
J. He et al. ResMath Sci (2023) 10:13
https://doi.org/10.1007/s40687-023-00378-y

RESEARCH

Side effects of learning from
low-dimensional data embedded
in a Euclidean space
Juncai He1* , Richard Tsai2 and Rachel Ward2

*Correspondence:
jhemath@outlook.com
1Department of Mathematics,
The University of Texas at Austin,
Austin, TX 78712, USA
Full list of author information is
available at the end of the article

Abstract

The low-dimensional manifold hypothesis posits that the data found in many
applications, such as those involving natural images, lie (approximately) on
low-dimensional manifolds embedded in a high-dimensional Euclidean space. In this
setting, a typical neural network defines a function that takes a finite number of vectors
in the embedding space as input. However, one often needs to consider evaluating the
optimized network at points outside the training distribution. This paper considers the
case in which the training data are distributed in a linear subspace of Rd . We derive
estimates on the variation of the learning function, defined by a neural network, in the
direction transversal to the subspace. We study the potential regularization effects
associated with the network’s depth and noise in the codimension of the data manifold.
We also present additional side effects in training due to the presence of noise.

Keywords: Low-dimensional data, Learning, Neural networks, Side effects,
Regularization

Mathematics Subject Classification: 68P01, 68T07

1 Introduction
In many machine learning problems, one observes that data points typically concentrate
on a lower-dimensional manifold embedded inR

d . Indeed, the low-dimensional manifold
hypothesis [21,29,40,42,53] posits that the data found inmany applications, such as those
involving natural images, lie (approximately) on low-dimensional manifolds which are
embedded in high-dimensional coding spaces. Manifold learning algorithms [8,20,44,
45,53,55] aim at finding low-dimensional representations of the high-dimensional data.
There aremany supervised or unsupervised linear dimensionality reductionmethods.We
mention linear discriminant analysis (LDA) [6], principal component analysis (PCA) [1],
multiple dimensional scaling (MDS) [18], and canonical correlation analysis (CCA) [26].
The randomprojection framework for data compression provides a theoretical framework
for justification [10,31,34]. Nevertheless, even after a suitable dimension reduction, it is
common to find that the data still concentrate on some lower-dimensional manifold
embedded in a higher-dimensional Euclidean space. This is at odds with the typical (and

123 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-023-00378-y&domain=pdf
http://orcid.org/0000-0001-7311-2626

 13 Page 2 of 41 J. He et al. Res Math Sci (2023) 10:13

crucial) assumption found in many supervised machine learning theories: that the labeled
data points are drawn i.i.d. from a probability distribution whose support has full measure
in the embedding space [9].
In this paper, we will assume that the data points are sampled from a linear subspaceM

of R
d and take the form (x, g(x)) ∈ R

d × R, where x ∈ M, dim(M) < d, and g : M �→ R

is a smooth function. The data points are used to identify a function fθ∗ : R
d �→ R from

a parameterized family of functions fθ defined by particular neural network architecture.
The “trained” function fθ∗ is constructed by optimizing the network’s parameters θ to fit
the given data. The approximation properties of neural networks for functions defined on
embedded low-dimensional manifolds are studied in [12,16,17,36,47,48]. However, due
to the presence of noise, the limitation to the training data acquisition, or distribution
shift in the data that occurs post-training, one often needs to evaluate fθ∗ on points in
a manifold M′ which is close to but not identical to M. As such, the behavior of the
trained neural network fθ∗ on M′ is a nontrivial but practically important question. Not
surprisingly, the performance of the trainednetwork fθ∗ offof the datamanifoldM ismore
consistent the less that fθ∗ varies in the normal direction ofM. This becomes a question
of estimating the magnitude of ∂fθ∗

∂nM , with nM denoting a normal direction ofM. These
observations motivate the following questions: Can ∂fθ∗

∂nM be regulated by choice of neural
network architecture and optimization method? In which ways can noisy training data
improve the stability performance of learning a neural network with low-dimensional
data? How does the low-dimensional structure of the data manifold affect the stability of
the performance of the trained neural network when applied to points away from the data
manifold?
Wewill analyze the trainingprocess of fθ and theproperties of ∂fθ∗

∂nM for deep linear neural
networks or a nonlinear networks activated by ReLU. We aim to reveal the effect of the
arbitrariness of ambient space on the optimized neural networks. We will also discuss the
approach of introducing noise to the non-label components of training data for reducing
the effect of this “arbitrariness,” i.e., for the regulation of ∂fθ∗

∂nM . In many applications,
principal component analysis can be used to reveal the low-dimensional aspects of the
data set. In those cases, the data sets can be described as samples from distributions with
specific variances from a sequence of linear subspaces in a Euclidean ambient space. The
analysis in this paper is highly relevant.
The main contributions of this paper are listed below:

1. If the data points, including noise, lie onM, the linear network’s depth may provide
certain implicit regularization or side effects as shown in Fig. 7 and Theorem 4. For
ReLU neural networks, Theorems 5, 6, and Corollary 2 show that ∂fθ∗

∂nM is sensitive
to the initialization of a set of “untrainable” parameters.

2. If the noise has a small positive variance in the orthogonal complement ofM, then:

– ∂fθ∗
∂nM can be made arbitrarily small, provided that the number of data points
scales according to some inverse power of the variance as shown in Theorem 1
for deep linear neural networks and Fig. 12 for deep nonlinear neural networks.
From our experiments, the scaling laws for nonlinear ReLU networks are signif-
icantly different from the linear networks—much more data points are needed
to control the size of ∂fθ∗

∂nM ;

J. He et al. ResMath Sci (2023) 10:13 Page 3 of 41 13

– We show that gradient descent algorithms can be very inefficient. The time
needed for the gradient descent dynamics to reach a small neighborhood of the
optimal parameters is reciprocal of the data set’s variance in the normal space
of M. See Theorem 2. In addition, it may also need a long time to escape the
near region of origin as shown in Theorem 3.

3. The stability–accuracy trade-off. The role of noise can be interpreted as a stabilizer
for a model when evaluated on points outside of the (clean) data distribution. The
regularization effect is equivalent to changing the loss function for learning functions
defined in the ambient space. However, adding noise to the data set will impact of
the accuracy of the network’s generalization error (for evaluation within the data
distribution). For nonlinear data manifolds, uniform noise may render the labeled
data incompatible.

In the remainder of this section, we define the basic setting that we will work with and
discuss the linear regression problem under this settings to motivate the rest of the paper.
In Sect. 2, we present some special challenges in training deep linear neural networks via
gradient descent. These challenges arise from embedding of data in a higher-dimensional
space. We will derive estimates for stability for linear networks in Sect. 2 and nonlinear
networks activated by ReLU in Sect. 3. In Sect. 4, we briefly discuss the regularization of
∂fθ∗
∂nM by adding noise to data globally and the stability–accuracy trade-off. In Sect. 5, we
give a final summary.

1.1 The basic setting

LetM be a lower-dimensional subspace of R
d defined as follows:

M =
{
x = Q

(
x
0

)
∈ R

d : x ∈ R
dx

}

with Q representing a unitary matrix, here and throughout. Consider the distribution of
points in R

d following

Mσ := Q
(

X
σY

)
,

where σ ≥ 0, Q ∈ R
d×d is a unitary matrix, and X ∈ R

dx is a random vector representing
the underlying distribution of data andY ∈ R

dy is a randomvector independent fromX .Y
is assumed to sample either the normal distribution N (0, Idy) or the uniform distribution
U
(
[−1, 1]dy

)
.Y represents the noisemodel in the dimensions normal toM. In particular,

x ∈ M if x is sampled fromM0. Finally, we consider labeled training data of the form

DN := {(xi, gi)}Ni=1, xi ∼ Mσ , gi ∈ R, (1.1)

where xi ∈ R
d is of the form

xi = Q
(

xi
σyi

)
∈ R

dx+dy , σ ≥ 0, (1.2)

with xi ∼ X , yi ∼ Y , and d = dx + dy. We further assume that

rank
(N∑

i=1
xixTi

)
= dx, (1.3)

 13 Page 4 of 41 J. He et al. Res Math Sci (2023) 10:13

or equivalently, that the matrix (x1|x2| · · · |xN) has full rank. This means that the data do
samples every subspace ofM.
A crucial assumption in our paper is that the target function only depends on xi, i.e.,

there exists a function g : R
dx �→ R such that

gi = g(xi) ∈ R.

However, we point out that the typical learningmodel and training algorithms are agnostic
to this assumption. As a result, we design our machine learningmodel fθ : R

d �→ R rather
than R

dx �→ R.
A typical machine learningmodel with parameter set θ ∈ R

p is used to define a function

fθ (·) = f (·; θ) : R
d �→ R.

In particular, we study the case of f (x; θ) being a deep neural network⎧⎨
⎩f

�(x) = W �α(f �−1(x)) + b�, � = 2 : L,

f (x; θ) = f L(x),
(1.4)

where f 1(x) = W 1x+b1,W � ∈ R
n�×n�−1 , and b�, f � ∈ R

n� with n0 = d and nL = 1. Here,
θ = {(W �, b�)}L�=1 denotes the set of all parameters in the deep neural network f (x; θ). In
the following, we will focus on two different networks:

1. linear networks:

α(x) = x and b� ≡ 0; (1.5)

2. ReLU-activated neural networks:

α(x) = ReLU(x) := max{0, x}. (1.6)

A trained function fθ∗ is constructed by gradient descent applied to the optimization
problem

min
θ∈Rp

J (θ), J (θ) = 1
2N

N∑
i=1

|fθ (xi) − gi|2. (1.7)

More precisely, θ is updated by first initializing as θ0 and then updating

θ t+1 = θ t − ηt
∂J (θ t)

∂θ
(1.8)

with some ηt > 0 for t ≥ 0. In this paper, we shall refer to this updating scheme as (full)
gradient descent (FGD).Wewill also discuss the typical stochastic gradient descent (SGD)
update, where J and ∂J

∂θ
are replaced, respectively, by JBt and

∂JBt
∂θ

, and

JBt (θ) =
∑
xi∈Bt

|fθ (xi) − gi|2,

where Bt � {x1, · · · , xN } is randomly chosen and called a mini-batch.
Let

PMx := Q
(
Idx 0
0 0

)
QTx,

where Idx is the dx × dx identity matrix, and define g : R
d �→ R as

g(x) = g (PMx) . (1.9)

J. He et al. ResMath Sci (2023) 10:13 Page 5 of 41 13

PM is the orthogonal projection ontoM, and g(x) is the extension of g(x) that stays con-
stant in the directions orthogonal toM. Correspondingly, we define f θ as the restriction
of fθ onM:

f θ (x) = fθ (PMx).
Now considerM′, which is close to but not necessarily identical toM.We can estimate
the error:∣∣fθ∗ (x) − g(x)

∣∣ ≤ ∣∣∣fθ∗ (x) − f θ∗ (x)
∣∣∣+ ∣∣∣f θ∗ (x) − g(x)

∣∣∣ , x ∈ M′, (1.10)

where fθ∗ is learned from Mσ (clean data for σ = 0 or noisy data for σ > 0). The first
term on the right-hand side can be interpreted as the stability error of the learned neural
network fθ∗ (x). It measures the amount fθ∗ (x) that varies along the normal direction of
the subspaceM. In particular, we have∣∣∣fθ∗ (x) − f θ∗ (x)

∣∣∣ ≤ ∥∥∥∥ ∂fθ∗

∂nM

∥∥∥∥ ‖x − PMx‖ , x ∈ M′. (1.11)

The term ‖x − PMx‖ is controlled by the difference between the data subspace M and
the test set in M′. The second term on the right-hand side of (1.10) corresponds to the
approximation ability of the neural network. An approximation theory of neural networks
for functions of the form g(x) = g(PMx) is established in [17], where M is a general
manifold andPMx = arg inf ξ∈M ‖x−ξ‖ defines the orthogonal projection onto a general
manifold M. In other words, in [17] the data are assumed to be sampled from (x, g(x)),
where x ∈ A ⊂ [0, 1]d and A is assumed to be contained in a tubular region around M.
Provided that the tubular region has a radius smaller than the reach of M, ∂fθ∗

∂nM of an
optimal network would be 0 in the tubular region.
We remark that in the typical machine learning setup, one considers data sampled from

the same manifold, which corresponds to M′ ≡ M. In comparison, we are interested
in deriving bounds for “out of distribution” error or a kind of stability metric. Thus, we
shall focus on (1.11), the right-hand side of (1.10), and assume that the second term can
be bounded appropriately.
In this paper, the empirical means of quantities derived from the data will often play a

role. We adopt the following notation:

Notation 1 Let z be a random variable in R
m or R

m×n over some probability space and
let zi denote a sample realization of z. We denote the empirical average

〈z〉N := 1
N

N∑
i=1

zi

and the mean

〈z〉 := lim
N→∞〈z〉N = E[z].

Notation 2 For vectors (xi, yi) ∈ R
dx × R

dy , i = 1, 2, · · · , N, we denote the averaged
correlation matrix by

〈A(x, y)〉N :=
(

〈xxT 〉N 〈xyT 〉N
〈yxT 〉N 〈yyT 〉N

)
.

Unless explicitly stated otherwise, we will refer to 〈A(x, y)〉N as 〈A〉N , and 〈A(x, σy)〉N as
〈Aσ 〉N .

 13 Page 6 of 41 J. He et al. Res Math Sci (2023) 10:13

1.2 Warm up: linear regression

As a special case of linear neural networks, we first use simple linear regression to demon-
strate how ∂fθ∗

∂nM can be affected by the data and the model. Since Q can be factored into
parameters, without loss of generality, we will assume that Q ≡ I .
For linear regression, fθ , with θ ≡ w ∈ R

d , takes the form
f (x;w) = wTx = wT

x x + wT
y y, (1.12)

where wx ∈ R
dx and wy ∈ R

dy . We solve

min
w∈Rd

1
2N

N∑
i=1

(
wTxi − gi

)2
, (1.13)

where xi ∼ Mσ .
If σ = 0, in which case y ≡ 0 equivalently, the loss defined in (1.13) reduces to

J (w) = 1
2N

N∑
i=1

(
wT
x xi + wT

y 0 − gi
)2

.

Every point in the set {(w∗
x , wy) | wy ∈ R

dy , w∗
x = 〈xxT 〉−1

N 〈gx〉N } is a minimizer. However,
if gradient descent is used for the minimization, the “optimal” model takes the form

f (x;w∗) = (w∗)Tx = (w∗
x)Tx + (w(0)

y)T y,

where w(0)
y is the initial value set for the gradient descent since ∂J (w)

∂wy
= 0. Hence, we have

∂fθ∗

∂nM
= ∂f (x;w∗)

∂y
= w(0)

y ,

wherew(0)
y keeps its initialization value.Thismeans ∂fθ∗

∂nM is determinedby the initialization
of wy and does not change during the training process.
In the case σ �= 0 and dx = dy = 1, there is a unique minimizer (w∗

x , w∗
y) that can be

quickly derived:

w∗
x = 〈gx〉N 〈y2〉N − 〈gy〉N 〈xy〉N

〈x2〉N 〈y2〉N − 〈xy〉2N
, w∗

y = 1
σ

〈gy〉N 〈x2〉N − 〈gx〉N 〈xy〉N
〈x2〉N 〈y2〉N − 〈xy〉2N

.

In addition, if we assume that the distribution of xi and yi is independent and E[xy] = 0,
then we will have 〈xy〉N ∼ O(1/

√
N), 〈x2〉N = 〈y2〉N ∼ O(1), 〈xg〉N ∼ O(1), and

〈yg〉N ∼ O(1/
√
N). This makes the following estimates hold with high probability:

w∗
x = 〈gx〉N

〈x2〉N + O
(
1
N

)
and

w∗
y = 1

σ
√
N

〈x2〉N − 〈xg〉N
〈x2〉N 〈y2〉N − O(1/N)

∼ O
(

1
σ
√
N

)
.

To have w∗
y ∼ O(1) as σ → 0, one needs to take N to infinity according to

N ∼ O(σ−2). (1.14)
In other words, the resulting linear function will have a small normal derivative only if the
number of data points scales super linearly inversely with the variance of the noise in the
codimensions ofM.
The linear regression example reveals an important aspect about learning from embed-

ded low-dimensional data that are persistent in more general settings. ∂fθ∗
∂nM depends on

the set of parameters which are not trainable when there is no noise. The smaller ∂fθ∗
∂nM is,

the more stable the network is for evaluation at points out of training data distribution.
In the presence of noise with small variance in the codimension directions, the number
of training examples needs to scale inversely proportional to the variance.

J. He et al. ResMath Sci (2023) 10:13 Page 7 of 41 13

2 Linear neural networks
In this section, we study learning with deep linear multilayer neural networks, in partic-
ular the gradient descent dynamics for minimizing the mean squared error. Regression
with multiple hidden layer linear networks generalizes simple linear regression models.
The training of linear neural networks provides a way to construct linear operators satis-
fying certain structural constraints [4,33]. Consequently, LNN models can be adapted to
improve the performance of classic methods, for example in wave propagation [41] and
linear convolutional neural networks in multigrid [14,27,30].
As defined in (1.4) and (1.5) we have the linear network with L − 1 hidden layers as

f (x; θ) = WLWL−1 · · ·W 2W 1x = wTx, (2.1)

where θ = (W 1,W 2, · · · ,WL) denotes all parameter matrices in this model and the
end-to-end parameter w = WLWL−1 · · ·W 2W 1 is defined as the product of the Wk

matrices. Here,Wk ∈ R
nk×nk−1 are the weights connecting the (k−1)th and the kth layer,

k = 1, 2, · · · , L, with the convention that the 0th layer is the input layer (n0 = d) and Lth
layer is the output layer (nL = 1). In particular, we consider only the fixed-width case, i.e.,
nk = n ≥ d for all k = 1, 2, · · · , L − 1. We will refer to such networks as LNNs.
We denote the loss function in terms of (W 1, · · · ,WL) as

J (W 1, · · · ,WL) = 1
2N

N∑
i=1

|WLWL−1 · · ·W 2W 1xi − gi|2, (2.2)

and in terms of the end-to-end parameters w as

J e(w) = 1
2N

N∑
i=1

(wTxi − gi)2, (2.3)

where xi ∼ Mσ . Here, the superscript e in J e emphasizes the fact that J e is the corre-
sponding loss function for the end-to-end weight set w.
In [3], Arora et al. proposed to minimize J (W 1,W 2, · · · ,WL) in terms of (W 1, · · · ,WL),

and derived that gradient descent of J via the explicit stepping

W � ← W � − η
∂J

∂W �
, � = 1, 2, · · · , k,

leads to the following dynamical system for w in the limit of η → 0:

d
dt

w = −‖w‖2− 2
L (∇wJ e(w) + (L − 1)Pw (∇wJ e(w))) , (2.4)

under the assumptions for the initialization of (W 1, · · · ,WL) that(
W �+1

)T
W �+1 = W �

(
W �
)T

(2.5)

for all � = 1 : L − 1. Here, Pw(·) denotes the operator that projects vectors onto the
subspace spanned by w:

Pw(v) = wwT

‖w‖2 v.

For convenience, we define the vector field F : R
d �→ R

d as

F (w) := −‖w‖2− 2
L (∇wJ e(w) + (L − 1)Pw (∇wJ e(w))) . (2.6)

 13 Page 8 of 41 J. He et al. Res Math Sci (2023) 10:13

Prior works related to LNNs with full-rank data. Early work on LNNs focused more
on the side effects of introducing more hidden layers. For example, the �2 regression
with two hidden linear layers was studied in [22]. In that paper, the author studied the
training process and demonstrated the existence of overtraining under the so-called over-
realizable cases by employing the exact solution for amatrix Riccati equation. A simplified
nonlinear dynamical systemwas introduced in [46] to show that increasing depth in linear
neural networks may slow down the training. However, it was proven in [32] that every
local minimum is a global minimum for over-parameterized LNNs (width n is larger than
the number of dataN). It is shown recently in [3] that involving more linear layers beyond
the simplest linear regression brings some advantages to the training of networks and
possibly to the network’s generalization performance. It is also reported in [3] that (2.4)
yields an accelerated convergence of w compared to the linear regression case. Recently,
the convergence of gradient flows related to learning deep LNNs was further studied in
[5,39] by re-interpreting them as Riemannian gradient flows on the manifold of rank-r
matrices endowed with a suitable Riemannian metric. It is worth stressing again that all
these convergence results are established based on the assumption that 〈xxT 〉N is full
rank.
In the remainder of this section, we aim at analyzing (2.4) in the context of embedded

low-dimensional data.

2.1 Gradient descent for deep linear neural networks

In this subsection, we first study some general properties of the dynamical system (2.4).
Then, we provide some further results if we involve the low-dimensional assumption
of data. We first point out that the dynamical system (2.4) is invariant under unitary
transformation:

Proposition 1 Suppose that the data {(xi, gi)}Ni=1 follows xi = Q
(

xi
σyi

)
∼ Mσ for some

unitary transform Q on R
d. Denote x̃i = QTxi and w̃ = QTw. If w(t) satisfies (2.4) then

w̃(t) also satisfies (2.4), and vice versa.

Thus, without loss of generality, we can focus on the case of Q = Id , that is, M =
Span{e1, e2, · · · , edx }. In this setup,

J e(w) = 1
2N

N∑
i=1

(wT
x xi + wT

y σyi − gi)2. (2.7)

Next, we derive the gradient of the loss function J e:

∇wJ e(w) = 〈Aσ 〉Nw − 〈gx〉N , (2.8)

where 〈Aσ 〉N is defined in Notation 2 and 〈gx〉N =
(

〈gx〉N
σ 〈gy〉N

)
by definition in Notation 1.

Here, we notice the relation between 〈Aσ 〉N and 〈A〉N

〈Aσ 〉N =
(
Idx 0
0 σ Idy

)
〈A〉N

(
Idx 0
0 σ Idy

)
, (2.9)

which is useful in the following analysis.
Then, we summarize some observations about the stationary points of (2.4).

J. He et al. ResMath Sci (2023) 10:13 Page 9 of 41 13

Proposition 2 The stationary points of the dynamical system (2.4) consist of point in the
set

{F = 0} ≡ {w : ∇J e(w) = 0 or w = 0},
where F is defined in (2.6). Furthermore, if L = 2, F (w) is not differentiable at 0; if L > 2,
the Jacobian matrix ∇F (0) = 0.

Proposition 3 Assume that 〈xxT 〉N and 〈A〉N are invertible.

1. If σ = 0,

{w : ∇J e(w) = 0} =
{
(w∗

x , wy) : wy ∈ R
dy
}
, (2.10)

where w∗
x = 〈xxT 〉−1

N 〈gx〉N .
2. If σ �= 0,

w∗ =
(
w∗
x

w∗
y

)
=
(

α∗

σ−1β∗

)
=
(
Idx×dx 0

0 σ−1Idy

)
〈A〉−1

N

(
〈gx〉N
〈gy〉N

)
(2.11)

is the unique critical point for ∇J e(w). Furthermore, we have w∗
x = α∗ and(

α∗

β∗

)
= 〈A〉−1

N

(
〈gx〉N
〈gy〉N

)
(2.12)

which is independent from σ in data.

We remark that the assumption made in (1.3) implies that 〈xxT 〉N is invertible.

Assumption 1 In Mσ =
(

X
σY

)
, X and Y are two independent random vectors where

Y ≡ N (0, Idy) and X is a random vector in R
dx such that E[XXT] is invertible.

Analogous to the two-dimensional linear regression problem, the following theorem
relates ‖w∗

y‖ to the standard deviation of the noise and the cardinality of the data set.

Theorem 1 Suppose that σ �= 0 and (xi, yi), i = 1 : N are independently sampled from
the distributions X and Y satisfying Assumption 1. Let (w∗

x , w∗
y) denote a stationary point

of (2.4). For sufficiently large N , with a high probability,

‖w∗
y‖ ≤ Cg,X,Y

σ
√
N

,

and for some Cg,X,Y ≥ 0 which depends only on g(x) and the distribution (X, Y).

Proof Let us denote

〈xxT 〉N = Σ̃X and 〈yyT 〉N = Σ̃Y ,

which are the maximum likelihood estimations of the covariance matrices ΣX and ΣY =
Idy . Given ΣX is invertible and N is large enough, we have 〈A〉N and S which are all
invertible by matrix perturbation theory [52]. Moreover, we have

w∗
y = σ−1S−1

(
〈gy〉N − 〈yxT 〉N Σ̃−1

X 〈gx〉N
)
,

by representing A−1 in (2.11) in terms of block matrix where

S = Σ̃Y − 〈yxT 〉N Σ̃−1
X 〈xyT 〉N .

 13 Page 10 of 41 J. He et al. Res Math Sci (2023) 10:13

According to the independence of X and Y and the law of large numbers, we have
[
〈xyT 〉N

]
ij

= O
(

1√
N

)
and

[
〈yxT 〉N

]
ji

= O
(

1√
N

)
,

and
[〈gy〉N]j = O

(
1√
N

)
,

for i = 1 : dx and j = 1 : dy. In addition, similar results for correlated matrix [2,11] show
that

Σ̃X = ΣX + O
(

1√
N

)
and Σ̃Y = Idy + O

(
1√
N

)

with high probability if N is large. Furthermore, we have

〈A〉N ≡
(

〈xxT 〉N 〈xyT 〉N
〈yxT 〉N 〈yyT 〉N

)
=
(

ΣX 0
0 Idy

)
+ O

(
1√
N

)
,

and notice

S = Σ̃Y − 〈yxT 〉N Σ̃−1
X 〈xyT 〉N = Idy + O

(
1√
N

)
+ O

(
1
N

)
.

This means

‖S−1‖ ≤ CY

(
1 − O

(
1√
N

))−1
and ‖Σ̃−1

X ‖ ≤ CX

(
‖ΣX‖min − O

(
1√
N

))−1
,

where ‖ΣX‖min denotes the minimal singular value of ΣX and CX and CY are constants
depended only on X and Y . Thus, for some Cg,X,Y ≥ 0, we have

‖w∗
y‖ ≤ σ−1‖S−1‖

(
‖〈gy〉N‖ + ‖〈yxT 〉N‖

∥∥∥Σ̃−1
X

∥∥∥ ∥∥〈gx〉N∥∥) ≤ Cg,X,Y

σ
√
N

.

��

Finally,wehave the following estimate forw∗
y when the target function g(x) = g̃(x)+μTx

is a perturbation of a linear function μ ∈ R
dx .

Corollary 1 If g(x) = g̃(x) + μTx and |g̃(x)| ≤ δ for all x ∈ R
dx , then

‖w∗
x − μ‖ ≤ bX,Y δ and ‖w∗

y‖ ≤ δ CX,Y

σ
√
N

,

for some constants bX,Y andCX,Y depending only on the distributionX andY . Furthermore,∣∣∣g(x) − (w∗)Tx
∣∣∣ ≤ δ

(
1 + bX,Y ‖x‖ + CX,Y ‖y‖

σ
√
N

)
,

for any x = (x, y) ∈ R
d.

The following numerical results in Fig. 1 verify the estimate of ‖w∗
y‖ in Theorem 1 and

the claim in Corollary 1. Here dx = 2 (x = (x1, x2)), dy = 1, and we take g0(x1, x2) =
π (sin(πx1) + sin(πx2)) in the left figure. For the right figure, we have g1(x1.x2) = 4(x1 +
x2)+0.1(sin(πx1)+sin(πx2)), g2(x1.x2) = 2(x1+x2)+0.1(sin(πx1)+sin(πx2)), g3(x1.x2) =
π (sin(πx1) + sin(πx2)), and N = 106. We sample the data as x1, x2 ∼ U [−1, 1] and
y ∼ N (0, 1) and then compute (w∗

x , w∗
y) by averaging 10 results using (2.11).

J. He et al. ResMath Sci (2023) 10:13 Page 11 of 41 13

Fig. 1 The log–log diagram of ‖w∗
y ‖ (left) with different σ and N and ‖w∗

y ‖ with different g(x) (right)

Fig. 2 Stream lines of the system with σ = 0.1 on the wxwy -plane. The horizontal and the vertical axes are,
respectively, the wx - and the wy -axis. We take L = 5, σ = 0.1, N = 104, and g(x) = x + 0.1 sin(πx). As shown

in Corollary 1, we have w∗
x ≈ 1 and w∗

y ≈ 6.596 × 10−3 ≤ Cx,y
10σ

√
N
. The color in the background corresponds

to the value of ‖F‖

2.2 Bifurcation and slowmanifold when σ is small

In Proposition (3), we showed thatwhenσ = 0, the dynamical system (2.4) has a stationary
manifold defined as

Γ0 :=
{
(w∗

x , wy) : wy ∈ R
dy
}
. (2.13)

For small positive σ , Γσ degenerates into a single point (w∗
x , w∗

y) denoted as the slow
manifold Γσ . In this section, we present a phase plane analysis of (2.4) and relate the
consequence in training a deep LNN.
In Fig. 2, we present the phase portrait of the dynamical system (2.4) on thewxwy-plane.

We see that wx(t) first converges to a neighborhood of Γσ . Once in the neighborhood,
wy(t) converges to w∗

y on a slower time scale. Asymptotically, (wx(t), wy(t)) converges to
the stationary point (w∗

x , w∗
y). Indeed, the following theorem confirms that Γ0 and Γσ are

stable.

Theorem 2 Suppose that xi, yi, i = 1, 2, · · · , N are independently sampled from distribu-
tions X and Y satisfying Assumption 1. Consider the vector field F defined in (2.6).

 13 Page 12 of 41 J. He et al. Res Math Sci (2023) 10:13

– If σ = 0, then the eigenvalues of ∇F (w∗) are non-positive and the associated eigenvec-
tors to the zero eigenvalues are {(0, wy)|wy ∈ R

dy} = Γ0 − (w∗
x , 0) for any w∗ ∈ Γ0.

– If σ > 0, 1√
N

� σ , and w∗ is the unique nonzero stationary point, then there are dy
negative eigenvalues of ∇F (w∗) with scaleO(σ 2) with high probability.

Proof If σ = 0 and w∗ ∈ Γ0, first we have the eigenvalues of ∇F (w∗) are non-positive as
shown in Proposition 3. Moreover, we have

∇F (w∗) = −‖w∗‖− 2
LM(w∗)∇2J e(w∗),

where

M(w∗) = ‖w∗‖2I + (L − 1)w∗(w∗)T .

Recall ∇2J e(w∗) = 〈A0〉N =
(

〈xxT 〉N 0
0 0

)
and (w∗)T 〈A0〉N = 〈gx〉TN =

(
〈gx〉N
0

)
, thus it

follows that

M(w∗)∇2J e(w∗) = ‖w∗‖2〈A0〉N + (L − 1)w∗〈gx〉TN
=
(

‖w∗‖2〈xxT 〉N + (L − 1)w∗
x〈gx〉TN 0

(L − 1)w∗
y 〈gx〉TN 0

)
.

Thus, the eigenvectors of∇F (w∗) corresponding to zero eigenvalues belong toΓ0−(w∗
x , 0)

since ∇F (w∗) has the form
(

∗ 0
∗ 0

)
.

If σ > 0 and w∗ ∈ Γσ , we still have

∇F (w∗) = −‖w∗‖− 2
LM(w∗)∇2J e(w∗)

and

M(w∗)∇2J e(w∗) = ‖w∗‖2〈Aσ 〉N + (L − 1)w∗〈gx〉TN .
In addition, we have

〈Aσ 〉N =
(

〈xxT 〉N σ 〈xyT 〉N
σ 〈yxT 〉N σ 2〈yyT 〉N

)
=
(

ΣX 0
0 σ 2Idy

)
+ O

(
σ√
N

)
.

Furthermore, we notice

w∗〈gx〉TN =
(
w∗
x〈gx〉TN σw∗

x〈gy〉TN
w∗
y 〈gx〉TN σw∗

y 〈gy〉TN

)
=
(
w∗
x〈gx〉TN 0

w∗
y 〈gx〉TN 0

)
+ O

(
σ√
N

)
.

It follows that

M(w∗)∇2J e(w∗) =
(

‖w∗‖2ΣX + (L − 1)w∗
x〈gx〉TN 0

(L − 1)w∗
y 〈gx〉TN ‖w∗‖2σ 2Idy

)
+ O

(
σ√
N

)

=: K + O
(

σ√
N

)
.

Here, we notice that there are dy eigenvalues of K equals ‖w∗‖2σ 2 with eigenspace
Γ0 − (w∗

x , 0). Given the matrix perturbation theory [52], there exist at least dy negative
eigenvalues of ∇F (w∗) with scaleO(σ 2) if σ√

N
� σ 2. ��

In the regime 0 < σ � 1 andN � σ−2, the gradient descent flow (2.4) tend to converge
slowly to the optimal parameter w∗ due to the gap in the eigenvalues of ∇F (w∗), as

J. He et al. ResMath Sci (2023) 10:13 Page 13 of 41 13

Fig. 3 The log–log diagram of λy (∇F) (left) and [Tσ]i for i = 1 : 3 (right), where g(x1 , x2) = π ∗ (sin(πx1)+
sin(πx2)). We observe that indeed the smallest eigenvalue of ∇F follows the scale of σ 2 when 1√

N
� σ ,

while [Tσ]3 follows the scale ofO(σ−2), which confirms that the convergence of the slowest component
takes place in theO(σ−2) time scale

Theorem 2 shows. We refer to this slow convergence as one of the side effects of learning
from embedded data because it stems from the fact that data distribution essentially
concentrates on a lower-dimensional manifold.
In Fig. 3, we present a set of numerical simulations demonstrating this slow convergence

when N (the number of data points) is sufficiently large. In the experiment, dx = 2 and
dy = 1, so Γσ is a point on the line {(w∗

x , wy) : wy ∈ R}. In the left subplot, we report the
smallest eigenvalue of ∇F , corresponding to the direction parallel to Γσ , for different N
and σ . In the right subplot, we report the quantities

[Tσ]i := inf
t

{
t :

∥∥[wσ]i(t) − [w∗
σ]i
∥∥ ≤ 10−6

}
,

where [wσ]i(t) stands for the ith component of wσ at the time t and w∗
σ is the nonzero

stationary point as in Proposition 3. [Tσ]i gives the first time that the ith component
of wσ becomes within 10−6 distance to [w∗

σ]i. We now focus on the convergence of the
third component, corresponding to wy. Assuming that wσ (0) is in a sufficiently close
neighborhood of w∗

σ so that linear theory applies. We then have ‖[wσ]3(t) − [w∗
σ]3‖ ≤

e−Cλy(∇F)t which means [Tσ]3 ∼ Cσ−2. This indicates that the time to reach within a
small distance of w∗ is proportional to 1/σ 2. Numerical results in Fig. 3 verify the slow
convergence phenomenon. Here, wσ is computed by simulating the system (2.4) directly
with ode45 inMATLABwith time step size 5×10−3. Correspondingly, it takes 200×e[Tσ]i

iterations in ode45 such that the ith component of wσ becomes within 10−6 distance to
[w∗

σ]i.
The following proposition shows that a similar gap in the eigenvalues may exit even for

systems defined with relatively small number of data points.

Proposition 4 Under that same conditions in Theorem 2 with 0 < σ � 1, for any N ≥ 1
and

∥∥‖w∗‖2〈xyT 〉N + (L − 1)w∗
x〈gy〉TN

∥∥ ≤ C, denoting λ(·) as the spectrum of amatrix and

∇F (w∗) = −‖w∗‖− 2
L

(
F11 F12
F21 F22

)
, where

F11 = ‖w∗‖2〈xxT 〉N + (L − 1)w∗
x 〈gx〉TN , F12 = σ

(
‖w∗‖2〈xyT 〉N + (L − 1)w∗

x 〈gy〉TN
)
,

F21 = (L − 1)w∗
y 〈gx〉TN + σ‖w∗‖2〈yxT 〉N , F22 = ‖w∗‖2σ 2〈yyT 〉N + σw∗

y (L − 1)〈gy〉TN ,

 13 Page 14 of 41 J. He et al. Res Math Sci (2023) 10:13

then λ(∇F (w∗)) ⊂ G1 ∪ G2, where

Gi = λ(Fii) ∪
{
λ /∈ λ(Fii)

∣∣∣∥∥(Fii − λI)−1∥∥−1 ≤ ‖Fji‖
}
, i = 1 : 2, j �= i.

More precisely, for i = 2, we have

G2 = λ(F22) ∪
{
λ /∈ λ(F22)

∣∣∣∥∥(F22 − λI)−1∥∥−1 ≤ ‖F12‖
}
.

In particular, since ‖F12‖ ≤ σ
∥∥‖w∗‖2〈xyT 〉N + (L − 1)w∗

x〈gy〉TN
∥∥ ≤ σC and λ(F22) ∼

O (σ), it follows that λ ∼ O(σ) for any λ ∈ G2.

The proof of this theorem is a quick application of Gershgorin’s theorem for block
matrices [54]. Following this proposition, ∇F (w∗) may have eigenvalues falling in the set
G2. In that case, themagnitudes of those eigenvalues areO(σ).Hence, the proposition can
be applied to understand the flow in a mini-batch stochastic gradient descent algorithm.
Each step of SGD can be understood as one discrete step of (2.4) with a relatively smallN
corresponding to themini-batch size. Thus, this proposition suggests that employing SGD
in training can bemore efficient, as the eigenvalues of the smallest amplitude scale asO(σ)
instead of O(σ 2) (if N � σ−2), although it will not always avoid the slow convergence
caused by the small variance σ in the y-directions. See Fig. 5 for a supporting numerical
study.

2.3 Slow convergence

In this subsection, we show that deep LNNs may have yet another hindrance to conver-
gence, depending on the initialization. The following theorem shows that the trajectories
of (2.4) may be attracted to a neighborhood of the origin, and if that happens, it will take
a very long time to escape.

Theorem 3 Assume 0 < C1 ≤ 〈Aσ 〉N ≤ C2 and ‖〈gx〉N‖ = O(1), then for ε � 1we have

TL(ε) := inf
{
t : ‖w(0)‖ = ε, ‖w(t) − w(0)‖ ≥ ε

2

}
≥ Cε

2
L−1, (2.14)

where w(t) is solution of (2.4) and C depends on L, 〈Aσ 〉N , and 〈gx〉N .
For brevity, this theorem shows that deeper LNNs require more time for convergence if
the initialization is very close to the origin or the training process reaches the near field of
the origin. In practice, a commonly accepted heuristics is to avoid initializing weights near
the origin. The above theorem provides a theoretical interpretation for that heuristics, at
least in the context of training deep linear networks. However, as shown in Figs. 2 and 5,
even if one initializes the weights to be far from the origin, the weights can be attracted to
a neighborhood of the origin during the gradient flow. This phenomenon, which has not
been discovered before, can still cause the slow convergence in training LNNs.
Figure 4 demonstrates the convergence issues corresponding to Theorem 2 and The-

orem 3. Here, we simulate the dynamical system (2.4), with L = 10 and w(0) = (−2, 1).
The data are sampled as follows: xi = (xi, σyi) ∈ R

2, xi ∼ U [−1, 1], yi ∼ N (0, 1),
g(x) = π sin(πx), N = 104, and σ = 0.05.
Furthermore, in Fig. 5, we also observe similar results when we train a LNNwith the full

gradient descentmethodwith a special initialization that [W �]i,j is a fixed constant for each
i, j such that ‖w‖ = 2−6. This initialization can satisfy the condition in (2.5) as required in
[3] to make the dynamic system (2.4) as the continuous limit of the FGD method. Thus,

J. He et al. ResMath Sci (2023) 10:13 Page 15 of 41 13

Fig. 4 Convergence of w(t) = (wx (t), wy (t)).We see that the trajectory is attracted to the origin and stay a
long time (∼ 6 × 104 iterations) before escaping. Furthermore, once flowing pass the origin, wx (t) quickly
converge to a small neighborhood of the slow manifold Γσ . But it will take another long period before w(t)
gets close to the optimal point due to the slow convergence of wy (t)

Fig. 5 The convergence of the loss function, ‖wx (t) − w∗
x ‖, and ‖wy (t) − w∗

y ‖ when σ = 0.05. The FGD

results match the previous analysis very well. Given the initialization that ‖w‖ = 2−6, it gets stuck around the
origin for a while and then wx converges very quick while wy converges very slowly after escaping the origin.
In the SGD results, a suitable random initialization strategy is important to the success of the SGD in DNNs
[13,23,28]. Generally, it is hard to notice the trapping issue around the origin for SGD with random
initialization. However, as shown here and in Proposition 4, wy converges slowly for both FGD and SGD

we take a full gradient descent training algorithm with a decreasing learning rate from
2.5×10−3 to 2.5×10−5 under a cosine annealing schedule [37]. In addition, we take L = 6
and n = 10 for this LNN. The training data are created by taking dx = 3 and dy = 2, xi =
(xi, σyi), xi ∼ U

(
[−1, 1]dx

)
, yi ∼ N (0, Idy), and g(x) = 2

∑3
i=1[x]i + 0.1

∑3
i=1 sin(π [x]i),

N = 4 × 103, and σ = 0.05. Moreover, we are also interested in how SGD will perform
under this situation. We apply SGD for the same LNN and training data with Kaiming’s
initialization [28] forW � and a mini-batch size 50. We also show the results in Fig. 5.

Relatedwork. Theorem2 shows that (2.4) has a slowmanifoldΓσ and the convergenceof
wy(t) tow∗

y takes place in theO(σ−2) time scale. Similar results about the slowconvergence
(in the components corresponding to small singular values in the data matrix) are also
reported in [51] for randomized Kaczmarz iterations and [25] for gradient descent in
neural networks. In the setting of this paper, if σ

√
N � 1 and g̃ is not small enough, then

Corollary 1 shows that ‖w∗
y‖ � 1. In this case, “early stopping” [56] may be employed to

 13 Page 16 of 41 J. He et al. Res Math Sci (2023) 10:13

Fig. 6 log2(‖wy‖) of trained LNNs for L = 2, 4, 6. Here we still observe that ‖w∗
y ‖ = O (σ−1N−1/2

)

control ‖wy(T)‖. The similar results can also be found in [38], which presents that small
eigenvalues for the associatedGrammatrixmake the convergence of gradient descent very
slow. In that case, the slow convergence gives us ample time to stop the training process
and obtain solutions with good generalization property. On the other hand, Corollary 1
and Theorem 2 also indicate that there exist some cases in which the early stopping is
not recommended. For example, ‖w∗

y‖ could be small if σ
√
N � 1 and g̃ in Corollary 1 is

relatively small.

2.4 Regularization effects of noise and network’s depth

2.4.1 Regularization effect of noise

Theorem 1 states that the presence of noise in the y-components, i.e., σ �= 0, can result
in w∗

y with a small amplitude, provided that the training data set is sufficiently large.
Moreover, if the noise scale is fixed in data xi, Theorem 1 presents that more data are
needed to control the amplitude of ‖w∗

y‖. Figure 6 demonstrates these results in training
LNN models using SGD.
In Fig. 6, we notice thatwy(t) is non-constant even when σ = 0. It is due to the “mixing”

that comes from the multiple hidden layers and can be seen from (2.4) (more explicitly
from (2.15)). This is different from pure linear regression case wherewy will keep constant
after initialization. Given this observation, we will further study the properties of training
LNNs when σ = 0 in the next subsection.
The basic setup is same to what we have done in Fig. 5. Noticing thatwy in LNNsmay be

difficult to converge when σ is small, we test only σ = 2k for k = 0 : −5. Thus, we apply
SGD only 500 epochs for these experiments and the reported values of ‖wy‖ are obtained
by averaging over 5 individual tests.

2.4.2 The regularization and side effects of depth when σ = 0

In this subsection, we focus on the setting where the training data lie on the low-
dimensional manifold M exactly, i.e., xi ∼ M0. We prove that the size of ‖w∗

y‖ trained
with this data may decrease as the depth of the network increases, for the initial value
w(0) in certain subregion of R

d .

J. He et al. ResMath Sci (2023) 10:13 Page 17 of 41 13

Fig. 7 Phase portraits of the system (2.15) on the wxwy -plane with L = 5 (left) and L = 100 (right)

Since xi ∼ M0, we have the data points xi = (xi, 0) ∈ R
dx+dy and gi ∈ R. Under this

situation, the loss function will degenerate to

J e(w) = 1
2N

N∑
i=1

(wT
x xi − gi)2,

where
∂J e(w)
∂wx

= 〈xxT 〉Nwx − 〈gx〉N and
∂J e(w)
∂wy

= 0.

Equations of w in (2.4) are reduced to⎧⎨
⎩

d
dt wx = f (wx, wy) = −‖w‖− 2

L
(
‖w‖2 ∂J e(w)

∂wx
+ (L − 1)

(
wT
x

∂J e(w)
∂wx

)
wx
)
,

d
dt wy = g(wx, wy) = −(L − 1)‖w‖− 2

L
((

wT
x

∂J e(w)
∂wx

)
wy
)
,

(2.15)

since wT ∂J e(w)
∂w = wT

x
∂J e(w)
∂wx

.
According to Proposition 2, the stationary points of the above system consist of 0 and

Γ0 =
{
(w∗

x , wy) : wy ∈ R
dy
}

where we assume w∗
x is the unique solution of ∂J e(w)

∂wx
= 〈xxT 〉Nwx − 〈gx〉N = 0.

In the following, we study the relationship between L, the network’s depth, and ∂f
∂y = w∗

y .
Naturally, the smaller the magnitude of ∂f

∂y , the more consistent the network’s output
would be when the testing data deviates from the training data manifold.
To begin this study, we first show the following diagram about the phase portraits of

the system (2.15) on the wxwy-plane with L = 5 and L = 100.
According to the above phase portraits, if w is initialized on the right of Γ0 (the red line

in Fig. 7), we have |w∗
y | ≤ |wy(0)|, which can be understood as the regularization effect of

the LNN structure since w∗
y = wy(0) in classical linear regression model when σ = 0. In

addition, we also notice that |w∗
y | ≥ |wy(0)| if w is initialized between the y-axis and Γ0.

This aspect of training can be interpreted as a side effect of the LNN structure comparing
to the linear regression case. We now present generalization of this regularization and
side effects.

 13 Page 18 of 41 J. He et al. Res Math Sci (2023) 10:13

Again, let w = (wx, wy) ∈ R
dx+dy with dx, dy ≥ 1. First, we define

Ex :=
{
wx ∈ R

dx : wT
x

∂J e(w)
∂wx

= 0
}

⊂ R
dx . (2.16)

Ex is an ellipsoid of dimension dx − 1 centered at 〈xxT 〉−1
N 〈gx〉N /2 = w∗

x/2, since

wT
x

∂J e(w)
∂wx

= wT
x 〈xxT 〉Nwx − wT

x 〈gx〉N

and 〈xxT 〉N is a symmetric positive definite matrix.
We denote the cylinder generated by Ex as

E := Ex × R
dy (2.17)

and the enclosed region as

E− :=
{
(wx, wy) : wT

x
∂J e(w)
∂wx

< 0, wy ∈ R
dy
}
.

E− can be regarded as the generalization of the region between y-axis and Γ0 as in Fig. 7,
a region in which ||wy(t)|| increases following the flow of (2.15).
To define an analogy to global flow structure of (2.15) depicted in Fig. 7, we introduce

the hyperplane

H ≡
{
w ∈ R

d :
(
n∗
E
)T (w − (w∗

x , 0)
) = 0

}
,

where n∗
E denotes the exterior normal direction of E at (w∗

x , 0) in R
d . Thus, H is the

tangent plane of E at (w∗
x , 0) in R

d , separating Rd into two disjoint open sets (half spaces).
We denoteU− as the part which contains (0, 0)whileU+ as the other part.More precisely,

U− := {w : n∗
E
T (w − (w∗

x , 0)
)

< 0},
U+ := {w : n∗

E
T (w − (w∗

x , 0)
)

> 0}.
Here, we also notice that

R
d = U− ∪ H ∪ U+, (0, 0) ∈ E ⊂ U−, Γ0 ⊂ H.

We remark that Γ0 = H ⇐⇒ dx = 1. Figure 8 illustrates a corresponding diagram for
the case dx = 2 and dy = 1.

Assumption 2 Let w(t) be a solution of (2.15) with w(0), and w(t) ∩ E = ∅ for any
0 ≤ t ≤ T .

The following proposition states that Assumption 2 holds for some positive time under
some conditions on the location of w(0) and the data.

Proposition 5 If w(0) ∈ E− and the correlation matrix of X, ΣX , satisfies ΣX = cIdx for
some positive constant c > 0, then w(t) ∈ E− for all 0 ≤ t ≤ TX, where TX := inf{t :
‖wx(t) − w∗

x‖ ≤ 2
√
3

c ‖w∗
x‖‖ΣX − 〈xxT 〉‖}.

Since ‖ΣX − 〈xxT 〉‖ = O(1N) can be made arbitrary small if one increases the number of
data points N , in that case, w(t) will stay in E− before it reaches a neighborhood of the
stationary manifold Γ0 (when w(0) ∈ E−).

Lemma 1 Suppose that wy(0) �= 0 and w(t) satisfies Assumption 2 for 0 ≤ t ≤ T. Then,

J. He et al. ResMath Sci (2023) 10:13 Page 19 of 41 13

Fig. 8 Example for dx = 2 and dy = 1

1. if w(0) ∈ U+,

d
dt

‖wx(t)‖2 ≤ 0 and
d
dt

‖wx(t)‖2
‖wy(t)‖2 ≤ 0,

2. if w(0) ∈ E−,

d
dt

‖wx(t)‖2 ≥ 0 and
d
dt

‖wx(t)‖2
‖wy(t)‖2 ≥ 0,

for 0 ≤ t ≤ T.

As a consequence of the monotonicity of ‖wx‖2 and ‖wx‖2
‖wy‖2 , we have the next main

theorem about the regularization and side effects of LNNs.

Theorem 4 Suppose that wy(0) �= 0 andw(t) satisfies Assumption 2 for 0 ≤ t ≤ T. Then,

1. if w(0) ∈ U+,

‖wy(T)‖2 − ‖wy(0)‖2 ≤ (L − 1)‖wy(0)‖2
L‖wx(0)‖2 + ‖wy(0)‖2

(‖wx(T)‖2 − ‖wx(0)‖2
) ≤ 0;

(2.18)

2. if w(0) ∈ E−,

‖wy(T)‖2 − ‖wy(0)‖2 ≥ (L − 1)‖wy(T)‖2
L‖wx(T)‖2 + ‖wy(T)‖2

(‖wx(T)‖2 − ‖wx(0)‖2
) ≥ 0.

(2.19)

Recall that for LNNs, wy determines the Lipschitz bound of the trained network func-
tion, fθ in the direction orthogonal to the data manifold. Therefore, the first case in
Theorem 2.18 can be interpreted as the regularization effect of LNNs: under the stated
conditions, the wy(T) is smaller than wy(0), implying that the variation of fθ in the y-
directions will reduce. On the other hand, the second case in Theorem 2.18 reveals a “side
effect” of LNNs that the variation of fθ in the y-directions will increase; i.e., the stability
(for out of distribution evaluations) of the network will reduce as training progresses.

 13 Page 20 of 41 J. He et al. Res Math Sci (2023) 10:13

Furthermore, we can derive the following a priori estimate:

‖wy(T)‖2 ≤ ‖wy(0)‖2 + (L − 1)‖wy(0)‖2
L‖wx(0)‖2 + ‖wy(0)‖2

(‖w∗
x‖2 − ‖wx(0)‖2

)
(2.20)

from (2.18). By reorganizing (2.20), we have the following a priori estimate:
∥∥wy(T)

∥∥2 ≤ h(L)
(‖wx(0)‖2 − ‖w∗

x‖2
)+

(‖w∗
x‖2

‖wx(0)‖2
)

‖wy(0)‖2, (2.21)

where h(L) = 1+‖wy(0)‖2/‖wx(0)‖2
L(‖wx(0)‖2/‖wy(0)‖2)+1 is a decreasing function in terms of L. That is, the

upper bound for ‖wy(T)‖ with L = 100 is smaller than the case of L = 5 under the same
initialization. Thus, the estimate in (2.21) can partially explains the phenomenon in Fig. 7
in the right of Γ0 that |wy(T)| with L = 100 is smaller than the case of L = 5 under the
same initial when w(t) achieves Γ0.

3 ReLU-activated networks
In this section, we analyze the stability for ReLU deep neural networks (DNNs) when data
are sampled from M, i.e., xi ∼ M0. We first show how the low-dimensional data will
affect the training process. Given that, we establish the stability estimate for ReLU DNNs
with one hidden layer (L = 2). By using the recursive structure of ReLU DNNs, we finally
prove the stability estimate for deep cases.
As defined in (1.4) and (1.6), we have the ReLU DNN function with L− 1 hidden layers

as ⎧⎨
⎩f

�(x) = W �α(f �−1(x)) + b�, � = 2 : L,

f (x, θ) = f L(x),
(3.1)

wheref 1(x) = W 1x + b1, α = ReLU,W � ∈ R
n�×n�−1 , b�, f � ∈ R

n� with n0 = d = dx + dy
and nL = 1. Here,W 1 is a n1× (dx +dy) matrix, and for the convenience of exposition, we
writeW 1 =

(
W 1

x W 1
y

)
, whereW 1

x andW 1
y are, respectively, n1×dx and n1×dy matrices.

With the data of the form prescribed in Sect. 1.1, we assume Q = Id and have

W 1xi + b1 =
(
W 1

x W 1
y

)(xi
σyi

)
+ b1.

Then, the loss function is defined as

J (θ) = 1
2N

N∑
i=1

(f (xi; θ) − gi)2, (3.2)

where xi ∼ Mσ and θ = {W 1, b1, · · · ,WL, bL} denotes all parameters in ReLU DNNs.
If xj ∈ M, the key observation here is that

∂J
∂W̃ 1

y
= 0, W̃ 1

y = [W 1Q]y.

Furthermore, according to the gradient descent update ofW 1, we have

W 1Q ← W 1Q − η
∂J

∂W 1Q =⇒ W 1Q ← W 1Q − η
∂J

∂(W 1Q)
.

Thus,W 1
y or W̃ 1

y will not change for any pure gradient descent-based training algorithms.
Therefore, without loss of generality, we shall assume in the remaining of this section that
Q = Id .The results can be easily extended to W̃ 1 = W 1Q and (̃x, ỹ) = QTx if Q �= Id .

J. He et al. ResMath Sci (2023) 10:13 Page 21 of 41 13

Lemma 2 If xj ∼ M0 in the training data and either the full gradient descent or stochas-
tic gradient descent training algorithm is applied to (3.1) and (3.2), then the following
conclusions hold.

1. W 1
y in W 1 =

(
W 1

x ,W 1
y

)
will not change during the training process (1.8).

2. If there is a �2 regularization term λ‖θ‖2
�2
with an appropriate λ, then W 1

y will decay
to 0.

Although Lemma 2 also holds for LNNs, estimating ‖w∗
y‖ directly for LNNs as in The-

orem 4 is a more precise and efficient approach to bound the stability metric. However,
there is no such linear structure that we can use for ReLU DNNs. Thus, we notice the
first consequence in Lemma 2 which shows an invariant property of weightsW 1

y in train-
ing ReLU DNNs with σ = 0 for both full and stochastic gradient descent methods. The
invariant property ofW 1

y in trainingReLUDNNwith (stochastic) gradient descentmethod
plays a critical role in analyzing the stability metric which will be detailed explained in the
remaining subsections. For simplicity, we denote W �(b�) and as the initialized weights
andW � (b�) as the weights (biases) after training. In the following, we will use θ∗ to denote
the parameter set obtained after training. From the discussion above, θ∗ =

{
(W �, b�)

}L
�=1

while W 1 = (W 1
x,W 1

y) due to the conclusion in Lemma 2 if θ∗ is obtained by FGD or
SGD.

An example. We train and obtain a neural network classifier, fθ∗ : R
784 �→ R

10, using
the MNIST data set [19]. The first layer of the network is fully connected. Each image
in the MNIST data set is a black-and-white image consisting of 28 × 28 pixels, and it is
regarded as a point in R

784. Let x̄ be the mean of the data points. Let the unit vector vn
denote a direction corresponding to the least eigenvalue of the covariance matrix. The
ratio between the largest and the least eigenvalue of the covariance matrix of MNIST
is 5.26 × 1016. We shall regard the data manifold M to be the subspace, centered at x̄,
spanned by the first 783 principal directions.
Let W 1 denote the weights in fθ∗ that connects to the input vector. We introduce per-

turbation to the weight setW 1 + sWy, whereWy := vnvTn , and denote the corresponding
perturbed network as fθ∗

s . Let f
[2]
θ∗ denote the second component of the output vector that

corresponds to the digit ‘2’. Classification of an input image x is performed by themaximal
component of Softmax(fθ∗ (x)), using a trained network fθ∗ with 98.14% testing accuracy.
In Figure 9, we show the function

Ij(s, t) := ||f [2]θ∗ (xj) − f [2]θ∗
s
(xj + tvn)||22, (3.3)

for xj . We observe that I(s, 0) remains 0 as s varies; in other words, variations in the Wy
component of W 1 does not change the perturbed network’s output when evaluated at
xj . This means that the data point xj has no role in the optimization of Wy in W 1, in a
gradient descent-based training. Furthermore, fθ∗

s starts to deviate from fθ∗ only when one
introduces perturbation to the input xj in the direction, vn, normal to the data set.
In following subsections, we derive upper bounds on the effect of the perturbation

discussed above.

 13 Page 22 of 41 J. He et al. Res Math Sci (2023) 10:13

Fig. 9 Left: An image corresponding to the digit ‘2’. Center: The change in the third component of the
output vector, resulting from the perturbation to the input image (parameter t in (3.3), horizontal axis) and to
the trained network’s first layer weights (parameter s in (3.3), vertical axis). Right: The classification based on
the perturbed output.

3.1 Stability estimate for L = 2

First, let us consider networks with only one hidden layer, which means L = 2. For input
training data, we have xi = (xi, 0) ∼ M0. In addition, we also denote Ωx = (−1, 1)dx as
the domain of input of xi. That is, we have

f (x; θ∗) = f (x, y) :=
n∑

i=1
W 2

i α(W
1
i,xx + b1i + W 1

i,yy) + b2 (3.4)

as the approximation of g(x) after training. According to Lemma 2, W 1
i,y is given by

initialization since σ = 0 in the training data.
Then, for any y �= 0,we propose to estimate the following deviation along the y-direction

∥∥f (·, y) − f (·, 0)∥∥2L2(Ωx) =
∥∥∥∥∥

n∑
i=1

ei(·, y)
∥∥∥∥∥
2

L2(Ωx)

,

where

ei(x, y) = W 2
i

(
α(W 1

i,xx + b1i + W 1
i,yy) − α(W 1

i,xx + b1i)
)
. (3.5)

In other words, ei(x, y) describes the stability of each neuron’s activation in the first hidden
layer.
Using the property of ReLU function, one can easily describe the support of ei(x, y) given

the trained parametersW 1
i,x,W 1

i,y, and b1i . See the strip depicted in Fig. 13. Thus, we have
the following estimate for ei(x, y).

Lemma 3 Let xi ∼ M0 in the training data, f (x, y) be a network with a single hidden layer
(L = 2) defined in (3.4) and trained by FGD or SGD, and ei(x, y) be defined in (3.5). For
any i = 1 : n1, we have

∥∥ei(·, y)∥∥2L2(Ωx) ≤
∥∥∇hi

∥∥2
L2(Ωx)

∣∣∣W 1
i,yy
∣∣∣2∥∥∥W 1

i,x

∥∥∥2 + Cdx

∣∣∣W 2
i

∣∣∣2 ∣∣∣W 1
i,yy
∣∣∣3

3
∥∥∥W 1

i,x

∥∥∥ ,

where Cdx denotes the measure of the largest (dx − 1)-hyperplane in Ωx and

hi(x) = W 2
i α(W

1
i,xx + b1i), f (x, 0) =

n1∑
i=1

hi(x) + b2.

Notice that hi(x) are Lipschitz in x so ||∇hi||2L2(Ω) is well defined. We denote hi(x)
explicitly and separately since∇xf (x, 0) =∑n1

i=1 ∇hi(x) where f (x, 0) could be the approx-
imation of the target function g(x) onM. The estimate presented in Lemma 3 is a type of

J. He et al. ResMath Sci (2023) 10:13 Page 23 of 41 13

a posteriori estimate since it depends on the parametersW � and b̄2 obtained as the results
of training.
We first notice that the stability of each trained neuron depends on the derivative of h

with respect to each input variable. The derivatives depend on the trained parameters that
are directly connected to the input vector. These parameters depend on the data and the
training algorithm. Furthermore, we observe that the stability of a neuron is dependent
on the “untrainable” parameters in W 1

y ! Finally, the lemma suggests that if the trained
network is more stable if the weightW 2

i connecting to the output is small. This matches
with our intuition thatW 2

i may amplify the contribution of the y components of the input.
By summing all ei(x, y) together and applying the triangle inequality, we have the following
estimate for trained ReLU DNNs with one hidden layer.

Theorem 5 Let xi ∼ M0 in the training data and f (x, y) be a network with a single hidden
layer (L = 2) defined in (3.4) and trained by FGD or SGD, then

∥∥f (·, y) − f (·, 0)∥∥2L2(Ωx) ≤
n1∑
i=1

⎛
⎜⎝
∣∣∣W 1

i,yy
∣∣∣2 ∥∥∇hi

∥∥2
L2(Ωx)∥∥∥W 1

i,x

∥∥∥2 + Cdx

∣∣∣W 2
i

∣∣∣2 ∣∣∣W 1
i,yy
∣∣∣3

3
∥∥∥W 1

i,x

∥∥∥
⎞
⎟⎠ ,

where Cdx and hi(x) follow the same definitions in Lemma 3.

This theorem gives the stability estimate for a ReLUDNNwith one hidden layer trained
by FGD or SGD. It is the building block for understanding the stability of a deep neural
network. The next step is to use the nonlinear recursion relations that define the deep
network to propagate the influence of having nonzero y components in the input vector
input the other hidden layers.

3.2 Stability estimate for L > 2

For a general multilayer neural network with ReLU activation function, as shown in (3.1),
we denote the function trained by FGD or SGD as f (x; θ) = f L(x) where

f �(x) = W �
α(f �−1(x)) + b�, � = 2 : L,

with f 1(x) = W 1x + b1. Let f �(x), � = 1, · · · , L be the functions in (3.1) and

�yf �(x, y) := f �(x, y) − f �(x, 0).

In particular,

�yf (x, y) := f L(x, y) − f L(x, 0).

We have the following recursion relation of �yf �(x, y).

Lemma 4 For any fixed x ∈ R
dx and y ∈ R

dy , we have∥∥∥�yf �(x, y)
∥∥∥ ≤

∥∥∥W �
∥∥∥ ∥∥∥�yf �−1(x, y)

∥∥∥ ,
where

∥∥�yf �(x, y))
∥∥ denotes the �2 vector norm of �yf �(x, y) and

∥∥∥W �
∥∥∥ is the operator

norm of W � with respect to �2 norm.

Proof By definition,

∥∥∥�yf �(x, y)
∥∥∥2 =

∥∥∥W �
(
α
(
f �−1(x, y)

)
− α

(
f �−1(x, 0)

))∥∥∥2

 13 Page 24 of 41 J. He et al. Res Math Sci (2023) 10:13

=
∥∥∥W �

(
α
(
f �−1(x, 0) + �yf �−1(x, y)

)
− α

(
f �−1(x, 0)

))∥∥∥2
≤
∥∥∥W �

∥∥∥2 ∥∥∥(α (f �−1(x, 0) + �yf �−1(x, y)
)

− α
(
f �−1(x, 0)

))∥∥∥2
≤
∥∥∥W �

∥∥∥2 ∥∥∥�yf �−1(x, y)
∥∥∥2 .

The last inequality holds because of the property of ReLU that |ReLU(x+h)−ReLU(x)| ≤
|h| for any x, h ∈ R. ��
By applying the previous recursion result, we have

∥∥∥�yf �(x, y)
∥∥∥ ≤

∥∥∥W �
∥∥∥ ∥∥∥�yf �−1(x, y)

∥∥∥ ≤ · · · ≤
⎛
⎝ �∏

j=3

∥∥∥Wj
∥∥∥
⎞
⎠∥∥�yf 2(x, y)

∥∥
Combining Lemmas 3 and 4, we have the following a posteriori estimate for∥∥�yf (x, y)

∥∥2
L2(Ωx).

Theorem 6 Let xi ∼ M0 in the training data and f (x, y) be a network with L layers defined
in (3.4), then the following inequality holds for any fixed y ∈ R

dy if f (x, y) is trained by FGD
or SGD:

∥∥�yf (·, y)
∥∥2
L2(Ωx) ≤

(L∏
�=3

∥∥∥W �
∥∥∥2
) ∑

i=1:n2
j=1:n1

⎛
⎜⎝
∣∣∣W 1

j,yy
∣∣∣2 ∥∥∇xhi,j

∥∥2
L2(Ω)∥∥∥W 1

j,x

∥∥∥2 + Cdx

∣∣∣W 2
i,j

∣∣∣2 ∣∣∣W 1
j,yy
∣∣∣3

3
∥∥∥W 1

j,x

∥∥∥
⎞
⎟⎠ ,

(3.6)

where Cdx follows the definition in Lemma 3 and

hi,j = W 2
i,jα(W

1
j,xx + b1j).

Proof By definition, we have

∥∥�yf (·, y)
∥∥2
L2(Ωx) ≡ ∥∥�yf L(·, y)

∥∥2
L2(Ωx) ≤

(L∏
�=3

∥∥∥W �
∥∥∥2
)∥∥�yf 2(·, y)

∥∥2
L2(Ωx)

≤
(L∏

�=3

∥∥∥W �
∥∥∥2
) n2∑

i=1

∥∥∥∥∥∥
n1∑
j=1

W 2
i,j

(
α(W 1

j,xx + b1j + W 1
j,yy) − α(W 1

j,xx + b1j)
)∥∥∥∥∥∥

2

L2(Ωx)

≤
(L∏

�=3

∥∥∥W �
∥∥∥2
) n2∑

i=1

n1∑
j=1

⎛
⎜⎝
∣∣∣W 1

j,yy
∣∣∣2 ∥∥∇xhi,j

∥∥2
L2(Ω)∥∥∥W 1

j,x

∥∥∥2 + Cdx

∣∣∣W 2
i,j

∣∣∣2 ∣∣∣W 1
j,yy
∣∣∣3

3
∥∥∥W 1

j,x

∥∥∥
⎞
⎟⎠ .

��
Theorem 6 provides an estimation for the variation of a ReLU DNN trained by FGD or

SDG along the normal direction of the data manifold. It is by no means sharp, because of
the approximation (B.3). However, as in the case of LNNs, the initialization ofW 1

y and the
network’s depthL play a role in the stability of the trained network as shown inCorollary 2.
Theorem 6 has an interesting implication for DNNs that employ a latent space of a smaller
dimensionality. The estimate in the theorem does not assume that the hidden layers in
the DNN have the same width. This means that when y �= 0, the effect of the “untrainable
parameters” W 1

y y will propagate into the subsequent layers, even when the layers have

J. He et al. ResMath Sci (2023) 10:13 Page 25 of 41 13

smaller widths. In training for data without noise, y ≡ 0, there is no mechanism to learn
how to projectW 1

y ỹ out for any ỹ �= 0 in noise test data. As far as we know, this is the first
stability estimate (

∥∥�yf (·, y)
∥∥2
L2(Ωx)) for a general ReLU DNN trained by FGD or SGD.

Corollary 2 Under the same assumptions in Theorem 6 and

D(y) := max
i,j,k

⎧⎪⎨
⎪⎩
[y]2k‖∇xhi,j‖2L2(Ω)∥∥∥W 1

j,x

∥∥∥2 , Cdx

[y]3k
∣∣∣W 2

i,j

∣∣∣2
3
∥∥∥W 1

j,x

∥∥∥2
⎫⎪⎬
⎪⎭ ,

if
[
W 1

j,y

]
k

∼ N (0, ν2) for all k = 1 : dy, then there exists a constant D̃ such that

∥∥�yf (·, y)
∥∥2
L2(Ωx) ≤

(L∏
�=3

∥∥∥W �
∥∥∥2
)((

ν2 + 2
√

2
π

ν3
)
n2n1dy + D̃

√
n2n1dy

)
D(y), (3.7)

with high probability. Here, n1 and n2 are the widths of the first and second hidden neuron
layers defined in (3.1).

Commonly used initialization strategies correspond to ν2 = 1
d in [23] or ν2 = 2

d+n1 in
[28]. Recently, the authors in [13] propose to take ν2 = 2√

n1d
which leads to the following

estimate:

∥∥�yf (·, y)
∥∥2
L2(Ωx) ≤ D

(L∏
�=3

∥∥∥W �
∥∥∥2
)
n2
√
n1dyD(y),

where D = max{4, D̃}.
The above corollary suggests that, in additional to the common practice, the width of

the second hidden layer should be considered in the initialization ofW 1
j,y.

For classification problems, our theory provides additional understanding of adversar-
ial examples [24]. Particularly, our theory may explain the existence of those adversarial
examples which are close to the training examples according to some norm defined on the
ambient space but are not a member of some idealized lower-dimensional data manifold.
The estimate in (3.6) indicates that the variation of a trained ReLU DNN can significantly
move the “decision boundary” for a small y provided

∥∥∥W �
∥∥∥ or

∥∥∇xhi,j(x)
∥∥2
L2(Ω) are suf-

ficiently large. In this case, one can obtain adversarial examples easily with a very small
perturbation along the normal direction of the datamanifold. In addition, this result com-
bined with the second conclusion in Lemma 2 and numerical results in Fig. 11 indicate
that including a “weight decay” term in the loss function may reduce the reliability of a
ReLU DNN-based classifier, as least when the data manifold is nearly flat.
In this section,we focused on estimating the stability of ReLUneural networks trained by

FGD or SGD. Theorems 5 and 6 reveal the influence of the “trainable” and “non-trainable”
parameters, W � (including W 1

x) and W 1
y , to the inference stability. The influence of the

non-trainable parameters is unchanged, even if W � are replaced by non-optimal ones.
However, if the target functions fall into those considered in [17], W 1

y will be trainable,
and the theoretical optimal inference error derived there is applicable.
We present some numerical results in the following subsection to demonstrate the

above estimates. In particular, the stability metrics of ReLU DNNs with one hidden layer
(L = 2) may differ from multi-hidden-layer (L > 2) cases since the product term will
disappear if L = 2. This is observed in Fig. 10.

 13 Page 26 of 41 J. He et al. Res Math Sci (2023) 10:13

3.3 Numerical experiments

In this section, we present a series of numerical examples demonstrating the theorems
presented in this paper.

The setup We take dx = 3 and dy = 2, i.e., x ∈ R
3, y ∈ R

2 and x = (x, 0). A total of
5 × 103 training data points generated by sampling gi = g(xi) = ∑3

j=1 sin
(
π [xi]j

)
with

xi ∼ U
(
[−1, 1]dx

)
. The hidden layers in a network have the same with, denoted by n.

The ReLU DNNs and their optimization are implemented using PyTorch [43].
The networks are trained for 100 epochs by using SGD without momentum or weight

decay. Themini-batch size is chosen as 50, and the learning rate decays from 10−2 to 10−4

under a cosine annealing schedule [37].
To compute the stability estimates, we adopt the Monte Carlo approximation

Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
≈ 1

M

M∑
i=1

(f (xi, yi) − f (xi, 0))2 , (3.8)

where xi ∼ U
(
[−1, 1]dx

)
and yi ∼ N (0, γ 2Idy). The weights W 1

y are initialized following
the special form:

W 1
i,y = η(1, 1)T .

All other weights are initialized according to [28]. We take M = 5 × 103 to evaluate the
stability metric, and the final results are obtained by averaging 10 individual tests.

Numerical confirmation of various rates Theorems 5 and 6 state that with a fixed
weight setW 1

y ,

Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
∼ O (γ 2) ,

if y ∼ N (0, γ 2Idy). On the other hand,

Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
∼ O (η2)

ifW 1
i,y is initialized η(1, 1) and γ = 1 in the distribution of y. Figure 10 demonstrates such

scalings for networks of different depths. Also from Fig. 10 onemay observe a gap between
the curve from L = 2 and those L > 2. This gap seems to suggest that ReLU DNNs with
one hidden layer differ frommulti-hidden-layer models. Results in Fig. 10 further support
this observation if we compare with some deeper ReLU DNNs. This phenomenon can be
partially interpreted as the effect of the term

∏L
�=3

∥∥∥W �
∥∥∥2 as shown in Theorem 6.

Regularization by adding a “weight decay” term We recall the second statement in
Lemma 2 that the �2 regularization term λ‖θ‖2

�2
will significantly affect the stability factor

J. He et al. ResMath Sci (2023) 10:13 Page 27 of 41 13

Fig. 10 Plots of log2
(
Ey

[∥∥�y f (·, y)
∥∥2
L2(Ωx)

])
, with y ∼ N (0, γ 2Idy) andW1

y = η(1, 1)T . Each hidden layer of

the networks has n = 100 neurons. The plots verify the estimate Theorem 6

Fig. 11 Effect of adding the “weight decay” term λ‖θ‖2
�2
in the total loss function. Training loss, test loss, and

stability metric Ey

[∥∥�y f (·, y)
∥∥2
L2(Ωx)

]
in training process (left) and their final results (right). In training process

(left), the dashed lines represent the results of λ = 5 × 10−3 and the solid lines represent λ = 10−2. The final
results (right), shows that trade-off between the model accuracy and stability metric

Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
. Thus, we show the training process and final loss (training loss, test

loss and stability metric) with different values of λ in Fig. 11.
In this example, the training loss is defined in (3.2) with y ≡ 0 and test loss is calcu-

lated with the same formula while it shares the same sampled date points in computing
Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
with y ∼ N (0, γ 2Idy) and γ = 2−1, and the initialization of W 1

i,y is
(1, 1), i.e., η = 1.
This example shows that (i) there is no surprise that regularizing the �2 norm of the

weight set reduces the stability metric Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
; however, (ii) both the train-

ing and test losses will increase as the magnitude of the regularization, λ, increases. In
practice, a suitable scale of λ is critical to balance the approximation error and the regu-
larization effect for the stability metric Ey

[∥∥�yf (·, y)
∥∥2
L2(Ωx)

]
.

Regularization by introducing noise to the data Motivated by the analysis for LNNs in
Sect. 2.4.1, we study numerically the potential of stabilization by adding noise to the data
set. We follow the setup introduced above, except that we have noisy data xi ∼ Mσ , i.e.,

 13 Page 28 of 41 J. He et al. Res Math Sci (2023) 10:13

Fig. 12 log2
(
Ey

[∥∥�y f (·, y)
∥∥2
L2(Ωx)

])
as a function of σ , the variance in the noise added to the training data

(left). log2
(
Ey

[∥∥�y f (·, y)
∥∥2
L2(Ωx)

])
as a function of the size of training data set, N (right)

xi =
(

xi
σyi

)
, where xi ∼ X and yi ∼ N (0, Idy). In addition, we take η = 1, i.e.,W 1

i,y = (1, 1),

to initializeW 1
i,y.

The stability metric Ey
[∥∥�yf (·, y)

∥∥2
L2(Ωx)

]
is evaluated with y ∼ N (0, γ Idy), γ = 2−2,

and approximated by summation of M = 8 × 103 independent samples for the case of
comparing different σ (different level of added noise) and M = 4 × 104 samples for the
case of comparing training sets of different cardinality, N .
The curves shown inFig. 12 areobtainedby averaging5 individual tests. Figure 12verifies

our conjectures about stabilization effect of noise to the normal direction of datamanifold
and increasing the data points. More discussion about these results will be presented in
the following section.

4 Stability from adding noise to the datamanifold
In this section, we consider on a more abstract level the effects of adding noise to the
embedded low-dimensional data. The aim is to improve the trained neural network’s
stability, evaluating points that lie out of the training data distribution. We have seen
in the previous sections that adding noise may regularize the optimization problem in
some sense and provide stability. In the following we shall relate adding noise in the
normal directions of the given datamanifold to implicitly defining an extension of the loss
function (1.7). The change in the loss function subsequently enables the learning function
to approximate the constant normal extension, g as defined in (1.9), of the label function
g . This view provides a more intuitive explanation of how adding noise according to the
geometry of the data may enhance the stability of a trained network, provided that the
data set is sufficiently large.

4.1 Implicit extension of the loss functional

Let M be a dx-dimensional compact C2-manifold in R
d . Denote by NxM the normal

space of M at x ∈ M and r > 0 the reach of M. For any σ ∈ (0, r), we introduce the
σ -tubular neighborhood ofM in R

d as

Tσ := {x + εnx : x ∈ M, ε ∈ (−σ , σ),nx ∈ NxM, and ‖nx‖ = 1
}
.

J. He et al. ResMath Sci (2023) 10:13 Page 29 of 41 13

For points in Tσ , define the projection

PMx = arg inf
ξ∈M

‖x − ξ‖.

Now, let U [M] denote the uniform distribution defined onM; i.e., the density of U [M]
is uniform with respect to the measure onM, induced by the Euclidean norm of R

d . To
each data point x sampled independently fromU [M], we introduce noise that lifts x to x̃
in the normal space NxM. More precisely,

x̃ = x + εnx,

where nx ∈ NxM is sampled from the uniform distribution on S
dy−1 embedded in NxM

and ε ∼ U [−σ , σ] with σ < r. We shall denote the resulting joint distribution asMσ and
its density ρσ . Thus, x̃ is a point inTσ , sampled fromMσ . According to the coarea formula,
ρσ is uniform on Tσ only ifM is flat. See [15,35] for the case whenM is a hypersurface.
The loss function defined with the noisy data

{
(̃xi, gi)

}N
i=1 (gi = g(xi)) can be written as

J (θ) = 1
2N

N∑
i=1

∣∣fθ (̃xi) − gi
∣∣2 = 1

2N

N∑
i=1

∣∣fθ (̃xi) − g(PMx̃i)
∣∣2 . (4.1)

In other words, J can be interpreted as the empirical loss of the following continuous loss

J (θ) := 1
2

∫
Tσ

∣∣fθ (x) − g(x)
∣∣2 ρσ (x)dx. (4.2)

where g(x) := g (PMx) is the constant extension of g(x) along the normal directions. This
implies that the “regularization” effect from using this type of noisy data is the “automatic
learning” of g on R

d .

4.2 Accuracy/stability trade-off

Assuming that we do not know the geometry of the data manifold, we add noise to every
component in the ambient space indifferently.
For simplicity, we assume the data set DN = {(xi, gi)}Ni=1 consists of

xi =
(
xi
0

)
+ σ

(
εi,x
εi,y

)
∈ R

dx+dy ,

where (εi,x, εi,y) = εi ∼ N (0, Idx+dy) sampled as the noise part. In addition, the “label” in
the data are clean and followed by gi = g(xi) for every xi ∈ R

dx .
Thus, we have

gi = g(xi + σεi,x − σεi,x) = g(xi + σεi,x) + O (σ) .

This means we can interpret the noisy data as

(xi, gi) =
((

xi + σεi,x
σεi,y

)
, g(xi)

)
=
((

x̃i
σεi,y

)
, g(x̃i) + O (σ)

)
, (4.3)

where x̃i = xi + σεi,x. Thus, for any trained machine learning model f (x, y), we can
decompose the generalization error as∥∥f (x, y) − gx)

∥∥2 ≤ ∥∥f (x, 0) − g(x)
∥∥2 + ∥∥f (x, y) − f (x, 0)

∥∥2 .

 13 Page 30 of 41 J. He et al. Res Math Sci (2023) 10:13

Table1 Linear regression results of β with different L and co-dimension dy

dy 1 2 3 4 5 6 7 8 9 10

L = 2 0.40 0.40 0.35 0.36 0.35 0.39 0.38 0.33 0.38 0.37

L = 4 0.42 0.37 0.40 0.34 0.43 0.39 0.42 0.43 0.43 0.41

L = 6 0.46 0.38 0.40 0.44 0.44 0.41 0.43 0.46 0.46 0.46

The interpolation error ‖f (x, 0)−g(x)‖2 corresponds to the error for the classical learning
task with noisy label data (x̃i, g̃i) where x̃i = xi + σεi,x ∼ X̃ := X + σN (0, Idx) ∈ Rdx and
g̃i = g(x̃i) + O (σ) ∈ R. Then, it follows that

Ex∼X
[‖f (x, 0) − g(x)‖2] ≤ Ex̃∼X̃

[‖f (x̃, 0) − g(x̃)‖2]+ O(σ 2)

= Ex̃∼X̃
[‖f (x̃, 0) − g̃(x̃) + O(σ)‖2]+ O(σ 2)

≤ 〈‖f (x̃, 0) − g̃‖2〉N + O (σ 2)+ O (N−1) .
(4.4)

Here, 〈‖f (x̃, 0)− g̃‖2〉N is the empirical loss which can be bounded by the approximation
power of one-hidden-layer (L = 2) neural networks [7,50] and deep (L > 2) neural
networks [49,57].
The stability metric, by which we mean

∥∥�yf (x, y)
∥∥ = ‖f (x, y) − f (x, 0)‖2, for LNNs is

estimated to be O
((

σ 2N
)−1
)
. If εi,x = 0, the reciprocal relation between

∥∥�yf (x, y)
∥∥2

and variance σ 2 is observed in ReLU DNNs in Fig. 12. However, Fig. 12 suggests that∥∥�yf (x, y)
∥∥2 for ReLU DNNs is reciprocal to Nβ with β < 1, in contrast to β = 1 in the

case of LNNs.
We present Table 1, which summarizes a series of further numerical experiments and

reveals how β is related to network’s depth and the codimensions, dy, of the data mani-
fold. In the table, β is fitted by using the linear regression for ‖�yf (x, y)‖2 and N in the
logarithmic scale.
From the table, we find that∥∥�yf (x, y)

∥∥2 ≈ O
(

1
σ 2Nβ

)
, (4.5)

where β < 1/2 seems to relate to the depth of the network, but independent of the co-
dimension of the data manifold. Again, the experimental results are quite different from
LNN case. The results suggest that nonlinear ReLU networks require more training data
to control the variation of the neural networks in the y-directions (for small σ).
For any fixed data set (fixed N), 4.4 and 4.5 describe a trade-off between accuracy and

stability: On the one hand, reducing the fitting errors in (4.4) requires smaller noise level
for the x-components. On the other hand, small noise level in the y-direction will decrease
the stability of f in the y-direction. However, if the data manifold is not flat, the geometry
of the manifold will impose an additional constraint to the maximal noise level. Too large
of a noise level will lead to ill-conditioned optimization problem.

5 Summary
Surprising features in supervised learning problems arise when data are embedded in a
high-dimensional Euclidean space.We derived estimates on the derivatives of the learning
function in the direction transversal to the data subspace. When a neural network defines
the learning function, a portion of its weights is untrainable by a typical gradient descent-
based algorithm because the empirical loss function is independent of these weights.

J. He et al. ResMath Sci (2023) 10:13 Page 31 of 41 13

Fig. 13 Diagram of Ω−
i,x and Ω̃−

i,x

Consequently, the learning function’s values at points away from thedata subspace depend
on the initialization of the untrainable weights.
We showed that if noise in the codimension of the data subspace is present, the weights

in question can be controlled, provided that the training data size is sufficiently large.
However, the training data size only has to be large compared with the standard deviation
σ and seems independent of the number of codimensions. For linear networks, we have
shown that the price for this regularization is the slow convergence for those weights to
small numbers. We have also demonstrated that the network’s depth may provide a par-
ticular regularization effect if the network’s weights are initialized in a suitable subregion
of R

d . For nonlinear networks activated by ReLU, similar to LNNs, there is still a set of
parameters that are not trainable if the data subspace has nonzero number of codimen-
sions. We derived a stability estimate for the influence of the untrainable weights in a
trained neural network.
Though adding noise to the data set may provide a desired regularization to the learning

function, it also incurs a trade-off to the accuracy of the trained network and possibly
renders the optimization model ill-conditioned, when the data manifold is not flat. It is
also clear that if one has more information about the geometry of the data manifold, one
can introduce noise adaptively according to themanifold’s geometry andmitigate the loss
of accuracy.

Acknowledgements
The authors thank Lukas Taus for his help with the numerical experiments in Fig. 9. Tsai’s research is supported partially
by the National Science Foundation Grants DMS-2110895 and by Army Research Office, under Cooperative Agreement
Number W911NF-19-2-0333. Ward’s research is supported in part by AFOSR MURI FA9550-19-1-0005, NSF DMS 1952735,
NSF HDR-1934932, and NSF 2019844. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research
Office or the US Government. The US Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

Data availability statement
The authors declare that the data supporting the findings of this study are available within the article.

Author details
1Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA, 2Department of Mathematics and
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA.

 13 Page 32 of 41 J. He et al. Res Math Sci (2023) 10:13

A Proofs for LNNs
A.1 Proof of Proposition 1

Proof Wefirst show that the loss function can be transformed naturally under the unitary
mapping Q. The original loss function can be formulated as

J e(w) = 1
2N

N∑
i=1

(wTQ
(

xi
σyi

)
− gi)2 = 1

2N

N∑
i=1

((QTw)T
(

xi
σyi

)
− gi)2.

Thus, if we denote

w̃ = QTw,

we can define the new loss function J̃ e(w̃) with respect to the new variable w̃ as

J̃ e(w̃) = J e(w) = 1
2N

N∑
i=1

(w̃T
(

xi
σyi

)
− gi)2.

In addition, by taking the gradient for J e(w) with respect to w, we have

∇wJ e(w) = Q∇w̃̃J e(w̃).

Furthermore, we claim that the dynamic system for w can be rotated to w̃ naturally. First,
we can check

Pw(v) = wwT

‖w‖2 v = Qw̃w̃TQT

‖w̃‖2 v = QPw̃(QT v).

Based on the dynamical system for w, we have

d
dt

w = −‖w‖2− 2
L (∇wJ e(w) + (L − 1)Pw(∇wJ e(w)))

= −‖w̃‖2− 2
L
(
Q∇w̃̃J e(w̃) + (L − 1)QPw̃(QTQ∇w̃̃J e(w̃))

)
= −‖w̃‖2− 2

L Q
(∇w̃̃J e(w̃) + (L − 1)Pw̃(∇w̃̃J e(w̃))

)
.

Finally, we can see that

d
dt

w̃ = QT d
dt

w = −‖w̃‖2− 2
L
(∇w̃̃J e(w̃) + (L − 1)Pw̃(∇w̃̃J e(w̃))

)
.

��

A.2 Proof of Proposition 2

Proof Since

Pw (v) = wT v
‖w‖2w = wwT

‖w‖2 v,

we have

F (w) = −‖w‖− 2
L
(
‖w‖2∇J e(w) + (L − 1)wwT∇J e(w)

)
= −‖w‖− 2

L
((

‖w‖2Id + (L − 1)wwT
)

∇J e(w)
)

= −‖w‖− 2
LM∇J e(w),

whereM = ‖w‖2Id+(L−1)wwT ∈ R
d×d is a symmetric positive definitematrix ifw �= 0.

Thus, F (w) = 0 if and only if w = 0 or ∇J e(w) = 0.

J. He et al. ResMath Sci (2023) 10:13 Page 33 of 41 13

If L > 2 and J e(w) is strictly convex, there is a unique w∗ �= 0 (since 〈xg〉N �= 0) such
that ∇J e(w∗) = 0 and the Hessian matrix ∇2J e(w∗) is a symmetric positive definite (SPD)
matrix. Then, the Jacobian matrix of F (w) at w∗ is

∇F (w∗) = −‖w∗‖− 2
LM(w∗)∇2J e(w∗).

Given w∗ �= 0 and bothM(w∗) and ∇2J e(w∗) are SPD, we notice that

∇F (w∗) ∼ M− 1
2 (w∗)∇F (w∗)M 1

2 (w∗) = −‖w∗‖− 2
LM 1

2 (w∗)∇2J e(w∗)M 1
2 (w∗),

which shows that all eigenvalues of ∇F (w∗) are negative. Since L > 2, the leading order
of F (w) isO(‖w‖2− 2

L) which is continuously differentiable at w = 0 with ∇F (w) = 0. ��

A.3 Proof of Corollary 1

Proof From formula 2.11 in Proposition 3, we have 〈A〉N
(

w∗
x

σw∗
y

)
=
(

〈gx〉N
〈gy〉N

)
, where

(w∗
x , w∗

y) is the solution with respect to the target function g(x). Given g(x) = g̃(x)+ μTx,
we have

〈A〉N
(

w∗
x

σw∗
y

)
=
(

〈gx〉N
〈gy〉N

)
=
(

〈g̃x〉N
〈g̃y〉N

)
+
(

〈(μTx)x〉N
〈(μTx)y〉N

)
.

Since

〈A〉N
(

μ

0

)
=
(

〈(μTx)x〉N
〈(μTx)y〉N

)
,

we have

〈A〉N
(
w∗
x − μ

σw∗
y

)
=
(

〈g̃x〉N
〈g̃y〉N

)
.

Recalling the block structure of 〈A〉N and applying 〈A〉−1
N on both sides of the above

equation, we have

w∗
x − μ = Σ̃−1

X

(
〈g̃x〉N + 〈xyT 〉NS−1〈yxT 〉NΣ−1

X 〈g̃x〉N − 〈xyT 〉NS−1〈g̃y〉N
)

(A.1)

and

w∗
y = σ−1S−1

(
〈g̃y〉N − 〈yxT 〉N Σ̃−1

X 〈g̃x〉N
)
. (A.2)

Given |̃g(x)| ≤ δ and the estimates in Theorem 1, we have ‖Σ̃−1
X ‖, ‖S−1‖ ∼ O(1),

‖〈g̃x〉N‖ � δ, ‖〈g̃y〉N‖ � δ√
N
, ‖〈xyT 〉N Σ̃−1

X 〈g̃x〉N‖ � δ√
N
, ‖〈yxT 〉N Σ̃−1

X 〈g̃x〉N‖ � δ√
N
,

and ‖〈xyT 〉NS−1〈yxT 〉NΣ−1
X 〈g̃x〉N‖ � δ

N . Here, � means that there is a constant which
depends only on the distribution X and Y . Then, the results can be obtained by taking
norm in (A.1) and (A.2) and then substituting the previous estimates. ��

A.4 Proof of Theorem 3

Proof Let us denote

fmax := sup
w∈B ε

2
(w(0))

∥∥∥∥ d
dt

w
∥∥∥∥ ,

where B ε
2
(w(0)) := {w : ‖w − w(0)‖ ≤ ε

2 } is the ε
2 -ball centered at w(0). Given the

continuity of w(t) and the definition of TL(ε), we have

ε

2
= ‖w(TL(ε)) − w(0)‖ =

∥∥∥∥∥
∫ TL(ε)

0

d
dt

wdt
∥∥∥∥∥ ≤ fmaxTL(ε).

 13 Page 34 of 41 J. He et al. Res Math Sci (2023) 10:13

It follows that

TL(ε) ≥ ε

2fmax
.

For fmax, we notice that∥∥∥∥ d
dt

w
∥∥∥∥ = ‖w‖2− 2

L
∥∥∇wJ e(w) + (L − 1)Pw(∇wJ e(w))

∥∥
≤ L‖w‖2− 2

L
∥∥∇wJ e(w)

∥∥
= L‖w‖2− 2

L
∥∥〈Aσ 〉Nw − 〈gx〉N

∥∥
≤ L‖w‖2− 2

L (C2‖w‖ + ‖〈gx〉N‖) .

Since w ∈ B ε
2
(w(0)), ‖w(0)‖ = ε, and ε << 1, there exists C that depends on L, C2, and

‖〈gx〉N‖ = O(1) such that

L‖w‖2− 2
L (C2‖w‖ + ‖〈gx〉N‖) ≤ 1

2C
‖ε‖2− 2

L .

This means fmax ≤ 1
2C ‖ε‖2− 2

L , which finished the proof. ��

A.5 Proof of Proposition 5

Before we show the proof of Proposition 5, let us first present the following lemma.

Lemma 5 Let A ∈ R
d×d be a symmetric positive definite (SPD) matrix with d ≥ 2 and

assume a1 ≥ a2 ≥ · · · ≥ ad are the its eigenvalues. Then, we have

wTAu ≥ ad − a1
2

‖w‖‖u‖,

if w, u ∈ R
d and wTu = 0.

Proof First, we may assume the SVD decomposition for A as A = VTΣV , where V is a
unitarymatrix andΣ = diag(a1, a2, · · · , ad). By denotingVw = w̃,Vu = ũ, and w̃iũi = bi,
we have

wTAu = (Vw)TΣ(Vu) =
d∑
i=1

aiw̃iũi =
d∑
i=1

aibi.

Let us denote σ as the permutation of {1, 2, · · · , d} such that

bσ (1) ≤ bσ (2) ≤ · · · ≤ bσ (d).

Here, we notice that

d∑
i=1

bi =
d∑
i=1

w̃iũi = (w̃)T ũ = (Vw)T (Vu) = wTu = 0.

Thus, there is at least one positive integer k such that bσ (k) ≤ 0 and bσ (k+1) ≥ 0. That is,

k∑
i=1

−bσ (i) =
d∑

i>k
bσ (i) = 1

2

d∑
i=1

|bi|.

J. He et al. ResMath Sci (2023) 10:13 Page 35 of 41 13

By using the rearrangement inequality, we have
d∑
i=1

aibi ≥
d∑
i=1

aibσ (i) =
k∑

i=1
(−ai)

(−bσ (i)
)+

d∑
i>k

aibσ (i)

≥
k∑

i=1
(−a1)

(−bσ (i)
)+

d∑
i>k

adbσ (i) = (ad − a1)
k∑

i=1

(−bσ (i)
)

= ad − a1
2

d∑
i=1

|bi| = ad − a1
2

d∑
i=1

|w̃iũi|

= ad − a1
2

|w̃|T |̃u| ≥ ad − a1
2

‖w̃‖‖̃u‖ = ad − a1
2

‖w‖‖u‖,
where |v| = (|v1|, |v2|, · · · , |vd |) for any v ∈ R

d . ��
Now, we have the following proof for Proposition 5.

Proof Given ΣX = cIdx , we first denote that A := 〈xxT 〉N = ΣX + (〈xxT 〉N − ΣX) =
cIdx +‖ΣX −〈xxT 〉N‖Bwith ‖B‖ = 1. According to the convergence of correlated matrix
[2,11], we have 0 ≤ ε := ‖ΣX − 〈xxT 〉N‖ ≤ c

2 with high probability if N is large enough.
That is, we have

(c − ε)‖u‖2 ≤ uTAu ≤ (c + ε)‖u‖2 and ad − a1 ≥ −2ε, (A.3)

for any u ∈ R
dx if N is large enough. Here, a1 ≥ a2 ≥ · · · ≥ adx denote the eigenvalues of

A.
For simplicity, it is equivalent to prove that d

dtw · nE ≤ 0 for any w = (wx, wy) ∈ E

and ‖wx − w∗
x‖ ≥ 2

√
3

c ‖w∗
x‖ε for any 0 ≤ ε ≤ c

2 , where nE denotes the exterior normal
direction of E at w.
In addition, we recall that w ∈ E if and only if wT

x
(
A(wx − w∗

x)
) = 0. Thus, for any

w ∈ E, we have(√
c + ε

2
‖w∗

x‖
)2

≥ (w∗
x)TAw∗

x
4

=
(
wx − w∗

x
2

)T
A
(
wx − w∗

x
2

)
≥
(√

c − ε‖wx − w∗
x
2

‖
)2

,

which leads to√
c + ε

2
‖w∗

x‖ ≥ √
c − ε‖wx − w∗

x
2

‖ ≥ √
c − ε

(
‖wx‖ − ‖w∗

x‖
2

)
.

That is, we have

‖wx‖ ≤
√
c + ε + √

c − ε

2
√
c − ε

‖w∗
x‖ ≤

√
c + ε√
c − ε

‖w∗
x‖ (A.4)

for any w ∈ E.
Now, let us check the sign of d

dtw(t) · nE if w(t) ∈ E while ‖wx(t) − w∗
x‖ ≥ 2

√
3

c ‖w∗
x‖ε.

First, we notice that

nE = ∇w

(
wT
x

∂J e

∂wx

)
=
(
A(2wx − w∗

x)
0

)
.

Thus, we have
d
dt

w · nE = (A(2wx − w∗
x)
)T d

dt
wx

= −‖w‖2− 2
L
(
A(2wx − w∗

x)TA(wx − w∗
x)
)

= −‖w‖2− 2
L
(
(A(wx − w∗

x))TA(wx − w∗
x) + wT

x A
2(wx − w∗

x)
)

= −‖w‖2− 2
L
(
‖A(wx − w∗

x)‖2 + wT
x A2(wx − w∗

x)
)
.

 13 Page 36 of 41 J. He et al. Res Math Sci (2023) 10:13

for any w ∈ E. Given Lemma 5 and (A.3), we have

wT
x A

2(wx − w∗
x) = wT

x A
(
A(wx − w∗

x)
) ≥ −ε‖wx‖‖A(wx − w∗

x)‖, (A.5)

since wT
x
(
A(wx − w∗

x)
) = 0. In the end, by combining the Lemma 5, (A.3), (A.4), and

(A.5), we have

‖A(wx − w∗
x)‖2 + wT

x A
2(wx − w∗

x)

≥ ‖A(wx − w∗
x)‖
(‖A(wx − w∗

x)‖ − ε‖wx‖
)

≥ ‖A(wx − w∗
x)‖
(
(c − ε)‖wx − w∗

x‖ − ε

√
c + ε√
c − ε

‖w∗
x‖
)

≥ ‖A(wx − w∗
x)‖
(c
2
‖wx − w∗

x‖ − ε
√
3‖w∗

x‖
)

≥ 0

since 0 ≤ ε ≤ c
2 and ‖wx − w∗

x‖ ≥ 2
√
3

c ‖w∗
x‖ε. This finishes the proof. ��

A.6 Proof of Lemma 1

Proof First, we have
d
dt

‖wx(t)‖2 = −2‖w‖− 2
L
(‖w‖2 + (L − 1)‖wx‖2

) (
wT
x

∂J e

∂wx

)
.

This shows that d
dt ‖wx(t)‖2 has the opposite sign towT

x
∂J e
∂wx

. Because of Assumption 2 and
the continuity of w(t), we see that wT

x
∂J e
∂wx

keeps the same sign to the initialization since
wT
x

∂J e
∂wx

= 0 if and only if w ∈ E.
Similar proof for d

dt
‖wx(t)‖2
‖wy(t)‖2 can be shown by calculating directly.

d
dt

‖wx(t)‖2
‖wy(t)‖2 = 1

‖wy(t)‖4
((

d
dt

‖wx(t)‖2
)

‖wy(t)‖2 −
(
d
dt

‖wy(t)‖2
)

‖wx(t)‖2
)

= 1
‖wy(t)‖4

((
wT
x (t)

d
dt

wx(t)
)

‖wy(t)‖2 −
(
wT
y (t)

d
dt

wy(t)
)

‖wx(t)‖2
)

= −‖w‖− 2
L

(‖wx(t)‖2
‖wy(t)‖2 + 1

)(
wT
x

∂J e(w)
∂wx

)
< 0.

Thus, ddt
‖wx(t)‖2
‖wy(t)‖2 also has the opposite sign to wT

x
∂J e
∂wx

. ��

A.7 Proof of Theorem 4

Proof Let first consider w(0) ∈ U+. Then, we have

‖wy(T)‖2 − ‖wy(0)‖2 =
∫ T

0

d
dt

‖wy(t)‖2dt

=
∫ T

0

(
d
dt

‖wy(t)‖2dt/ d
dt

‖wx(t)‖2
)

d
dt

‖wx(t)‖2dt

=
∫ T

0

(L − 1)‖wy‖2
L‖wx‖2 + ‖wy‖2

d
dt

‖wx(t)‖2dt (w(t) ∩ E = ∅)

=
∫ T

0

L − 1
L(‖wx‖2/‖wy‖2) + 1

d
dt

‖wx(t)‖2dt
(
wy(t) �= 0

)

≤ (L − 1)‖wy(0)‖2
L‖wx(0)‖2 + ‖wy(0)‖2

∫ T

0

d
dt

‖wx(t)‖2dt

= (L − 1)‖wy(0)‖2
L‖wx(0)‖2 + ‖wy(0)‖2

(‖wx(T)‖2 − ‖wx(0)‖2
)
.

J. He et al. ResMath Sci (2023) 10:13 Page 37 of 41 13

The inequality holds since d
dt ‖wx(t)‖2 ≤ 0 and d

dt
‖wx‖2
‖w2

y‖ ≤ 0 for 0 ≤ t ≤ T if w(0) ∈ U+

according to Lemma 1. In addition, ‖wy(T)‖2 − ‖wy(0)‖2 ≤ 0 comes from the fact that
‖wx(T)‖2 ≤ ‖wx(0)‖2 since d

dt ‖wx(t)‖2 ≤ 0.

If w(0) ∈ E−, we have d
dt ‖wx(t)‖2 ≥ 0 and d

dt
‖wx‖2
‖w2

y‖ ≥ 0 for 0 ≤ t ≤ T according to
Lemma 1. Thus, we can prove it with the same calculation above. ��

B Proofs for ReLU DNNs
B.1 Proof of Lemma 3

Proof For any i and fixed y ∈ R
dy , let us first assume W 1

i,yy ≥ 0. Given the definition of
ReLU activation function, we may consider the following four sets:

{W 1
i,xx + b1i ≥ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≥ 0},

{W 1
i,xx + b1i ≥ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≤ 0},

{W 1
i,xx + b1i ≤ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≥ 0},

{W 1
i,xx + b1i ≤ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≤ 0},

to calculate ei(x, y) explicitly. SinceW 1
i,yy ≥ 0, we have

{W 1
i,xx + b1i + W 1

i,yy ≥ 0} ⊂ {W 1
i,xx + b1i ≥ 0},

which means

{W 1
i,xx + b1i ≥ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≤ 0} = ∅.

In addition, we have ei(x, y) = 0 on {W 1
i,xx + b1i ≤ 0} ∩ {W 1

i,xx + b1i + W 1
i,yy ≤ 0}. As a

result, we focus only on

Ω+
i,x := {W 1

i,xx + b1i ≥ 0} ∩ Ωx (B.1)

Ω−
i,x := {W 1

i,xx + b1i ≤ 0} ∩ {W 1
i,xx + b1i + W 1

i,yy ≥ 0} ∩ Ωx. (B.2)

Then, if follows that

‖ei(x, y)‖2L2(Ωx) =
∫

Ωx
|ei(x, y)|2dx

=
∫

Ω+
i,x

|W 2
i W

1
i,yy|2dx︸ ︷︷ ︸

I+

+
∫

Ω−
i,x

|W 2
i (W

1
i,xx + b1i + W 1

i,yy)|2dx︸ ︷︷ ︸
I−

.

For I+, we have∫
Ω+

i,x

|W 2
i W 1

i,yy|2dx = |W 1
i,yy|2

∫
Ω+

i,x

|W 2
i |2dx =

|W 1
i,yy|2‖∇hi(x)‖2L2(Ωx)

‖W 1
i,x‖2

because of the definition of hi(x) and the truncation property of ReLU activation function.
For I−, we first denote a series of parallel hyperplanes in R

dx as

Hi,s = {x | W 1
i,xx + b1i + sW 1

i,yy = 0}.
Then, we define

PHi,s (Ωx) := {PHi,s (x)|x ∈ Ωx} ⊂ Hi,s

 13 Page 38 of 41 J. He et al. Res Math Sci (2023) 10:13

as the projection of Ωx onto Hi,s. We notice that PHi,s (Ωx) have the same measure for all
s ∈ [0, 1]. Finally, we define Ω̃−

i,x as the right cylinder which uses PHi,0 (Ωx) and PHi,1 (Ωx)
as its bases. More precisely, we can write it as

Ω̃−
i,x :=

{
x ∈ PHi,s (Ωx) | s ∈ [0, 1]

}
. (B.3)

Here, we present Fig. 13 as a diagram about Ω̃−
i,x.

Then,wehave the following estimate by the parameterization of Ω̃−
i,x in (B.3) and integral

by substitution

I− ≤
∫

Ω̃−
i,x

|W 2
i (W

1
i,xx + b1i + W 1

i,yy)|2dx

=
∫ 1

0

∫
PHi,s (Ωx)

|W 2
i (W

1
i,xx + b1i + W 1

i,yy)|2dx̃
|W 1

i,yy|
‖W 1

i,x‖
ds

=
∫ 1

0

|W 1
i,yy|

‖W 1
i,x‖

|W 2
i |2(1 − s)2|W 1

i,yy|2
∣∣PHi,0 (Ωx)

∣∣ ds

= ∣∣PHi,0 (Ωx)
∣∣ |W 2

i |2|W 1
i,yy|3

3‖W 1
i,x‖

≤ Cdx
|W 2

i |2|W 1
i,yy|3

3‖W 1
i,x‖

.

Here, we notice that dx = dx̃
|W 1

i,yy|
‖W 1

i,x‖
ds since the distance between Hi,0 and Hi,1 is

|W 1
i,yy|

‖W 1
i,x‖

.

In addition,
∣∣PHi,0 (Ωx)

∣∣ denotes the measure of PHi,0 (Ωx) and we have

Cdx := sup
H

∣∣PH (Ωx)
∣∣ ≥ ∣∣PHi,0 (Ωx)

∣∣
for any i = 1 : n, where H means a hyperplane in R

dx .
IfW 1

i,yy ≤ 0, we denote

Ω+
i,x := {W 1

i,xx + b1i + W 1
i,yy ≥ 0} ∩ Ωx (B.4)

Ω−
i,x := {W 1

i,xx + b1i ≥ 0} ∩ {W 1
i,xx + b1i + W 1

i,yy ≤ 0} ∩ Ωx. (B.5)

Then, we still have I+ and I− correspondingly. For I−, we can follow the same strategy
by defining Ω̃−

i,x and calculate the integral by decomposition and substitution. For I+, we
notice that

Ω+
i,x ⊂ {W 1

i,xx + b1i ≥ 0} ∩ Ωx

sinceW 1
i,yy ≤ 0. This means

I+ =
∫

Ω+
i,x

|W 2
i W

1
i,yy|2dx ≤

∫
{W 1

i,xx+b1i ≥0}∩Ωx
|W 2

i W
1
i,yy|2dx.

Then, we have the same estimate results as for the caseW 1
i,yy ≥ 0. This finishes the proof.

��

B.2 Proof of Corollary 2

Proof Given the definition of D(y) and the estimate in (3.6), we have

∥∥�yf (·, y)
∥∥2
L2(Ωx) ≤

(L∏
�=3

∥∥∥W �
∥∥∥2
) ∑

i=1:n2
j=1:n1

∑
k=1:dy

(∣∣∣[W 1
j,y

]
k

∣∣∣2 +
∣∣∣[W 1

j,y

]
k

∣∣∣3)D(y).

J. He et al. ResMath Sci (2023) 10:13 Page 39 of 41 13

Since
[
W 1

j,y

]
k

∼ N (0, ν2) for all j = 1 : n1 and k = 1 : dy, it follows by the Monte Carlo
estimate that with high probability there exists D̃1 such that

1
n2n2dy

∑
i=1:n2
j=1:n1
k=1:dy

∣∣∣[W 1
j,y

]
k

∣∣∣2 − E

[∣∣∣[W 1
j,y

]
k

∣∣∣2] ≤ D̃1
1√

n2n1dy
.

This leads to∑
i=1:n2
j=1:n1
k=1:dy

∣∣∣[W 1
j,y

]
k

∣∣∣2 ≤ n2n1dyE
[∣∣∣[W 1

j,y

]
k

∣∣∣2]+ D̃1

√
n2n1dy

= n2n1dyν2 + D̃1

√
n2n1dy,

with high probability. Similarly, we have

∑
i=1:n2
j=1:n1
k=1:dy

∣∣∣[W 1
j,y

]
k

∣∣∣3 ≤ n2n1dy2
√

2
π

ν3 + D̃2

√
n2n1dy.

This proof is completed by taking D̃ = D̃1 + D̃2. ��
Received: 8 April 2022 Accepted: 21 January 2023

References
1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Rev.: Comput. Stat. 2(4), 433–459 (2010)
2. Adamczak, R., Litvak, A., Pajor, A., Tomczak-Jaegermann, N.: Quantitative estimates of the convergence of the empirical

covariance matrix in log-concave ensembles. J. Am. Math. Soc. 23(2), 535–561 (2010)
3. Arora, S., Cohen, N., Hazan, E.: On the optimization of deep networks: implicit acceleration by overparameterization.

In: International Conference on Machine Learning, pp. 244–253
4. Arora, S., Cohen, N., Hu, W., Luo, Y.: Implicit regularization in deep matrix factorization. Adv. Neural. Inf. Process. Syst.

32, 7413–7424 (2019)
5. Bah, B., Rauhut, H., Terstiege, U., Westdickenberg, M.: Learning deep linear neural networks: Riemannian gradient

flows and convergence to global minimizers. Inf. Inference: J. IMA (2021). https://doi.org/10.1093/imaiai/iaaa039
6. Balakrishnama, S., Ganapathiraju, A.: Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 18(1998), 1–8

(1998)
7. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3),

930–945 (1993)
8. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput.

15(6), 1373–1396 (2003)
9. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 4. Springer, Berlin (2006)
10. Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of ripmatrices and relatedproblems.

Duke Math. J. 159(1), 145–185 (2011)
11. Cai, T.T., Zhang, C.H., Zhou, H.H.: Optimal rates of convergence for covariance matrix estimation. Ann. Stat. 38(4),

2118–2144 (2010)
12. Chen, M., Jiang, H., Liao, W., Zhao, T.: Efficient approximation of deep relu networks for functions on low dimensional

manifolds. Adv. Neural Inf. Process. Syst. 32 (2019)
13. Chen, Q., Hao, W., He, J.: A weight initialization based on the linear product structure for neural networks. Appl. Math.

Comput. 415, 126722 (2022)
14. Chen, Y., Dong, B., Xu, J.: Meta-mgnet:metamultigrid networks for solving parameterized partial differential equations.

arXiv preprint arXiv:2010.14088 (2020)
15. Chu, J., Tsai, R.: Volumetric variational principles for a class of partial differential equations defined on surfaces and

curves. Res. Math. Sci. 5(2), 1–38 (2018)
16. Chui, C.K., Mhaskar, H.N.: Deep nets for local manifold learning. Front. Appl. Math. Stat. 4, 12 (2018)
17. Cloninger, A., Klock, T.: A deep network construction that adapts to intrinsic dimensionality beyond the domain.

Neural Netw. 141, 404–419 (2021)
18. Cox, M.A.A., Cox, T.F.: Multidimensional scaling. In: Handbook of Data Visualization. Springer, Berlin, pp. 315–347 (2008)
19. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag.

29(6), 141–142 (2012)
20. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc.

Natl. Acad. Sci. 100(10), 5591–5596 (2003)
21. Fefferman, C., Mitter, S., Narayanan, H.: Testing the manifold hypothesis. J. Am. Math. Soc. 29(4), 983–1049 (2016)

https://doi.org/10.1093/imaiai/iaaa039
http://arxiv.org/abs/2010.14088

 13 Page 40 of 41 J. He et al. Res Math Sci (2023) 10:13

22. Fukumizu, K.: Dynamics of batch learning in multilayer neural networks. In: International Conference on Artificial
Neural Networks. Springer, Berlin, pp. 189–194 (1998)

23. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

24. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
(2014)

25. Hacohen, G., Weinshall, D.: Principal components bias in deep neural networks. arXiv preprint arXiv:2105.05553 (2021)
26. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning

methods. Neural Comput. 16(12), 2639–2664 (2004)
27. He, J., Xu, J.: Mgnet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7),

1331–1354 (2019)
28. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet

classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
29. Hein, M., Maier, M.: Manifold denoising. Advances in neural information processing systems 19 (2006)
30. Hsieh, J.T., Zhao, S., Eismann, S., Mirabella, L., Ermon, S.: Learning neural pde solvers with convergence guarantees. In:

International Conference on Learning Representations (2019)
31. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space 26. Contemporary Math. 26

(1984)
32. Kawaguchi, K.: Deep learning without poor local minima. In: Proceedings of the 30th International Conference on

Neural Information Processing Systems, pp. 586–594 (2016)
33. Kohn, K., Merkh, T., Montúfar, G., Trager, M.: Geometry of linear convolutional networks. arXiv preprint arXiv:2108.01538

(2021)
34. Krahmer, F., Ward, R.: New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property.

SIAM J. Math. Anal. 43(3), 1269–1281 (2011)
35. Kublik, C., Tanushev, N.M., Tsai, R.: An implicit interface boundary integral method for poisson’s equation on arbitrary

domains. J. Comput. Phys. 247, 279–311 (2013)
36. Liu, H., Chen, M., Zhao, T., Liao, W.: Besov function approximation and binary classification on low-dimensional

manifolds using convolutional residual networks. In: International Conference on Machine Learning, pp. 6770–6780
(2021)

37. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
38. Ma, C., Wu, L., Weinan, E.: The slow deterioration of the generalization error of the random feature model. In:

Mathematical and Scientific Machine Learning, pp. 373–389 (2020)
39. Nguegnang, G.M., Rauhut, H., Terstiege, U.: Convergence of gradient descent for learning linear neural networks. arXiv

e-prints pp. arXiv-2108 (2021)
40. Narayanan, H., Mitter, S.: Sample complexity of testing the manifold hypothesis. In: Proceedings of the 23rd Interna-

tional Conference on Neural Information Processing Systems-Volume 2, pp. 1786–1794 (2010)
41. Nguyen, H., Tsai, R.: Numerical wave propagation aided by deep learning. J. Comput. Phys. 475, 111828 (2023)
42. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random

samples. Discrete Comput. Geom. 39(1), 419–441 (2008)
43. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.:

Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037
(2019)

44. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326
(2000)

45. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn.
Res. 4, 119–155 (2003)

46. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural
networks. arXiv preprint arXiv:1312.6120 (2013)

47. Schmidt-Hieber, J.: Deep relu network approximation of functions on a manifold. arXiv preprint arXiv:1908.00695
(2019)

48. Shaham, U., Cloninger, A., Coifman, R.R.: Provable approximation properties for deep neural networks. Appl. Comput.
Harmon. Anal. 44(3), 537–557 (2018)

49. Shen, Z., Yang, H., Zhang, S.: Optimal approximation rate of relu networks in terms of width and depth. J. de Math.
Pures et Appl. 157, 101–135 (2022)

50. Siegel, J.W., Xu, J.: Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks
(2021)

51. Steinerberger, S.: Randomized kaczmarz converges along small singular vectors. SIAM J. Matrix Anal. Appl. 42(2),
608–615 (2021)

52. Stewart, G.W.: Matrix perturbation theory (1990)
53. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction.

Science 290(5500), 2319–2323 (2000)
54. Tretter, C.: Spectral Theory of Block Operator Matrices and Applications. World Scientific, Singapore (2008)
55. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proceedings of

the Twenty-first International Conference on Machine Learning, p. 106 (2004)
56. Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approx. 26(2), 289–315

(2007)
57. Yarotsky, D.: Error bounds for approximations with deep relu networks. Neural Netw. 94, 103–114 (2017)

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2105.05553
http://arxiv.org/abs/2108.01538
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1908.00695

J. He et al. ResMath Sci (2023) 10:13 Page 41 of 41 13

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

	Side effects of learning from low-dimensional data embedded in a Euclidean space
	Abstract
	1 Introduction
	1.1 The basic setting
	1.2 Warm up: linear regression
	2 Linear neural networks
	2.1 Gradient descent for deep linear neural networks
	2.2 Bifurcation and slow manifold when σ is small
	2.3 Slow convergence
	2.4 Regularization effects of noise and network's depth
	2.4.1 Regularization effect of noise
	2.4.2 The regularization and side effects of depth when σ=0

	3 ReLU-activated networks
	3.1 Stability estimate for L=2
	3.2 Stability estimate for L>2
	3.3 Numerical experiments

	4 Stability from adding noise to the data manifold
	4.1 Implicit extension of the loss functional
	4.2 Accuracy/stability trade-off

	5 Summary
	A Proofs for LNNs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Corollary 1
	A.4 Proof of Theorem 3
	A.5 Proof of Proposition 5
	A.6 Proof of Lemma 1
	A.7 Proof of Theorem 4
	B Proofs for ReLU DNNs
	B.1 Proof of Lemma 3
	B.2 Proof of Corollary 2
	References

