Application of Indazolin-3-ylidenes in Catalysis: Steric-Tuning of Non-Classical Formally Normal *N*-Heterocyclic Carbenes with Dual Electronic Character for Catalysis


Jin Zhang,*,† Yue Wang,† Yuting Zhang,† Ting Liu,† Shuai Fang,† Ruihong Wang,§ Yangmin Ma,† Ran Fang,*,† Roman Szostak,∆ and Michal Szostak*,‡

[†]College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China

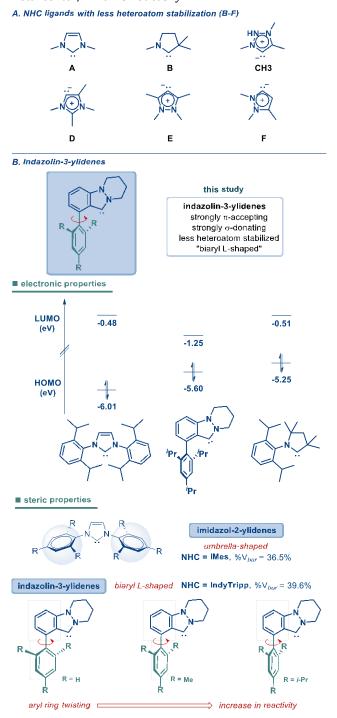
 \S Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China

△Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland

[‡]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States Supporting Information

indazolin-3-ylidenes

strongly π-accepting strongly σ-donating less heteroatom stabilized "biaryl L-shaped"


ABSTRACT: N-Heterocyclic carbenes are pivotal ligands in chemistry and catalysis, providing essential tools for reactivity of metal centers. In particular, the development of non-classical less heteroatom-stabilized N-heterocyclic carbenes (NHCs) has attracted tremendous attention owing to higher ligand basicity. However, research on catalytic activity of non-classical NHCs has been challenging due to restrictions in modifying steric environment crucial for catalysis. Herein, we report a new class of indazolin-3-ylidene ligands derived from readily available indazole that feature steric differentiation around the metal center. Compared to classical imidazolin-2-ylidenes, these ligands feature strongly enhanced σ -donation resulting from repositioning of one of the nitrogen atoms. Simultaneously, the presence of the fused aromatic ring results in strongly enhanced π -accepting properties. The %V_{bur} is higher than the classic imidazolin-2-ylidene IMes ligand. We demonstrate that when used as ligands, the sterically-differentiated coordination environment of indazolin-3-ylidenes efficiently promote hydroamination reaction of alkynes to give valuable nitrogen-containing motifs, outcompeting the classical imidazolin-2-ylidenes. This protocol has also been applied to the challenging hydrohydrazination of alkynes and applied to the late-stage diversification. Comprehensive characterization, coordination chemistry as well as the evaluation of steric, σ -donating and π -accepting properties is demonstrated. Computational studies to gain insight into the reaction mechanism are reported. We anticipate that sterically-differentiated non-classical indazolin-3-ylidenes will accelerate the development of well-defined less heteroatom-stabilized N-heterocyclic carbene ligands in transition-metal-catalysis.

Introduction

Since the breakthrough studies by Arduengo in 1991,¹ the field of N-heterocyclic carbenes has experienced a tremendous growth, resulting in now widespread application of N-heterocyclic carbenes in various fields of science, ranging from organometallic chemistry and catalysis to medicine and materials science.² The pivotal utility of NHCs as ligands to transition-metals results from strong σ -donation of carbene centers outperforming phosphine ligands.⁴ After the pioneering studies by Bertrand on CAACs (cyclic (alkyl)(amino)carbenes)⁵ as a flagship example of NHCs with decreased heteroatom stabilization, special attention has

been given to non-classical less heteroatom-stabilized N-heterocyclic carbenes (Figure 1A). These mesoionic and related NHCs (**B-F**) feature higher basicity of the ligand, resulting in enhanced donor properties, while the availability of heterocycles beyond imidazolin-2-ylidenes **A** enables to vary the electronic properties across a broad range unattainable with imidazolin-2-ylidenes through wingtip or backbone modifications.⁶ To date, several ligand systems have been developed, such as the aforementioned CAACs **B**,⁵ 1,2,3-triazolylidenes **C**,⁷ and mesoionic imidazol-4-ylidenes **D**.⁸ However, research on catalytic activity of non-classical NHCs has been challenging due to restrictions in modifying

steric environment crucial for catalysis.^{9, 10} The presence of two nitrogen atoms in imidazolin-2-ylidenes provides adaptable handles for steric differentiation around the metal center, which is not easily

Figure 1. (A) Structures of classical (A) and less heteroatom stabilized NHCs (B-F). (B) Indazolin-3-ylidenes. Energies calculated at B3LYP 6-311++g(d,p) level, R = Dipp. R'R" = IndyTripp.

accessible in other classes of less heteroatom stabilized N-heterocyclic carbenes. The steric tuning of NHC ligands is

now recognized as a crucial component necessary for catalysis with extensive studies devoted to pinpoint the effect of catalytic pockets on the reactivity.¹¹

Herein, we report a new class of indazolin-3-ylidene ligands derived from readily available indazole that feature steric differentiation around the metal center (Figure 1B). Compared to classical imidazolin-2-ylidenes, these ligands feature strongly enhanced σ -donation resulting from the repositioning of one of the nitrogen atoms. Simultaneously, the presence of the fused aromatic ring results in strongly enhanced π -accepting properties. The %V_{bur} is higher than the classic imidazolin-2-ylidene IMes ligand. We demonstrate that when used as ligands, the sterically-differentiated coordination environment of indazolin-3-ylidenes efficiently promote hydroamination reaction of alkynes to give valuable nitrogen-containing motifs, outcompeting the classical imidazolin-2-vlidenes. This protocol has also been applied to the challenging hydrohydrazination of alkynes and applied to the late-stage diversification. Comprehensive characterization, coordination chemistry as well as the evaluation of steric, σ -donating and π -accepting properties is demonstrated. Computational studies to gain insight into the reaction mechanism are reported. We anticipate that the sterically-defined coordination environment non-classical indazolin-3-vlidenes will accelerate the development of well-defined less heteroatom-stabilized N-heterocyclic carbene ligands in transition-metal-catalysis.

Results and Discussion

Non-classical formally normal N-heterocyclic carbenes that feature a directly linked nitrogen atom to the carbene center are expected to have a tremendous impact on homogenous catalysis.9a,9c For our study, we selected indazolin-3-ylidenes owing to the facile availability from indazole and the unique electronic characteristics incorporating the reshuffling of one of the nitrogen atoms (cf. imidazolin-2-ylidenes) and the presence of the fused aromatic ring as the key drivers of electronic properties. We hypothesized that the unique L-shaped biaryl steric arrangement could be achieved by the cross-coupling of readily available 6bromo-indazole with sterically-demanding di-ortho-substituted arenes (Scheme 1). For the study, we selected structural analogues of classic IMes and IPr imidazolin-2-ylidenes (Ar = Mes, 2b; Ar = Tripp, 2c) as well as unsubstituted aryl analogue (Ar = Ph, 2a). Notably, after optimization, the cross-coupling can be accomplished from the unprotected, commercially-available 6-bromoindazole by a sequence of Suzuki-Miyaura borylation and Suzuki-Miyaura cross-coupling on 2.6-3.0 g scale in 40-74% yields. The conversion to the indazolium precursors was accomplished by a double Nalkylation with 1,4-dibromobutane in 69-77% yields (see

With access to sterically-differentiated indazolium precursors, we next comprehensively evaluated steric and electronic properties of these novel NHC ligands. Most importantly, the gold complexes [Au(NHC)Cl] (4a-c) were prepared by a transmetallation route of [Ag(NHC)Br] with AuCl·SC₄H₈ (Scheme 2). The complexes **4a-4c** ([Au(IndyPh)Cl] (**4a**), [Au(IndyMes)Cl] (**4b**) and [Au(IndyTripp)Cl] (**4c**) (Indy = indazolinylidene)) were found to be stable to air and moisture and could be fully characterized by X-ray crystallography (Figure 2).

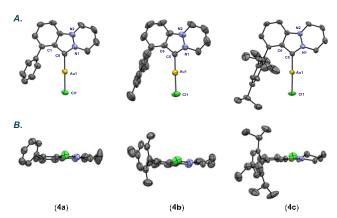
In this regard, studies by Cavallo and co-workers demonstrated that the % buried volume (% V_{bur}) and steric maps of [Au(NHC)Cl] complexes represent the best model for quantifying the steric impact of NHC ligands. ¹² In the case of sterically-differentiated indazolin-3-ylidenes, [Au(NHC)Cl] are linear (C-Au-Cl, 179.6°; C-Au, 1.985 Å, 4a; 178.9°; C-Au, 1.991 Å, 4b; 176.3°; C-Au, 1.974 Å, 4c), making it a good model for

Scheme 1. Synthesis of Indazolin-3-ylidene Precursorsa

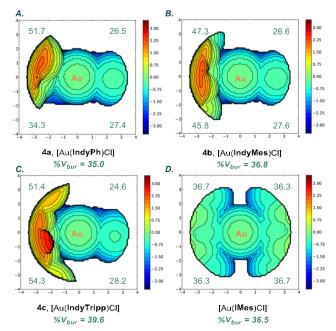
$$\begin{array}{c} H \\ A : B_2(neop)_2. \ Pd(dppf)Cl_2 \\ \hline N \\ N \\ \hline N \\ Br \\ \hline N \\ Ar-Br, \ Pd(PPh_3)_4. \ K_3PO_4 \\ \hline DMF, \ 100 \ ^{\circ}C \\ 1 \\ \hline See \ Si! \\ \hline 2a, Ar = Ph \\ \hline 2b, Ar = Mes \\ 2c, Ar = Tripp \\ \hline \end{array} \begin{array}{c} H \\ NaOH, \ CH_3CN \\ Br(CH_2)_4Br \\ \hline 25 \ ^{\circ}C \ to \ 110 \ ^{\circ}C \\ \hline Ar \\ Br \\ \hline 25 \ ^{\circ}C \ to \ 110 \ ^{\circ}C \\ \hline Ar = Mes \\ \hline 3b, Ar = Mes \\ 3c, Ar = Tripp \\ \hline \end{array}$$

aSee SI.

Scheme 2. Synthesis of Au(I) Complexes^a


^aConditions: Ag₂O (1.2 equiv), 25 °C, CH₂Cl₂, 6 h, then [AuCl(SC₄H₈)] (1.0 equiv), 25 °C, CH₂Cl₂, 6 h, $\bf 4a$: 96%; $\bf 4b$: 86%; $\bf 4c$: 82%.

evaluating %V_{bur}. The (%V_{bur}) of 35.0%, 36.8%, 39.6% for complexes **4a–4c** increases in the series with the higher demand of the sterically-substituted ortho-biaryl ring. *Importantly, the steric demand of both IndyMes and IndyTripp ligands of 36.8% and 39.6% are higher than that of the classic imidazolin-2-ylidene IMes ligand (%V_{bur}) of 36.5% vs. IPr (%V_{bur}) of 45.6%. There is a difference in quadrant distribution with unsymmetrical quadrants for indazolin-3-ylidenes (4b: 45.8%, 47.3%, 26.6%, 27.6%; 4c: 54.3%, 51.4%, 24.6%, 28.2%), which can be compared with the symmetrical quadrant distribution for the classic imidazolin-2-ylidene IMes (IMes: 36.3%, 36.7%, 36.3%, 36.7%) and IPr (IPr: 49.4%, 42.3%, 50.3%, 40.6%). A graphical representation of steric maps in 4a–4c in comparison with IMes in linear [Au(NHC)Cl] complexes is shown in Figure 3.*


There are several other interesting structural features of indazolin-3-ylidenes that indicate increased steric impact in the series **4a–4c**. (1) First, the dihedral angle between the C6-Ar and the indazole ring increases from 61.0° in orthounsubstituted **4a** to 88.5° and 82.4° in ortho-substituted **4b** and **4c**. This indicates fixed and near fully perpendicular arrangement of the biaryl rings in sterically-tuned **4b–4c**. (2) Second, the distance between the new biaryl ring and metal,

Cipso(Ar)–Au, decreases in the series **4a–4c** (**4a**: 3.462 Å; **4b**: 3.429 Å; **4c**: 3.399 Å), indicating enhanced proximity of the di-ortho-substituted biaryl ring to the metal center. (3) Third, the distance between the metal and the center of the new biaryl ring for perpendicular **4b–4c** is 3.682 Å and 3.848 Å, respectively, indicating opening of the catalytic pocket for **4c**. Overall, to our knowledge, sterically-differentiated complexes **4b–4c** represent the most sterically-demanding non-classical less heteroatom stabilized N-heterocyclic carbenes in indazolidene and related ligands. ^{9c,13}

We next comprehensively evaluated electronic properties of these indazolin-3-ylidene ligands (Scheme 3). As shown, Rh(I) complexes, [Rh(IndyPh)(CO)₂Cl] (5a), [Rh(IndyMes)(CO)₂Cl] (5b) and [Rh(IndyTripp)(CO)₂Cl] (5c) were prepared by a mild two-step procedure via

Figure 2. X-ray crystal structure of Au(I) complexes **4a-4c**. Two views: front (top); side (bottom). Hydrogen atoms and counterion have been omitted for clarity. Selected bond lengths [Å] and angles [°]: **4a**: Au-C8, 1.985(4); Au-Cl, 2.294(1); N1-C8, 1.347(5); C8-C1, 1.418(5); N1-N2, 1.376(5); C1-C8-N1, 105.1(3); C8-Au-Cl, 179.6(1). **4b**: Au-C5, 1.991(5); Au-Cl, 2.289(1); N1-C5, 1.313(8); C6-C5, 1.437(8); N1-N2, 1.391(6); C6-C5-N1, 105.8(4); C5-Au-Cl, 178.9(2). **4c**: Au-C5, 1.974(7); Au-Cl, 2.306(2); N1-C5, 1.357(9); C6-C5, 1.420(1); N1-N2, 1.398(8); C6-C5-N1, 105.0(6); C5-Au-Cl, 176.3(2). **4a**: CCDC 2129509; **4b**: CCDC 2129510; **4c**: CCDC 2129511. Note gradual increase of C-Ar twist in **4a-4c**.

Figure 3. Topographical steric maps of Au(I) complexes **4a-4c** and [Au(**IMes**)Cl] showing % V_{bur} per quadrant.

[Rh(NHC)(cod)Cl] and the reaction with carbon monoxide after deprotonation with KOtBu. Selenium adducts [Se(IndyPh)] (6a), [Se(IndyMes)] (6b) and [Se(IndyTripp)] (6c) were prepared by adding the free carbene generated in situ with KOtBu to excess of selenium.

The Tolman electronic parameter (TEP) of **5a–5c** is 2041.4 cm⁻¹, 2038.2 cm⁻¹, 2043.4 cm⁻¹, respectively, with the CO stretching frequencies of $v_{sym} = 2064$ cm⁻¹ and $v_{asym} = 1989$ cm⁻¹; $v_{sym} = 2062$ cm⁻¹ and $v_{asym} = 1983$ cm⁻¹; $v_{sym} = 2066$ cm⁻¹ and $v_{asym} = 1992$ cm⁻¹ (CH₂Cl₂, 0.20 M). This allows to evaluate a

Scheme 3. Synthesis of Indazolin-3-ylidene Complexes^a

^aConditions: (a) [Rh(cod)Cl]² (1.0 equiv), KO*t*-Bu (2.0 equiv), THF, 25 °C, 8 h, then CO, CH²Cl², 0 °C, 1 h, **5a**: 79%; **5b**: 70%; **5c**: 54%. (b) Se (1.5 equiv), KO*t*-Bu (1.2 equiv), THF, 25 °C, 12 h, **6a**: 88%, **6b**: 88%, **6c**: 82%.

combined measure of the electronic properties of the sterically-differentiated indazolin-3-ylidene ligands, which can be compared with the classic imidazolin-2-ylidene IPr ligand (TEP of 2051.5 cm $^{-1}$) and model cyclic (alkyl)amino)carbenes CAAC $^{\text{Cy}}$ (TEP of 2048.6 cm $^{-1}$). 5a The values indicate strongly enhanced σ -donation of indazolin-3-ylidene as compared with imidazolin-2-ylidenes.

The δ_{Se} values of selenourea adducts **6a–6c** from the ⁷⁷Se NMR spectra are 230.3 ppm, 203.7 ppm and 245.7 ppm

(CDCl₃), respectively, which can be compared with the classic imidazolin-2-ylidene IPr (δ_{Se} = 90 ppm).¹⁴ This allows to evaluate π -backbonding, indicating that indazolin-3-ylidenes feature significantly enhanced π -accepting properties compared with imidazolin-2-ylidenes (vide infra, Figure 5).

Furthermore, one-bond CH J coupling constants from ^{13}C satellites of the ^{1}H NMR spectrum of salts 3a-3c are 202.14 Hz, 201.68 Hz and 201.18 Hz, which can be compared with the classic imidazolin-2-ylidene IPr ($^{1}\text{J}_{\text{CH}} = 223.70 \text{ Hz}$). 15 This provides good indication of σ -donating properties of an NHC ligand and is consistent with *indazolin-3-ylidenes as strongly* σ -donating NHC ligands.

Overall, the structural and electronic characterization points at sterically-differentiated indazolin-3-ylidenes as ambiphilic NHCs superseding classical imidazolin-2-ylidenes in both donor and electrophilic properties with a significant steric demand superseding model IMes ligand.

With structural and electronic characterization of indazolin-3-ylidenes, we next proceeded to evaluate their activity in catalysis (Table 1, Schemes 4-6). At the outset we were interested in Au-promoted hydroamination of alkynes because of the fundamental role of this process in the synthesis of nitrogen-containing motifs. Our motivation in selecting this reaction stems from the fact that Au-catalyzed hydroamination is one of the most important methods to introduce nitrogen into organic molecules utilizing feedstock chemicals. 16,17 Thus, identification of new active ligand systems that promote hydroamination is of broad synthetic interest, The reaction between phenylacetylene and aniline was selected as a model system. We were delighted to find that the complex [Au(IndyTripp)Cl] (4c) promoted the reaction in excellent 94% yield at 0.50 mol% catalyst loading in the presence of 1.0 mol% of NaBArF4 as activator at 80 °C (Table 1, entry 3). The use of less sterically-demanding [Au(IndyMes)Cl] (4b) and especially ([Au(IndyPh)Cl] (4a) resulted in less efficient reactions, 92% and 40% yield, respectively (Table 1, entries 1-2).

Table 1. Optimization of Au–NHC-Catalyzed Hydroamination of Alkynes a

	Ph—== + Ph—NH ₂ 7 8	[Au-NHC] (0.50 mol%) NaBAr ^F ₄ (1 mol%) conditions	Ph CH ₃	
en- try	catalyst	[Au-NHC] (mol%)	additive	yield (%)
1	[Au(IndyPh)Cl]	0.50	$NaBAr_{^{F_4}}$	40
2	[Au(IndyMes)Cl]	0.50	$NaBAr_{^{F_4}} \\$	92
3	[Au (IndyTripp) Cl]	0.50	$NaBAr_{^{F_4}} \\$	94
4	[Au(IMes)Cl]	0.50	$NaBAr_{^{F_4}} \\$	81
5	[Au(IPr)Cl]	0.50	NaBArF4	82

 a Conditions: **7** (1.0 equiv), **8** (1.1 equiv), Au–NHC (0.5 mol%), NaBAr F_4 (1 mol%), neat, 80 °C, 12 h. See SI for details.

Under these conditions, both [Au(IndyTripp)Cl] (4c) and [Au(IndyMes)Cl] (4b) outperformed the classic imidazolin-2-ylidenes [Au(IMes)Cl] (81% yield) and [Au(IPr)Cl] (82% yield) (Table 1, entries 4-5). The more sterically-demanding indazolin-3-ylidene complex [Au(IndyTripp)Cl] (4c) is

more reactive than less sterically-demanding [Au(IndyMes)Cl] (4b) (4c: 73%, RT; 4b: 47%, RT) (not shown) and was selected for the scope studies. Thus, the reactivity trend of Indy ligands is in order of their sterically-differentiated environment (IndyTripp > IndyMes > IndyPh).


As shown in Scheme 4, the scope of the hydroamination of alkynes catalyzed by [Au(IndyTripp)Cl] is broad and encompasses a palette of electronically- and sterically-differentiated alkynes and anilines. As such, arylacetylenes with neutral (9a-9d), electron-donating (9e-9f) and electronwithdrawing (9g-9j) substituents are well tolerated. Importantly, sensitive functional groups, such as amino (9f), nitro (9g) and bromo (9j) are compatible, providing handles for further functionalization. Alkynes containing biologically-relevant substituents, such as trifluoromethyl (9h) and fluoro (9i) are applicable. Biaryl alkynes are also amenable to the hydroamination conditions (9k), providing extended conjugated systems. Various anilines were found to be well tolerated under the reaction conditions. As such, anilines substituted with alkyl groups (91-9m), electrondonating groups (9n-9o), electron-withdrawing groups (9q-9s) as well as sterically hindered anilines (9p, 9t) provided the hydroamination products in high yields. 1-Napththylaniline that represents a privileged motif in medicinal chemistry is also tolerated (9u).

This protocol was extended to halogenated anilines, including challenging ortho-substitution (**9v-9x**). At present stage, alkyl substrates are not compatible with the reaction.

Importantly, this hydroamination reaction could be extended to the challenging hydrohydrazination of alkynes (Scheme 5). Pleasingly, hydrohydrazination of electronically-differentiated arylacetylenes, including electron-neutral (11a-11c), electron-rich (11d) and electron-deficient (11e-11h) substituted arenes, proceeded in high yields. The N-N cleavage often complicating the process was not observed, showing the potential applicability of the [Au(IndyTripp)Cl] catalyst in organic synthesis.

This protocol could be applied to the direct late-stage derivatization of complex molecules (Scheme 6). Hydroamination of

Scheme 4. Scope of Au-NHC-Catalyzed Hydroamination of Alkynes^a

 a Conditions: alkyne (1.0 equiv), amine (1.1 equiv), 4c (0.5 mol%), NaBAr F_4 (1 mol%), neat, 80 o C, 12 h. See SI for details.

propargylic ester of Clodinafop (Clodinafop-propargyl), a registered herbicide for spring wheat, performed well in the presence of several sensitive functional groups and coordinating pyridine ring, further demonstrating the generality of the catalyst and revealing potential for chemical research. Note that the product was isolated after hydrolysis due to imine instability (see SI).

To gain insight into the hydroamination mechanism catalyzed by indazolin-3-ylidenes, the transition states were

studied by DFT computations (Figure 4). Based on the previous work by Bertrand and co-workers, ^{16c} the coordination of Au–NHC with aniline or phenylhydrazine would give intermediate **A-1** or **B-1**, respectively. Next, the ligand exchange between alkyne and aniline or phenylhydrazine would generate intermediate **A-2** or **B-2**, respectively. The free energy of activation for this step is 18.2 and 16.5 kcal/mol for **A-TS1** and **B-TS1**. After formation of **A-2** or **B-2**, the nucleophilic attack of aniline or

Scheme 5. Scope of Au-NHC-Catalyzed Hydrohydrazination of Alkynesa

 a Conditions: alkyne (1.0 equiv), hydrazine (1.1 equiv), 4c (0.5 mol%), NaBAr $^{F}_{4}$ (1 mol%), neat, 80 ${}^{\circ}$ C, 12 h. See SI for details.

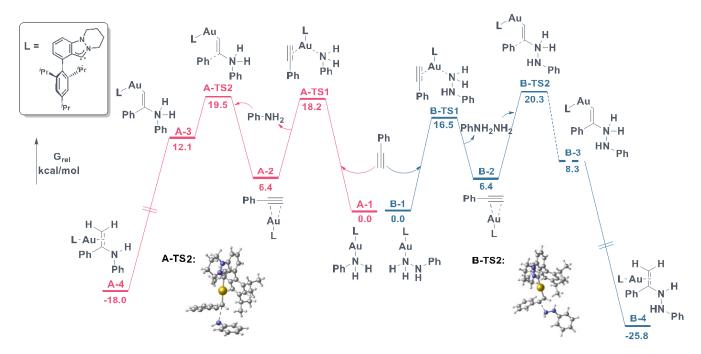
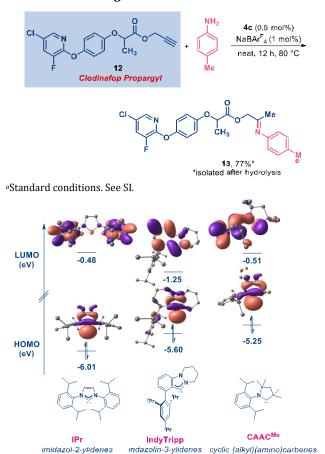


Figure 4. DFT-computed free energy profile of Au-NHC catalyzed hydroamination and hydrohydrazination. See SI for computational details.


phenylhydrazine would give intermediate **A-3** or **B-3** with the free energies of activation of 19.5 and 20.3 kcal/mol, respectively. Finally, proton migration gives product complexes **A-4** and **B-4**, which is exergonic by -30.1 and -34.1 kcal/mol, respectively.

The barriers for proton migration (from **A-3** to **A-4** and from **B-3** to **B-4**) have not been calculated because these steps are consistent with the computational data by Ujaque¹⁸ and the energy is very low. These calculation results are consistent with the computational data of Ujaque

and co-workers, 18 and highlight the potential of indazolin-3-ylidenes in electrophilic catalysis.

To further determine the electronic effect of nitrogen repositioning in indazolin-3-ylidenes, HOMO and LUMO energy levels of carbenes **IndyPh**, **IndyMes** and **IndyTripp** were determined at the B3LYP 6-311++g(d,p) level (Figure 5 and SI). The donor ability of carbenes is closely associated with the HOMO orbital (higher HOMO, more σ -donating), while the electron acceptance is associated with the LUMO orbital (lower

Scheme 6. Late-Stage Functionalization^a

Figure 5. HOMO and LUMO energy levels (eV) calculated at B3LYP 6-311++g(d,p). See SI for details.

LUMO, more π -accepting). In some cases, π -donor orbital should also be considered. It is now accepted that computation of frontier orbitals is the most accurate evaluation of nucleophilicity and electrophilicity of NHC ligands, while the comparison must be made at the same level of theory.

The HOMO of the most reactive **IndyTripp** (-5.60 eV, σ bonding orbital) is much higher than IPr (-6.01 eV), which is a reference for σ -donating imidazolin-2-ylidenes. The HOMO of IndyMes and IndyPh are -5.56 eV and -5.59 eV, respectively. These values can be further compared with CAACMe (-5.33 eV), which is a model for cyclic (alkyl)(amino)carbenes. Moreover, the LUMO of IndyTripp (-1.25 eV, π -accepting orbital) is significantly lower than for the model imidazolin-2-ylidene IPr (-0.48 eV) of the corresponding π -accepting orbital. The LUMO of **IndyMes** and IndyPh are -1.21 eV and -1.39 eV, respectively. These values can be compared with **CAAC**^{Me} (-0.51 eV). Furthermore, π -donating orbital of -6.22 eV, -6.17 eV, -6.61 eV in **In**dyTripp, IndyMes and IndyPh can be compared with the π -donating orbital for the reference imidazolin-2-ylidene **IPr** (-6.55 eV).

Overall, this indicates that sterically-differentiated indazolin-3-ylidenes (1) are significantly stronger donors than classical imidazolin-2-ylidenes with donor properties between imidazolin-2-ylidenes and cyclic (alkyl)amino)carbenes; and (2) feature significantly enhanced electrophilicity than classical imidazolin-2-ylidenes, also superseding cyclic (alkyl)(amino)carbenes. Thus, in combination with a significant steric demand superseding IMes, electronic properties of sterically-differentiated indazolin-3-ylidenes make them well-poised to make an impact on the development of new pursuits in organometallic catalysis.

Conclusions

In conclusion, the development of non-classical less heteroatom-stabilized N-heterocyclic carbenes has attracted tremendous attention owing to higher ligand basicity. In this study, we reported a new class of indazolin-3-ylidene ligands derived from readily available indazole that feature steric differentiation around the metal center. These nonclassical indazolin-3-ylidenes feature strongly enhanced σdonation, while, simultaneously, the presence of the fused aromatic ring results in strongly enhanced π -accepting properties. The %Vbur is comparable to the classic imidazolin-2-ylidene IMes ligand. The sterically-differentiated indazolin-3-ylidenes promote hydroamination reaction of alkynes to give valuable nitrogen-containing motifs, outcompeting the classical imidazolin-2-ylidenes. We further presented comprehensive characterization, coordination chemistry, the evaluation of steric, σ -donating, π -accepting properties. DFT studies provided insight into the mechanism. Application to the late-stage derivatization of complex molecules and challenging hydrohydrazination has been described. Overall, the results presented strongly suggest that sterically-differentiated non-classical indazolin-3-ylidenes featuring nitrogen re-shuffling might provide attractive ligands for transition-metal-catalysis and accelerate the development of broadly applicable well-defined non-classical NHC ligands.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, characterization data, computational details, .cif files of **4a-4c**, coordinates and energies. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

zhangjin@sust.edu.cn fangr@lzu.edu.cn michal.szostak@rutgers.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

J.Z. thanks National Natural Science Foundation of China (No. 22179075). R.F. thanks National Natural Science Foundation of China (No. 21672090). M.S. thanks Rutgers University and the NSF (CAREER CHE-1650766) for support. We thank the

Wroclaw Center for Networking and Supercomputing (grant number WCSS159).

REFERENCES

- (1) Arduengo, A. J., III; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. *J. Am. Chem. Soc.* **1991**, *113*, 361–363.
- (2) For the discovery of the first stable acyclic carbene, see: (a) Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. Analogous α,α' -biscarbenoid, triply bonded species: synthesis of a stable λ^3 -phosphino carbene- λ^5 -phosphaacetylene. *J. Am. Chem. Soc.* **1988**, *110*, 6463-6466.(b) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. A Brief Survey of Our Contribution to Stable Carbene Chemistry. *Organometallics* **2011**, *30*, 5304-5313.
- (3) For selected reviews and monographs, see: (a) Bellotti, P.; Koy, M.; Hopkinson, M. N.; Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711-725. (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485-496. (c) N-Heterocyclic Carbenes in Transition Metal Catalysis, Cazin, C. S. J., Ed.; Springer: New York, 2011. (d) N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, Diez-Gonzalez, S., Ed.; RSC: Cambridge, 2016. (e) Huynh, H. V. The Organometallic Chemistry of N-Heterocyclic Carbenes, Wiley: Hoboken, 2017. (f) Hermann, W. A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290-1309. (g) Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988-10031. (h) Iglesias, M.; Oro, L. A. A leap forward in iridium-NHC catalysis: new horizons and mechanistic insights. Chem. Soc. Rev. 2018, 47, 2772-2808. (i) Danopoulos, A. A.; Simler, T.; Braunstein, P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem. Rev. 2019, 119, 3730-3961. (j) Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C-H Activation Reactions. Chem. Rev. 2020, 120, 1981-2048.
- (4) (a) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M-(NHC) (NHC = N-heterocyclic carbene) bond. *Coord. Chem. Rev.* **2009**, *253*, 687-703. (b) Dröge, T.; Glorius, F. The Measure of All Rings: N-Heterocyclic Carbenes. *Angew. Chem. Int. Ed.* **2010**, *49*, 6940-6952. For a review on HEP electronic parameter, see: (c) Teng, Q.; Huynh, H. V. A unified ligand electronic parameter based on ¹³C NMR spectroscopy of N-heterocyclic carbene complexes. *Dalton Trans.* **2017**, *46*, 614-627. (d) Huynh, H. V. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. *Chem. Rev.* **2018**, *118*, 9457-9492.
- (5) (a) Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Stable Cyclic (Alkyl)Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysis: A Quaternary Carbon Atom Makes the Difference. Angew. Chem. Int. Ed. 2005, 44, 5705-5709. (b) Martin, D.; Lassauque, N.; Donnadieu, B.; Bertrand, G. A Cyclic Diaminocarbene with a Pyramidalized Nitrogen Atom: A Stable N-Heterocyclic Carbene with Enhanced Electrophilicity. Angew. Chem. 2012, 51, 6172-6175. (c) Weinstein, C.; Junor, G. P.; Tolentino, D. R.; Jazzar, R.; Melaimi, M.; Bertrand, G. Highly Ambiphilic Room Temperature Stable Six-Membered Cyclic (Alkyl)(amino)carbenes. J. Am. Chem. Soc. 2018, 140, 9255-9260. For reviews, see: (d) Melaimi, M.; Soleihavoup, M.; Bertrand, G. Angew. Chem. Int. Ed. 2010, 49, 8810-8849. (e) Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015, 48, 256-266. (f) Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. Angew. Chem. Int. Ed. 2017, 56, 10046-10068. (g) Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chem. Rev. 2020, 120, 4141-4168. (h) Morvan, J.; Mauduit, M.; Bertrand, G.; Jazzar, R. Cyclic (Alkyl)(amino)carbenes (CAACs) in Ruthenium Olefin Metathesis. ACS Catal. 2021, 11, 1714-1748.

- (6) (a) Arduengo, A. J. III, Looking for Stable Carbenes: The Difficulty of Starting Anew. *Acc. Chem. Res.* **1999**, *32*, 913-921. (b) Arduengo, III, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. Imidazolylidenes, imidazolinylidenes and imidazolidines. *Tetrahedron* **1999**, *55*, 14523-14534. (c) Munz, D. Pushing Electrons Which Carbene Ligand for Which Application? *Organometallics* **2018**, *37*, 275-289.
- (7) (a) Mathew, P.; Neels, A.; Albrecht, M. 1,2,3-Triazolylidenes as Versatile Abnormal Carbene Ligands for Late Transition Metals. *J. Am. Chem. Soc.* 2008, *130*, 13534–13535. (b) Donnelly, K. F.; Petronilho, A.; Albrecht, M. Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond. *Chem. Commun.* 2013, *49*, 1145-1159. (c) Guisado-Barrios, G.; Soleilhavoup, M.; Bertrand, G. 1H-1,2,3-Triazol-5-ylidenes: Readily Available Mesoionic Carbenes. *Acc. Chem. Res.* 2018, *51*, 3236-3244.
- (8) (a) Schuster, O.; Yang, L. R.; Raubenheimer, H. G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHC Ligands with Reduced Heteroatom Stabilization. *Chem. Rev.* **2009**, *109*, 3445-3478. (b) Crabtree, R. H. Abnormal, Mesoionic and Remote N-Heterocyclic Carbene Complexes. *Coord. Chem. Rev.* **2013**, *257*, 755-766. (c) Vivancos, Á.; Segarra, C.; Albrecht, M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. *Chem. Rev.* **2018**, *118*, 9493–9586. (d) Sau, S. C.; Hota, P. K.; Mandal, S. K.; Soleilhavoupb, M.; Bertrand, G. Stable Abnormal N-Heterocyclic Carbenes and Their Applications. *Chem. Soc. Rev.* **2020**, *49*, 1233-1252.
- (9) (a) Schuster, O.; Yang, L. R.; Raubenheimer, H. G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHC Ligands with Reduced Heteroatom Stabilization. *Chem. Rev.* **2009**, *109*, 3445-3478. (b) Crabtree, R. H. Abnormal, Mesoionic and Remote N-Heterocyclic Carbene Complexes. *Coord. Chem. Rev.* **2013**, *257*, 755-766. (c) Vivancos, Á.; Segarra, C.; Albrecht, M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. *Chem. Rev.* **2018**, *118*, 9493–9586. (d) Sau, S. C.; Hota, P. K.; Mandal, S. K.; Soleilhavoupb, M.; Bertrand, G. Stable Abnormal N-Heterocyclic Carbenes and Their Applications. *Chem. Soc. Rev.* **2020**, *49*, 1233-1252.
- (10) For further examples of unconventional carbenes, see: (a) Krahulic, K. E.; Enright, G. D.; Parvez, M.; Roesler, R. A Stable N-Heterocyclic Carbene with a Diboron Backbone. *J. Am. Chem. Soc.* **2005**, *127*, 4142-4143. (b) Despagnet-Ayoub, E.; Grubbs, R. H. A Stable Four-Membered N-Heterocyclic Carbene. *J. Am. Chem. Soc.* **2004**, *126*, 10198-10199. (c) Chen, W. C.; Shih, W. C.; Jurca, T.; Zhao, L.; Andrada, D. M.; Peng, C. J.; Chang, C. C.; Liu, S. K.; Wang, Y. P.; Wen, Y. S.; Yap, G. P. A.; Hsu, C. P.; Frenking, G.; Ong, T. G. Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. *J. Am. Chem. Soc.* **2017**, *139*, 12830-12836.
- (11) (a) Clavier, H.; Nolan, S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. *Chem. Commun.* **2010**, *46*, 841-861. (b) Gomez-Suarez, A.; Nelson, D. J.; Nolan, S. P. Quantifying and understanding the steric properties of N-heterocyclic carbenes. *Chem. Commun.* **2017**, *53*, 2650-2660.
- (12) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the Online Computer-Aided Design of Catalytic Pockets. *Nat. Chem.* **2019**, *11*, 872-879.
- (13) (a) Jothibasu, R.; Huynh, H. V., Versatile coordination chemistry of indazole-derived carbenes. *Chem. Commun.* **2010**, *46*, 2986-2988. (b) Sivaram, H.; Jothibasu, R.; Huynh, H. V., Gold Complexes of an Alicyclic Indazole-Derived N-Heterocyclic Carbene: Syntheses, Characterizations, and Ligand Disproportionation. *Organometallics* **2012**, *31*, 1195-1203. (c) Bernhammer, J. C.; Chong, N. X.; Jothibasu, R.; Zhou, B.; Huynh, H. V., Palladium(II) Complexes Bearing an Indazole-Derived N-Heterocyclic Carbene and Phosphine Coligands as Catalysts for the Sonogashira Coupling and the Hydroamination of Alkynes. *Organometallics* **2014**, *33*, 3607-3617. (d) Bernhammer, J. C.; Singh, H.; Huynh, H. V., Amine-Functionalized Indazolin-3-ylidene Complexes of Palladium(II) by Postmodification of a Single Precursor. *Organometallics* **2014**, *33*, 4295-4301. (e) Carreras, J.; Pereira, A.; Zanini, M.; Echavarren, A. M.,

Variations on the Theme of JohnPhos Gold(I) Catalysts: Arsine and Carbene Complexes with Similar Architectures. *Organometallics* **2018**, *37*, 3588-3597.

- (14) (a) Vummaleti, S. V. C.; Nelson, D. J.; Poater, A.; Gomez-Suarez, A.; Cordes, D. B.; Slawin, A. M. Z.; Nolan, S. P.; Cavallo, L. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes? *Chem. Sci.* **2015**, *6*, 1895-1904. (b) Liske, A.; Verlinden, K.; Buhl, H.; Schaper, K.; Ganter, C. Determining the π-Acceptor Properties of N-Heterocyclic Carbenes by Measuring the 77Se NMR Chemical Shifts of Their Selenium Adducts. *Organometallics* **2013**, *32*, 5269-5272. (c) Junor, G. P.; Lorkowski, J.; Weinstein, C. M.; Jazzar, R.; Pietraszuk, C. Bertrand, G. The Influence of C(sp³)H–Selenium Interactions on the 77Se NMR Quantification of the π-Accepting Properties of Carbenes. *Angew. Chem. Int. Ed.* **2020**, *59*, 22028-22033. For phosphinidene method, see: (d) Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. 3¹P NMR Chemical Shifts of Carbene-Phosphinidene Adducts as an Indicator of the π-Accepting Properties of Carbenes. *Angew. Chem. Int. Ed.* **2013**, *52*, 2939-2943.
- (15) Meng, G.; Kakalis, L.; Nolan, S. P.; Szostak, M. A Simple 1 H NMR Method for Determining the σ -Donor Properties of N-Heterocyclic Carbenes. *Tetrahedron Lett.* **2019**, *60*, 378-381.
- (16) (a) Huang, L.; Arndt, M.; Goossen, K.; Heydt, H.; Goossen, L. J., Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. *Chem. Rev.* **2015**, *115*, 2596-2697. (b) Tang, Y.; Benaissa, I.; Huynh, M.; Vendier, L.; Lugan, N.; Bastin, S.; Belmont, P.; Cesar, V.; Michelet, V., An Original L-shape, Tunable N-Heterocyclic Carbene Platform for Efficient Gold(I) Catalysis. *Angew. Chem., Int. Ed.* **2019**, *58*, 7977-7981. (c) Yazdani, S.; Junor, G. P.; Peltier, J. L.; Gembicky, M.; Jazzar, R.; Grotjahn, D. B.; Bertrand, G., Influence of Carbene and Phosphine Ligands on the Catalytic Activity of Gold Complexes in the Hydroamination and Hydrohydrazination of Alkynes. *ACS Catal.* **2020**, *10*, 5190-5201.
- (17) Ligand effect in hydroamination: (a) Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous gold catalysis. *Nature* **2007**, *446*, 395-403. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Ligand effects in homogeneous Au catalysis. *Chem. Rev.* **2008**, *108*, 3351-3378.
- (18) Couce-Rios, A.; Kovacs, G.; Ujaque, G.; Lledos, A., Hydroamination of C-C Multiple Bonds with Hydrazine Catalyzed by N-Heterocyclic Carbene-Gold(I) Complexes: Substrate and Ligand Effects. *ACS Catal.* **2015**, *5*, 815-829.