption of a
linear Mohr envelope, as shown in Eq. (6).

The Mohr-Coulomb approach is generally used for brittle mate-
rials to find the properties of cohesion and internal friction angle,
and it had been extensively utilized to study snow–tire interac-
tions (Bekker 1969, Lever et al., 2006, Choi et al., 2012). For exam-
ple, it has been used to define the failure of weak snow layers
(Gaume et al., 2013; Podolskiy et al., 2014; Chiaia et al., 2009).
Many researchers used the elastoplastic model with Mohr-
Coulomb failure criterion (Dytran 2002, Seta et al., 2003) and some
studies used elasto-plastic model of snow interface with shear
softening using Mohr–Coulomb rupture criterion (Gaume et al.,
2012). Similarly, 2-D and 3-D finite element soil models was devel-
oped using an elastic–plastic material model following the Mohr-
Coulomb yield criterion described by cohesion stress and friction
angle (Hambleton and Drescher 2008, Hambleton and Drescher
2009).
Density, q (kg/m3) Poisson’s ratio

100 to 400 0.1 to 0.3
127, 227, 310 0.2
100 to 270 0.25
250, 300 –



Table 3

Mohr Coulomb Model

Contribution Density (q) kg/m3 Material cohesion (C) kPa Material angle of friction (/)

(Seta et al., 2003, Cresseri et al., 2010) 200 40 60�

520 16 31�

Drucker–Prager cap model
Contribution Density (q) kg/m3 Material cohesion (C) kPa Material angle of friction (/) Cap eccentricity parameter (R)
(Shoop 2001) 200 to 250 5 to 30 22.52� 2.2E-2 to 1.1E-4

(Mundl et al., 1997) 500 130 60� to 70� –
(Haehnel and Shoop 2004) 200 5 22.528� 0.02
(Choi et al., 2012) 350 85 65 –

500 130 70 –
Cam-Clay model
Contribution Density (q) kg/m3 Shear modulus (G) MPa k k N M q0

(MPa)
(Meschke, Liu, and Mang 1996) 400 7.5 0.38 0.015 3.05 2.88 0.07

k- consolidation index, k- swelling recompression index, N- specific volume at unit hydrostatic pressure, M- slope of critical state line and q0- Preconsolidation pressure.

Table 4
Snow material properties used in the finite element model for Visco-plastic model.

Contribution Density
(q) kg/m3

Shear modulus
(G) MPa

consolidation
index (k)

swelling
recompression
index (k)

Strain rate
w
(per sec)

(Meschke, Liu, and Mang 1996; Cresseri et al., 2010) 400 12.426 0.35 0.02 4.2x10-6

(Scapozza and Bartelt, 2003a, Cresseri et al., 2010) 360 8.179 0.4 0.02 2.6x10-5

(Moos et al., 2003, Cresseri et al., 2010) 314 5.287 0.35 0.015 3.46x10-6

(Scapozza and Bartelt, 2003a, Cresseri et al., 2010) 272 4 0.35 0.02 1.06x10-5

(Desrues et al., 1980, Cresseri et al., 2010) 200 2.114 0.35 0.02 1.0x10-5

(Cresseri and Jommi 2005, Cresseri et al., 2010) 200 to 550 4 0.35 0.02 4.2x10-6
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2.3.2. Drucker-Prager failure criterion
The Drucker–Prager failure criterion is a pressure-dependent

model used to determine whether a material has failed or has
undergone plastic yielding. The criteria were developed to address
plastic deformation of soil and applies to materials such as rock,
concrete, polymers, foams, and other pressure-dependent materi-
als like compacted snow. This failure criteria are a three-
dimensional pressure-dependent model for calculating the stress
state at which the rock achieves its ultimate strength. The criterion
assumes that the octahedral shear stress at failure depends linearly
on the octahedral normal stress through material constants. As an
extension of the Mohr–Coulomb criteria for soils, the Drucker–Pra-
ger failure criterion was established and it can be expressed by
eqn. (6) (Drucker and Prager 1952).ffiffiffiffi
J2

p
¼ kI

0
1 þ k ð6Þ

where k and k are material constants, J2 is the second invariant of

the stress deviator tensor and I
0
1 the first invariant of the stress ten-

sor, and are defined as I
0
1 ¼ r0

1 þ r0
2 þ r0

3 and.J2 ¼ 1
6 ½ðr

0
1 � r0

2Þ
2þ

ðr0
1 � r0

3Þ
2 þ ðr0

3 � r0
1Þ

2�
r0

1;r
0
2;r

0
3 are the principal effective stresses.

The D-P failure criterion, can be expressed in terms of octahe-
dral shear stress, soct , and octahedral normal stress, roct by eqn. (8).

soct ¼
ffiffiffiffi
2
3

r
3kr0

oct þ k
� � ð7Þ

where r0
oct ¼ 1

3 I
0
1 and soct ¼

ffiffiffiffiffi
2J2
3

q
The D-P criterion can thus be con-

sidered as per Nadai’s criterion (Addis, 1993; Chang and Haimson,
2000; Nadai, 1950; Yu, 2002) which states that the mechanical
strength of brittle materials takes the form of eqn. (8).
32
soct ¼ f r0
oct

� � ð8Þ
where f is function that increases monotonically. The criterion
expressed in. Eq. (6), describes a right-circular cone in the stress
space when k>0, or a right circular cylinder when k=0; hence the
intersection with the p-plane is a circle (Fig. 5). The value of k
and k can be calculated from triaxial test by plotting the values of

I
0
1 and

ffiffiffiffi
J2

p
space. The values of k and k can also be determine from

expression in terms of internal friction angle (/) and cohesion inter-
cept (c) using eqn. (9) and (10).
k ¼ 2 sin/ffiffiffi
3

p
3� sin/ð Þ ð9Þ
k ¼ 6c cos/ffiffiffi
3

p
3� sin/ð Þ ð10Þ

If the cohesion and internal friction angle of the MC failure the-
ory are known, the constants of the DP failure criterion can be
determined, and vice versa. (Jiang 2011, Lee 2016). These criteria
are commonly used in geotechnical engineering to calculate failure
strength and be utilized to determine plastic potential in a contin-
uum damage mechanic model. Drucker–Prager plasticity model is
used to calculate pressure-sinkage relationship of snowmodel (Lee
2009, Lee 2013). In order to represent snow behavior correctly, it is
necessary to, the multi-surface Drucker–Prager plasticity model is
employed (Meschke 1995, Rooney et al., 2002). Furthermore, some
researcher used Drucker–Prager model for representing weak layer
of a slab and interface with shear softening. (Gaume, 2011).



Fig. 5. Drucker–Prager and Mohr–Coulomb failure criteria in deviatoric space.
Redrawn in agreement to the schematic in (HKS, 1998, Shoop, 2001).
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2.3.3. Modified-Drucker Prager with cap failure criterion
The Drucker Prager with Cap (DPC) plasticity model has been

improved and extended over the years (Chen and Mizuno, 1990;
Sandler, 2002). This criterion represents the material behavior sub-
jected to the permanent deformation (Bažant 1985, ABAQUS 2003)
and it is capable of accounting for both compaction and shear fail-
ure, as well as a transition zone between the two failure regimes
(Han et al., 2008) (Fig. 6a). It comprises of three parts: 1-a linear
shear failure surface represents increasing shear stress with
increasing mean stress which provides dominantly shearing flow;
2- a curved ‘‘cap” intersecting both the shear failure surface which
provides an inelastic hardening mechanism to signify plastic com-
paction and 3- the mean stress axis; and a transition surface allow-
ing a smooth intersection between the cap and failure surfaces. In
the equivalent pressure stress– deviatoric stress plane (p-q plane),
the equations describing these three surfaces are expresses as.

1: Shear failure surface; Fs ¼ q� ptan/ � C ¼ 0 ð11Þ
where q is the Von Mises equivalent stress or deviatoric stress mea-
sure, p is hydrostatic pressure stress, / is the angle of friction and c
is the material cohesion.

2: Compression Cap ¼

Fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� paÞ2 þ ½ Rq

1þ / � / =cos/
�
2

s
� RðC þ patan/Þ ¼ 0 ð12Þ

where a is a numeric parameter that defines a smooth transition
yield surface intersection between the cap and failure surfaces, R
is the ratio between the horizontal axis and the vertical axis of
the elliptical cap, and pa is an evolution parameter for volumetric
plastic, strain-driven hardening or softening of the cap.

3: Transition surface ¼

Ft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� pað Þ2 þ ½q� ð1� /

cos/
ÞðC þ patan/Þ�

2
s

� / C þ patan/ð Þ ¼ 0 ð13aÞ
The Mohr-Coulomb yield condition is approximated in ABAQUS

(Explicit) by a modified D-P yield condition (ABAQUS, 2006), which
has a corresponding associated or unrelated flow potential. This
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model was used to simulate the behavior of natural fresh snow
(Shoop 2001). The plastic flow is defined by an elliptical potential
surface (Fig. 6b). Flow which is normal to the surface associative in
the cap region; therefore, the flow surface equation is similar to the
equation for the cap yield surface.

In the transition and shear regions, the flow is non-associative
(the flow potential is not perpendicular to the failure surface)
and is defined by the equation (13b).

Flow potential shear surface ¼

Gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ pa � pð Þtan/�2 þ ½ t

1þ / � / =cos/
�
2

s
¼ 0 ð13bÞ
2.3.4. Cam-clay and modified cam-clay failure criterion
Cam-Clay (CC) and Modified Cam-Clay (MCC) models are

widely used to simulate the behavior of soil and soft clay (Borja
and Lee 1990, Borja 1991, Hashash and Whittle 1992, Simo and
Meschke 1993, Callari et al., 1998). The CC model assumes the ter-
rain as an isotropic elastoplastic material, which it is not influ-
enced by creep. When the terrain is snowy, these assumptions
may be in direct conflict, and the model may have convergence
challenges. Hence very few studies used this model to capture
snow behavior (Meschke et al., 1996).

The MCC model can be thought of as an elastoplastic model that
gradually hardens. The effect of yield surface shape and plastic
potential surfaces, as well as performing undrained analysis, are
two common errors in the application of the MCC model (Potts
and Zdravkovic 1999). Both models assume that a normal com-
pression line and various unloading–reloading lines may be used
to characterize the relationship between the specified volume
and the average normal stress. They also demand that the Poisson’s
ratio or the material’s shear modulus be specified (Borja and Lee
1990, Borja 1991, Peinke et al., 2020).

Both CC and MCC models are elastic plastic strain hardening
models based on Critical State theory and the assumption that
the mean stress and void ratio have a logarithmic relationship.
Researchers at Cambridge University created the first critical state
model for understanding the behavior of soft soils such as cam clay
and modified cam clay (Roscoe 1968). These models address three
fundamental aspects of soil behavior: strength, compression or
dilatancy (the volume change caused by shearing), and the Critical
State, when soil materials may undergo unlimited deformation
without any changes in stress or volume. A significant portion of
the volume occupied by a soil mass consists of voids that may be
covered by fluids (primarily air and water). Thus, soil deformations
are accompanied by significant and irreversible change in volume.
A major benefit of the cap plasticity models, a class to which the CC
and MCC formulations belong, is their capability to model changes
in volume more accurately.

The state of a soil sample is defined by three parameters in crit-
ical state mechanics: Effective mean stress p0 , Deviatoric (shear
stress) q0 , and Specific volume m. The mean stress can be evaluated
under general stress conditions in terms of principal stresses p0 r0

1,
r0

2 and r0
3 as.

p
0 ¼ 1

3
ðr0

1 þ r0
2þr

0
3Þ ð14Þ

and triaxial shear stress is expressed as.

q
0 ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0

1 � r0
2Þ2 þ ðr0

2 � r0
3Þ2 þ ðr0

3 � r0
1Þ2

q
ð15Þ

Virgin Consolidation Line and Swelling Lines can be represented
when a sample of soft soil is gradually compressed under isotropic
stress conditions p0 ¼ r0

1 ¼ r0
2¼ r0

3 and under perfectly drained



Fig. 6a. Drucker-Prager Cap model: yield surface in the p-q plane. Redrawn in agreement to the schematic in (Shoop, 2001).

Fig. 6b. Modified Drucker–Prager cap flow potential in the p–q. Redrawn in agreement to the schematic in (Shoop, 2001).
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conditions, the relationship between specific volume, v , and lnp
0

consists of a straight virgin consolidation line and a set of straight
swelling lines (Fig. 7a).

The virgin consolidation line is expressed by the equation.

v ¼ N � k
0
lnp

0 ð16Þ
and swelling line is expressed by the equation.

v ¼ vs � jlnp
0 ð17Þ

where j, k
0
and N are characteristic properties of a particular soil. j

is the slope of swelling line in v space, k
0
is the slope of the normal

compression (virgin consolidation) line or the critical state line in

v � lnp
0
space. N is known as the specific volume of normal com-

pression line at unit pressure, m� lnp
0
and vs differs for each swel-

ling line, depends on the loading history of a soil (Fig. 7a).
Sustained shearing of a soil sample eventually results in a situ-

ation in which more shearing is possible without affecting the
stress or volume of the soil. This is referred to as the critical state,
which occurs when the soil distorts at a consistent rate. This state
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is characterized by the Critical State Line (CSL). The location of this
line relative to the normal compression line (Fig. 7b).

CSL is parallel to the virgin consolidation line in m� lnp
0
space.

The parameter C is the specific volume of the CSL at unit pressure.
Like N, its value depends on measurement units. For the CC model
the relationship between the parameter N of the normal compres-
sion line and C can be expressed by.

C ¼ N� k� jð Þ ð18Þ
Similarly, for the MCC model the relationship can be expressed

as.

C ¼ N� k� jð Þln2 ð19Þ
q, CC, and MCC soils all behave elastically when subjected to
increasing triaxial shear loads until a yield value of q is reached.
Therefore, yield values for CC Model can be expressed as.

qþMp ln
p

0

p0
0

� �
¼ 0 ð20Þ

Similarly, yield values for MCC Model can be expressed as.



Fig. 7a. Behavior of soil sample under isotropic compression. Redrawn in agree-
ment to the schematic in (Rocscience).

Fig. 7c. CC and MCC yield surfaces space. The parameter M is the slope of the CSL.
Redrawn in agreement to the schematic in (Rocscience).
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q2

p02 þM2 1� p
0

p0
0

� �
¼ 0 ð21Þ

In space, the CC yield surface is a logarithmic curve, while the
MCC yield surface plots as an elliptical curve (Fig. 7c). yield stress
or pre-consolidation pressure parameter controls the size of the
yield surface and is different for each swelling line. The parameter
M is the slope of the CSL in space. An important characteristic of
the Critical Straight Line is that it crosses the yield curve at the
point at which the maximum value of q is achieved.

3. Modeling of tire-snow interaction

Many numerical methods were proposed in literature to inves-
tigate compacted snow-tire interaction such as analytical and
semi-analytical methods, mesh-based methods and particle-
based methods. These methods are reviewed in the next sections.

3.1. Analytical/semi-analytical methods

Analytical/semi-analytical methods are used to estimate the
longitudinal traction of a tire in snow. These methods consist of
mathematical approaches which are able to predict the forces
and moments at the tire–snow interface (Browne 1974, Nakajima
2003, Lee et al., 2005, Lee and Liu 2006, Lee, 2011a). During tire-
snow interaction, the generated longitudinal snow traction con-
Fig. 7b. Location of CSL relative to virgin compression line. Redrawn in agreement
to the schematic in (Rocscience).
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sists of four types of forces (Fig. 8): shear force of snow in void
(space between tread blocks) (FS), frictional force between tire
and snow (Fl), digging force (edge effect generated by sipes and
blocks) (FD) and the braking force (FB) generated by snow compres-
sion at the leading edge. Traction at the time when a tire starts roll-
ing is called static traction (Eqn. (22)) (Nakajima 2003).
Static tractionv without slipð Þ ¼ FS þ Fl þ FD � FB ð22Þ
When the slip ratio becomes 1.0 (high slip), FS and FB does not

generate a force, so the equation of traction with a 1.0 slip ratio
becomes:
Traction with 1:0 slip ratioð Þ ¼ Fl þ FD ð23Þ
The static traction of tire was predicted using Eq. (22) and com-

pared to experimental measurements. As the measurement was
taken one day after the snowfall, the mechanical properties of
snow, such as compression and shear strength, were taken from
reference (Muro and Yong 1980). The prediction of traction agreed
with experimental results as well.

A traditional rigid wheel terra-mechanics model (Wong 1993)
was adapted for snow by using a snow indentation model (physical
model based on plasticity) commonly used for soils. These models
are depth-dependent whereas most soil models are depth-
independent. This method was useful for predicting tire sinkage
as a function of longitudinal slip, tire vertical load, snow depth,
hardness and coefficient of rolling resistance (Lee 2009, Lee et al.,
2010).
Fig. 8. The components of longitudinal snow traction of a rolling tire. Redrawn in
agreement to the schematic in (Nakajima 2003).
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The sinkage of snow z at a typical point at an angle h (Fig. 9) on
the tire–snow interface is related to the exit angle h0 by.

z hð Þ ¼ rðcosh� cosh0Þ ð24Þ
where r is the radius of tire. The vertical force Fz acting on the tire
can be related to the normal stress (rn) and shear stress (s) at the
interface by:

Fz ¼ b:r
Z h0

0
rn hð Þcoshdhþ

Z h0

0
sðhÞsinhdh

� �
ð25Þ

where b is the width of the contact patch of the tire.
The applied torque (My) is expressed as:

My ¼ r:b
Z h0

0
sðhÞdh

� �
ð26Þ

The motion resistance (Rx), always positive, is defined as.

Rx ¼ r:b
Z h0

0
rn hð Þsinhdh

� �
ð27Þ

The c (Fsx), which can be positive or negative, is defined as:

Fsx ¼ r:b
Z h0

0
s hð Þcoshdhþ f rr þ Fz

� �
ð28Þ

where frr is the rolling resistance that adds to the traction force. The
drawbar pull (Fx) is defined as:

Fx ¼ Fsx � Rx ð29Þ
Parametric studies of the model indicated that normalized

motion resistance and traction against the normal force decrease
with the increase of the normal force (Lee 2011b). In addition, it
was observed good correlation to test data for some models (e.g.
with a larger coefficient of rolling resistance) and the range of tire
sinkage from the model matches well experimental test data. How-
ever, predicted slips associated has poor correlation with test data
which shows that a better shear stress-shear displacement sub-
model is needed. Furthermore, the analytical deterministic tire–
snow interaction model was converted into a stochastic one which
show a better agreement to test data (Lee 2013).

The conventional brush model is a well-known approach to the
modeling of tire-road interaction. This simple model use small
brush elements, linear elastic and independent bristles. Addition-
ally, the brittles’ properties allow them to adhere to the front part
Fig. 9. Schematic of tire–snow interaction. Redrawn in agreement to the schematic
in (Lee 2013).
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of the contact patch and to slide in the rear. Snow accumulates in
the tire patterns’ voids and sipes when driving on snowy roads,
generating snow-road surface forces. The conventional brush
model (Bakker et al., 1989, Svendenius 2003) represents only the
road-tire interaction without taking the tread pattern into consid-
eration. Therefore, a double interaction brush model (Kusachov
et al., 2019) was developed to represent an extra interaction
between the packed snow in the voids of tire. This approach incor-
porates snow-shearing forces into a tire model using the brush
model theory and it showed better match of test data compared
with the single interaction models over a large slip range.

3.2. Finite element methods

The Finite Element Method (FEM) is a widely used numerical
analysis method for simulation of snow-tire interaction
(Zienkiewicz et al., 2005, Podolskiy et al., 2013, Rao 2017). Lagran-
gian or Eulerian based finite element approaches provide effective
models of complex snow-tire interaction behavior (Carbone et al.,
2010, Rao 2017), even though some poor performance was
reported when dealing with large deformation problems associ-
ated with snow under dynamic loading conditions (Hambleton
and Drescher 2008, Hambleton and Drescher 2009).

In Lagrangian based finite element method the elements
deform with the material since the mesh points remain coincident
with material points during the simulation. As a result, elements
could become significantly deformed, especially in three-
dimensional problems, which may increase the error ranges. The
complex interaction between the elastic tread block or tire and
the inelastically deforming snow has been carried out using
Lagrangian approach (Mundl et al., 1997). Good correlation was
obtained between results from laboratory experiments and from
numerical simulations with respect to the snow deformations
and the rubber-snow friction (Mundl et al., 1997). A two-
dimensional FE model has been used to compute the elastic stress
distribution in realistic multi-layered snow packs, but the non-
linear and time-varying properties of snow were neglected
(Smith 1971, Smith 1972). In a different study (Habermann et al.,
2008), a two-dimensional finite element model of a layered snow-
pack with plane strain conditions were performed assuming snow
as homogeneous and isotropic material.

In Eulerian approach, the mesh doesn’t change as the material
deforms and the domain splits into several volumes to solve for
the snow response. Major disadvantage of this method is the diffi-
culty to model free boundary surface as boundary nodes cannot be
matching with the element nodes and thus it can only be used
when the boundaries of the distorted surface are known a priori
(LeVeque 2002, Moukalled, 2016). This method is more prominent
in the disciplines of fluid analysis and aerospace engineering,
although the mechanisms remain consistent even for snow behav-
ior analysis. A three-dimensional model has been developed in
which the interaction between snow and a rolling tire was consid-
ered (Seta et al., 2003, Oida et al., 2005, Seta et al., 2010). FEM and
FVM were used to model tire and snow (soil) respectively. The
Eulerian formulation was used for snowmodel to simulate its com-
plex interaction with tire tread pattern. The predicted traction
force shows good qualitative agreement with the corresponding
force measured on compacted snow and soil road.

The Arbitrary Lagrangian Eulerian (ALE) is a FE formulation in
which the computational method is not a prior fixed in space
(e.g. Eulerian-based FE formulations) or attached to material (e.g.
Lagrangian-based FE formulations). ALE-based FE simulations can
overcome many of the disadvantages that the traditional
Lagrangian-based and Eulerian-based FE simulations have. The
ALE based FEM can handle significant deformation in the computa-
tional mesh and has capability to maintain a regular mesh config-
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uration and computationally economical as compared to Lagran-
gian and Eulerian based FEM. Hence ALE approach is widely used
in the tire industry to simulate the snow-tire interaction study
due to highly nonlinear behavior of snow in large deformations
and contact problems. (Shoop 2001, Lee 2009, Lee, 2011b). ALE
based finite element analysis was used to simulate circular plate
indentation and static tire indentation for fresh snow of different
depths (Lee 2009). ALE based adaptive-explicit FEA was used to
study the snow-tire interaction behavior (Terziyski 2010). A mod-
eling methodology was examined using rubber block-snow simu-
lations in order to evaluate its applicability to snow traction
simulations. The proposed procedure was also validated with test
result.

In summary, Lagrangian approach showed significant errors
due to large distortions of the computational domain without
recourse to frequent remeshing operations. In addition, Eulerian
approach has difficulties to model free boundary surface as bound-
ary nodes may not be coinciding with the element nodes. There-
fore, ALE method, which capture the advantages of both Eulerian
and Lagrangian methods, show to overcome these problems and
it is widely used by many researchers to investigate the snow-
tire interaction.

3.3. Particle based methods

In recent years particle-based methods or meshless methods
are increasing its popularity in the field of computational mechan-
ics. Particle based methods are alternative to classical FEM which
provides a significant capability for tackling field-scale problems
requiring large-scale deformation and post-failure of geomaterials,
such as snow and soil.

Particle based methods are broadly classified as continuum
methods and discrete methods (Karajan et al., 2014) (Fig. 10). In
continuum methods, the material is treated as a continuous sub-
stance, ignoring individual particles. As FEM, these methods need
constitutive stress–strain relationships and apply conservation of
mass, momentum and energy to small regions of material. The
resulting equations are solved using numerical methods similar
to FEM. The most used continuum particle-based method for
tire-terrain interaction is SPH (Bui et al., 2007, El-Sayegh and El-
Gindy, 2018, Bui and Nguyen, 2021). In discrete methods, the par-
ticles interact with other particles or structure based on Newton’s
equation of motion and a contact law to resolve inter-particle con-
tact forces. These methods require information at the particle scale
such as particle size, shape and mechanical properties. These
methods are very good for investigating phenomena occurring at
length scale of a particle diameter but can provide poor results
for modelling large scale systems. The most used discrete methods
in modelling terrain is the element-discrete method (DEM)
(Johnson and Hopkins 2005, Theile et al., 2020, Xu et al., 2020).
The studies which applied SPH and DEM methods in tire-snow
simulations are reviewed in the following sections.

3.3.1. Smoothed particle Hydrodynamics (SPH) method
SPH method is the oldest mesh-free method originally devel-

oped to solve astrophysical problems in three-dimensional open
space (Gingold and Monaghan 1977, Lucy 1977). In time, this
mesh-free particle method, based on Lagrangian formulation,
became a popular method for a wide range of scientific applica-
tions. The fundamental SPH formulation illustrated in Fig. 11, a
continuum field is represented by a collection of point masses
(or particles), each of which occupies a specific volume of the con-
tinuum domain and carries the mass of the occupied volume.

In particle-based methods (Fig. 11-a) the density is computed
by ratio of mass to volume. However, this tends to over/under
resolve clustered/sparse areas. Another option that doesn’t require
37
a mesh is to build a local volume around the sampling point. This
solves the clustering problem by adjusting the size of the sample
volume based on the number of particles in the area. (Fig. 11-b).
However, in SPH approach (Fig. 11-c), where the density is com-
puted via a weighted sum over neighboring particles, with the
weight decreasing with distance from the sample point according
to a scale factor h. The SPH particle governing equations are known
to be the Navier–Stokes equations and can be described in the
Lagrangian state as the mass and momentum equations (Bui
et al., 2008). SPH approach was used to simulate pressure–sinkage
and shear–strength tests (El-Sayegh and El-Gindy, 2018). The rela-
tionship between the plate sinkage and the applied pressure was
calculated. The application for a tire-snow interaction was effective
in the sole previous effort of SPH for snow (El-Sayegh and El-Gindy,
2018). However, the results lacked experimental validation
because the modeled snow was validated with data from the liter-
ature and thus the SPH properties were readjusted until a fair
agreement between simulation and experiment was reached. More
applications of SPHmethods could be found in the soil-tire interac-
tion simulations, to predict and evaluate the soil compaction after
off-road tire traffic for different vertical loads on the tire
(Gheshlaghi et al., 2020). In recent soil studies the SPH terrain
model was calibrated using experimental results of pressure-
sinkage and direct shear tests (Gheshlaghi et al., 2021). The tires-
soil interaction simulations were performed over different soil con-
ditions such as dry clay, dry sandy loam, 10 % moist, 25 % moist,
and 50 % moist sand soils at different operating conditions to cal-
culate the lateral and longitudinal forces of each tire. Similar
methodology can be used in the future for snow-tire interaction
studies as well.

3.3.2. Discrete element method (DEM)
DEM method (Cundall and Strack 1979) models particulate

media (e.g., soil, snow), as a discrete collection of particle which
interacts through contact forces. Various linear/non-linear cohe-
sionless contact models are used to compute the interal) forces
between particles (Fig. 12). While the normal and tangential forces
are usually calculated with linear elastic-spring models, the energy
dissipation by particle asperities and plastic deformations are
modeled using dashpot models.

A DEM approach could model snow as a matrix consisting of air,
meltwater, and grains of ice with sintering effect (Kabore et al.
2021). This modelling approach was used to predict the mechani-
cal response of snow under compression test which is dependent
on initial density, strain rate, and temperature. Predicted results
obtained under a different of conditions were validated with
experimental test data for both micro- and macro-scale, in partic-
ular range between ductile regimes were investigated. Similarly,
an inter-granular bond and collision model were proposed in
DEM for snow to describe interaction on a grain-scale (Peters
et al. 2021). The aim of study was to predict the mechanical behav-
ior of ice particles under different strain rates using a unified
approach. Thus, the proposed algorithm predicted the displace-
ment of each individual grains due to inter-granular forces and tor-
ques that derive from bond deformation and grain collision. A
simple but promising experimental setup, along with DEM simula-
tions (Steinkogler et al., 2015) that successfully reproduced the dif-
ferent granule classes were proposed. The presented modeling
approach provided more complex and real-scale modeling of flow-
ing cohesive snow with varying properties. A microstructure-based
DEM of snow has been developed and used to investigate snow
behavior under mixed-mode loading (Mulak and Gaume 2019). It
was shown that sintering greatly enhanced strength for pressure
loading and low loading rates, while shear-dominated loading
has a negligible impact on the loading rate. Depending on applied
normal stress, distinct failure regimes were identified and charac-



Fig. 10. Particle Based Methods. Redrawn in agreement to the schematic in (Karajan et al., 2014).

Fig. 11. Computing a continuous density field from a collection of point mass particles. Redrawn in agreement to the schematic in (Price 2012).

Fig. 12. The DEM contact model between two contacting particles. (A) Normal
contact model, (B) Tangential contact model. Redrawn in agreement to the
schematic in (Steinkogler et al., 2015).
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terized by different volumetric responses. On the microscopic
scale, detailed mechanisms of volumetric collapse were studied.
Recently, the snow model was developed and calibrated based on
the open source DEM code (Theile et al., 2020). In this model snow
particles were characterized by randomly distributed elastic
spheres connected by elastic-brittle bonds. This bonded structure
relates to sintered snow. When external forces are applied, the
stress in the bonds exceeds their strength, the bonds break, and
loose particles, equivalent to granular snow, are formed. Model
parameters are classified as temperature dependent material
parameters and snow type dependent microstructure parameters.
The model successfully reproduces the experimental results.
(Theile et al., 2020). A new approach for FEM–DEM model was
developed (Xu et al., 2020) in which the FEM of off-road tire was
validated by stiffness tests, while the DEM of gravel particles was
validated by triaxial compression tests. The calibrated FEM–DEM
model can represent the off-road tire structural mechanics as well
as the macroscopic mechanical characteristics of the gravel road.
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Finally, the commercial software’s like LS-DYNA was used to sim-
ulate the tractive performance of an off-road tire on a gravel road
under varied slip conditions.
4. Conclusion

In the context of tire-terrain interaction simulations, the accu-
racy of the numerical model of the terrain is an important factor,
especially when the terrain is compacted snow, which has received
less attention. Improvements in snow models are still feasible due
to either the inherent assumptions of a given modeling technique,
the unpredictability of available snow data, and/or the poor inclu-
sion of external influences on the sintering process of snow. The
(semi) analytical methods requires important snow characteristics,
such as mechanical properties and coefficient of friction between
tire and the snow. However, due to lack of snow data, the analyt-
ical methods depend on various assumptions about snow mechan-
ics. ALE based finite element technique to modeling snow has been
employed and has been found to be successful. However, mesh-
based approaches suffer from substantial mesh distortion when
dealing with large and discontinuous deformation and free surface
flow. To overcome these problems, the DEM and SPH techniques
have been started to be applied recently. These techniques are rel-
atively new, and some improvements are still possible, particularly
in terms computational expense. Overall, to better understand the
advantages and disadvantages of the proposed numerical models,
it would be useful to employ them in modeling the same tire-
snow problem and evaluate their predictions (e.g. traction force)
to corresponding test data.
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