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1 Introduction

In many machine learning problems, one observes that data points typically concentrate
on a lower-dimensional manifold embedded in R?. Indeed, the low-dimensional manifold
hypothesis [21,29,40,42,53] posits that the data found in many applications, such as those
involving natural images, lie (approximately) on low-dimensional manifolds which are
embedded in high-dimensional coding spaces. Manifold learning algorithms [8,20,44,
45,53,55] aim at finding low-dimensional representations of the high-dimensional data.
There are many supervised or unsupervised linear dimensionality reduction methods. We
mention linear discriminant analysis (LDA) [6], principal component analysis (PCA) [1],
multiple dimensional scaling (MDS) [18], and canonical correlation analysis (CCA) [26].
The random projection framework for data compression provides a theoretical framework
for justification [10,31,34]. Nevertheless, even after a suitable dimension reduction, it is
common to find that the data still concentrate on some lower-dimensional manifold
embedded in a higher-dimensional Euclidean space. This is at odds with the typical (and

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-023-00378-y&domain=pdf
http://orcid.org/0000-0001-7311-2626

13

Page 2 of 41 J. He et al. Res Math Sci(2023)10:13

crucial) assumption found in many supervised machine learning theories: that the labeled
data points are drawn i.i.d. from a probability distribution whose support has full measure
in the embedding space [9].

In this paper, we will assume that the data points are sampled from a linear subspace M
of R? and take the form (x, g(x)) € R? x R, wherex € M, dim(M) < d,andg : M — R
is a smooth function. The data points are used to identify a function fp« : R? > R from
a parameterized family of functions fj defined by particular neural network architecture.
The “trained” function fy« is constructed by optimizing the network’s parameters 6 to fit
the given data. The approximation properties of neural networks for functions defined on
embedded low-dimensional manifolds are studied in [12,16,17,36,47,48]. However, due
to the presence of noise, the limitation to the training data acquisition, or distribution
shift in the data that occurs post-training, one often needs to evaluate fy= on points in
a manifold M’ which is close to but not identical to M. As such, the behavior of the
trained neural network fp+ on M’ is a nontrivial but practically important question. Not
surprisingly, the performance of the trained network fp+ off of the data manifold M is more
consistent the less that fy« varies in the normal direction of M. This becomes a question

of estimating the magnitude of 83{[9; , with 7, denoting a normal direction of M. These
dfp*
g
network architecture and optimization method? In which ways can noisy training data

observations motivate the following questions: Can be regulated by choice of neural
improve the stability performance of learning a neural network with low-dimensional
data? How does the low-dimensional structure of the data manifold affect the stability of
the performance of the trained neural network when applied to points away from the data
manifold?

We will analyze the training process of f and the properties of ;ﬁ; for deep linear neural

networks or a nonlinear networks activated by ReLU. We aim to reveal the effect of the
arbitrariness of ambient space on the optimized neural networks. We will also discuss the

approach of introducing noise to the non-label components of training data for reducing

3fé*
g

principal component analysis can be used to reveal the low-dimensional aspects of the

the effect of this “arbitrariness,” i.e., for the regulation of . In many applications,
data set. In those cases, the data sets can be described as samples from distributions with
specific variances from a sequence of linear subspaces in a Euclidean ambient space. The
analysis in this paper is highly relevant.

The main contributions of this paper are listed below:

1. If the data points, including noise, lie on M, the linear network’s depth may provide

certain implicit regularization or side effects as shown in Fig. 7 and Theorem 4. For

ReLU neural networks, Theorems 5, 6, and Corollary 2 show that 88{;)/; is sensitive

to the initialization of a set of “untrainable” parameters.
2. If the noise has a small positive variance in the orthogonal complement of M, then:

f’; can be made arbitrarily small, provided that the number of data points
scales according to some inverse power of the variance as shown in Theorem 1
for deep linear neural networks and Fig. 12 for deep nonlinear neural networks.
From our experiments, the scaling laws for nonlinear ReLU networks are signif-
icantly different from the linear networks—much more data points are needed

to control the size of ;f"* ;
npq
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— We show that gradient descent algorithms can be very inefficient. The time
needed for the gradient descent dynamics to reach a small neighborhood of the
optimal parameters is reciprocal of the data set’s variance in the normal space
of M. See Theorem 2. In addition, it may also need a long time to escape the

near region of origin as shown in Theorem 3.

3. The stability—accuracy trade-off. The role of noise can be interpreted as a stabilizer
for a model when evaluated on points outside of the (clean) data distribution. The
regularization effect is equivalent to changing the loss function for learning functions
defined in the ambient space. However, adding noise to the data set will impact of
the accuracy of the network’s generalization error (for evaluation within the data
distribution). For nonlinear data manifolds, uniform noise may render the labeled

data incompatible.

In the remainder of this section, we define the basic setting that we will work with and
discuss the linear regression problem under this settings to motivate the rest of the paper.
In Sect. 2, we present some special challenges in training deep linear neural networks via
gradient descent. These challenges arise from embedding of data in a higher-dimensional
space. We will derive estimates for stability for linear networks in Sect.2 and nonlinear
networks activated by ReLU in Sect. 3. In Sect. 4, we briefly discuss the regularization of
@[—9; by adding noise to data globally and the stability—accuracy trade-off. In Sect. 5, we

on
give a final summary.

1.1 The basic setting
Let M be a lower-dimensional subspace of R? defined as follows:

M=[x=Q<z>eRd:xeRdx}

with Q representing a unitary matrix, here and throughout. Consider the distribution of

points in R? following

X
Mo = Q <0Y>’

where o > 0, Q € R?**? is a unitary matrix, and X € R% is a random vector representing
the underlying distribution of dataand Y € R% is a random vector independent from X. Y
is assumed to sample either the normal distribution N (0, Idy) or the uniform distribution

u ([—1, 1]%). Y represents the noise model in the dimensions normal to M. In particular,
x € M if x is sampled from M. Finally, we consider labeled training data of the form

Dy = {(xs g)}N,, %~ My, g €R, (1.1)
where x; € R? is of the form
5= ") erttd, 5 >0, (1.2)
oYy

withx; ~ X, y; ~ Y, and d = d + d,. We further assume that

N
rank (Z xixiT> = d, (1.3)
i=1
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or equivalently, that the matrix (x;|x2| - - - |xn) has full rank. This means that the data do
samples every subspace of M.

A crucial assumption in our paper is that the target function only depends on x;, i.e.,
there exists a function g : R% - R such that

g =gx) eR

However, we point out that the typical learning model and training algorithms are agnostic
to this assumption. As a result, we design our machine learning model f; : R > R rather
than R% — R.

A typical machine learning model with parameter set & € R? is used to define a function

f()=f(50):RY > R,
In particular, we study the case of f (#; ) being a deep neural network
flx)  =Wlha(ft @) +b, =21,
fx0) =fl),

wherefl(x) = Wlx+b!, Wt e R"*m-1 and bl,fz € R™ with ng = d and n; = 1. Here,
0 = {(W¢, b‘z)}%:1 denotes the set of all parameters in the deep neural network f(x; 6). In

(1.4)

the following, we will focus on two different networks:
1. linear networks:
alx) =x and b’ =0; (1.5)

2. ReLU-activated neural networks:

a(x) = ReLU(x) := max{0, x}. (1.6)
A trained function fy+ is constructed by gradient descent applied to the optimization
problem
XN
. _ - N2
minj©),  J0) =5 ;ve(xl) gl (1.7)
More precisely, 0 is updated by first initializing as ° and then updating
CUCH)
pttl — gt _ 1.8
Nt 30 (1.8)

with some 7, > 0 for £ > 0. In this paper, we shall refer to this updating scheme as (full)
gradient descent (FGD). We will also discuss the typical stochastic gradient descent (SGD)
update, where J and g—é are replaced, respectively, by /3, and %, and

J5,0) = > lfolw:) — @il

X;EB;
where B; C {x1, - - -, an} is randomly chosen and called a mini-batch.
Let
Pumx := * X,
M Q ( 0 O) Q

where I;_is the dy x d identity matrix, and define g : R? > R as

gx) =g (Pmx). (1.9)
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‘P is the orthogonal projection onto M, and g(x) is the extension of g(x) that stays con-
stant in the directions orthogonal to M. Correspondingly, we deﬁnefe as the restriction
of fy on M:

fo&) = fo(Pax).
Now consider M/, which is close to but not necessarily identical to M. We can estimate
the error:

[for @ = E@)| < [for ) = Ty )| + [Fy 0 — 700

where fy« is learned from M, (clean data for ¢ = 0 or noisy data for o > 0). The first

, xe M, (1.10)

term on the right-hand side can be interpreted as the stability error of the learned neural
network fy+(x). It measures the amount fy«(x) that varies along the normal direction of
the subspace M. In particular, we have

- fyn
o) ~Fpeto)| < | 2
nm
The term ||x — Paqx|| is controlled by the difference between the data subspace M and

the test set in M’. The second term on the right-hand side of (1.10) corresponds to the
approximation ability of the neural network. An approximation theory of neural networks

e —Prxll, xeM. (1.11)

for functions of the form g(x) = g(Paqx) is established in [17], where M is a general
manifold and Pyx = arginf gem % —&|| defines the orthogonal projection onto a general
manifold M. In other words, in [17] the data are assumed to be sampled from (%, g(x)),
where x € A C [0,1]% and A is assumed to be contained in a tubular region around M.
Afy

" B of an

Provided that the tubular region has a radius smaller than the reach of M

optimal network would be 0 in the tubular region.

We remark that in the typical machine learning setup, one considers data sampled from
the same manifold, which corresponds to M’ = M. In comparison, we are interested
in deriving bounds for “out of distribution” error or a kind of stability metric. Thus, we
shall focus on (1.11), the right-hand side of (1.10), and assume that the second term can
be bounded appropriately.

In this paper, the empirical means of quantities derived from the data will often play a
role. We adopt the following notation:

Notation 1 Let z be a random variable in R™ or R"™*" over some probability space and
let z; denote a sample realization of z. We denote the empirical average

LN
(e = Zzi
i=1
and the mean
(z) = ngnoo(zm = E[z].

Notation 2 For vectors (x;,y;) € R% x R%, i = 1,2,---,N, we denote the averaged
correlation matrix by

(exT) <xyT>N> ‘

Alx, =

Unless explicitly stated otherwise, we will refer to (A(x, y))n as (A)n, and (A(x, oy))N as
(Aa )N-
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1.2 Warm up: linear regression
As a special case of linear neural networks, we first use simple linear regression to demon-
strate how aaff/\: can be affected by the data and the model. Since Q can be factored into

parameters, without loss of generality, we will assume that Q = I.
For linear regression, fy, with 6 = w € R%, takes the form

flsw) = wlx = wax + wyTy, (1.12)
where w, € R% and wy € R%. We solve
N
1 T 2
in — , 1.13

where x; ~ M.
If o = 0, in which case y = 0 equivalently, the loss defined in (1.13) reduces to

1 N 2
J(w) = ﬁZ<WxTxi+wyTO—gi) .
i=1

Every point in the set {(w}, w)) | wy € R%, wi = (xxT)X[1 (gx)n} is a minimizer. However,
if gradient descent is used for the minimization, the “optimal” model takes the form
Sesw) = wHTx = w)Tx+ w7y,

(0 31 (W)

) is the initial value set for the gradient descent since = 0. Hence, we have

8f9* _ af(x,w ) _ W(O)
on M Ay r’
where wy © keeps its initialization value. This means aaf

where wy

of wy and does not change during the training process.

In the case 0 # 0 and d; = d, = 1, there is a unique minimizer (wj, wy *) that can be
quickly derived:
. @INOIN— @ININ 1 @INGE)IN — (@)N ()N
We = 2 2 2 My =4 2 2 2
NN — )y o XINOIN — )y

In addition, if we assume that the distribution of x; and y; is independent and E[xy] = 0,
then we will have (xy)xy ~ O(1/VN), &*n = PIn ~ OQ), (xg)n ~ O(1), and
(yg)n ~ O(1/+/N). This makes the following estimates hold with high probability:
(gx)n 1
*
= — O _—
"=y TON

and

e ] <x2> —bey ( 1 >
7 o/N &2)N (N — O(1/N) ov/N '
To have w) ~ O(1) as 0 — 0, one needs to take N to infinity according to

N~ 0O(@™2). (1.14)

In other words, the resulting linear function will have a small normal derivative only if the

number of data points scales super linearly inversely with the variance of the noise in the
codimensions of M.

The linear regression example reveals an important aspect about learning from embed-

ded low-dimensional data that are persistent in more general settings. - f"*

depends on

the set of parameters which are not trainable when there is no noise. The smaller df"ﬁ’; is,

the more stable the network is for evaluation at points out of training data distribution.
In the presence of noise with small variance in the codimension directions, the number

of training examples needs to scale inversely proportional to the variance.
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2 Linear neural networks

In this section, we study learning with deep linear multilayer neural networks, in partic-
ular the gradient descent dynamics for minimizing the mean squared error. Regression
with multiple hidden layer linear networks generalizes simple linear regression models.
The training of linear neural networks provides a way to construct linear operators satis-
fying certain structural constraints [4,33]. Consequently, LNN models can be adapted to
improve the performance of classic methods, for example in wave propagation [41] and
linear convolutional neural networks in multigrid [14,27,30].

As defined in (1.4) and (1.5) we have the linear network with L — 1 hidden layers as

fla0) = wiwi-l... w2wly = wla, (2.1)

where & = (W1, W2, ..., WL) denotes all parameter matrices in this model and the
end-to-end parameter w = WEWL—1... W2W1 s defined as the product of the W*
matrices. Here, WX € R™>"-1 are the weights connecting the (k — 1)th and the kth layer,
k=1,2,---, L, with the convention that the Oth layer is the input layer (np = d) and Lth
layer is the output layer (17 = 1). In particular, we consider only the fixed-width case, i.e.,
ng=n>dforallk =1,2,---,L — 1. We will refer to such networks as LNNs.

We denote the loss function in terms of (WL, - - -, WL) as

N
1
J(wh ..., wh) = T § (WwEwi=l. o w2wlx; — g (2.2)
i=1

and in terms of the end-to-end parameters w as
N
1

Jw) = o > i — ), (2.3)
i=1

where x; ~ M. Here, the superscript e in /¢ emphasizes the fact that /¢ is the corre-
sponding loss function for the end-to-end weight set w.

In [3], Arora et al. proposed to minimize (W1, W2, - .., WL) in terms of (WL, - .., W),
and derived that gradient descent of / via the explicit stepping

9
wtew L e—12.k
awt
leads to the following dynamical system for w in the limit of n — 0:
d 2
= T IWIPTE (VT W) + (L = )P (V] W))), (24)

under the assumptions for the initialization of (W1, - - ., W) that
(Wz+1>T Wt — e (Wz)T (2.5)
forall £ = 1 : L — 1. Here, Py (-) denotes the operator that projects vectors onto the

subspace spanned by w:

WWT

— V.
lw|>

For convenience, we define the vector field F : R — R4 as

Pwv) =

Ew) = — W2 (VyJ*W) + (L — 1)Py (VS (W)). (2.6)
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Prior works related to LNNs with full-rank data. Early work on LNNs focused more
on the side effects of introducing more hidden layers. For example, the £ regression
with two hidden linear layers was studied in [22]. In that paper, the author studied the
training process and demonstrated the existence of overtraining under the so-called over-
realizable cases by employing the exact solution for a matrix Riccati equation. A simplified
nonlinear dynamical system was introduced in [46] to show that increasing depth in linear
neural networks may slow down the training. However, it was proven in [32] that every
local minimum is a global minimum for over-parameterized LNNs (width # is larger than
the number of data N). It is shown recently in [3] that involving more linear layers beyond
the simplest linear regression brings some advantages to the training of networks and
possibly to the network’s generalization performance. It is also reported in [3] that (2.4)
yields an accelerated convergence of w compared to the linear regression case. Recently,
the convergence of gradient flows related to learning deep LNNs was further studied in
[5,39] by re-interpreting them as Riemannian gradient flows on the manifold of rank-r
matrices endowed with a suitable Riemannian metric. It is worth stressing again that all
these convergence results are established based on the assumption that (xx”)y is full
rank.

In the remainder of this section, we aim at analyzing (2.4) in the context of embedded

low-dimensional data.

2.1 Gradient descent for deep linear neural networks

In this subsection, we first study some general properties of the dynamical system (2.4).
Then, we provide some further results if we involve the low-dimensional assumption
of data. We first point out that the dynamical system (2.4) is invariant under unitary
transformation:

Proposition 1 Suppose that the data {(x;, g,')}f; 1 follows x; = Q ( i ) ~ M, for some
0Yi

unitary transform Q on R, Denote %; = QT x; and w = QT'w. If w(t) satisfies (2.4) then
w(t) also satisfies (2.4), and vice versa.

Thus, without loss of generality, we can focus on the case of Q = I, that is, M =
Spanfey, ey, - - -, €4, }. In this setup,

N
1
Jé(w) = IN E (waxl' + wyToyi —g)> (2.7)
i=1

Next, we derive the gradient of the loss function J¢:

Vu]¢(W) = (Ag)NWw — (gx)N, (2.8)
. , . _ [ &N e .
where (A, )N is defined in Notation 2 and (ga)ny = @) by definition in Notation 1.
o(gy)N
Here, we notice the relation between (A, )n and (A)n

_ I, O I, O

which is useful in the following analysis.
Then, we summarize some observations about the stationary points of (2.4).
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Proposition 2 The stationary points of the dynamical system (2.4) consist of point in the
set

(F=0}={w : VJ*(w) =0o0rw =0},

where F is defined in (2.6). Furthermore, if L = 2, F(w) is not differentiable at 0; if L > 2,
the Jacobian matrix VF(0) = 0.

Proposition 3 Assume that (xxT)x and (A)N are invertible.
1. Ifo =0,
w: VJ¢w) =0} = {(w;';, wy) : wy € ]Rdy}, (2.10)

where w} = (xxT)Xll (gx)N-
2. Ifo #0,

. wi _ o* ~ (liyxa, O _1 [ {gx)n
() (e e () e

is the unique critical point for VJ¢(w). Furthermore, we have wy = a* and

a -1 [ (gx)N
=(A 2.12
(ﬁ*) i (@U%{) 212
which is independent from o in data.

We remark that the assumption made in (1.3) implies that (xx” ) is invertible.

X
Assumption 1 In M, = ( Y)’ X and Y are two independent random vectors where
o

Y = N(0, Idy) and X is a random vector in R% such that E[XX 7] is invertible.

Analogous to the two-dimensional linear regression problem, the following theorem
relates ||w;k || to the standard deviation of the noise and the cardinality of the data set.

Theorem 1 Suppose that o # 0 and (x;, yi),i = 1 : N are independently sampled from
the distributions X and Y satisfying Assumption 1. Let (wy, wy) denote a stationary point
of (2.4). For sufficiently large N, with a high probability,

Cg,X,Y
ovN’

and for some Cyx,y > 0 which depends only on g(x) and the distribution (X, Y).

%
<
Iwill <

Proof Let us denote

xl)y =Ty and () = Zy,

which are the maximum likelihood estimations of the covariance matrices Xy and Xy =
I, Given Xy is invertible and N is large enough, we have (A)x and S which are all
invertible by matrix perturbation theory [52]. Moreover, we have

wi =015 (v — 0 v Ex @i ).
by representing A~ in (2.11) in terms of block matrix where

S=Zy — xHInZ iy TN
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According to the independence of X and Y and the law of large numbers, we have

(1], =0 (%) nd o] =0 (%)
and
(o, =0 ()

fori=1:dxandj =1:d,. Inaddition, similar results for correlated matrix [2,11] show
that

~ 1 ~ 1
Exzzx—l-(g(\/—ﬁ) and Xy =Idy+0<ﬁ>

with high probability if N is large. Furthermore, we have

xxT )N (v T )N Tx 0 ( 1 )
AN = = +0—),
i (@x% <ny>N) (o Id) JN

and notice
S=Fy — WSt v =1y +0(—=) +0(=
=Xy —(x InXx Wy In =1, Nivi N/
This means

1 -1 ~ 1 -1
sY<c (1—(’)(—)) d 1= <cC (2 mm—O(—)) ,
IS~ Y i and || Xy X\ 12Xl Nivi

where || x|l min denotes the minimal singular value of Xx and Cx and Cy are constants
depended only on X and Y. Thus, for some Cyxy > 0, we have

Cg,X, Y

ovN’

il < o~ (ennl + x| E| ean]) <

[}

Finally, we have the following estimate for wj; when the target function g (x) = g(x)+ nlx
is a perturbation of a linear function 1 € R%,
Corollary 1 Ifg(x) = g(x) + u x and |g(x)| < & for all x € R%, then

Cxy
oN’

forsome constants by y and Cxy depending only on the distribution X and Y. Furthermore,

Cx,yllyll>
ovN )’

Iwy — ull < bxys and |lwyll <

o)~ )7 <5 (14 by bl +

forany x = (x,y) € R%,

The following numerical results in Fig. 1 verify the estimate of ||w;,‘ || in Theorem 1 and
the claim in Corollary 1. Here dy = 2 (x = (x1,%2)), d, = 1, and we take go(x1, ¥2) =
7 (sin(mrx1) + sin(wxy)) in the left figure. For the right figure, we have g1 (x1.22) = 4(x1 +
x2)40.1(sin(rx1 ) +sin(wxz)), g2 (x1.42) = 2(x1 +x2)+0.1(sin(wxy) +sin(wxy)), g3(x1.42) =
m(sin(rx;) + sin(xy)), and N = 10°. We sample the data as xj,xp ~ U[—1,1] and
y ~ N(0, 1) and then compute (w;:

x?

wy) by averaging 10 results using (2.11).
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10—
™~ 10
% ~
5. - <
ASQ\\S\\%\\ a E&.\ \<>\
= R TN N =5 BN~
= ~ = N
< of SO el % = LN
= N N 2 ~
—%— N =102 ' = ~ O | —%— gi(zr,22) >~
—5— N=10 ~ —O— gal1,39) 5
5t —O— N= 1106 AS) . S —O— gg(zl,lzz) ~
O(c™) 5 O(c™) K|
12 10 -8 -6 -4 -2 0 14 12 -0 -8 -4 -2
log() log(c)
Fig. 1 The log-log diagram of ||W;< || (left) with different & and N and ||vv;‘ || with different g(x) (right)

DA
\Q\\\

A
L

*

A

il /
TR

-2 -1 0 1 2

Fig.2 Stream lines of the system with o = 0.1 on the wyw;-plane. The horizontal and the vertical axes are,
respectively, the wy-and the wy-axis. We take L = 5,6 = 0.1, N = 104, and g(x) = x + 0.1 sin(7x). As shown
in Corollary 1, we have w} ~ 1 and W;,‘ ~ 659 x 1073 < mf:’fm.The color in the background corresponds
to the value of || F||

2.2 Bifurcation and slow manifold when ¢ is small
In Proposition (3), we showed that when o = 0, the dynamical system (2.4) has a stationary
manifold defined as

Toi={Whw) 5 wy e R%). (2.13)

For small positive o, I, degenerates into a single point (w}

’ w;‘) denoted as the slow
manifold I7. In this section, we present a phase plane analysis of (2.4) and relate the
consequence in training a deep LNN.

In Fig. 2, we present the phase portrait of the dynamical system (2.4) on the wyw,-plane.
We see that wy(t) first converges to a neighborhood of I',. Once in the neighborhood,
wy(t) converges to w}’f on a slower time scale. Asymptotically, (w(£), wy(t)) converges to
the stationary point (wy, w}). Indeed, the following theorem confirms that Iy and I are

stable.

Theorem 2 Suppose that x;, y;,i = 1,2, - - -, N are independently sampled from distribu-
tions X and Y satisfying Assumption 1. Consider the vector field F defined in (2.6).

13
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— Ifo = 0, then the eigenvalues of VF (w*) are non-positive and the associated eigenvec-
tors to the zero eigenvalues are {(0, wy)|wy € RY) = Iy — (w}, 0) for any w* € I.
- Ifo >0, \/Lﬁ < o, and w* is the unique nonzero stationary point, then there are d,

negative eigenvalues of VF(w*) with scale O(o'%) with high probability.

Proof If o = 0and w* € I, first we have the eigenvalues of VF(w*) are non-positive as

shown in Proposition 3. Moreover, we have
VEW*) = —[w*| T Mw") VY (w"),
where

MW*) = |w*|*T + (L — Dw*(w*)T.

T
Recall VY¢(w*) = (Ag)n = (WO I 8) and W) (Ag)y = (gx)T, = (@’;m), thus it
follows that
MW V(W) = [w*||*(Ao)n + (L — Dw*(gx)};

(WP T+ (L — Dwigx)h 0
N (L — w} (g} 0/’

Thus, the eigenvectors of VF (w*) corresponding to zero eigenvalues belong to Iy — (w, 0)
since VF(w*) has the form .
If o > 0 and w* € I',, we still have
VE(W*) = —|w* | "L M) VY (w")
and
MWV W) = w2 (Ao)y + (L — Dw* (gx) .
In addition, we have

(xxT )N o(xyT)N Xx O ( o )
As)N = = ol—).
Waln (o N aszm) ( 0 o%) AW

Furthermore, we notice

oo (WEER G owEeN G\ _ (wilen)f O O(i)
Y <gx>N_(w;(gx)]{, crw;(gy)}\; - w;(gx)}\}o + NINTA

It follows that

MW* Ve (w*) = <

=;1(+O(j—ﬁ).

Here, we notice that there are d, eigenvalues of K equals lw*||262 with eigenspace

Iw*I>2x + (L — Dwilgn)y 0 O( o )
(L = Dw}gn) i Iw*(1*014, VN

Iy — (W}, 0). Given the matrix perturbation theory [52], there exist at least d, negative
eigenvalues of VF(w*) with scale O(o2) if \/Lﬁ <L o2, O

Intheregime0 < 0 « 1and N > o2, the gradient descent flow (2.4) tend to converge
slowly to the optimal parameter w* due to the gap in the eigenvalues of VF(w*), as
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Fig.3 The log-log diagram of A, (VF) (left) and [T,]; fori = 1 : 3 (right), where g(x1, x) = 7 * (sin(mrx1)+
sin(x>)). We observe that indeed the smallest eigenvalue of VF follows the scale of o2 when ﬁ Lo,
while [T, 13 follows the scale of O(a~2), which confirms that the convergence of the slowest component
takes place in the O(o~2) time scale

Theorem 2 shows. We refer to this slow convergence as one of the side effects of learning
from embedded data because it stems from the fact that data distribution essentially
concentrates on a lower-dimensional manifold.

In Fig. 3, we present a set of numerical simulations demonstrating this slow convergence
when N (the number of data points) is sufficiently large. In the experiment, d, = 2 and
dy = 1, so I'; is a point on the line {(w}, w)) : w), € R}. In the left subplot, we report the
smallest eigenvalue of VF, corresponding to the direction parallel to Iy, for different N

and o. In the right subplot, we report the quantities
[To)ii=inf {¢ | Iwoli(®) — w3l < 1078},

where [w,];(t) stands for the ith component of w, at the time ¢ and w, is the nonzero
stationary point as in Proposition 3. [T, ]; gives the first time that the ith component
of w, becomes within 10~° distance to [w¥];. We now focus on the convergence of the
third component, corresponding to wj. Assuming that w,(0) is in a sufficiently close
neighborhood of w} so that linear theory applies. We then have ||[w,]3(¢) — [Wi]s] <
e~ Ch(VE)X \which means [T]3 ~ Co 2. This indicates that the time to reach within a
small distance of w* is proportional to 1/02. Numerical results in Fig. 3 verify the slow
convergence phenomenon. Here, w,, is computed by simulating the system (2.4) directly
with ode45 in MATLAB with time step size 5 x 10~3. Correspondingly, it takes 200 x el li
iterations in ode45 such that the ith component of w, becomes within 107° distance to
Wl

The following proposition shows that a similar gap in the eigenvalues may exit even for
systems defined with relatively small number of data points.

Proposition 4 Under that same conditions in Theorem 2 with0 < o K 1, forany N > 1
and || w12 (xyT ) + (L — 1w} (gy)]{, ” < C, denoting \(-) as the spectrum of a matrix and

Fi1 F
VE(w*) = —||w*||_% W12 here
F1 F

Fuu = w2+ (L= Dwienf,  Fio = (Iw' 12 ) + (L - Dwi @)k ).

B =(L—Dwjgaf +olw > 0x")n,  Fo = Iw* 20 y" v + 0wy (L — Digng,
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then \(VE(w*)) C Gy U Gy, where

Gi = A(Fy) U {x ¢ A(Fi) )|| Fa =207 Bl i =122 0
More precisely, for i = 2, we have

Gy = M(Fp) U {A ¢ A(Fan) ‘|| (Fyy =202 7" < IFwll }

In particular, since |Fyz| < o || w12 (xyT)n + (L — l)w;‘(gy)}\}n < oC and MFy) ~
O (0), it follows that . ~ O(o) for any A € Ga.

The proof of this theorem is a quick application of Gershgorin’s theorem for block
matrices [54]. Following this proposition, VF(w*) may have eigenvalues falling in the set
G2. In that case, the magnitudes of those eigenvalues are O(o’). Hence, the proposition can
be applied to understand the flow in a mini-batch stochastic gradient descent algorithm.
Each step of SGD can be understood as one discrete step of (2.4) with a relatively small N
corresponding to the mini-batch size. Thus, this proposition suggests that employing SGD
in training can be more efficient, as the eigenvalues of the smallest amplitude scale as O(o)
instead of O(c2) (if N > o ~2), although it will not always avoid the slow convergence
caused by the small variance o in the y-directions. See Fig. 5 for a supporting numerical
study.

2.3 Slow convergence

In this subsection, we show that deep LNNs may have yet another hindrance to conver-
gence, depending on the initialization. The following theorem shows that the trajectories
of (2.4) may be attracted to a neighborhood of the origin, and if that happens, it will take
a very long time to escape.

Theorem 3 Assume0 < C) < (As)n < Cyand || {(gx)n| = O(), then for e < 1 we have
Ty (e) := inf {t w(O)] = €, [[w(t) — w(0)|| = %} > Ceil, (2.14)
where w(t) is solution of (2.4) and C depends on L, (As )N, and (gx)N.

For brevity, this theorem shows that deeper LNNs require more time for convergence if
the initialization is very close to the origin or the training process reaches the near field of
the origin. In practice, a commonly accepted heuristics is to avoid initializing weights near
the origin. The above theorem provides a theoretical interpretation for that heuristics, at
least in the context of training deep linear networks. However, as shown in Figs. 2 and 5,
even if one initializes the weights to be far from the origin, the weights can be attracted to
a neighborhood of the origin during the gradient flow. This phenomenon, which has not
been discovered before, can still cause the slow convergence in training LNNs.

Figure 4 demonstrates the convergence issues corresponding to Theorem 2 and The-
orem 3. Here, we simulate the dynamical system (2.4), with L = 10 and w(0) = (-2, 1).
The data are sampled as follows: x#; = (x;,0y;) € R2, x; ~ U[-1,1], yi ~ N(0,1),
g(x) = msin(rx), N = 10%, and o = 0.05.

Furthermore, in Fig. 5, we also observe similar results when we train a LNN with the full
gradient descent method with a special initialization that [W*]; j is afixed constant for each
i, j such that ||w|| = 27°. This initialization can satisfy the condition in (2.5) as required in
[3] to make the dynamic system (2.4) as the continuous limit of the FGD method. Thus,
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Fig.4 Convergence of w(t) = (wy(t), wy(1)). We see that the trajectory is attracted to the origin and stay a
long time (~ 6 x 10% iterations) before escaping. Furthermore, once flowing pass the origin, wy (t) quickly
converge to a small neighborhood of the slow manifold I,. But it will take another long period before w(t)
gets close to the optimal point due to the slow convergence of w(t)

FCD, [|lw(0)|| =276 SGD, w(0) = random

10’ 10"
q ———— Training loss Training loss
llwa(£) — wi | [[wa(2) — wi
100¢ [lwy(t) —wyll |4 10° [lwy () — wyl|
L A g
10 10 W‘M‘wr"“"m}wd%*‘nl““/uv\h,‘b,‘wM\m‘m‘ "
2 2

107 ¢ ] 10°
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Fig.5 The convergence of the loss function, [wy(t) — wy ||, and [lw,(t) — wy || when o = 0.05. The FGD
results match the previous analysis very well. Given the initialization that ||w|| = 27, it gets stuck around the
origin for a while and then w; converges very quick while wy, converges very slowly after escaping the origin.
In the SGD results, a suitable random initialization strategy is important to the success of the SGD in DNNs
[13,23,28]. Generally, it is hard to notice the trapping issue around the origin for SGD with random
initialization. However, as shown here and in Proposition 4, w,, converges slowly for both FGD and SGD

we take a full gradient descent training algorithm with a decreasing learning rate from
2.5x 1073 to 2.5 x 107> under a cosine annealing schedule [37]. In addition, we take L = 6
and # = 10 for this LNN. The training data are created by taking d, = 3and dy = 2,x; =
(i oyi), % ~ U ([—1, l]dx), yi ~ N(0O, Idy), and g(x) = 22?:1[96]1 +0.1 Z?Zl sin(m [x];),
N =4 x 10, and o = 0.05. Moreover, we are also interested in how SGD will perform
under this situation. We apply SGD for the same LNN and training data with Kaiming’s
initialization [28] for W* and a mini-batch size 50. We also show the results in Fig. 5.

Related work. Theorem 2 shows that (2.4) has a slow manifold I';; and the convergence of
wy(t) to w;‘ takes place in the O(o ~2) time scale. Similar results about the slow convergence
(in the components corresponding to small singular values in the data matrix) are also
reported in [51] for randomized Kaczmarz iterations and [25] for gradient descent in
neural networks. In the setting of this paper, if o +/N < 1 and g is not small enough, then
Corollary 1 shows that ||w;,< || > 1. In this case, “early stopping” [56] may be employed to
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Fig.6 10g,(l|wy |l) of trained LNNs for L = 2,4, 6. Here we still observe that [[w; || = O (o~ 'N~/?)

control ||wy(T)||. The similar results can also be found in [38], which presents that small
eigenvalues for the associated Gram matrix make the convergence of gradient descent very
slow. In that case, the slow convergence gives us ample time to stop the training process
and obtain solutions with good generalization property. On the other hand, Corollary 1
and Theorem 2 also indicate that there exist some cases in which the early stopping is
not recommended. For example, ||w;," | could be small if o /N > 1 and g in Corollary 1 is
relatively small.

2.4 Regularization effects of noise and network’s depth

2.4.1 Regularization effect of noise

Theorem 1 states that the presence of noise in the y-components, i.e., ¢ # 0, can result
in w; with a small amplitude, provided that the training data set is sufficiently large.
Moreover, if the noise scale is fixed in data x;, Theorem 1 presents that more data are
needed to control the amplitude of ||w;,< ||. Figure 6 demonstrates these results in training
LNN models using SGD.

In Fig. 6, we notice that w,() is non-constant even when o = 0. It is due to the “mixing”
that comes from the multiple hidden layers and can be seen from (2.4) (more explicitly
from (2.15)). This is different from pure linear regression case where w, will keep constant
after initialization. Given this observation, we will further study the properties of training
LNNs when o = 0 in the next subsection.

The basic setup is same to what we have done in Fig. 5. Noticing that wy, in LNNs may be
difficult to converge when o is small, we test only o = 2% for k = 0 : —5. Thus, we apply
SGD only 500 epochs for these experiments and the reported values of ||wy || are obtained

by averaging over 5 individual tests.

2.4.2 The regularization and side effects of depth when o = 0

In this subsection, we focus on the setting where the training data lie on the low-
dimensional manifold M exactly, i.e., x; ~ Mo. We prove that the size of ||w;,‘|| trained
with this data may decrease as the depth of the network increases, for the initial value

w(0) in certain subregion of R4,
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Fig.7 Phase portraits of the system (2.15) on the wyw, -plane with L = 5 (left) and L = 100 (right)

Since x; ~ My, we have the data points x; = (x;,0) € R%+dy and g € R. Under this
situation, the loss function will degenerate to

1 N
e _ T, _ )2
Jé(w) = N ;Zl(wx X — g5

where

W) _ (axT)nywy — (gr)y  and o)

=0.
OWy owy

Equations of w in (2.4) are reduced to

2 e are
Qs = flmmwy) = —Iwi~E (IwlP 252 + @ — 1) (wl 52w, ),

w
Wx

% 2 T 9J¢(w) 2.15)
Swy =gwwy) = =@ = Vw1 ((wF 522 ) wy),

; TJ°w) _ T J°(w)

since w! Zp = wy S

According to Proposition 2, the stationary points of the above system consist of 0 and

Iy = {(w;, wy) : wy € R%

——

where we assume w;} is the unique solution of %—M(,:’) = (xx T\ ywy — (gx)n = 0.

In the following, we study the relationship between L, the network’s depth, and g—{/ =wy.

Naturally, the smaller the magnitude of %, the more consistent the network’s output
would be when the testing data deviates from the training data manifold.

To begin this study, we first show the following diagram about the phase portraits of
the system (2.15) on the w,w,-plane with L = 5 and L = 100.

According to the above phase portraits, if w is initialized on the right of Iy (the red line
in Fig. 7), we have |w;,‘| < |wy(0)], which can be understood as the regularization effect of
the LNN structure since W; = wy(0) in classical linear regression model when o = 0. In
addition, we also notice that |w;,‘| > |wy(0)| if w is initialized between the y-axis and Ip.
This aspect of training can be interpreted as a side effect of the LNN structure comparing
to the linear regression case. We now present generalization of this regularization and
side effects.

Page 17 of 41
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Again, let w = (wy, wy) € R%t4y with d,, dy > 1. First, we define

8 e
Ey:= {wx eR% : WE% = o} C R%, (2.16)
X

E, is an ellipsoid of dimension d, — 1 centered at (xxT);ll (gr)n/2 = wj /2, since

a e
wI L) T T s — w7 (g
OWy

2 (0

and (xxT)y isa symmetric positive definite matrix.
We denote the cylinder generated by E, as

E:=FE, xR (2.17)

and the enclosed region as

E™ = {(wx, wy) wa Bg(w)

<0, wye Rdy} .
Wy
E~ can be regarded as the generalization of the region between y-axis and I as in Fig. 7,
aregion in which ||w,(¢)|| increases following the flow of (2.15).

To define an analogy to global flow structure of (2.15) depicted in Fig. 7, we introduce
the hyperplane

H= {w eR? . (n})T (w— (w},0) = 0},

where #n} denotes the exterior normal direction of E at (w}, 0) in R?. Thus, H is the
tangent plane of E at (w}, 0) in RR¥, separating R? into two disjoint open sets (half spaces).
We denote U~ as the part which contains (0, 0) while /™ as the other part. More precisely,

u ={w: nzT (w — (W}, 0)) < 0},
ut.={w: nzT (w— (W}, 0)) > 0}.
Here, we also notice that
RY=U"UHuUUY, (0,00eEcU-, IyCH

We remark that Iy = H <= d, = 1. Figure 8 illustrates a corresponding diagram for
the case d, = 2and d), = 1.

Assumption 2 Let w(¢f) be a solution of (2.15) with w(0), and w(t) N E = @ for any
0<t<T.

The following proposition states that Assumption 2 holds for some positive time under
some conditions on the location of w(0) and the data.

Proposition 5 Ifw(0) € E~ and the correlation matrix of X, Xx, satisfies Xx = cly, for
some positive constant ¢ > 0, then w(t) € E_—for all0 <t < Tx, where Tx := inf{t :
Iwe(e) — will < 22wl =x — G T)]l}

Since | Zx — (xxT)| = (9(1%[) can be made arbitrary small if one increases the number of
data points N, in that case, w(t) will stay in E~ before it reaches a neighborhood of the

stationary manifold Iy (when w(0) € E7).

Lemma 1 Suppose that wy(0) # 0 and w(t) satisfies Assumption 2 for 0 <t < T. Then,
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As a consequence of the monotonicity of ||wy|? and %, we have the next main
y
theorem about the regularization and side effects of LNNs.

Theorem 4 Suppose that wy(0) # 0 and w(t) satisfies Assumption 2 for 0 < t < T. Then,
L ifw(0) e U,

L—1 0)12
lwy(T) 1> = lwy(0)|* < (L = Dlwy O

2 2 .
~ L{wx(0)[12 + [lwy(0)|? (”Wx(T)” — [lwx(0)l ) <0

(2.18)

2. ifw(0) € E-,

, , (L — 1)|lwy(T)|1?
Iy (DI = Iy O = P o e 1 (D2

(Ilwx(DII* = lwx(0)]|*) > 0.
(2.19)

Recall that for LNNs, w, determines the Lipschitz bound of the trained network func-
tion, fy in the direction orthogonal to the data manifold. Therefore, the first case in
Theorem 2.18 can be interpreted as the regularization effect of LNNs: under the stated
conditions, the wy(T) is smaller than w(0), implying that the variation of fy in the y-
directions will reduce. On the other hand, the second case in Theorem 2.18 reveals a “side
effect” of LNNs that the variation of fj in the y-directions will increase; i.e., the stability
(for out of distribution evaluations) of the network will reduce as training progresses.

13
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Furthermore, we can derive the following a priori estimate:
(L = D)llwy ()]
Lilwx(0)[1* + [lwy(0) 12
from (2.18). By reorganizing (2.20), we have the following a priori estimate:

* (12
[y (D)2 < h(D) (Iwx O] — [w212) + (%) 1w, O] (2.21)

Iwy(T)II* < [lwy(0)]1*> + (w11 = wx(0)11%) (2.20)

L[y (0)I1%/ llws (0)1*
L(Iwx(0)[12/ 1wy (0)[12)+1
upper bound for ||wy(T)|| with L = 100 is smaller than the case of L = 5 under the same

where h(L) =

is a decreasing function in terms of L. That is, the

initialization. Thus, the estimate in (2.21) can partially explains the phenomenon in Fig. 7
in the right of Iy that |wy(T)| with L = 100 is smaller than the case of L = 5 under the
same initial when w(t) achieves 5.

3 RelLU-activated networks
In this section, we analyze the stability for ReLU deep neural networks (DNNs) when data
are sampled from M, i.e., x; ~ My. We first show how the low-dimensional data will
affect the training process. Given that, we establish the stability estimate for ReLU DNNs
with one hidden layer (L = 2). By using the recursive structure of ReLU DNNs, we finally
prove the stability estimate for deep cases.

As defined in (1.4) and (1.6), we have the ReLU DNN function with L — 1 hidden layers
as

fix) =W lwx) +b, €=2:1L
f(x) 9) :fL(x):

wherefl(x) = Wlx 4+ b, @ = ReLU, Wt € R7ex1e-1, b[,fz e R" withng =d =d, +d,
and n; = 1. Here, Wlisany x (dy + dy) matrix, and for the convenience of exposition, we

(3.1)

write W1 = (le Wyl), where le and Wyl are, respectively, n; x d and n1 x dj, matrices.
With the data of the form prescribed in Sect. 1.1, we assume Q = I; and have

1, 1_ 1wl Xi 1
Wha;+ b1 = (W} W) (Gyi) + b,
Then, the loss function is defined as
1 N
_ 2 0) — 5.)2
1) = 5 2«(%9) &) (3.2)
1=

where x; ~ M, and 6 = {W1, b1, ..., WL, b} denotes all parameters in ReLU DNNs,
If x; € M, the key observation here is that

3 1 1
B_AW/)} =0, W, =[WQl,
Furthermore, according to the gradient descent update of W, we have
aJ aJ
wt wiQ - = W' WiQ—n——rr.
Qe W R=n57Q Q=W T3wW1Q)

Thus, Wyl or Wyl will not change for any pure gradient descent-based training algorithms.
Therefore, without loss of generality, we shall assume in the remaining of this section that
Q = I;.The results can be easily extended to W!=w!Qand *%y) =QTwif Q # 1.
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Lemma 2 Ifx; ~ My in the training data and either the full gradient descent or stochas-
tic gradient descent training algorithm is applied to (3.1) and (3.2), then the following
conclusions hold.

1 Wyl inw! = (W/xl, W;) will not change during the training process (1.8).
2. Ifthere is a 0* regularization term 1|0 ||§2 with an appropriate ), then Wy1 will decay
to 0.

Although Lemma 2 also holds for LNNSs, estimating ||W; || directly for LNNSs as in The-
orem 4 is a more precise and efficient approach to bound the stability metric. However,
there is no such linear structure that we can use for ReLU DNNs. Thus, we notice the
first consequence in Lemma 2 which shows an invariant property of weights Wyl in train-
ing ReLU DNNs with o = 0 for both full and stochastic gradient descent methods. The
invariant property of Wyl in training ReLU DNN with (stochastic) gradient descent method
plays a critical role in analyzing the stability metric which will be detailed explained in the
remaining subsections. For simplicity, we denote W¢(b*) and as the initialized weights
and W (ZZ) as the weights (biases) after training. In the following, we will use 6* to denote

. . . . —t — L
the parameter set obtained after training. From the discussion above, 6* = {(W b )] )

while W' = (W}C, Wyl) due to the conclusion in Lemma 2 if 6* is obtained by FGD or
SGD.

An example. We train and obtain a neural network classifier, fy« : R78 — R10, using
the MNIST data set [19]. The first layer of the network is fully connected. Each image
in the MNIST data set is a black-and-white image consisting of 28 x 28 pixels, and it is
regarded as a point in R734, Let & be the mean of the data points. Let the unit vector v,
denote a direction corresponding to the least eigenvalue of the covariance matrix. The
ratio between the largest and the least eigenvalue of the covariance matrix of MNIST
is 5.26 x 10'®. We shall regard the data manifold M to be the subspace, centered at %,
spanned by the first 783 principal directions.

Let W' denote the weights in fy+ that connects to the input vector. We introduce per-
turbation to the weight set w4 sWy, where W), := v,vL, and denote the corresponding
perturbed network as fyx. Let fe[f ! denote the second component of the output vector that
corresponds to the digit ‘2". Classification of an input image x is performed by the maximal
component of Softmax(fy«(x)), using a trained network fy with 98.14% testing accuracy.
In Figure 9, we show the function

Ii(s,8) = 12 () — fog (57 + tva)l 13, (33)

for x;. We observe that I(s, 0) remains O as s varies; in other words, variations in the W),
—1 )

component of W does not change the perturbed network’s output when evaluated at
xj. This means that the data point x; has no role in the optimization of W, in W1, in a
gradient descent-based training. Furthermore, fy» starts to deviate from fy+ only when one
introduces perturbation to the input x; in the direction, v,;, normal to the data set.

In following subsections, we derive upper bounds on the effect of the perturbation
discussed above.
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Fig.9 Left: Animage corresponding to the digit 2" Center: The change in the third component of the
output vector, resulting from the perturbation to the input image (parameter t in (3.3), horizontal axis) and to
the trained network’s first layer weights (parameter s in (3.3), vertical axis). Right: The classification based on
the perturbed output.

0 10 20 ) 25 51 76

3.1 Stability estimate for L = 2

First, let us consider networks with only one hidden layer, which means L = 2. For input
training data, we have x; = (x;, 0) ~ M. In addition, we also denote 2, = (—1, 1)% as
the domain of input of x;. That is, we have

n
=2 =1 -1 -2
f@0%) =fxy):=> W;a(W, x+b; + Wy +b (3.4)
i=1
as the approximation of g(x) after training. According to Lemma 2, Wlly is given by
initialization since 0 = 0 in the training data.

Then, foranyy # 0, we propose to estimate the following deviation along the y-direction

" 2
“f()y) _f(': 0) ”22(.9,6) = Z ei(';y) )
i=1 L2(82x)
where
i) = W, («(Wi,x+b; + Why) —a(Wix+5))). (3.5)

In other words, e;(x, y) describes the stability of each neuron’s activation in the first hidden
layer.

Using the property of ReLU function, one can easily describe the support of e;(x, y) given
h \Vi,ly, and Ell . See the strip depicted in Fig. 13. Thus, we have

the trained parameters W, ,
the following estimate for e;(x, y).

Lemma 3 Letx; ~ My in the training data, f (x, y) be a network with a single hidden layer
(L = 2) defined in (3.4) and trained by FGD or SGD, and e;(x, y) be defined in (3.5). For
any i =1:nj, we have

2 — 2 3
2 | VA ”i%gx) VVllyy‘ ‘Wz‘ “)Vzlyy‘
”ei(" y)”LZ(.Qx) = 12 dy — ,

where Cg, denotes the measure of the largest (d, — 1)-hyperplane in 2, and
2 —1 - - —2
hi(x) = Wia(W, 2 +b;), fx0)=) hx)+b.
i=1

Notice that /;(x) are Lipschitz in x so ||Vh,'||i2( Q) is well defined. We denote /;(x)
explicitly and separately since V,f (x,0) = Z:’;l Vhi(x) where f (x, 0) could be the approx-

imation of the target function g(x) on M. The estimate presented in Lemma 3 is a type of
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a posteriori estimate since it depends on the parameters W' and b? obtained as the results
of training.

We first notice that the stability of each trained neuron depends on the derivative of /
with respect to each input variable. The derivatives depend on the trained parameters that
are directly connected to the input vector. These parameters depend on the data and the
training algorithm. Furthermore, we observe that the stability of a neuron is dependent
on the “untrainable” parameters in Wyl! Finally, the lemma suggests that if the trained
network is more stable if the weight WI.Z connecting to the output is small. This matches
with our intuition that Wl.2 may amplify the contribution of the y components of the input.
By summing all e;(x, y) together and applying the triangle inequality, we have the following
estimate for trained ReLU DNNs with one hidden layer.

Theorem 5 Letx; ~ My in the training data and f (x, y) be a network with a single hidden
layer (L = 2) defined in (3.4) and trained by FGD or SGD, then

212

2 2 . 3
n (Wi Vil W] Wik
19 =GO ooy < D 2 ey e e B
=1 H Wi,x H Wi,x

where Cg, and h;(x) follow the same definitions in Lemma 3.

This theorem gives the stability estimate for a ReLU DNN with one hidden layer trained
by FGD or SGD. It is the building block for understanding the stability of a deep neural
network. The next step is to use the nonlinear recursion relations that define the deep
network to propagate the influence of having nonzero y components in the input vector
input the other hidden layers.

3.2 Stability estimate for L > 2
For a general multilayer neural network with ReLU activation function, as shown in (3.1),
we denote the function trained by FGD or SGD as f(x;0) = f(x) where

@) = Wa @) +5, €=2:1L
with f1(x) = W' + El. Let f(x), £ = 1, - - -, L be the functions in (3.1) and
Ayf @) = f"(59) —f (% 0).
In particular,
Ayf (6 y) = f" () — fH (% 0).
We have the following recursion relation of A,f (%, 9).

Lemma 4 For any fixed x € R% and y € R, we have

Jore] = [ Ja

’

where H Ayfz(x, y))|| denotes the €* vector norm of Ayfz(x, y) and HWZ H is the operator

-t
norm of W with respect to €2 norm.

Proof By definition,

ot = [ (e ) o))
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7 (o0 ) o (o))

WP (o0 ) o m0))
—2 3 2

<[] o]

The last inequality holds because of the property of ReLU that |[ReLU(x+ /) — ReLU(x)| <
|| for any x, 1 € R. O

By applying the previous recursion result, we have

¢
|asren] =[] o] == | T[] | 1o
j=3
Combining Lemmas 3 and 4, we have the following a posteriori estimate for
2
||Ayf(x, y) ”Lz(!?x)'

Theorem 6 Letx; ~ My in the training data and f (x, y) be a network with L layers defined
in (3.4), then the following inequality holds for any fixedy € R iff (x, y) is trained by FGD

or SGD:
9 L 2 ‘ yy‘ ”Vx l]||L2 ‘ ‘ yy‘
[ Oy < (T 7] —
(=3 i= 1;12 ‘ f 3 ‘ W]x
j=lm
(3.6)
where Cy, follows the definition in Lemma 3 and
]/ll',/' = ija (W]%xx + ZJI)
Proof By definition, we have
2 2
|8 € 2 = 85 6 2, < (H v ) PR
s 2
E(HH H)Z ZWU( W x+b +Wyy) (W;xx+zjl))
=3 L2(82y)
L il 15 \WHVM\
(A g et [T
=3 i=1 j=1 ‘ jx 3 H
O

Theorem 6 provides an estimation for the variation of a ReLU DNN trained by FGD or
SDG along the normal direction of the data manifold. It is by no means sharp, because of
the approximation (B.3). However, as in the case of LNNS, the initialization of Wy1 and the
network’s depth L play a role in the stability of the trained network as shown in Corollary 2.
Theorem 6 has an interesting implication for DNNs that employ a latent space of a smaller
dimensionality. The estimate in the theorem does not assume that the hidden layers in
the DNN have the same width. This means that when y # 0, the effect of the “untrainable
parameters” Wyly will propagate into the subsequent layers, even when the layers have
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smaller widths. In training for data without noise, y = 0, there is no mechanism to learn
how to project Wyl ¥ out for any 7 # 0 in noise test data. As far as we know;, this is the first

stability estimate (” Ayf () ||i2(_(2 )) for a general ReLU DNN trained by FGD or SGD.

Corollary 2 Under the same assumptions in Theorem 6 and

3 [y |2

D(y) := max [y]illvxhi’j”%z(m Dk ‘Wi'/‘
: Fry 12 » Ldy,
Jox

lf[Vley]k ~ N(0,v?) for all k = 1: dy, then there exists a constant D such that

Lo 2 2 -
2 J’)“iz((m < (Z—l_! H w' H ) ((Uz + 2\/;v3) nanydy + D, /nznldy) D(y), (3.7)

with high probability. Here, n1 and ny are the widths of the first and second hidden neuron
layers defined in (3.1).

Commonly used initialization strategies correspond to v? = % in [23] or v = ﬁ in
[28]. Recently, the authors in [13] propose to take v2 = ﬁ which leads to the following

estimate:

|8 9oy < (ﬁ v HZ) r iy D)
{=3

where D = max{4, 5}.

The above corollary suggests that, in additional to the common practice, the width of
the second hidden layer should be considered in the initialization of ley

For classification problems, our theory provides additional understanding of adversar-
ial examples [24]. Particularly, our theory may explain the existence of those adversarial
examples which are close to the training examples according to some norm defined on the
ambient space but are not a member of some idealized lower-dimensional data manifold.
The estimate in (3.6) indicates that the variation of a trained ReLU DNN can significantly
move the “decision boundary” for a small y provided HWZ H or || Vxhi,j(x)“iz( o) are suf-
ficiently large. In this case, one can obtain adversarial examples easily with a very small
perturbation along the normal direction of the data manifold. In addition, this result com-
bined with the second conclusion in Lemma 2 and numerical results in Fig. 11 indicate
that including a “weight decay” term in the loss function may reduce the reliability of a
ReLU DNN-based classifier, as least when the data manifold is nearly flat.

In this section, we focused on estimating the stability of ReLU neural networks trained by
FGD or SGD. Theorems 5 and 6 reveal the influence of the “trainable” and “non-trainable”
parameters, Wz (including Wi) and W, to the inference stability. The influence of the

non-trainable parameters is unchanged, even if W are replaced by non-optimal ones.
However, if the target functions fall into those considered in [17], Wyl will be trainable,
and the theoretical optimal inference error derived there is applicable.

We present some numerical results in the following subsection to demonstrate the
above estimates. In particular, the stability metrics of ReLU DNNs with one hidden layer
(L = 2) may differ from multi-hidden-layer (L > 2) cases since the product term will
disappear if L = 2. This is observed in Fig. 10.
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3.3 Numerical experiments
In this section, we present a series of numerical examples demonstrating the theorems

presented in this paper.

The setup We take dy = 3and d, = 2,ie,x € R3, y € R2 and x = (x, 0). A total of
5 x 103 training data points generated by sampling g; = g(x;) = Z}S:l sin (n [xi] j) with
x; ~U ([—1, l]dX). The hidden layers in a network have the same with, denoted by #.

The ReLU DNNs and their optimization are implemented using PyTorch [43].

The networks are trained for 100 epochs by using SGD without momentum or weight
decay. The mini-batch size is chosen as 50, and the learning rate decays from 10~2 to 10~*
under a cosine annealing schedule [37].

To compute the stability estimates, we adopt the Monte Carlo approximation

1 M
By [|| Dof (- 9) Himzx)] ~ > (F e yi) — £, 0))%, (3.8)
i=1

where x; ~ U ([—1, l]dx) and y; ~ N(0, y2ldy). The weights Wyl are initialized following
the special form:
1 T
W, =n(11)".

All other weights are initialized according to [28]. We take M = 5 x 10> to evaluate the
stability metric, and the final results are obtained by averaging 10 individual tests.

Numerical confirmation of various rates Theorems 5 and 6 state that with a fixed
weight set W1,

Ey [” Ayf("y)H;(.ox)] ~0 (VZ)’

ify ~ N(0, yzldy). On the other hand,

Ey [” Ayf (5 9) Hi%.ox)] ~0 (’72)

if LVLIy is initialized n(1, 1) and y = 1 in the distribution of y. Figure 10 demonstrates such
scalings for networks of different depths. Also from Fig. 10 one may observe a gap between
the curve from L = 2 and those L > 2. This gap seems to suggest that ReLU DNN5s with
one hidden layer differ from multi-hidden-layer models. Results in Fig. 10 further support
this observation if we compare with some deeper ReLU DNNs. This phenomenon can be

—2
partially interpreted as the effect of the term ]_[é=3 H W H as shown in Theorem 6.

Regularization by adding a “weight decay” term We recall the second statement in
Lemma 2 that the ¢? regularization term |6 II%2 will significantly affect the stability factor
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Fig. 10 Plots of log, (Ey [|| Dyf(- ”LZ D with y ~ N(0, yzldy) and W; =n(1,1)7. Each hidden layer of
the networks has n = 100 neurons. The plots verify the estimate Theorem 6
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Fig. 11 Effect of adding the “weight decay” term A ||0 ||§2 in the total loss function. Training loss, test loss, and
stability metric E, [|| Ayf(, ||L2 } in training process (left) and their final results (right). In training process

(left), the dashed lines represent the results of A = 5 x 1073 and the solid lines represent A = 10~2. The final
results (right), shows that trade-off between the model accuracy and stability metric

E, [H Ayf (5 9) Hiz ( Qx)]' Thus, we show the training process and final loss (training loss, test
loss and stability metric) with different values of A in Fig. 11.

In this example, the training loss is defined in (3.2) with y = 0 and test loss is calcu-

lated with the same formula while it shares the same sampled date points in computing
[” ANyf(sy HLZ(.Q )] withy ~ N(0, y Id )and y = 271, and the initialization of Wl i
(1,1),i.e,n=1.

This example shows that (i) there is no surprise that regularizing the £2 norm of the
weight set reduces the stability metric E, [” Dyf (5 ) Hiz ( Qx)]; however, (ii) both the train-
ing and test losses will increase as the magnitude of the regularization, A, increases. In
practice, a suitable scale of X is critical to balance the approximation error and the regu-
larization effect for the stability metric |, [H Dyf () ”iz(gx)].

Regularization by introducing noise to the data Motivated by the analysis for LNNs in
Sect. 2.4.1, we study numerically the potential of stabilization by adding noise to the data
set. We follow the setup introduced above, except that we have noisy data x; ~ M, i.e.,
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Fig.12 log, (Ey [ |AyfC, ||L2 o ]) as a function of o, the variance in the noise added to the training data
(left). log, (Ey [”Ay ||L2 ]) a function of the size of training data set, N (right)

x; = (xi ),wherexi ~ X andy; ~ N(0, Ia, ). In addition, we take n = 1, i.e,, Wl (1, 1),
gy

to initialize W.l .
The stability metric E, [”Ayf ||L2 2x)

and approximated by summation of M = 8 x 10° independent samples for the case of

] is evaluated with y ~ N (0, y1z), y = 272,

comparing different o (different level of added noise) and M = 4 x 10* samples for the
case of comparing training sets of different cardinality, N

The curves shown in Fig. 12 are obtained by averaging 5 individual tests. Figure 12 verifies
our conjectures about stabilization effect of noise to the normal direction of data manifold
and increasing the data points. More discussion about these results will be presented in
the following section.

4 Stability from adding noise to the data manifold

In this section, we consider on a more abstract level the effects of adding noise to the
embedded low-dimensional data. The aim is to improve the trained neural network’s
stability, evaluating points that lie out of the training data distribution. We have seen
in the previous sections that adding noise may regularize the optimization problem in
some sense and provide stability. In the following we shall relate adding noise in the
normal directions of the given data manifold to implicitly defining an extension of the loss
function (1.7). The change in the loss function subsequently enables the learning function
to approximate the constant normal extension, g as defined in (1.9), of the label function
g. This view provides a more intuitive explanation of how adding noise according to the
geometry of the data may enhance the stability of a trained network, provided that the
data set is sufficiently large.

4.1 Implicit extension of the loss functional

Let M be a d,-dimensional compact C2-manifold in R?. Denote by NyM the normal
space of M atx € M and r > 0O the reach of M. For any o € (0, r), we introduce the
o -tubular neighborhood of M in R? as

Ty = {x+enx cx e M,e € (—0,0), n, € NyM, and ||ny| = 1},
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For points in Ty, define the projection
Pmx = arginf [|x — &|.
EeM
Now, let L[ M] denote the uniform distribution defined on M; i.e., the density of U[M]
is uniform with respect to the measure on M, induced by the Euclidean norm of R?. To
each data point x# sampled independently from U [M], we introduce noise that lifts x to ¥
in the normal space NyM. More precisely,

X=x+eny,

where n, € N, M is sampled from the uniform distribution on S%~! embedded in N, M
and € ~ U[—0, o] with o < r. We shall denote the resulting joint distribution as M, and
its density p,. Thus, & is a point in T, sampled from M,,. According to the coarea formula,
Po is uniform on T, only if M is flat. See [15,35] for the case when M is a hypersurface.

The loss function defined with the noisy data { (x5 gi)}ﬁ\il (gi = g(x)) can be written as

N

N
J6) = 5 316G —al’ = 50 3 6@ — ePa@)” (1)
i=1

i=1

In other words, J can be interpreted as the empirical loss of the following continuous loss
— 1 _
76 =3 [ 15w~z pr i @)

where g(x) := g (Pamx) is the constant extension of g(x) along the normal directions. This
implies that the “regularization” effect from using this type of noisy data is the “automatic
learning” of g on R¥,

4.2 Accuracy/stability trade-off
Assuming that we do not know the geometry of the data manifold, we add noise to every
component in the ambient space indifferently.

For simplicity, we assume the data set Dy = {(x;, gi)}ﬁ\i , consists of

x; €;
xi=")+o[ "] ecRrRE,
0 €iy

where (€;x, €;y) = €, ~ N(0, Idx+dy) sampled as the noise part. In addition, the “label” in
the data are clean and followed by g; = g(«;) for every x; € R
Thus, we have

gi=gi+toex—o0€y) =g +0€,)+0O(0).

This means we can interpret the noisy data as

wog) = ([T ) e = [ ¥ ).e@)+0@)), 4.3)
O€jy O€jy

where ¥; = x; + o€;,. Thus, for any trained machine learning model f(x, y), we can
decompose the generalization error as

If @y — g0 < |60 —g@)|* + | f @2 —fx0)] .
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Table 1 Linear regression results of g with different L and co-dimension d,

dy 1 2 3 4 5 6 7 8 9 10

L=2 040 0.40 0.35 036 0.35 0.39 0.38 033 0.38 037
L=4 042 037 040 034 043 039 042 043 043 041
L=6 046 038 040 044 044 041 043 046 0.46 046

The interpolation error ||f (x, 0) — g(x)||? corresponds to the error for the classical learning
task with noisy label data (%;, ;) where ¥; = x; + 0¢€;, ~ X=X+ oN(0, 1) € R% and
g =g&)+ O (o) € R. Then, it follows that

Exx [IIf (x 0) — g@)I*] < Bz [If & 0) — g@)II] + O(0?)
=E, 3 [If % 0) — & + O@)I*] + O(c?) (4.4)
< (IIf & 0) — gI*n + O (a?) + O (N7Y).

Here, (||f (% 0) — g[|1>)x is the empirical loss which can be bounded by the approximation
power of one-hidden-layer (L = 2) neural networks [7,50] and deep (L > 2) neural
networks [49,57].

The stability metric, by which we mean || Dyf (%, 9) ” = |f (% y) — f(x 0)]|% for LNNs is
estimated to be O ((02N )_1>. If €;x = 0, the reciprocal relation between ||Ayf (% ) ||2
and variance o2 is observed in ReLU DNNs in Fig. 12. However, Fig. 12 suggests that
H Dyf (%, 9) ”2 for ReLU DNNs is reciprocal to N# with 8 < 1, in contrast to 8 = 1 in the
case of LNNs.

We present Table 1, which summarizes a series of further numerical experiments and
reveals how B is related to network’s depth and the codimensions, dy, of the data mani-
fold. In the table, g is fitted by using the linear regression for || A,f (x, )% and N in the
logarithmic scale.

From the table, we find that

|ayf | ~ 0 <ﬁ) (4.5)
where § < 1/2 seems to relate to the depth of the network, but independent of the co-
dimension of the data manifold. Again, the experimental results are quite different from
LNN case. The results suggest that nonlinear ReLU networks require more training data
to control the variation of the neural networks in the y-directions (for small o).

For any fixed data set (fixed N), 4.4 and 4.5 describe a trade-off between accuracy and
stability: On the one hand, reducing the fitting errors in (4.4) requires smaller noise level
for the x-components. On the other hand, small noise level in the y-direction will decrease
the stability of f in the y-direction. However, if the data manifold is not flat, the geometry
of the manifold will impose an additional constraint to the maximal noise level. Too large
of a noise level will lead to ill-conditioned optimization problem.

5 Summary

Surprising features in supervised learning problems arise when data are embedded in a
high-dimensional Euclidean space. We derived estimates on the derivatives of the learning
function in the direction transversal to the data subspace. When a neural network defines
the learning function, a portion of its weights is untrainable by a typical gradient descent-
based algorithm because the empirical loss function is independent of these weights.
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Fig. 13 Diagram of 2 and .5,.;

Consequently, the learning function’s values at points away from the data subspace depend
on the initialization of the untrainable weights.

We showed that if noise in the codimension of the data subspace is present, the weights
in question can be controlled, provided that the training data size is sufficiently large.
However, the training data size only has to be large compared with the standard deviation
o and seems independent of the number of codimensions. For linear networks, we have
shown that the price for this regularization is the slow convergence for those weights to
small numbers. We have also demonstrated that the network’s depth may provide a par-
ticular regularization effect if the network’s weights are initialized in a suitable subregion
of R?. For nonlinear networks activated by ReLU, similar to LNNS, there is still a set of
parameters that are not trainable if the data subspace has nonzero number of codimen-
sions. We derived a stability estimate for the influence of the untrainable weights in a
trained neural network.

Though adding noise to the data set may provide a desired regularization to the learning
function, it also incurs a trade-off to the accuracy of the trained network and possibly
renders the optimization model ill-conditioned, when the data manifold is not flat. It is
also clear that if one has more information about the geometry of the data manifold, one
can introduce noise adaptively according to the manifold’s geometry and mitigate the loss
of accuracy.
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A Proofs for LNNs

A.1 Proof of Proposition 1

Proof We first show that the loss function can be transformed naturally under the unitary
mapping Q. The original loss function can be formulated as

N

N
Je(w) = % Y w'Q ((j‘y) —g)? = % > (@"w)" (:y) —g)”.
=1 t

i=1
Thus, if we denote
w=0Q%w,
we can define the new loss function 76(17?/) with respect to the new variable w as
1 N X
S - ~T L) 02
Je@) =J¢w) = o Z(w (in) &)
i=1
In addition, by taking the gradient for /¢(w) with respect to w, we have
V] ¢ (W) = QViJ* ().

Furthermore, we claim that the dynamic system for w can be rotated to w naturally. First,
we can check
ww’l Qwwl QT

Pwv) = V= —
Y w2 ]2

v = QPw(Q"v).

Based on the dynamical system for w, we have

d 2
v = —IWI*" T (VW) + (L — )Pu(VaJ¢ (W) )

= —I#I>"F (QVaT* @) + (L - DQPHQ Q)
= — 117 FQ (Vi () + (L — DP(Vi (7).

Finally, we can see that

d d ~2-2 Te Te
7= QTEW = — WL (Vi) + (L — D Pw(Val“W))).

A.2 Proof of Proposition 2
Proof Since

WTV WWT

Pw V)= —w=——v,
w2 w2

we have
Fw) = —wll T (w27 00) + (L — DwwT V7))
= —lwl = (1wl + (@ = Dww” ) V) (w)
= —lIwll =1 MV (w)

where M = ||w|2;+(L—1)ww! e R¥*4jsq symmetric positive definite matrix if w # 0.
Thus, F(w) = 0 if and only if w = 0 or V/¢(w) = 0.
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If L > 2 and J¢(w) is strictly convex, there is a unique w* # 0 ( since (xg)n # 0) such
that VJ¢(w*) = 0 and the Hessian matrix V2/¢(w*) is a symmetric positive definite (SPD)
matrix. Then, the Jacobian matrix of F(w) at w* is

VE(W") = —[w* |- LMw*) VY (W)
Given w* # 0 and both M(w*) and V?/¢(w*) are SPD, we notice that

VF(w") ~ M2 (W) VEw" )M (") = —[[w"| =L M3 w") V7 (w")M (w"),
which shows that all eigenvalues of VF(w*) are negative. Since L > 2, the leading order
of F(w) is (9(||w||2_%) which is continuously differentiable at w = 0 with VF(w) = 0. O

A.3 Proof of Corollary 1

%
Proof From formula 2.11 in Proposition 3, we have (A)n Yr ) o leoon , where
ow YN
(w, w;) is the solution with respect to the target function g(x). Given g(x) = g(x) + u”«,
we have
* ~ T

ow; (@)N @ (" x))Nn

Since
Tx)x
o (#) = ((MT )X)N ,

0 ((n x)y)n

we have

Wy — 1 (@x)n
A = .
o ( o, ) (@ww)

Recalling the block structure of (A)x and applying (A)g[1 on both sides of the above
equation, we have

wi == Ect (@n + o v oD B @o — ST @) (A
and

wi=o st ((gym - <yxT>N§);1<gx>N). (A2)
Given |g(x)] < & and the estimates in Theorem 1, we have ||§‘)?1||, 1S~ ~ O@),
@l < 8 I@nnll £ o Il NIn S @onll < o 10a v S @l <

and || (xyT) NS T )N E;l(gx)NH < % Here, < means that there is a constant which

~

depends only on the distribution X and Y. Then, the results can be obtained by taking
norm in (A.1) and (A.2) and then substituting the previous estimates. O

A.4 Proof of Theorem 3
Proof Let us denote

fmax (= sup
WEB% (w(0))

d
—w|,
de
where B%(w(())) = {w : |lw—w()| < 5} is the 5-ball centered at w(0). Given the
continuity of w(¢) and the definition of T7(¢), we have

Ti(e) ¢
—wdt
/0 "

g = [w(T1(e)) — w(0)]| = < fnax T1(6).
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It follows that

Ty(e) = T

For fmax, we notice that

d 2
H EWH = [wlI> T | VuJoWw) + (L — D)Pu (V] W) |

< LIw|> T [V
= LIwl> T [{As)nw — (gx)n |
< LIwl> I (Calwll + I gx)n ).

Since w € Bs(w(0)), [w(0)|| = ¢, and € << 1, there exists C that depends on L, C», and
l{gx)n |l = O(1) such that

2-2 1 2—2
Liwl*" L (Colwll + ll{gxIn ) = %Héll L.

This means fiax < % lle ||2_%, which finished the proof. O
A.5 Proof of Proposition 5
Before we show the proof of Proposition 5, let us first present the following lemma.

Lemma5 Let A € R be a symmetric positive definite (SPD) matrix with d > 2 and
assume a; > ap > --- > ay are the its eigenvalues. Then, we have

aq — ai

wlAu > w2l
ifw,u € R* and w'u = 0.

Proof First, we may assume the SVD decomposition for A as A = VT XV, where V is a
unitary matrix and X' = diag(ay, ay, - - -, ag4). By denoting Vw = w, Vu = U, and w;i; = b;,
we have

d d
wl Au = (V)T X (Vi) = Zaiv’v,ﬁi = Zﬂ,‘bi.
i=1 i=1
Let us denote o as the permutation of {1, 2, - - -, d} such that

bea)y < by) < -+ < by

Here, we notice that
D b= Wi = @) E=(vw) (Vi) = wlu =0.

Thus, there is at least one positive integer k such that b5 ) < 0 and bs(;+1) > 0. That is,

k d 1 4
D —boiy =) boy = 3 > bl
i=1

i~k i=1



J. He et al. Res Math Sci (2023)10:13

By using the rearrangement inequality, we have

d
Zﬂb >Z“ba<t>—2 ai) (~bom) + ) aibo(y
i=1 i>k
k d k
> (—a1) (—bo) + Y _ aabo(y = (ag —a1) Y _ (=bo(
i=1 i>k i=1
ag —a d ajg — a d
= S D il = = ) i
i=1 i=1
=2 T > 2 a) = L
2 2 2
where |v| = (|v1], [val, - -+, |v4]) for any v € R4, O

Now, we have the following proof for Proposition 5.

Proof Given Xy = cly,, we first denote that A := xx\n = Zx + (ex Ty — Zx) =
cly + | Xx — (xxT)n||IBwith || B|| = 1. According to the convergence of correlated matrix
[2,11], we have 0 < € := || Zx — (mx D)yl < 5 with high probability if N is large enough.
That is, we have

(c—e)ull®> <ulAu < (c+e)|ul®> and ay—ar > —2¢, (A.3)
foranyu € R4 if N is large enough. Here, a1 > a3 > - - - > a4, denote the eigenvalues of
A.

For simplicity, it is equivalent to prove that %w -ng < Oforanyw = (wy, wy) € E
and ||lwy — wi| > %gllec‘ne for any 0 < € < §, where ng denotes the exterior normal
direction of E at w.

In addition, we recall that w € E if and only if w, (A(wx — w;)) = 0. Thus, for any

w € E, we have

2 * * s\ 1T 2
(VC“n ||) zw=<wx—%) A(wx——) (Jc— e — )

4
which leads to
vC+€ Wy Wil
5 *||>VC_6||Wx__||>VC_€<||Wx||_ Zx .

That is, we have

Il < YO TV < YT (A4)

2«/_ Ve—e

foranyw € E.
Now, let us check the sign of %w(t) - ng if w(t) € E while ||wx(t) — wi| > %gnwj;lle.
First, we notice that

aJ¢ AQw, — w?)
=V T = ),
ng w( Wy 8Wx> ( 0 )
Thus, we have
7 d

W E= (AQwy — w;)) "

= —Iwl*E (A@ws —w)) A, — w))

= — 1wl E ((Awe — W) T Alwe — w)) + wl A2ws — )

= — w2~ E (JAGws — wDI? + wf A%we — ).

Page 35 of 41
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for any w € E. Given Lemma 5 and (A.3), we have
wy AXwy — W) = wi A (Aws — w})) = —€llwalllA(wx — W), (A.5)
since w; (A(wx — w;)) = 0. In the end, by combining the Lemma 5, (A.3), (A.4), and
(A.5), we have
1AGwx — w1 + w) A (wy — w})
> [|A(wx — will (IA(wx — wi)ll — €llwxll)

vere ||w*||)
Je—e 7

c
= 46w = Wl (51ws = will = ev/3Iwil) = 0

> 1 AGws — W) ((c )l — W — e

since0 < € < 5 and ||w, — wj|| > %gﬂwj’;”e. This finishes the proof. O

A.6 Proof of Lemma 1

Proof First, we have

d _2 3]3
3 O = =20wl T (1wl + (L = Dllwe| )( xTawx)‘

This shows that @ || w,()||? has the opposite sign to w.! I

x 3w, - Because of Assumption 2 and

the continuity of w(t), we see that w! % keeps the same sign to the initialization since
T 9J¢ . .
% # = 0ifand onlyif w € E.

d lw:@)1?
de Iwy (01

d w0 _ 1 A Crd 2
e [wy @12~ w1 ((5”%(”” )"Wy(t)ll - <E||Wy(t)|| )Ilwx(t)|| )
SR i, "L 2 _ (yrind 2
= O ((wx (2) Wx(t)) lwy (@)l (wy (t)dtwy(t)> lwx @)l )
_2 [ |Iws ||2 ) ( 7] (w )
i (n wy(2)]12 0.
T o

d w1
Thus, A also has the opposite sign to w; wa‘

Similar proof for +

can be shown by calculating directly.

A.7 Proof of Theorem 4
Proof Let first consider w(0) € L. Then, we have

- W (t) dt Wyx (t) x(t) dt

= Tﬂd 2 _
_/o Liwall? + w2 g M O7de - O N E =)

=/T r L e (wy(2) #0)
o L(wal2/llwyl) + 1 dt y

(L = 1)[wy(0)]> d )
= L||wx(0)||2+||wy(0>||2/ g =l de

(L — 1Dlwy(0)]1?

_ - )
= T @ + [y O (Ilwe(T)I* = lwx(0)1I?).
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The inequality holds since %wa(t)ll2 < O0and élt ”” 2”2 <0for0<t<Tifw(0)eU"

according to Lemma 1. In addition, ||wy(T)||2 — ||wy(())||2 < 0 comes from the fact that

lwx(T)I? < llwx(0)]1* since _”Wx( t)|* <o.

If w(0) € E~, we have $||wx(t)||2 > 0 and ccllt HH 2 > 0for 0 <t < T according to
Lemma 1. Thus, we can prove it with the same calculatlon above. O

B Proofs for ReLU DNNs

B.1 Proof of Lemma 3

Proof For any i and fixed y € R%, let us first assume VVllyy > 0. Given the definition of
ReLU activation function, we may consider the following four sets:

(Whatbt >0/ 0 (What b+ Wly>o0),
(Wi +b; = 01N {Whx+b +Why <o),
(Wix+b; <0} N {Whax+5 +Why=0),
(Wha+ bt <0/ 0 (Whath + Wiy <o)
to calculate e;(x, y) explicitly. Since \/Vllyy > 0, we have
{Wil,xx +5; + Wiy >0} cC {Wixx +5; >0},
which means
(Wi +b = 0N (Wix+b +Why<0 =0
In addition, we have e;(x, y) = 0 on {Wi)xx + l_gl. <0}n {W x + b + le <0). Asa

result, we focus only on

—1 -1
Q= {W x+b =0}N%2, (B.1)

X

= (Wyx+b; <0) N (Wix+b; + Wiy =002, (B.2)
Then, if follows that
et D)2 = / R

—2 —1 —1
:/Q W ; Wnyde+/7 (Wi (Wx +b; + W) dx.

ix ix

It I~

For IT, we have

Wy PIVA)II7,

72
/ W Wyyﬂdx—wlmf W dx = -
2, 17

because of the definition of /;(x) and the truncation property of ReLU activation function.
For I~, we first denote a series of parallel hyperplanes in R% as

—1 -1
His ={x| W x+b; + s\/Vi,lyy = 0}.
Then, we define

,PH,;S(Qx) = {PHi,s(x)|x € 24} C Hig
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as the projection of §2, onto H;;. We notice that Py, (£2,) have the same measure for all
s € [0, 1]. Finally, we define f?l_x as the right cylinder which uses Pp;,,(£2;) and Pp;, (£2x)
as its bases. More precisely, we can write it as

27 = {x e Py (2)se[01]}. (B.3)

ix

Here, we present Fig. 13 as a diagram about EZ_
Then, we have the following estimate by the parameterization of .Q . in (B.3) and integral
by substitution

1*</~ |W(W x—l—b + Wl y)Pdx

Wyl
/ f 2(Whax+b; + W y)*dx D7 s
P, (-Qx) Wil
1] L,yyl 2w
= W: 21— s W1 | Pray (24)] ds
0 IIWMII
IW AWy IW WLyl
- ’pHm(_Qx ‘—y <Cy —J’
3w, xll 3w, xII
W, Lyy Ilel
Here, we notice that dx = dx 7 ‘ds since the distance between H;o and H;; is L

In addition,

x)} denotes the measure of Py, (£2,) and we have
Cdx = sup |PH(~Qx)’ Z ‘PH,,O(Qx)’
H

for any i = 1 : n, where H means a hyperplane in R%.
If Wllyy < 0, we denote

Q= (Wix+b + Why=0)n 2, (B4)
Q= {Wix+b; 200N (W +b; + Why < 0)n 2. (B.5)
Then, we still have I and I~ correspondingly. For I~, we can follow the same strategy

by defining S~2;c and calculate the integral by decomposition and substitution. For I, we
notice that

—1 -1
2 c{W, x+b, =0}N 82
since \/Vi,lyy < 0. This means

It = / |WfWi}yy|2dx5 /fl . |W?Wi}yy|2dx.
of (W, x-+b; >0}N82;

LX

Then, we have the same estimate results as for the case Wllyy > 0. This finishes the proof.
O

B.2 Proof of Corollary 2
Proof Given the definition of D(y) and the estimate in (3.6), we have

o lia, = (1117 ) £ ([l + ) ) or

j= 1n1
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Since [W]ly]k ~N(@©O,v?) forallj =1:m andk =1 dy, it follows by the Monte Carlo

estimate that with high probability there exists Dy such that

= X |l [ el [] <5 ==
nanydy =Ly Pk Pl = ”2”1dy'
j:l:}’ll

k=1:d,

This leads to

2 2 ~
> |wi)J < mmaz]|[[wh] [+ Brymma,
{:I:nz
nznldyvz + 51, [nanid,y,

j=lm
k=1:dy

with high probability. Similarly, we have

1] 1P 2 3~ ]
Z H:‘Vj’y]k‘ S}’lznldyz ;U + Dy nznldy.

1=1:ny
j=lm
k=l:d,

This proof is completed by taking D =D + Ds. ]
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