BACK STABLE K-THEORY SCHUBERT CALCULUS

THOMAS LAM, SEUNG JIN LEE, AND MARK SHIMOZONO

ABSTRACT. We study the back stable K-theory Schubert calculus of the in-
finite flag variety. We define back stable (double) Grothendieck polynomials
and double K-Stanley functions and establish coproduct expansion formu-
lae. Applying work of Weigandt, we extend our previous results on bumpless
pipedreams from cohomology to K-theory. We study finiteness and positivity
properties of the ring of back stable Grothendieck polynomials, and divided
difference operators in K-homology.
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In [LLS21] we initiated the study of back stable Schubert calculus. In the present
work, we generalize from cohomology to K-theory, and study back stable K-theory
Schubert calculus. We assume the reader has some familiarity with our earlier work,

and in the introduction we will emphasize some of the differences.

1.1. Back stable Grothendieck polynomials. Let w be a permutation of Z
moving finitely many integers and let p < ¢ be integers such that the interval of
integers [p, ¢] contains all nonfixed points of w. Lascoux and Schiitzenberger [LS]

defined the Grothendieck polynomial &, (xp, Zpi1,...,2q) € Zlzp, Tpi, ..

'7mq]7

for the purpose of giving explicit polynomial representatives of classes of Schubert
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structure sheaves in the K-theory of the flag variety. A priori the definition of &,,
depends on the interval [p, ¢].

Whereas the back stable Schubert polynomials of | | are limits of Schubert
polynomials, in this paper we will be concerned with the back stable Grothendieck
polynomials, which by definition are the limits

e .
(G2 (33) = pﬁfléoIgﬁoo 610(1'137 LTp+1s--- 79311)'

It turns out that the ¢-limit is unnecessary, either by a well-known forward stabil-
ity property of the Grothendieck polynomials or by Proposition 4.4. The p-limit
is important: the back-stable Grothendieck polynomials are in fact formal series
involving all of the variables z; for i < d where d € Z is the maximum index such
that w(d) > w(d +1)."

The same definition of back stable Grothendieck polynomials has appeared in
the work of Marberg and Pawlowski [MP], who studied the principal specializations
(x; — ¢*~1) of these power series. We remark that back stable Schubert polynomials
have been generalized to the involution setting by Pawlowski [ ].

1.2. Infinite flag varieties. Infinite-dimensional flag varieties, such as flag vari-
eties of Kac-Moody groups, come in a number of algebro-geometric variants. Of
interest to us is a thin flag variety F1 that is an ind-finite variety and a thick flag
variety F1 that is an infinite-dimensional scheme. There are other versions such
as semi-infinite flag varieties and geometric models based on loop groups which
will not feature in this work. The K-groups in this work are certain Grothendieck
groups of coherent sheaves, and the choice of scheme structure plays a more sig-
nificant role than in our earlier work in cohomology. For a discussion of K-groups
on thin and thick flag varieties in the Kac-Moody setting, we refer the reader to
Kumar | ] and Baldwin and Kumar [BIK].

Whereas in | | we only considered the thin infinite flag variety, in the present
work we also consider the thick infinite flag variety. Thick infinite flag varieties were
studied by Kashiwara [[{as] and we give a mostly elementary treatment in §2. A
different and elegant approach to infinite flag varieties is also given by Anderson
[ ]. We show in Theorem 5.25 and Corollary 5.26 that back stable double
Grothendieck polynomials represent classes of Schubert structure sheaves in the
equivariant K-group K7 (F1) of the thick infinite flag variety FL.

1.3. Coproduct formula. Like their cohomological counterparts, back stable Gro-
thendieck polynomials (and their double versions) satisfy a coproduct formula (The-
orem 4.15), decomposing them into a symmetric part and a finite part:

(11) %w — Z (_1)é(U)+é(U)_Z(W)GuQ5v-

U*V=W

’UGS;,so

Here, u % v denotes the Demazure or Hecke product, G, denotes the K-Stanley
symmetric function | , K], and @, is the Grothendieck polynomial [L.5].
We deduce (1.1) from the coproduct formula in K-theory affine Schubert calcu-
lus | ]

we prefer to include the g-limit in the definition of gw; otherwise we would have to pick a
particular ¢ and write &4 (..., zq—1,2q).

2The symmetric function G, is usually called a stable Grothendieck polynomial, but to avoid
conflicts in terminology we use a different name.
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1.4. Double K-Stanley symmetric functions. The back stable double Grothen-
dieck polynomials %w (z;a) are defined as limits of double Grothendieck polyno-
mials &, (z;a) in a similar manner. We define the double K-Stanley symmetric
functions as the image G, (z||a) := na(%w(x; a)) under an algebra homomorphism
Na : R(z;a) = A(z]|a) (see §5.9) from back stable power series to symmetric power
series. The symmetric functions G,,(x||a) appear to be novel. (Setting a = 0, we
recover the K-Stanley symmetric function G,,.) We obtain as a subset the Grass-
mannian double K-Stanley symmetric functions G (z||a). These functions form a
basis of a ring I'(x||a) (Theorem 8.22), a double analogue of Buch’s I" ring | ]
We explain determinantal formulae for G (z||a) in §9, connecting our construction
to the literature | ) ].

We conjecture (Conjecture 8.23) that the coefficients of the expansion of G, (z||a)
in the basis {G(z||a)} have alternating signs. The analogous expansion coefficients
of double Stanley functions F,,(z||a) into double Schur functions {sx(z||a)} were
shown to be positive in [ , Theorem 4.22] using the quantum equals affine
phenomenon.

1.5. K-bumpless pipedreams. In | | we introduced bumpless pipe-dreams
to give explicit monomial expansions for back stable double Schubert polynomials.
Weigandt [Wei] connected bumpless pipedreams to earlier alternating sign matric
formulae of Lascoux [Las], and thereby obtained formulae for double Grothendieck
polynomials in terms of K-bumpless pipe-dreams. Weigandt’s work immediately
gives a formula for back stable double Grothendieck polynomials in terms of K-
bumpless pipedreams, which we state in Theorem 6.2. We also use K-bumpless
pipedreams to give formulae for the double K-Stanley symmetric functions (The-
orem 6.5 and Corollary 6.6), and expansion formulae (Theorem 6.9 and Corol-
lary 6.10) for &, (z;a) and G, (x|la) in terms of double K-Stanley symmetric
functions.

Recently, bumpless pipedreams have found applications in the study of diagonal
Grobuner degenerations of matrix Schubert varieties [ , , ], in the study
of products of Schubert polynomials | , |, and in other applications

[FGS, BS, Xio.

1.6. K-homology. In §7, we study a basis dual to the Grassmannian double K-
Stanley symmetric functions G (x||a). We call these symmetric functions gy (y||a)
the K-Molev functions. These symmetric functions are K-theory analogues of
Molev’s dual Schur functions $x(y|la) [Mol]. At @ = 0, the symmetric functions
gx(y]|a) reduce to the dual stable Grothendieck polynomials gy (y) studied by Lam
and Pylyavskyy [[.P]; see also | ]. Geometrically, the functions gy (y||a) form
a basis of the equivariant K-group KT (Gr) of the thin infinite Grassmannian. We
show in Theorem 7.6 that the g)(y||la) can be obtained recursively by applying
K-homology divided difference operators. In Theorem 7.8, we sketch the relation
between our gy (y||a) and the deformation of symmetric functions studied by Knut-
son and Lederer [IK1].

1.7. The algebra of back stable Grothendieck polynomials. We define the
algebra of back stable Grothendieck polynomials

B=@Pzs,
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to be the span of all back stable Grothendieck polynomials. We show in Theo-
rem 8.11 that B is a ring, or equivalently, the product of back stable Grothendieck
polynomials is finite. This finiteness is quite nontrivial; for example, it fails to
hold for the K-theory of the affine flag variety of SLo. The ring B is an infinite
flag variety version of Buch’s T" ring spanned by K-Stanley functions | ], an
analogous ring for the infinite Grassmannian.

We show in Theorem 8.14 that after adjoining an element 2 = Q[z_], the ring B
can be decomposed as a tensor product I'[Q2] ® R*, where R is spanned by finite
Grothendieck polynomials.

We conjecture that the similar finiteness also holds for back stable double Groth-
endieck polynomials. Curiously, we show in that Proposition 8.28 that this would
hold if the positivity conjecture (Conjecture 8.23) were true.

1.8. Flagged Grothendieck polynomials. In the course of studying the rela-
tionship between Grothendieck polynomials and their symmetrizations given by the
K-Stanley functions, we found it natural to study a family of polynomials which in-
terpolate between them. These are the flagged Grothendieck polynomials, which we
introduce in §8.2 for an arbitrary permutation using divided differences. We prove
in Proposition 8.5 a monomial expansion for flagged Grothendieck polynomials
that generalizes the Fomin-Kirillov formula for Grothendieck polynomials. For the
special cases of vexillary and 321-avoiding permutations, the flagged Grothendieck
polynomials were defined combinatorially in | 11 ] [Mat].

1.9. K-classes of degeneracy loci. Fulton [Ful] realized the double Schubert
polynomial as a universal formula for the cohomology class of a degeneracy locus
Q,, defined by rank conditions on composite maps in a sequence of maps of vector
bundles living on a common base. Recently, Anderson and Fulton [AF] studied
what might be called the “back stable limit” of this degeneracy locus construction,
obtaining enriched Schubert polynomials, which specialize (and are nearly equiva-
lent) to the back stable Schubert polynomials of | ]

Buch | | observed that the K-class of the structure sheaf of Q,, in a
flag bundle, has a universal formula given by the double Grothendieck polyno-
mial &, (x;a), based on the work of Fulton and Lascoux [F1], who showed that

after a certain change of variable, the double Grothendieck polynomials map to
classes of structure sheaves of opposite Schubert varieties in the flag variety. Very
recently, Buch [ | gave us a detailed explanation of a limit of the degeneracy
locus construction of double Grothendieck polynomials and suggested the result
should be the back stable double Grothendieck polynomials. He also suggested to
apply the degeneracy loci formulae in | ] and [ ]. The result coin-
cides with one of our formulae for back stable Grothendieck polynomials, and is
explained in §10.

1.10. Further directions/relations. We were unable to pursue many obvious
avenues of investigation, for example, the study of the ideal sheaf basis, and the
relation to K-theory affine Schubert calculus [L.SS, ]. We briefly discuss these
ideas in §11.

Acknowledgements. We thank Anders Buch for a suggestion that led to Sec-
tion 10, and Anna Weigandt for explaining the relation between bumpless pipe-
dreams and the work of Lascoux.
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2. THICK INFINITE FLAG SCHEME

2.1. Dynkin type Az. The Dynkin diagram of type Az has Dynkin node set I = Z
and simple bonds (é,7 4 1) for all ¢ € Z. It has weight lattice X’ = @,.; ZA; with
basis of fundamental weights A;. For i € Z, the simple coroot oy € Homgz(X',Z)
is defined by (o), A;) = &;j for i,j € Z. For i € Z, let ¢; := A; — A;_1. For i € Z,

let a; := €; — €;41 be the simple root. Let @ := @iel Zoy; and X = EBz‘eZ Ze;. We
have
(2.1) QCcXcX.

Let the Weyl group Sz be the subgroup of Aut(X’) generated by the following
reflections s;:
(2.2) siA=A—(a), Ny forieland A€ X'
We have

€1 ifj=i

si(ej): €; ifj=i+4+1

€; if j ¢ {i,i+1}.
Thus the restriction of the action of Sz to the basis {¢; | i € I} of the sublattice
X C X' is the permutation representation on the set Z: s; exchanges i and ¢ + 1
and fixes other integers.

The set ® of roots are the elements of the form wa; for i € I and w € Sz; they

have the form o;; = ¢; — ¢; for i,j € Z with i # j. Let s;; € Sz be the associated

reflection; acting on Z it exchanges i and j and fixes other integers. Let ®T be the
set of positive roots, the a;; with i < j. Let &~ = -+,

2.2. Dynkin diagram automorphisms. Let Aut(A4z) denote the group of au-
tomorphisms of the diagram Az, the permutations of the node set I = Z which
preserve adjacency. Aut(Ayz) is generated by the Dynkin shift (i) = ¢ 4+ 1 for all
i € I and the Dynkin reversal w(i) = —¢ for all 4 € I. This is an infinite dihedral
group: w? = id and

(2.3) wyw =71

The group Aut(Az) acts by automorphisms on X’: we have ((A;) = A¢;) for all
¢ € Aut(Az) and i € I. In particular, we have

(2.4) v(€) = €it1
(2.5) w(e) = —e1-4 for alli € I.

There is an induced action of Aut(Az) by automorphisms on Sz: ((s;) = s¢(;) for
all ¢ € Aut(Az) and i € I. We have

(2.6) V(s:) = sit1
(2.7) w(s;) = s for all i € I.

2.3. Thin infinite flag variety. Let C((¢)) and C((¢~!)) denote the Laurent poly-
nomial rings. Denote

Eazz{iciti}cc«t» and  F, :={§cﬂ}cc<<tl>>

so that we have ---C Fy CEhyCcEF_1C---and---CF  CFyCF  C---.
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A subspace A C C((t)) (resp. = C C((t71)) is called admissible if we have
Ey CACE_y (resp. F_y CZC Fy) for some N. The Sato Grassmannian Gr®
(resp. Gr*) consists of the set of all admissible subspaces in C((t)) (resp. C((¢t71)))
and has the structure of an ind-variety over C.

The virtual dimensions vdim(A) and vdim(Z) are given by

vdim(A) := dim(A/(A N Ep)) — dim(Ey/(A N Ey))

vdim(Z) := dim(Z/(2 N Fy)) — dim(Fy/(E N Fp)).
The virtual dimension measures the size of the subspace A (resp. =) relative to the
standard subspace Ey (resp. Fp). Let Gr'® c Gr® (resp. Gr'Y ¢ Gr?) consist
of the admissible subspaces of virtual dimension d. Thus, Gr® is the disconnected

union of the Gr'® for d € Z.
An admissible flag in C((t)) of virtual dimension 0 is a sequence

A.:{'“CAlCA()CA,lC"'}

of admissible subspaces satisfying the conditions: (1) vdim(A;) = —i, and (2) for
some N, we have A; = E; for all ¢ with |i{] > N. Similarly, we define admissible
flags in C((¢t71)). The thin infinite flag variety F1 (resp. F1_) consists of the set of
all admissible flags in C((t)) (resp. C((t™1))) of virtual dimension 0, and has the
structure of an ind-variety over C.

2.4. Thick infinite flag scheme. We describe the thick infinite flag scheme in
an elementary fashion; see [[<as] for further details. We say that a subspace V C
C((t™1)) is opposed to a subspace = € Gr® if the composite map V C C((t71)) —
C((t71))/= is an isomorphism, and that V is thick if it is opposed to some = € Gr* .
Denote by Grgz the set of all V. C C((t!)) opposed to =. The thick infinite
Grassmannian Gr is the space of all thick subspaces, that is,

@Z: U @E~

=2eGr®

Each Grz is an affine space of infinite dimension. For example, for = = F, the
vectors t,t2, ..., form a basis of C((t~!))/Fy. Thus any thick subspace V opposed
to Fy has a basis of the form t + vq,t? + vg,... where vy, vs,... € Fy, and the v;
are arbitrary. Similarly, for any Z € Gr®, Grz can be identified with 2> =~ []{" E.
Identifying 2 with C> 2 [, C = Spec(k[z; | i € Z]), Grz is endowed with the
structure of an infinite-dimensional affine space.

As shown in [IK<as], Gr has the structure of a separated scheme over C, and

Grz C Gr are affine open subschemes. We also define the subscheme @i C Gr by
ar= |J Gr

vdim(Z)=t

(1

and we note that Gr N Gr’ = 0ifi#j.
There is an injection Gr® < Gr, described as follows. Let A € Gr®. Pick N so
that E_y DAD En. Let BC AN @i]\:fN Ct' project to a basis of A/Ey. Define
A :=span (BU{tN tNT1 1) C C((1)).

Then A is a thick subspace (opposed to E_y_1 @ W for any complement W of
span(B) in @f\:_lN Ct'), and the map A — A induces an injection Gr® < Gr.
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Let Z, € Fl_ be an admissible flag with vdim(Z;) = i. A sequence Vi of
subspaces of C((t71))

-cVicVycVoiC---

where V; is opposed to Z; is called a thick flag opposed to Z,. Let Flz, denote the
set of thick flags opposed to Z,. Let ..., w_1,wq,wy,... € C((t71)) be such that

C((t™1))/=; is spanned by w;, w;y1,.... If V4 is opposed to Z,, then there exist
vectors
— 00
ve=wi+ Y agw; € C((171))
j=k—1
such that V; is the span of v;, vi41,.... The coefficients ay; € C are arbitrary and

uniquely determine Vs, endowing Flz, with the structure of an infinite-dimensional
affine space. The thick infinite flag scheme

(2.8) Fi= |J Fls,

He€FI_

is the space of all thick flags, and has the structure of a separated scheme. The
construction A — A induces an injection Fl < F1. The thin standard flag E, € Fl
gives a thick standard flag F. € FL

We use the flag Fy € F1_ as the basepoint of F1_. For w € Sz, we have a point
wF, € F1_ given by

(wF)i = H (Ctj.

jew((_oovi])
Similarly, we have wE, € Fl and wE, € FL

Lemma 2.1. We have F1 = J Flyr, -

wESy,

Proof. Let V, € Fl. Then there exists N such that for |i| > N, we have that V;
is opposed to F;. The statement then reduces to the corresponding statement for
the flag variety of the finite-dimensional vector space F/F_x. Namely, any flag
G, in C?Y is opposed to (at least) one of the (2N)! flags wH,, where w € Sop is a
permutation and H, is some choice of basepoint flag. (Il

Ezxample 2.2. Define

Ve span (¢l 2 413 it ) if § is even
span(tt, ti+2 43 pitd ) if i is odd ’

so Vo = span(t,t2, 3,4, ...), Vi = span(t,t3,t%,...), Vo = span(t?,t4,...). It is
clear that --- C Vo C Vi C V C --- and each V; is opposed to some admissible
subspace. So it belongs to the set that Kashiwara has in [[{as, p. 190]. However, it
does not belong to FI from (2.8) since it is not true that V;, is opposed to Fj, for
large m, so it cannot be opposed to any admissible flag.

We also define the thick partial flag schemes Fl;, for k € Z, consisting of partial
flags Vo in C((¢71)) indexed by i € Z\{k}, with V; opposed to Z; for some =, € F1_.
There is a natural morphism F1 — Fl;, defined by forgetting V.
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2.5. Infinite Schubert varieties. Let B C End(C((t™1))) consist of the invertible
linear transformations ¢ : C((¢t71)) — C((¢71)) satisfying

o(t) € cit’ + @(Ctj c; # 0.
j>i
Let B_ C Endc(C((t71))) consist of the invertible linear transformations ¢ satis-
fying
o(t)) € et + H(Ctj ci # 0.
j<i
Let T =Ty = BN B_. The groups B, B_ act on Fl. The group B acts on Fl, but

B_ does not. We have that B- E, = F, and B - E, = E,. The (thin) Schubert
cells and (thin) Schubert varieties are defined to be

Qp =B -wE, C Fl and Xy =B -wkE, CFL

We have the decomposition F1 = I—leSZ Q. Furthermore, Q,, = C/®) and X, is
an irreducible projective variety of dimension £(w).

An order ideal in Sz is a subset S C Sz such that if x < y € Sy with y € S then
x € S. Let Kr(F1) denote the K-group of T-equivariant coherent sheaves on FL.
Since Fl is an ind-scheme, the K-group Kr(F1) is the inductive limit

ti (| X,) = €D Kr(pt)[Ox. ]

S weS weSy,

The (thick) opposite Schubert cells and (thick) opposite Schubert varieties are
defined to be

Qv .= B_-wE, C Fl and XY :=B_-wE, C FL.

We have the decomposition F1 = e s, 1. Furthermore, (2" is an affine space of

infinite dimension and of codimension ¢(w) in FL

For any finite order ideal S C Sz, let Q% = [J, cq wQ® = | |, e 2" Let K (%)
be the Grothendieck group of coherent T-equivariant Ogs-modules. One may show
that K7(Q%) =2 @, cs Kr(pt)[Oxw] [XS, Lemma 2.3]. Define

we Sy,

2.6. NilHecke ring, localization and the GKM ring. We recall some results
from [I<S]. These results are stated in the Kac-Moody setting, but the proofs are
valid for our thick infinite flag scheme FI.

We have K5(pt) = R(T) = Z[X] (see §2.1 for the definition of X) with the
image of A\ € X written e*. The infinite symmetric group Sz acts on T and
therefore on R(T) = Z[X]. Let R(T)ioe = R(T)[(1 —e®)™1 | a € ®] and let Kjpe =
R(T)10c[Sz] be the twisted group ring with multiplication (fv)(gw) = fv(g)vw for
fig € R(T)ioc and v,w € Sz. Then K. acts on R(T)ioc. Let D; € Ko be the
element (1 —e~)71(1 — e7%s;) for i € Z. Let K be the K-theoretic nilHecke
algebra, the subring of Kj,. generated by R(T) and the D;. The algebra K acts
naturally on R(T). In this context D; is known as the Demazure operator | -

Let Fun(Sz, R(T')) be the R(T)-algebra of functions f : Sz — R(T) under
pointwise product, and similarly define Fun(Sz, R(T)ioc). The algebra K acts on
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Fun(SZ, R(T)loc) by

1 e—w(a:)
(29) Dz(f)(w) = 1 — e—w(a) f(w) - 1— (az) f(wsz)

The T-fixed points on F1 are the flags wE,, and we identify FI' with Sz. For each
w € Sz, localization at w gives a R(T")-module homomorphism ¥, : K7 (F1) — R(T)
[KK5, §2]. It satisfies

H (I—-e%) fv=w
(2.10) in,([Oxv]) = { acd+nw@-)

0 unless v < w.

The map Sz = FI' < Fl induces the R(T)-algebra homomorphism res : K7 (FI) —
Fun(Sz, R(T)) given by res(f)(w) =% (f). Define

(2.11) ¥ =res([Ox»]) for v € Sz.
Recall that for i € Z we have the projection p; : F1 — Fl; to the i-th minimal thick
partial flag scheme. We have [XS, Cor. 3.3]
[Oxvsi] ifvs; <w
2.12 pisx(Oxv) =
(2:12) pipis(Ox) {[Oxv] if vs; > v.
The following result is due to Kashiwara; see [LSS, Prop. 3.3].

Proposition 2.3. The following diagram commutes:

KT(ﬁ) & Fun(SZ,R(T)) — Fun(SZ,R(T)loC)

pri*l J/Di

K (F1) === Fun(Sz, R(T)) — Fun(Sz, R(T)10c)

Proposition 2.4. There are functions {¢* | v € Sz} C Fun(Sz, R(T')) which are
uniquely determined by the following conditions:

(1) ¥¥(id) = dig,n for v € Sz.
(2) If ws; < w then

Y(ws; if vs; > v
(2:13) Viw) = {Z}_I(”(“i))w”(wsi) + (1 — emwl@)ghvsi (1) 2; vs; < .
(3) We have
(2.14) YU (w) € Z]Q) for all v,w € Sy,
Proof. Part (1) follows from the support condition (2.10). Part (2) follows from

Yv%iif vs; < w

P otherwise,

(2.15) Di(y") = {
which holds by equation (2.12), Proposition 2.3, and the definition of ¢”. Equation
(2.14) holds by induction. O

Let ¥ be the set of ¢ € Fun(Sz, R(T')) such that
(2.16) 1—e” | Y(sqw) —(w) for all @ € ® and w € Sz.
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Proposition 2.5. The space ¥ is an R(T)-subalgebra of Fun(Sz, R(T')). Moreover

(2.17) v =[] RT)"
vESy
The ring ¥ is called the GKM ring [ ]. In the case of Kac-Moody flag
varieties the analogous condition is due to Kostant and Kumar [IXI]. The action

of K on Fun(Sz, R(T')) preserves W.

Proposition 2.6. The map res induces an isomorphism Kr(Fl) = U of R(T)-
algebras and K-algebras where D, acts by p}pis.

If there is an action of a group G on an algebra R and an R-module M, then
we say that M is a G-equivariant R-module if g(a) - g(m) = g(a-m) for all g € G,
r€ R,and m € M.

Proposition 2.7.

(a) The group Aut(Az) acts on K by conjugation and acts on R(T), making
R(T) into an Aut(Agz)-equivariant K-module.

(b) Aut(Az) acts on Fun(Sz, R(T)) by conjugation, stabilizing the subring ¥,
making Fun(Sz, R(T)) and U into Aut(Az)-equivariant K-modules.

(c) For every ¢ € Aut(Sz) and v € Sz, we have ((¢¥) = 1<),

2.7. Multiplicative formal group law. Let A be a ring. Define the binary
operation @ on A by

(2.18) a®b:=a+0b—abd
For b € A such that 1 — b is a unit in A, define
—b
—b
(2.20) aeb::a@(eb):?_b.

The operation 6 is commutative and associative with neutral element 0 and bob = 0
for b #£ 1.

2.8. From exponentials to polynomials. Define the Laurent polynomial ring
R and its subrings R™ and R, as follows:

(2.21) R:=7Z[1—xz)* |iecZ]
(2.22) RT:=Z[(1 — ;) | i € Zso][(1 — x:) ™" | i € Z<o]
(2.23) R™=Z[(1—x;) | i € Z<o)[(1 — x:) "' | i € Zxo).

Note that Z[o(x;)] = Z[(1 — x;) 1.

Let © : R(T) — R be the ring isomorphism given by O(e%) = (1 — ;)" for
1 € Z. This is merely a renaming of the generators of a Laurent polynomial ring,
but is convenient for combinatorial applications. We have

(2.24) Ol —e")=z2;0u for all i,j € Z with i # j.

The isomorphism © is Sz-equivariant.
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Let K be the algebra generated by R and elements 7; for ¢ € I, equipped with
an isomorphism O : K — K which restricts to the isomorphism © : R(T) — R and
satisfies ©(D;) = ;. We have

7, = O(D;)
=0 ((1—e ™)' (1-e™s))
= (i Omip1) (1= (1= 2ig1) " (1 — 23)s)
=2 — (1 —x5)s:)
1—8)(1 —miy1)

T — Tiy1)” !

@ = Tig1)

(
(
(
)

=A;0(l —miy1),
where
(2.25) Ap = (x — 2 1) 11— 55)
is the divided difference operator| ]. Consider now the Aut(Agz)-equivariant

K-module structure on R(T"). By (2.5), we have

(2.26) w(e) =e 1t fori €I,
(2.27) ~y(eft) = efitt fori e I.

Via the isomorphism ©, we obtain an Aut(Ayz)-equivariant K-module structure on
R. The elements w and v of Aut(Sz) induce automorphisms of R and K that we
denote by @ and + respectively. By (2.26), we have ©((1 —z;)~!) =1 —x1_;. Thus
for all © € Z, we have

Furthermore, we have
(2.32) oy =~"1

on K and on R, by (2.3).

Let R(a) be the ring isomorphic to R, using the variables a; instead of x;. We
write ©, : R(T) — R(a) for the isomorphism involving the a; variables.

Let (©4)« : Fun(Sz, R(T)) = Fun(Sz, R(a)) be defined by (O4)«(f) = O4 0 f.
Let ¥ C Fun(Sz, R(a)) be the image of ¥ under (©,),. Applying O, to (2.16),
using (2.24), and observing that a; Sa; and a; —a; generate the same ideal of R(a),
we see that U is the subring of functions f : Sz — R(a) such that

(2.33) a; —a; | f(w) — f(sijw) for all w € Sy and i,j € Z with i # j.

This induces an isomorphism (©n)s : ¥ — U. Finally, for v € Sz, let ¢, € ¥ be
defined by ¥ = (O4).(¢¥¥) = O4 0 P*.



12 THOMAS LAM, SEUNG JIN LEE, AND MARK SHIMOZONO

3. GROTHENDIECK POLYNOMIALS

3.1. Demazure operators. For i € Z and w € Sy, define

siw if s;w > w
S; *W =

w otherwise.

This defines a monoid (Sz, %) called the 0-Hecke monoid. The operation * is called

the Hecke product or Demazure product. Recall the operators 7; € K defined in
§2.8.

Lemma 3.1.
(1) The 7; satisfy the braid relations 7;T;417; = Tip1TiTir1, and T2 = ;.
(2) The 7; generate a monoid isomorphic to the 0-Hecke monoid.

3.2. Subgroups of permutations. Our notation for symmetric groups and par-

titions follows [ ]. Define the following subgroups of Sz:
(31) SJr = <Si | i€ Z>0>

(3.2) S_={(s;|i€Zp)

(3.3) Szo=S_ xSy =(s; |1 €Z\{0}).

3.3. Grothendieck polynomials. For w € S,,, the Grothendieck polynomial &,, €
Z[z1,...,xy] is defined by [LS] [FI, §4]

(3.4) By = x?71x5‘72 RN
(3.5) G = T By, for ws; > w.

Ezample 3.2. The Grothendieck polynomials &,, for w € S35 are given below with
B, 5,5, at the top.

.’E%SEQ

7 X
2
1

T1X2

Remark 3.3. By Lemma 3.1, the polynomials &,, € Z[z1,...,z,] for w € S,, are
well-defined. Moreover for w € S; = J,;»; Sn, By is independent of n in the
sense that for any n such that w € .Sy, QBL(w)_: ®,, under the standard embedding
L:S, — Sn+1.

Fomin and Kirillov give the following monomial expansion of &,,.

Proposition 3.4. [FK, Prop. 3.3] For w € Sy, we have
(3.6) &, = Z (_1)L—l(w)xi1xi2 Y T

Saq*Sag ¥ ¥Sqp =W
1<iy <ip<---<ip
apLagpr1=>ik<ik41
ix<ag

where L is arbitrary.
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Proposition 3.5. The set {®,, | w € Sy} is a Z-basis of Z[xy] = Z[z; | i € Z>).

Proof. By Proposition 3.4, the lowest homogeneous part of &,, coincides with the
Billey-Jockusch-Stanley formula for the Schubert polynomial [B.JS]. The Schubert
polynomials form a basis | , Thm. 2.7]. This shows that the &,, are linearly
independent. The Monk Rule of | | gives a finite Grothendieck polynomial
expansion of any product x;®,, for £ > 1 and w € S;. In particular, iterating
the Monk rule one may expand any monomial (times ;4 = 1) as a finite linear
combination of Grothendieck polynomials. This proves that {&,, | w € Sy} span

3.4. Negative Grothendieck polynomials. Recall the automorphism w of Sz
from §2.2 and @ of R from §2.8. The automorphism w € Aut(Sz) restricts to an
isomorphism S_ = S,. For w € S_, define the negative Grothendieck polynomial
&, € RT by

(3.7) By = 0(By () for we S_.

Ezample 3.6. The polynomials &,, for w € (s_1,s_2) are given below. The top
polynomial is &, s ,s_,-

x0)*(Bx_1

1/@\

(8x0) (O — (©xo)
z0) @ (6x_1)

Proposition 3.7. The set {®,, | w € S_} is a Z-basis of Z[(1 — ;)™ | i € Z<o).
Proof. The map w restricts to an isomorphism

Zlwi | i€ Zso)l = Z[(1 —z:) "t | i € Z<o]
sending the basis {®,, | w € S;} to the basis {&,, | w € S_}. O

For w € Sxo = S_— x 54, there is a unique factorization w = uwv with u € S_
and v € Sy. Define

(3.8) By = 6,86,.
Lemma 3.8. For w € Sz, we have
(3.9) W(By,) = ®w(w) for w € S4o.

Proposition 3.9. The set {&,, | w € Sz} is a Z-basis of Rt = Z[(1 —z;) | i €
Zsol[(1 — ;)7 | i € Zgol-

Proof. Follows by tensoring the bases in Propositions 3.5 and 3.7. (]
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4. BACK STABLE GROTHENDIECK POLYNOMIALS

4.1. Back stable rings. Let

x4 = (x1,T2,23,...), T =2<0 = (20, T-1,T-2,...).

Let A = A(z_) denote the ring of symmetric functions in the variables z_ with
coefficients in Z and let A denote the graded completion of A. That is, an element
fe A is a formal linear combination f=fi+ fo+--- where f; € A is homoge-
neous of degree i. Similarly, we define A(m+) using positive variables. When no
decorations are present, we assume negative variables are used: A means A(z_).

Let pg,ex, hr € A denote the power sum, elementary, and homogeneous sym-
metric functions. We have isomorphisms A 2 Z[[e1, es,...]] and A 2 Z[[hy, ha, .. ].
Despite the fact that A(z_) 2 Z[[p1, pa, . ..]], since A(z_) ®z Q = Q|[p1, p2, .. .]] we
define maps from A by describing the images of py. That is, we define Q-algebra
homomorphisms using the topological generators py and in all cases they restrict
to ring homomorphisms over the integers. Define the back stable rings

R =A(z_)® R = Rlle,ea,...]]

R+ = Aa_)® Rt = R*[[e1, ea,...]]-

The Dynlgl shift automorphism v € Aut(Az) from §2.1 induces the ring automor-
phism of R defined by v(z;) = 2,41 for i € Z and y(px(z_)) = pr(z_) + 2% for all
k>1.

We identify A(z, ) with A(z_) by setting

(4.1) pe(zy) = —pr(z_) for k > 1.

This is consistent with the Sz-action: the element Y., ¥ is set to zero, and

is Sz-symmetric. Under (4.1) we have e,(zy) = (=1)"h,(z-) and h,(x4) =
(=1)"e,(x_), thus preserving symmetric functions with integral coefficients.

4.2. Conjugation automorphism. Recall ® € Aut(R) from §2.8. Since the py
are algebraically independent topological generators of A, we may extend @ to an
automorphism of R by

- r+k—1
(4.2) O(pg) == (—1)FH1 Z < b1 >pk+r for k > 1.
r>0

Heuristically, we have &(f(z)) = f(@(x)) = f(©(z1_,)) for f € A. Using (4.1), this
induces the map (4.2).

We call @ the (K -theoretic) conjugation automorphism. Note that @ differs from
the automorphism w defined in [ ], and restricts to an automorphism of A
that differs from the usual conjugation automorphism w of symmetric functions.

The automorphisms @ and  define an action of Aut(Az) on %
Proposition 4.1. The maps v and @ define an action of Aut(Az) on E That is,

(4.3) Gomyom=n~"t
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Proof. As this relation already holds on R by (2.32), it is enough to check the
identity applied to pg for £ > 1. We have

(roam =20 5 ("1 o)
r>0

r+k—1 r+k—1 -
:(_1)k+1 Z( E—1 )Pkw-f-Z( b1 )x’f+

r>0 r>0
~ ) - ()
= @ (pr — ()
=0y (pk) 0

The conjugation automorphism @ restricts to an automorphism of %4‘.

4.3. Group law negation automorphism. Denote by © : R — R the involutive
ring automorphism of R defined by x; — S(x;) for all i. We will write f(&(z))
for ©(f(z)) for f(z) € R. The map & restricts to an isomorphism RT & R™. It
satisfies the operator identities

(4.4) Sowod =w

(45) Som o068 = ;T8 =: ﬁi@:Ai(l‘i—l).

Lemma 4.2.

Gus, (6x) ifws; <w

(4.6) T} (Bu(Sm) = {@ (ex)  otherwise.

<_
We extend & to an automorphism of R, called the group law negation automor-
phism, by setting

- +k—1
S(pr) := —@(px) = (—1)* Z (T ko1 )p;H_T for k > 1.
r>0

4.4. Antipode automorphism. The antipode S is the involutive Q-algebra au-
tomorphism on R defined by S(pi) = —py, for all k > 1 and S(z;) = x1_; for i € Z.
We have

(4.7 O=Sow=0oSs.

1

Proposition 4.3. We have Soy=~v08 and Soy~' =70 S.

4.5. Back stable Grothendieck polynomials. For w € Sz and an interval
[p, ¢] C Z that contains all integers moved by w, let 6%3 I be the usual Grothendieck

polynomial except computed using variables x,, Zp11,. .., %, instead of x1,xa,....
That is,
(4.8) B = PG 1,

where 7 denotes both v € Aut(ﬁ) from §4.1 and v € Aut(Sz) from §2.2.
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The back stable Grothendieck polynomial %w € § is defined by

(4.9) G, = lim &P
p——00
q—00

It is immediate that we have

Bus, if ws;
(4.10) iy = cnw <w
(ST otherwise.

Taking the limit of Proposition 3.4 gives the following formula in which the
indices i; are integers.

Proposition 4.4. For w € Sz, we have

(_
(4.11) &, = Z (=)L gy ey,
Saq*Say ¥Sap =W
i1 <ip<--<igp
akgak+1:>i)€<ik+1
ix<ag

where L is arbitrary.

%
Ezample 4.5. Consider &,,. For every L > 1, sg may be obtained as the Hecke
product of L copies of sg. For this Hecke factorization the associated sequence
(i1,...,i7) can be any sequence of integers with i1 < is < --- < iy, < 0. Therefore,

we have &, = >, (-1) e,
See Appendix B for more examples of back stable Grothendieck polynomials.

4.6. Aut(Az)-action on back stable Grothendieck polynomials.

Proposition 4.6. For w € Sz, we have

(4.12) & ) = 7(6.0).

Proof. Follows from Proposition 4.4. ([
Proposition 4.7. For w € Sz, we have

(4.13) B oy = @(B,).

Proof. This holds by Proposition 5.23 and Proposition 5.21, using the fact that For
(defined in §5.6) and @ commute. O

4.7. K-Stanley functions. There is a ring homomorphism 7y : <}—% = A given by
x; — 0 for all i € Z, and p, — pg for all & > 1. This “sets all z; to zero except
those in A(z_)”.

Define the K-Stanley function G, € A(Jc,) for w € Sz by

(4.14) G = 10(B).

Remark 4.8. We call G,, the K-Stanley function because it is the K-theoretic
analogue of a Stanley function in cohomology | |. For w € S, the (forward-
)stable Grothendieck polynomial of [F'K] is the element G (1) € A(z4) defined
by

Gw(ICJr) = lim Qj,yn(w),

n—0o0
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which by (3.6) is
(4.15) Gu(zy) = }: (—1)P g, 3

Sap *Sap ket kSap =W
1<y <ia < <ip
apLap41=>ip<igt1

p*

Note that this gives the same symmetric series as the definition in (4.14), only with
variables x rather than x_.

In this work we use the name “K-Stanley” in lieu of “stable Grothendieck”
because the latter produces a conflict in the equivariant setting as there are three
different versions of limiting double Grothendieck polynomial: (1) a back stable
limit (the back stable double Grothendieck polynomial) which is not symmetric in
the x variables, (2) a forward stable limit (the super K-Stanley function), which is
supersymmetric, and (3) an equivariant analogue of (4.14) (the double K-Stanley
functions).

Proposition 4.9. We have

(4.16) Moo ="o
(4.17) G,y(w) =Gy for all w € Sz.

Proof. As both sides are algebra maps one may check (4.16) on the topological
algebra generators, which is straightforward. Equation (4.17) follows from equation
(4.16). O

Proposition 4.10. For w € Sz, we have
(418) Gw = Z (—1)p_é(w)1'i1$i2 e {,Cip.

Say *Sag ¥ *kSq, =W
i1 iz <<y <0
ap<agp41=>0k<ik41
%

Proof. By (4.17) we may assume th(a_t w € S4 . Since ws; > w for i € Z<y, By
is S_-symmetric. Hence may write &, = > fox$ where f, € A(z_) with only
finitely many f, # 0. Applying 7o to (4.11) we have G,, = fo. But fy equals
the right hand side of (4.18), the sum of monomials in (4.11) having only z; with
1 <0. ([

Proposition 4.11. For w € Sz, we have
(4.19) Gw(w—l) = Gy.

Proof. By (4.17) one may assume w € S so that w € S,, for some n. By [F'K, Cor.
5.10] and the S,-invariance of

Gu(x1,...,20) = Gy(...,0,0,21,22,...,2,,0,0,...),

we have
(4.20) GulT1,. .. a0) = Z (—1)5(")”(”)_5(“’)Qiuwo(@wmflwo)
(4.21) = Z (= 1) =D 10 (B, ) B 510y -

Since conjugation by wyg is a length-preserving automorphism of S, and taking
inverses is a length-preserving anti-automorphism of S,, u * v = w if and only if
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(wov™Ywo) * (wou"twg) = wow " twy. Applying (4.20) for wowlwy and (4.21) for
w we have

Gupw—1two (T1s -+ oy Ty) = Z (—1)‘(“)”(”)‘““’)(’5w0v—1w0wo((’5u)

UXV=W

= Gw(ml, N ,xn).

Letting n — oo we deduce that Gy = Goyg—14, I A.

The Dynkin reversal on .S,, given by conjugation by wq, sends s; to s,_;, whereas
w sends s; to s_;. Both are group homomorphisms, so wow ™ twy = ~¥"w(w). The
result follows by (4.17). O

Proposition 4.12. For all w € Sy, we have

(4.22) (IJ(GU,) = Gw(w)
(4.23) SGy(z) = Gy-1(02).

Proof. Equation (4.22) follows from Proposition 4.7 and applying the specialization
x; — 0, which commutes with @. For (4.23), we calculate

SGw—l(@l‘) = (S o @)Gw—l = @Gw—l = Gw(w—l) =Gy

by (4.7), (4.22), and (4.19). Applying S yields (4.23). O

4.8. Coproduct on symmetric functions. Let A : A — A®A be the coproduct:
Alpr) = pr ® 1 + 1 ® p.. We identify A ® A with symmetric series in two sets of
variables, one set for each tensor factor. If we use x_ for the first factor and a_ for
the second then A(py) = pr(x_) + pr(a-).

Proposition 4.13. For w € Sz, we have

(4.24) A(Gy) = Y (-1t © G,
Proof. Plug two sets of variables into (4.18). |

4.9. Superization. For f(z) € A let f(z/a) denote the image of f in A ® A =
A(x) ® A(a) under superization, which is the coproduct A followed by id ® S where
the antipode S acts on the “a” variables. The map f +— f(z/a) is the unique
Z-algebra homomorphism sending p(z_) to pr(x/a) = pr(z-) — pr(a—), which
for historical reasons we denote by pi(z||a). We call G,,(x/a) the super K-Stanley
function.

Proposition 4.14. For w € Sz, we have

(4.25) Gu(a/a) = Y (=) WHOIG i (6(a)Gy (@)
(4.26) = Y (-G (6(a)Gu().

Proof. This holds by Propositions 4.12 and 4.13. (]
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4.10. Coproduct formula. The coproduct A on A can be extended to a map
A : R — R giving R the structure of a A-comodule, by defining Az;) =1®x; for
i € Z. It restricts to a map RT — R+ that makes R* into a A-comodule.

Theorem 4.15. For w € Sz, we have

(4.27) ABL) = 3 (c1fr-tog, o,
U*V=w

(4.28) B, = Y (~)fHeg,e,.
UXV=W
vES 4o

Proof. We first derive (4.27) from (4.28). By Proposition 4.13, we have

A(gw) N Z (71)E(u)+f(v)7€(w)Gu®U
vESL0
= Z (—1)lu) ) HE - G @ G,, 8,
UL *ULKRV=W
vES4o
%
= Z (=1 ) HE— WG o 6,
U *2=WwW
The equality (4.28) can be deduced from | , Theorem 4.7] by taking a limit; see

[ , Section 6.2] for an explanation of this limit in the very similar cohomology
setting. Presumably, (4.28) could also be deduced from a direct combinatorial
argument similar to the proof of the coproduct formula in | ] O

Ezample 4.16. We compute G, and G,_, using Theorem 4.15. By (4.17) we have
Gs, = G,_, =Gs,.

<g81 = GS1 + 651 -G 651 = Gso SPR]

8571 =Gy, © 20.

4.11. Grassmannian K-Stanley functions. We denote by S9 the subset of
Grassmannian elements, the set of w € Sz such that ws; > w for all ¢ € Z\ {0}. Let
Y be Young’s lattice of partitions. There is a bijection Y — S2 denoted A — w)
[ ]. Consider the tableau of shape A in which the box (4,7) in the i-th row
and j-th column is filled with the simple reflection s;_;. Then wy € S% is the
element with reduced word given by reading the rows of this tableau from right to
left, starting with the bottom row.

Ezample 4.17. For A = (3,2) we have wy = (sps_1)(s25150) where the parentheses
separate the reflections according to their row in the tableau.

s0]s1 )]

S—1| So

Define the Grassmannian K-Stanley function
(4.29) Gy = Gy, for A e Y.

Some examples of G are given in Appendix B.
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Lemma 4.18. For A € Y, we have

(4.30) Gy = &,

— - "

Proof. Since wy € S9, it follows that &, is Szo-symmetric, that is, &,, € A.
— b

Thus Gy = Gy, = 1n0(B 4, ) = G4, , as required. O

Proposition 4.19. For A € Y, we have
(4.31) W(Gy) = Gy

Proof. We have w(wy) = wy/. This is a special case of Proposition 4.7 for wy. O

The following is easily deduced from e.g. the Schur expansion of G in |
Thm. 2.2].

Proposition 4.20. For all r > 1, we have

(4.32) Gr =) (—1)"s,1s

i>0
fi+r—1
4, s =Y (~1)
(4.33) Gy ¢§>0( )( r1 )51+

5. BACK STABLE DOUBLE GROTHENDIECK POLYNOMIALS

Recall the Laurent polynomial rings R(a) and R = R(z) from §2.8. Define the
R(a)-algebras

=

51) R(z:a) =
(5.2) R(m;a)"" =

(z) ® R(a)
()t @ R(a).

=

For w € Sz, let w® (resp. w®) denote the action of w on the z (resp. a) variables
in R(x;a). We use similar superscript notation for other operators.

5.1. Double Grothendieck polynomials. For w € S,,, the double Groth-endieck
polynomial &, € R(x;a) is defined by

(5.3) By (z50) = H (z; © a;)

i+j<n
(5.4) Gy (z;a) = 77 (Bys, (5 a)) if ws; > w.
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Ezample 5.1. The double Grothendieck polynomials &, (z;a) for w € S3 are given
below.
x19a1 117190,2 zg@al

ST

(x18a1)(x2 8 a1) (x1 8 a1)(x1 ©az)
‘ﬁ'g 7?1
1 O ay 3?1 Say)® (z @ag)

e

Remark 5.2. The literature defines &,,(z;a) using @ instead of ©. This has the
convenient feature of avoiding denominators. However our convention is the most
natural with respect to localization.

One may show that &,,(z;a) is well-defined for w € S,.
Lemma 5.3. For w € S;, we have
(5.5) Gy (2;0) = By ().

Proposition 5.4. The set {&,(x;a) | w € St} is a R(a)-basis of R(a) ® Zlx; |
i € Z>o).

Proof. Follows by Lemma 5.3 and Proposition 3.9. O

5.2. Negative double Grothendieck polynomials. The automorphism & of
R(z) defined by (2.28) can be extended to a ring automorphism of R(z;a) by
letting w(a;) = ©(a1—;) for all i € Z.

Recall that w acts on Sz by (2.7). For w € S_, define the negative double
Grothendieck polynomials by

G (75 0) = 0(Buy(w)(w;a)).
Ezample 5.5. We have &;, (v;a) = 1 © a;. Thus
G (z;0) =0(B,,) =0(z1 ©a1) = (Bx0) © (Bag) = ap O xp.

Proposition 5.6. The set {®,,(7;a) | w € S_} is a R(a)-basis of R(a)[(1—z;) " |
1€ Zgo],

Proof. This follows from the fact that @ restricts to a R(a)-algebra isomorphism
R(@)fos | i € Zo] = R(@)[(1 - 2:)~" | i € Zio
Bu(x;a) = By (13 a) for w € S,. O
For w € S, write w = uv with v € S; and v € S_. Define
& (z50a) = B, (x;0)6,(x;a) for w € Sxo.
Proposition 5.7. The set {®,,(z;a) | w € S0} is a R(a)-basis of R(z;a)*.

Proof. Follows immediately from Propositions 5.4 and 5.6. g
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Proposition 5.8. For w € S.q, we have

(5.6) Gy(zia) = Y (1) TS, L (0a)8,(2),
(5.7) 6, () = Z (—1)WHO =)@ (0)S,(x;a).

Proof. For (5.6), by factoring and applying @ one may reduce to the case that
w € S;. Then w € S, for some n, in which case (5.6) holds by [FIK, Prop. 3.2,
Lemma 5.5]. For (5.7) apply Proposition A.1. |

Ezample 5.9. We have &, (z;a) = x16ay. Using (5.6) with the Hecke factorizations
uxv = s1 given by (u,v) equal to (s1,id), (id, s1), and (s1,s1) we have
B, (z;a) = &, (00)Biq(7) + 854(S(a)) &, () — G4, (Ca),, (2)
=&, (0a) ® B, (v) = S(a1) Dz =21 S ar.
Proposition 5.10. For w € S+g, we have
(5.8) Gyp-1(z;a) = B, (Sa; 0x).

Proof. This follows from (5.6) using that uxv = w if and only if v "t xu=! =w=t. O

Proposition 5.11. We have

(5-9) 7~r?769510(&10;(1) = {65“1;(.7/';@) if s;w < w

&, (x;a)  otherwise.
Proof. Follows by Proposition 5.10 and Lemma 4.2. g

5.3. Double symmetric function ring. Let S = Z[[a; | ¢ € Z]] be the ring of
formal power series in variables a; for i € Z with coefficients in Z. Let A(z||a) :=
A(z/a) @z @S be the S-algebra of formal power series in ey, (x/a) with coefficients in
S. The ring A(z||a) is a Hopf algebra over S with coproduct such that the elements
pr(||a) are primitive, counit €, : A(z||a) — S given by eq(pr(z|ja)) = 0 for k > 1,
and antipode S(pg(z||a)) = —pr(z||a) for all k > 1.

5.4. Double back stable rings. Define the S-algebras, called double back stable
rings,

— .
(5.10) R(z;a) = A(z||a) @R R(z;a)
(5.11) R(2;0)" = Azla) @pay Rlz;a)*.
%
The infinite symmetric group Sz has two commuting actions on R (z;a), one acting

on z variables and the other on a variables, including “the variables in A(z||a)”,
where pi(z||a) is as in §4.8:

57 (pr(xlla)) = pr(zlla) + &io(z] — z5)
s¢(pk(@l|a)) = pr(zlla) + dio(ag — af)-
The algebra A(z||a) is the S-subalgebra of S%o-invariants in %(x, a).

Remark 5.12. Since formal series in pi(x||a) are allowed, in order to admit an Sz-
action, series in the a; must also be allowed. This is why S is used for the coefficient
ring rather than R(a).



BACK STABLE K-THEORY SCHUBERT CALCULUS 23

5.5. Aut(Az)-action on double back stable rings. <Ihe group Aut(Ayz) acts on
(z;a) by ring automorphisms. Define ~ : E(a:, a) = R(x;a) by
Y(@i) = @iy, v(ai) = ait1, V(pr((la)) = pr(zlla) + 2§ — af.

Let & be the ring automorphism of %(z;a) extending the automorphism @ of
R(x;a) in §5.2 by
k—1
(5.12)  alpealla)) = (—1)FY (”+ )pkw(zHa) for all £ > 1.
S0\ k-l

This is consistent with the definition of @(px(x_)) and the parallel definition of
@(pr(a—)) in §4.1 (using the convention pg(ay) = —pg(a_)).

%
Proposition 5.13. The maps v and & define an action of Aut(Az) on R(x;a).
That 1is,
(5.13) Goyod=~"1.
Proof. This can be readily verified on the generators. O

Proposition 5.14. For all w € Sz, we have
(5.14) O(Gu(z/a)) = Gy (z/a).
Proof. Follows from Proposition 5.23 and Lemma 5.20. O

5.6. Back stable double Grothendieck polynomials. Given w € Sz, let [p, q] C
Z be an interval that contains all elements of Z moved by w. Define &l (z;a) €
R(z;a) by
&P (z;0) = PG 10 () (231 0)).
%
Define the back stable double Grothendieck polynomial &, (x;a) by
<_
G ,(r;0) = lim &P9D(2:a).
p——00
q—00
It is immediate that we have
Gps, (] if ws;
(5.15) 7o (3 0) = 4 Swei (i) HEwsi<w
&, (x;a)  otherwise.
Proposition 5.15. We have

e .
(5.16) ﬁ?’e(%w(:ﬂ;a)) _ {Esm(xW) if siw < w

& (x;a)  otherwise.

Proof. Follows from Proposition 5.11. (]
Proposition 5.16. For w € Sz, we have
= L)+ (v)—L(w) &5 Y
(5.17) G y(w;a) = Y (—1) B ,—1(5(a)) B, (2).
Proof. This holds by Proposition 5.8 and the definitions. O

Proposition 5.17. For w € Sz, we have
%
(5.18) & y(z50) = Z (=) HOHE WG (Sa)Gy(x/a)B, ().

UKVRZ=W
u,2E€S20
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Proof. Let w =uxv, ut =u; xv; and v = ug * vy with vy, vy € S0, so that

w = vyt *up ! % up * vy, By Propositions 5.16, 4.15, and 4.14 we have

B(wa)= Y (1O, (6(a) ()

UXV=w

= Z (_1)4(“1)+Z(Ul)+f(u2)+@(v2)—f(w)

—1, -1
v kU kU R v =W
v1,v2E€S%0

&, (6(a))Gu, (6(a))Gu, ()80, (2)
= Y (RN IHEHEHe, (6(a)Gy (0/a)B, (). O

1 .
vy *Y*RVv2=W
v1,v2 €S20

Example 5.18. We have

so(w3a) = Gy (x/a) = Gi(z/a)

s1(z30) = &5, (Sa) + Gy, (z/a) + &5, ()

Q581 (@a) S1 (m/a) - 681 (60‘)681 (‘r) - GSl ('r/a’)®81 (LL')
&, (0a)Gs, (v/a)®s, ()

= &;,(0a) & Gi(z/a) ® &, (2)

=6S(a1) ® Gi(z/a) @ z1 = Gy(z/a) ® &, (z;a).

®
&

+

Proposition 5.19. For w € Sz, we have

— —
(5.19) & ,-1(z;a) = B4 (0a; 00).
Proof. This holds by Proposition 5.16 and the fact that u * v = w if and only if
v i xuml =wh O

Lemma 5.20. For all w € Sz, we have

%
(5.20) Gy(x/a) = 6, (x;a)
Proof. This follows by Proposition 5.17 and the fact that &,(z)|s,—~0 = 0 for z #
id. O

Define the forgetful ring homomorphism For : %(x, a) — <§ by
For(pk(za)) = pr(z-)
For(z;) = z;
For(a;) = 0.

— —
Proposition 5.21. For all w € Sz, For(® ,(z;a)) = &, (z).
Proof. Follows from Propositions 5.17 and 4.15. O

5.7. Aut(Az)-action on back stable double Grothendieck polynomials. The
group Aut(Az) of automorphisms of the Dynkin diagram Az, permutes the back
stable double Grothendieck polynomials. By Theorem 5.25 and Proposition 2.7 the
following hold.

Proposition 5.22. For w € Sz, we have
— -
(5.21) B (w)(T;0) = (B

w(®;a)).
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Proposition 5.23. For w € Sz, we have
— =
(5.22) B y(w)(T30) = O(S (25 0)).

5.8. Back stable doub1e<_Gr0thendieck polynomials are the equivariant
Schubert basis. For f € R(z;a) and w € Sz define

flw = f(wa;a) = ea(w”(f(z;a)).
The map f +— fl, is an S-algebra homomorphism %(x, a) = S.

Proposition 5.24.

<—
(1) Forw,y € Sy, Bulz:a)ly = Gu(ra)l,.
(2) For w,y € Sz let M € Z>q be such that Y™ (w),v (y) € Sy. Then

e _
6w(x; a)|y =7 M®7M(w)(x5 a)|'yM(y)'

Proof. For (1) consider (5.18). Since y € Sy, Gy(z/a) is invariant under y* and
vanishes at = ya unless v = id. Therefore by (5.6) we have

<_ u z)—L(w
Gy(zia)l, = Y (—1) WO, 1 (ca)8.(ya)
wze Sty

=6, (z;a)y.
Part (2) follows from part (1) and (5.21). O

Theorem 5.25. There is a S-algebra and Sz -equivariant embedding re(s_: <E(ac, a) —
S ®r(a) U defined by res(f)(w) = flw for all w € Sz. Moreover, res(®,) = 7]1” for
all v e Sy.

%
Proof. We observe that the values of f|, are in S. Let f € R(x;a). w*(f) —
(sijw)®(f) is sf;-antisymmetric and therefore divisible by x; — x;. It follows that

flw = fls;;w is a multiple of a; — a;. Thus res(f) € S ®p(q) ¥ by (2.33).
Next we show that res(%v(x; a)) = 4" for all v € Sz. By Proposition 2.4, this
is equivalent to showing that
(5.23) <ng(a; a) = id,v for v € Sy
and if ws; < w then

(5.24) <61,(wa; a) =

%v(wsia; a) if vs; > v
Mgv(wsia; a) + M%wi (waja) if vs; < w.
1= aws1) 1 — aws)
Equation (5.23) follows by Proposition 5.24 and (A.11).
Suppose w # id. Let i € I be such that ws; < w. Suppose first that vs; > v.
Then & ,(x;a) = 77 &, (x; a). Since the image of 77 is s?-invariant, we deduce that
&, (wa;a) = 6, (ws;a;a) as required.
Suppose vs; < v. Then &, (r;a) = ﬁf%v(x; a). This yields
&

GT

v(wasa) — (1 = ay@iy) 6 (ws;a; a)

Qo (i) — Qw(i+1)

b 1- w(%
ijsi(wa;a):( a (+1))

which rearranges to (5.24), as required. O
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Corollary 5.26. The back stable Grothendieck polynomials %w represent the Schu-
bert classes in the K-theory K(F1). The back stable double Grothendieck polyno-

(_
mials &, (x;a) represent the Schubert classes in the torus-equivariant K-theory
Kp(F1).

5.9. Double K-Stanley functions. Let 7, : %(m;a) — A(z]|a) be the S-algebra
homomorphism sending z; — a; and p,(z|la) — p,(z||a). Define the double K-
Stanley function Gy (z||la) € A(x||a) by

%
o]

(5.25) Gy (z||a) == na(® (x5 a)).

Proposition 5.27. For w € Sz, we have

(526)  Gu(alla)= Y (-D)WHOHEAWIG, L (6(a)Gy(z/a)®.(a).

u,2€S810

Proof. This follows immediately from Proposition 5.17. ]
Example 5.28. Since G5, = Gs_,5, = G11 and G4, = G; we have
Gsosi (7]|a) = Gogsy (2/a) + Gy (/) 85, (a) = Gsps, (2/a) B, (a)

= Gos, (z/a) + Goo(x/a)ar — Gy, (x/a)ar

= (1—-a1)G1i(z/a) + a1G1(z/a).
Since &;_, (©a) = ap we have

Gs_yso(lla) = &5, (00)Gsy(2/a) + Gs_yso(/a) = &5, (©a)Gs 50 (z/a)
= (1 —ap)G11(z/a) + apG1(z/a).
Proposition 5.29. For w € Sz, we have
@(Gu(lla)) = Guw)(zla).

Proof. Tt is straightforward to check that n, o @ = @. Thus (5.27) follows from
Proposition 5.22. O

Proposition 5.30. For all w € Sz, we have

(5.27) Gy-1(z]|a) = Gu(z]|a)|ssoa,arem
Proof. The transformation z — Sa, a — ©x commutes with 7,. The result follows
from (5.19). O

5.10. Coproduct formula. The Hopf algebra structure on A(z||a) is defined by
letting pr(z|la) be primitive for all & > 1. We give R(x;a) the structure of a
A(x||a)-comodule by letting A act on the tensor factor A(z||a) in %(:L’, a).

Theorem 5.31. For w € Sy, we have

(5.28) A(B (zia) = 3 (~1)!WHOLOG, (2]la) © & (23 a)
(5.29) & (aa) = 3 (—1)!OHOALDEG, (]a), (23 a).

’U€S¢o
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Proof. Equation (5.29) follows from Propositions 5.17, 5.27, and (5.7).
For (5.28), using Propositions 5.17, 5.27, and A.2 we have

S +Gy(alla) © B, (z;a)

_ 3 +£6,,1(6(a))Go, (/)G (@)
U1 kU *$21 XU KV ¥ 2o =W
wi,zi €S0

® 6,2 (6(a))Gu, (2/a)G, (z)
= ). £6,-1(5(a)Gu, (z/a)

U1 V] ¥V k2o =W
u1,22€S5%0

© Gy (/)G (@)
= Y 46,51((a)AC (/)6 (@)

UL FV*Zo =W
u1,22€5%0

= A(B , (z; a)). O

5.11. Grassmannian double K-Stanley functions. Recalling w) from §4.11,
define

(5.30) Ga(z]|a) := Gy, (z;a) for A € Y.
Lemma 5.32. For A € Y, we have
(5.31) G (z]la) = B u, (2:0).

Proof. For any Hecke factorization wy = u* v x 2z with u,z € S+, we have z =
id. The result then follows from the definition (5.25) by comparing (5.18) and
(5.26). O

Corollary 5.33. The Grassmannian K-Stanley functions {Gy | A € Y} represent

the basis of structure sheaves of opposite Schubert varieties in the K-theory K(@O).
The Grassmannian double K-Stanley functions {Gx(z||la) | A € Y} represent the
structure sheaves of opposite Schubert varieties in the torus-equivariant K-theory

Kr(Gr).
Proof. Since KT(@O) = (Kp(F1))%%0, the statement about G (z||a) follows from

Corollary 5.26, Lemma 5.32, and the fact that the Gx(z||a) are precisely the S~

invariant Schubert basis elements for K7(Fl). Applying the forgetful homomor-
phism Kp(Gr) — K(Gr), the equivariant Schubert basis is sent to the Schubert
basis. The proof is completed by applying Proposition 5.21. (I

Proposition 5.34. For A € Y, we have
@(Ga(z[la)) = G (zla).
Proof. Follows from Proposition 5.29 and the fact that w(wy) = wy. O

A rook strip is a skew shape v/p which has at most one box in each row and in
each column. Write v/u € RS if v/p is a rook strip. The Durfee square of \ is
largest square partition contained in A; denote its side length by d(\).
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If p C A\, we define
(5.32) W/ 1= wxwljl.
Lemma 5.35. Let u C A € Y and uw € Szo. Then u*w, = wy if and only if
u = 1wy, where v C p, d(v) =d(X), and p/v € RS.

The coproduct formula gives the transition matrix between the Grassmannian

double K-Stanley functions and the super K-Stanley symmetric functions.

Proposition 5.36. For A € Y, we have

(5.33) Galzlla)= Y (M6, - (ca)Gy(x/a)
vCpuCA v
d(v)=d(\)
nw/VERS

(5.34) Grefa)= 3 (C)WMS,,  (0)Gu(alla).
vCpuCA
d(v)=d(\)
u/vERS

Proof. Equation (5.34) follows from (5.33) using Proposition A.1. Equation (5.33)
is an instance of Proposition 5.17. In this application z = id since wy € S2. The
Proposition follows from Lemma 5.35. (I

In §9, we give determinantal formulae for G (z||a).
Ezample 5.37. By Proposition 5.36 and using that &, (a) = a1, &;_,(a) = S(ap),
and &, ,(a) = al(@(ao)), we have

Ga(z/a) = (1 — &, (a))G2(x[|a) + &, (a)G1(z]|a)
(1- al)G2($||a) + a1G1(zl[a)
Gu(z/a) = (1= &,_,(a))Gu(zl|a) + &,_, (a)G1(z||a)
=(1- e(ao))Gn z|la) + ©(ao)G1(z||a)
Ga(z/a) = (1 - &, (a) = &,_,(a) + &y,5_, (a))Ga1(z][a)
+(6s_,(a) — G4,5_,(a))Ga(zlla) + (B, (a) — Es,s_, (a))Gra(zl|a)

+ 84,5, (a)Gr(zl]a)
= (1= (a1 © a9))G2(z[|a) + S(ao)(1 — a1)Ga2(z||a)
+ a1(1 — ©(a0))Gr1(zla) + a1(S(ao))G1(z]a).

6. K-BUMPLESS PIPEDREAMS

In | |, we introduced bumpless pipedreams and showed that back stable
(double) Schubert polynomials can be obtained as sums over bumpless pipedreams.
Weigandt [Wei] connected bumpless pipedreams to alternating sign matrices and a
formula of Lascoux [Las], and thereby obtained a bumpless pipedream formula for
(double) Grothendieck polynomials.

6.1. Back stable double Grothendieck polynomials. Recall that a bumpless
pipedream is a tiling of the plane by the tiles: empty, NW elbow, SE elbow, hori-
zontal line, crossing, and vertical line.

ARV
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1 — 1 —

] ! ] 0
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-2 -1 0 1 2 3 -2 -1 0 1 2 3

FIGURE 1. A K-bumpless pipedream for w = sgso =
(...,—2,—1,1]0,3,2,...) with weight wt = —(2_1 S a_1)(z_1 ©
ao)(z1 ©ag)(1 = (zo©a1)(1 — (r2©az)). In the left hand diagram
the labels are Cartesian. In the right hand diagram, the row labels
give the permutation w(D), whose computation only considers the
first time two pipes cross and ignores later crossings.

We shall use matrix coordinates for unit squares in the plane. Thus row coordi-
nates increase from top to bottom, column coordinates increase from left to right,
and (i,7) indicates the square in row ¢ and column j. A K-bumpless pipedream
is a bumpless pipedream D covering the whole plane, such that for all N > 0
and all N <« 0, there is a pipe traveling north from (oo, N) to the square (N, N)
where it turns east and travels towards (N, c0). The permutation w(D) € Sz of a
K-bumpless pipedream is obtained as follows. For each i € Z, there is a pipe that
heads north from (0o, 7). We follow this pipe until it heads east towards (j, 00), ig-
noring all crossings between pairs of pipes that have already crossed (reading pipes
from SW to NE). Then w(D) is determined by w(j) = i, as ¢ € Z varies.
The weight wt(D) of a K-bumpless pipedream D is given by

(6.1) wt(D) = I[I (@oaw) 1T (1 - (2 ©4q5)),

empty tiles (4,5) NW —elbows (4,5)

where the first product is over empty tiles (4,j) and the second product is over
elbow tiles (7, 7) that connect the north and west sides.

Ezample 6.1. The one-line notation for w € Sz is the list

(.., w(=2),w(-1),w(0)|w(l),w(2),...)

with the vertical divider separating the images of nonpositive and positive integers.
In one line notation, w = sgss = (..., —2,—1,1|0,3,2,...) where ... denotes fixed
points. Figure 1 shows a K-bumpless pipedream D for w, where we have only
drawn the region {(4,7) | 4,4 € [—2,3]} (the rest of the pipes head north, turn
once and head east). In the left picture, the empty tiles have been indicated, as
have the row and column numbers. In the right picture, we have indicated the
calculation of w(D), labeling each pipe by the column where it enters the picture.
The pipes labeled 0 and 1 intersect twice, and the second intersection is ignored
when computing w(D).

The following result follows from [Wei, Theorem 1.1], reproduced as Theo-
rem 6.13 below.
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Theorem 6.2. Let w € Sz. Then

&, (x50) = (=1)) S wi(D)

where the summation runs over all K-bumpless pipedreams D with permutation
w(D) = w.

Example 6.3. Let w = sg. Then for each j > 0, there is one K-bumpless pipedream
D; for w with one empty tile (—j, —j) and j NW-elbow tiles (—k, —k) for 0 < k < j
and
wi(D;) = —(z—;0a—;) [[ (1-(z-xSa)).
0<k<j

By Proposition 5.36, we have %SO (z;a) = G1(x/a) and by Proposition 4.14, we have
Gi(z/a) = Gi(z) + G1(a) — G1(z)G1(Sa) =1 —[[;50(1 —2—;)/(1 —a—;). Using
this, one checks that indeed gs() (z3a) = ;50(x—j0a—)) [[<po;(1—(2_rSa—y)).

6.2. Pipedreams for Grassmannian double K-Stanley functions. Let )\ €
Y. Recall from | | that a A-halfplane pipedream is a bumpless pipedream in
the upper halfplane Z< x Z such that the crossing tile is not used, and

(1) there are (unlabeled) pipes entering from the southern boundary in the
columns indexed by I C Z;
(2) setting (I+,I_) = (INZso,Z<o\I), we have Iy =1, 1 (see (7.1), (7.2));
(3) the i-th eastmost pipe entering from the south heads off to the east in row
1 — 4. (Equivalently, for every row i € Z<q, there is some pipe heading
towards (7, 00).)
Since crossing tiles are not used, there is no distinction between a halfplane pipe-
dream and a K-halfplane pipedream.
The weight of a halfplane pipedream D is given by (6.1) (this is different from
the weight used in [ D.

Ezample 6.4. Let A = (5,3,2,2). In Figure 2 the Rothe pipedream (see [ ,
Section 5.2]) and another A-halfplane bumpless pipedream are depicted.

Theorem 6.5. Let A € Y. Then
Ga(zlla) = (-1 wt(D)
D

where the summation runs over all A-halfplane pipedreams.

Proof of Theorem 6.5. Let wy € Sz be a Grassmannian permutation, and set [ =
wy ' (Z<o) = Ly +U(Z<o\Luy,—) and I’ = Z\I. Let D be a K-bumpless pipedream
for wy. Then the pipes labeled by I head off to the east in the rows labeled by
Z<y, while the pipes labeled by I’ head off to the east in the rows labeled by Z.
Furthermore, pipes of each type do not cross pipes of the same type. It follows
immediately that the part D<g of D that lies in rows indexed by Z<( contains no
crossing tiles and is a halfplane pipedream.

On the other hand, we claim that the bottom half D~y of D that lies in rows
indexed by Z~o depends only on wy and furthermore contains no empty tiles, and
no NW-elbows. Indeed, D~ is given as follows: any pipe labeled by i € I travels
northward until row 0, and any pipe labeled by ¢ € I_ travels northward until row
w~1(4), turns and travels eastward. This description can be proven, for example,
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FIGURE 2. The Rothe and another (5, 3,2, 2)-halfplane bumpless pipedream.

by descending induction on the label i € Z. (Note that it follows that D is actually
a bumpless pipedream — there are no pipes that cross twice.) We also deduce that
the top half D« is thus a A-halfplane pipedream.

%
The stated formula for G (z|la) = &, (z||a) now follows from Theorem 6.2. O

We restate Theorem 6.5 using semistandard tableaux. Given k € Z and a box
s =(4,7) € A define

(62) Wt(k, S, A) = ((Ek @ ak+g()\)+j_i).
Corollary 6.6. Let A € Y. Then

(6.3) G (z||a) DS TT (m )5, ) [ [ (1 = wt(k, s, A)))
T seX k
where T' runs over the semistandard tableauz of shape A with entries in Z<g, s runs

over the bozes in A and k € Z<q runs over values such that T(s) < k and replacing
the s-th entry of T by k results in a semistandard tableau.

Proof. Every A-halfplane bumpless pipedream can be obtained from the Rothe
bumpless pipedream, the unique one that has no NW elbow tiles. This corresponds
to the unique semistandard tableau of shape A\ having A; copies of the value 1 — i.
Moreover each droop moves an empty tile one row north and one row west. Since the
tiles move diagonally, reading along diagonals from northwest to southeast starting
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from the southwestmost empty tiles, the row indices of the empty tiles define the
values in a corresponding diagonal in the semistandard tableau. This yields a bijec-
tion between the A-halfplane bumpless pipedreams and the semistandard tableaux.
The NW elbow tiles correspond to entries k that can be increased while preserving
semistandardness. [

Ezample 6.7. The semistandard tableaux for the pipedreams of in Figure 2 are
given by

—3]—-3]-1 0|0\ —5|—4}3 0|0\
—2[—2[ 0 —4]—3[0

=1 —2|-1

0lo0 —1] 0

The outlined empty tile in the second pipedream in Figure 2 corresponds to the
outlined —3 tableau entry. The fact that this —3 can be replaced by the larger
elements —2 and —1 corresponds to the presence of the two NW elbow tiles that
are directly to the southeast of the outlined empty tile. The contribution of the
box of the outlined —3 is given by

(z-30a3)(1 - (220 a1))(1 - (71 © az)).

Remark 6.8. (1) In the nonequivariant setting the original formula for G uses
set-valued tableaux | ]. These are in bijection with marked bumpless
pipedreams [Wei, §7].

(2) We biject from A-halfplane pipedreams to semistandard tableaux with non-
positive entries. Upon replacing entries ¢ by 1 — 4 one obtains reverse semi-
standard tableaux with entries {1,2,...,}. In this context our formula is
an equivariant upgrade of the symmetric Grothendieck special case of [SY,
Theorem 1.3]. This result is also implicit in | ].

(3) In the more general case of vexillary permutations, a more complicated ver-
sion of (6.3) was given in part 3 of the second corollary in §1.2 of | ]
The article [SY] makes the observation that using reverse tableaux often
leads to simpler formulas.

6.3. Expansion formulae. Let w € S,,. A w-rectangular K-bumpless pipedream
is a K-bumpless pipedream in the n x 2n rectangular region R, := {(i,j) | ¢ €
[1,n] and j € [1 —n,n]}. The pipes are labeled 1 —n,2—mn,...,0,1,...,n entering
the south boundary from left to right. The positively labeled pipes exit the east
boundary, and determine w € S,, using the same prescription as for K-bumpless
pipedreams. The nonpositively labeled pipes exit the north boundary, and these
pipes cannot intersect any other pipe. The weight of a w-rectangular K-bumpless
pipedream is again given by (6.1). We also associate a partition A\(D) to an S,-
rectangular K-bumpless pipedream: it is obtained by reading the north boundary
edges from right to left, to then obtain the boundary of a partition inside a n x n
box, where empty edges correspond to steps to the left, and edges with a pipe
exiting correspond to downward steps.

Theorem 6.9. Let w € S,,. Then

& (w50) = (=1)0) 3" (=1)PPlwt(D) G ) (] |a)
D
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where the summation is over w-rectangular pipedreams.

Proof. Let D be a K-bumpless pipedream for w € S,. The pipes labeled by
n+1,n 4 2,... travel northward and turn east in the row corresponding to their
labels. The pipes labeled by 1,2,...,n travel northward until row n, perform one
or more turns inside the square [1,n] x [1,n] and then travel eastward once they exit
the square in one of the rows 1,2, ..., n. The pipes labeled by 0, —1,—2, ..., cannot
cross other pipes. In particular, the pipe labeled i € Z<( travels northward until
row n+i—1 before it makes its first turn. Thus the pipes labeled 0, —1,—-2,...,1—n
travel northward until row n, possibly perform some turns, and then exit the north
boundary of the rectangle R,. The pipes labeled —n, —n — 1,... travel vertically
at least until row 0.

To summarize: (1) the top half D« of D is a A-halfplane pipedream for some
A € Y; (2) the interesting part of the bottom half D~ of D is contained in the
rectangular region R,,, which in particular contains all the empty tiles and NW-
elbows of D~q. Since wt(D) = wt(D<o)wt(Dsq), we obtain the stated formula by
combining Theorem 6.2 with Theorem 6.5. g

The following result follows immediately from Theorem 6.9 and the definition of
Gu(z[la).

Corollary 6.10. Let w € S,,. Then
Gu(zl|a) = (=1)" Y (=1) Py, (wt(D))Gr(p) (]|a)
D

where the summation is over w-rectangular pipedreams.

Example 6.11. Let w = s1 € S3. Theorem 6.9 gives

F

&, (zlla) = (216 a1) + (1 = (21 © 1)) G (zl]a),
and noting that G1(z||a) = G1(x/a) this agrees with Example 5.18. Corollary 6.10
gives

G, (z]|a) = Gi(zl|a).

Ezample 6.12. Let w = s351 € S3. In one line notation, w(1,2,3) = (3,1,2). The
w-rectangular K-bumpless pipedreams are shown in Figure 3. For first halfplane
bumpless pipedream D the sequence of top boundary edges translates to left, left,
down, down, down. This is the edge sequence of the partition \(D) = (. By
Theorem 6.9, we have

& (230) = (21 6 a1) (w1 © az) + (21 © az)(1 — (21 © a1)) G (2] )
+ (1 = (21 © a2))Ga(zl[a),
and by Corollary 6.10, we have
Gulalla) = (a1 & a2)Gi(alla) + (1 — (a1 © a2))Ga(al|a).

6.4. Weigandt’s formula for double Grothendieck polynomials. Let w €
Sn. A w-square K-bumpless pipedream is a bumpless pipedream in the n X n
square region [n] x [n]. The pipes are labeled 1,...,n entering the south boundary
from left to right, and all pipes exit the east boundary. The permutation w € S,
is determined as for K-bumpless pipedreams. The weight wt(D) of a w-square
K-bumpless pipedream is defined by (6.1) as before. Weigandt’s formula [Wei,
Theorem 1.1] for double Grothendieck polynomials is the following.
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FIGURE 3. w-rectangular K-bumpless pipedreams for w = sys7.

Theorem 6.13. Let w € S,,. Then

®u(zs0) = (<1 3 wi(D)

where the summation is over all w-square K-bumpless pipedreams D.

6.5. Hecke bumpless pipedreams. Let D be a w-square K-bumpless pipedream.
Following Weigandt [Wei], we call D a Hecke bumpless pipedream if all the empty
tiles are in the northeast corner, where they form a partition shape A\ = A(D),
called the shape of D. The following result was proven by Weigandt [Wei].

Theorem 6.14. The coefficient k) of G in G, (see (8.1)) is equal to (—1)W)=IAl
times the number of w-Hecke bumpless pipedream with shape .

Proof. Substituting a = 0 into Corollary 6.10, only rectangular pipedreams with
no empty tiles contribute. Erasing the nonpositively labeled pipes from such a

rectangular pipedream gives a w-Hecke bumpless pipedream. O
Theorem 6.14 is a K-theoretic analogue of [ , Theorem 5.14], a direct bi-
jective proof of which was given by Fan, Guo and Sun | ]. Weigandt [Wei]

gave a more general bijection between Hecke bumpless pipedreams and decreasing
tableaux [ ].

7. K-HOMOLOGY AND HOPF STRUCTURE

7.1. Hopf structure on GKM ring. Let Vg, C ¥ denote the subspace of func-
tions ¢ satisfying ¢(v) = ¢ (w) if vSz0 = wSxe, and similarly define ¥q, C V.
Then Ug, (resp. Wg,) has basis (allowing infinite sums) {¢p*> | A € Y} (resp.
{¢"» | A € Y}). We have Kr(Gr) ~ Ug,.

The map res : R(z;a) — S ®R(a) U of Theorem 5.25 restricts to a map res :
['(z|ja) — ¥ with image given by @, R(a)y™*. Following | ], we now describe
a Hopf structure on W, that is compatible with the bialgebra structure on I'(z||a).
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For any w € 57, let

(71) Iw7+ = Z>0 n ’LU(ZS())
(72) Iw’, = ZSO N U)(Z>0).

The map w + (Ly 4,y ) is a bijection from SY to pairs of finite sets (I, 1)
such that I4 C Zso, I- C Z<o, and |I;| = |I_|. There is a partial multiplication
map S9 x S9 — S9. The product of z € SY and y € S is equal to z € SY if (1)
Im’+ n Iy’Jr =0= z,— Iyﬁ and (2) Iz,:l: U Iy’:t = Iz,:t~

The following result is proved in the same manner as | , Proposition 7.11].

Proposition 7.1. There is a coproduct A : Ve, — \i/(;réi)R(a)\i'Gr such that the
map res : T(z]|a) = Vg, is a R(a)-bialgebra morphism. The coproduct satisfies

(7.3) A ewy = Play

whenever z,y, € SY and zy € SY is defined.

7.2. K-homology basis. Let A(y) denote the Z-algebra of symmetric functions
iny =y<o = (Yo,y-1,¥-2,... and A(y|la) = [],cy R(a)sx(y) the completion of
R(a) ® A(y) whose elements are formal (possibly infinite) R(a)-linear combinations
> xey @xs8a(y) of Schur functions, with ay € R(a). The ring A(y||a) is a R(a)-Hopf
algebra with coproduct A(pg(y)) = 1@ p(y) + pr(y) @ 1.

Define the Cauchy kernel

Qz- —a)yl = [] 17& =exp (> %pk(ftlla)m(y)

k>0

This induces the structure of dual R(a)-Hopf algebras on A(y||a) and (a completion
of ) I'(z||a). Write (-, -) for the corresponding pairing I'(z||a) ® g(a) A(yl|a) — R(a).
Then by definition

(74) <S)\(£E/a) ’ S,u(y)> = 6)\,p,~
Let gx(y) be the dual stable Grothendieck polynomials of [LP]. They are defined by
(75) (G,\(x/a) s gu(y» = 6)\,u-

Define the K-Molev functions gx(y|la) € A(y||a) by duality with the Grassmannian
double K-Stanley functions G (x||a):

(7.6) (Ga(z]la) , gu(ylla)) = Oxp-

The ring A(y||a) consists of formal R(a)-linear combinations of the gx(y||a). At
a = 0, the polynomials gy (y||a) reduce to the dual stable Grothendieck polynomials
gr(y). The functions gx(y||la) are K-theoretic analogues of Molev’s dual Schur
functions.

Remark 7.2. Since the Grassmannian double K-Stanley functions G (z||a) repre-
sent the structure sheaves of Schubert varieties in the equivariant K-theory Kr(Gr )
of the thick infinite Grassmannian (Corollary 5.33), the functions gy (y||a) represent
the dual basis of ideal sheaves of boundaries of Schubert varieties in the K-group
K T(Gr(o)) of finitely supported equivariant coherent sheaves on the thin infinite
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Grassmannian. Note that the Schubert varieties of Gr and of Gr(©® are “oppo-
site”. See [ , ] for details on the duality between thin and thick K-groups,
and [LSS] for a discussion of the Hopf structure.

Recall the element wy/,, € Sz from (5.32). Proposition 5.36 implies the following.

Proposition 7.3. For p €Y, we have

(7) )= Y ()M, ((a)ela)
vCuCA
d(v)=d(\)
u/vERS

(7.8) gulylla) = > (e, (a)g(y).
vCuCA
d(v)=d(X)
n/veERS
7.3. K-Homology divided difference operators. Recall that by convention we
have x := <o = (...,2_1, %) and similarly, y := y<o and a := a<o.
For i € Z, define the operators (see (8.15))

(7.9) 37 = Q[(z — a)y]siQ(a — x)y]
(7.10) 60 = Q(x — a)y7POQ(a — z)y].

K2

It is clear that these operators, being conjugate to the operators s¢ and 7 © re-

spectively, satisfy the type A braid relations. In operator expressions, a symmetric
function or polynomial f denotes left multiplication by f. We have

(7.11) §e00C = 067°

(7.12) 07 f =000 (f) + S NFE.

Let a; = a; — a;41 for i € Z. Since Q[(a — z)y] is s? invariant for ¢ # 0 we have
(7.13) 5 =s¢ for i # 0

(7.14) 60 = 70° for i # 0.

(7.15) 38 = Q[—aoy]s

(7.16) 55° = ag (1 —50)(ag — 1).

The diagonal index of a box in row 4 and column j is by definition j —i. For
A €Y and d € Z, let A + d denote the partition obtained by adding a corner to A
in the d-th diagonal if such a corner exists, and A 4+ d := X if such a partition does
not exist. Define A — d similarly for removal of the corner in diagonal d.

By Proposition 5.15, we have

(7.17) 7CG (] |a) = Ga_i(z||a) for all A € Y and i € Z.
Let 5? =7 —1=(1-a;)A% and 7; = Q[(z — a)y}éﬁQ[(a —x)y.
Lemma 7.4. Fori € Z, we have

? 2

(7.19) T =88 — 60°.

3

(7.18) 9 = 58 — 74O
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Proof. Equation 7.19 follows from (7.18) by conjugation by Q[(z — a)y]. We have

5?—7?;-1’6 = s — A%(a; — 1)

= (—ai — (aip1 — 1)A?
= (1 — ai)A?
OAZ“ =7 —1=-14+A%(1—a;1+1)
= (1 - al)Af U

Proposition 7.5. For all p €Y and i € Z, we have
(7.20) 7i(9u(Ylla)) = gu+i(ylla)-
Proof. Using (7.12), we have
Q(z — a)y] = Q(z — a)y] 77 (1) = 577 (2(x — a)y])
=029 " ga(ylla)Ga(xl|a)

A

=D (6% (9r(ylla)Galzlla) + 57 (9r(ylla) 7] (Ga(zl|a))
A

= > (07 (aawlla)Grlzlla) + 3 (g9x(ylla)) Gr-i(z]la)) -
A
Taking the coefficient of G, (z||a) we obtain
gu(ylla) = 67 (gu(ylla) + 57 (gu+i(ylla).
Acting by §¢, using (7.11), and rearranging we have

guriylla) = (37 = 67°)(gu(ylla)) = 7ilg,(ylla))- U

The 7; satisfy the type A braid relations and Tiz =—-7. Thus 7y =7, -+ 7y
makes sense for any reduced decomposition w = s;, ---s;, € Sz.

2

Theorem 7.6. For any A € Y, we have gx(y|la) = T, (1).
Ezample 7.7. We have
g1(ylla) = 70(1) = Q[(z — a)y](1 — ao) AGQ(a — )y]
= (1 — ao)ag ' 2[~aoy(1 — s5)2a0y]
= (1 —ag)ag (1 = Qf(ar — ao)y])
= (1—ao) Z (_aO)ia{s(j+1,l77)(y)'

4,520

In particular, setting all a; = 0 we obtain ¢;(y) = s1(y). Let

Z= Z (*ao)iajl-s(j+1,1i)(y)'

4,520
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We have
g1 (ylla) = 7191(ylla) = 8 g1 (ylla) = (1 — a_1) A%, (1 — ag) Z
=(l-a_1)1+ 1 —-a_1)A%))Z
=1 —-a-1)1+ 1 -a-1)A%) (s1(y) — aos11(y) + ars2(y) + )
=(1—a1)(s1(y) —aosn(y) +---) + (1 —a_1)*(sua(y) ---)
We obtain ¢11(y) = s11 + s1. These computations of g1 and g;; agree with [LP].

7.4. Connection to Knutson-Lederer. Knutson and Lederer [[{1] define a de-
formation of the ring of symmetric functions, denoted R ®. The ring R ® has a
basis [X*] = [Ox»] (representing structure sheaves of opposite Schubert varieties
in the Grassmannian) as A ranges over all partitions. The product structure of
RE® is given by the direct sum operation on Grassmannians. We refer the reader
to [[XL] for the details and to | , Section 8.3] for a synopsis of the very similar
situation in homology.

Let ha(ylla) == 3", 9r(ylla). Whereas gx(y||a) represents the ideal sheaf of a
boundary of a Schubert variety in K7 (Gr), the symmetric function hy(y||a) rep-
resents the structure sheaf of the same Schubert variety. Further, let hy(y||d) be
obtained from hy(y||a) by the specialization

{5 ifi>0,
a; —

0 if:<0.
See | , Section 8.3] for a more precise description. The following result is
proved in the same manner as | , Theorem 8.12].

Theorem 7.8. There is, up to a completion, an isomorphism of Z[6]-algebras
R 5 A)Bl X = ha(yll9)
where § corresponds to 1 — exp(—t) in [KL].
8. THE RING OF BACK STABLE GROTHENDIECK POLYNOMIALS
8.1. The subring of K-Stanley functions. Define

I'=T(z_):=PZGrC A
AeY

to be the span of Grassmannian K-Stanley functions. The structure of I' was
studied by Buch | ]

Proposition 8.1. | ] T is a commutative and cocommutative bialgebra con-
taining G, for all w € Syz. In particular, the expansion
(8.1) Guw=> kYGx

A

exists and is finite, and furthermore we have (—1)! W =NEw € 7.

For A\, u,v € Y, define c;\”, € 7 by
GuGy =Y )G
A

By | |, we have the positivity property cf;v € (71)|“|+"’|*‘/\‘ZZO.
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Remark 8.2. Explicit combinatorial formulae for the product and coproduct struc-
ture constants of I with respect to the basis G were given by Buch | ].

Remark 8.3. The following explicit tableau formula is given in | , Theorem
) (=1 =NEw is equal to the number of decreasing tableaux (rows strictly
decrease from left to right and columns strictly decrease from top to bottom) T" of
shape A whose column-reading word is a Hecke word for w, that is, if the column-
reading word of T is 414g - - - ¢ then s;, * s;, *---*5;, = w.

8.2. Flagged Grothendieck polynomials and K-Stanley functions via sym-
metrization. A polynomial truncation of the K-Stanley function G, can be ob-
tained from the Grothendieck polynomial &, by symmetrization operators. The
intermediate polynomials are what we shall call flagged Grothendieck polynomials.

Let 0; :== A;ox;(1—x;41) for i € Z where A; is defined in (2.25). These operators
satisfy the braid relations and are idempotent: 67 = ;. Thus they generate a 0-
Hecke algebra.

Say that a sequence f = (f1, fa2,...,fn) of positive integers is admissible if
1< fi< fo<--- < f, <nandf; >iforall i. Then either f = funn =
(1,2,...,n— 1,n) or there is a minimum ¢ such that f; > i. Let f~ be f with f;
replaced by f; — 1. Then define o € S,, by

id if f = fmin
(8.2) of = L .
5,10~ if ¢ is minimum such that f; > i.
Also, define the sequence f' = (f1, f5,..., f},) by fl =min{j | f; > i}.

Ezample 8.4. Let n =17, f = (3,4,4,5,7,7,7). Then ' = (1,1,1,2,4,5,5) and

o = (5251)(5352)(83)(54)(5655)(56)-

We illustrate the construction. In the following diagram the j-th column has size
f; and a box in row i + 1 below the diagonal has corresponding simple reflection
s;. We have f{ =1 and for ¢ > 2, in the diagram f] is the leftmost column in the
i-th row containing a gray or black square.

For f = (f1, f2,--., fn) admissible, define the flagged Grothendieck polynomial
6w,f by

Gy f = GUf(QSM).

)
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Proposition 8.5. For w € S, we have

(8.3) G f = Z (—1)P~ g, g ‘i,

Say *Sag* *Sa, =W
1<y <ip <<y,
ap<lapp1=>ip<igy1
Zkgfak
where p is arbitrary.
Note that compared to (4.11), only the bound i; < ai has been changed to
ik: S fak~

Corollary 8.6. For w € S,,, we have
(8.4) O (B) = G(x1, ..., Tp).

Proof. Apply Proposition 8.5 with f = (n,n,...,n), which satisfies o5 = wyp, and
compare with Proposition 4.10. O

To prove Proposition 8.5 we use 0-Hecke algebra generating functions as in [F'I].
Consider the algebra A over P = Z[z1,...,x,] generated by elements u; for i in
the Dynkin node set I = {1,2,...,n — 1} of type A, _1, which satisfy the type
A,,_1 braid relations and uf = —u; for all i € I. For w € S, the element u,, =
sy Wiy - - Ui, 18 well-defined, where w = s;,8;, - - - 84, is a reduced expression. Then

(8.5) A= P Pu..
WES,

We have (14 au;)(1 + bu;) = 14 (a @ b)u,. In particular, 1 4+ x;u; is invertible in
Ap := F ®p A, where F' = Frac(P) denotes the fraction field of P. By [FK], we
have the following identity:

n—1

J
(8.6) H 1+ zju) = Y Gy

j=1i=n— weSy

where in the inner product the index i goes from n — 1 down to j going from left
to right. Taking the coefficient of u,, one obtains the monomial expansion (3.6).

Proposition 8.7. For admissible f, we have

Proof. Follows by Lemmas 8.8 and 8.9. ]

Proof of Proposition 8.5. This follows by taking the coefficient of u,, in & (z,u),
noting that j > f/ if and only if f; > .

Lemma 8.8. Suppose the value 0 < k < n occurs exactly once in f. Then
(8.7) Ok (G, ) = Bu g,
where g is obtained from f by replacing k by k+ 1 in f.

Proof. This is easily proved by induction. ([l
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Lemma 8.9. With the same assumptions as in Lemma 8.8, we have
Or(®f(u,x)) = By(u,z).
Here, the operator 0y is acting on the coefficients of elements in A.

Proof. Let j be such that f; = k. We are assuming that f;41 > k. Thus f, = j
and f; ., = j+ 1. The operator ¢ commutes with all operators 1 + x;u; except
when i € {k,k + 1}. It therefore suffices to show that

Ok (1 + eup—1) - (L4 @) (1 + Tegrtin-1) -+ (1 + Tpg1uj41))
=14+ zpun—1) - 1+ zpuj)(1 + Tpp1tn-1) - - (1 + Tpg1uj).
Without loss of generality we may assume k=1 and j = 1. Let
n—1 7
=3 j=n—1

This element is invertible in Ar and commutes both with 67 and 1 + xouy. It
therefore suffices to show

n—1 i n—=1 i
01 1—[1 4H1(1+$iu3‘) = I[ lH1(1+miuj) (1+.”L'2U1)
i=1 j=n— i=1 j=n—

as this is the required identity after multiplication by h. We have 6; = Ajx1(1 —
x2) = (1 —x2) + 22A1(1 — z2) = (1 — x2) + x271. Using (8.6), we compute

01 Z Gty = (1 — x9) Z By + To Z By Uy + T2 Z B Uy

weSy, weESy weSy weESy
ws<w ws1>w
= E ®wuw + § (*x2®w + I26wsl )Uw,
wES, weSy
wsy<w
and
< E @wuw> (14 z2uy)
weSy
= § Sl + T2 § Sy Uy Ut
weSy weSy
= § ®wuw + x9 § ijuwsl — X2 § ®wuw
weSn wESy wESn
ws1 >w ws<w
= § 611)“11) + x9 § 611)51 Uy — T2 g 611)“11)’
weS, wESy, wESy,
ws<w ws<w
as required. ([l

8.3. The subring of back stable Grothendieck polynomials. The back stable
Grothendieck polynomials %w are defined as elements of the ring %‘*‘ of §4.1. They
are linearly independent because their lowest degree components are back stable
Schubert polynomials, which are linearly independent. However, they do not span

%
*, or even the “finite” subring ' ® R™ C R™. The following example shows that
r1 and s; are not finite linear combinations of & .
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Ezample 8.10. By (4.33), we have the Schur function
<_
S1 = ZGlp = Z 6517;)...87150.
p=1 p=1
Applying ~, we obtain
<_
S1+x1 = Z ®sz_pms_1sosl-
p=>1

Subtracting we obtain x; as an infinite linear combination of back stable Grothen-
dieck polynomials.

Let
(8.8) B= P z6,

wWE Sy

denote the subspace of %4‘ spanned by back stable Grothendieck polynomials. For
u,v,w € Sy define ¢V, € Z by

6,6, = Y b6,

weS,
It is shown in [Bri] that
(8.9) (—)HEEw) o ¢ 7,
Theorem 8.11. For all u,v € Sz, there are constants €%, € 7 such that
(8.10) 5.6, = KRR
we Sy,
with only finitely many %& nonzero. That is, B is a Z-subalgebra ofﬁ. Moreover,
(8.11) (1) WH—tw) G e 7
Proof. For sufficiently large ¢, we have ‘¢%, = C;YZE:))W(U); see the more general

Proposition 8.25 below. Thus (8.11) follows from (8.9). Applying 1 to (8.10), we
obtain

G.Gy =) _ Cu.G.

By Proposition 8.1, we have a finite expansion G, = >, kY Gx. Thus

(8.12) GuGy = > kikc), G
J7879N
(8.13) UGy =) CTUEYGy
w (TN
(8.14) > kikbeh, => Cw kY forall A
yn% w

By Proposition 8.1 the LHS of (8.14) is finite and equals 0 for all but finitely many
A. Since (—1)'“'""”"”“6;)1, € Z>o and (—1)*W=Rgw € 7 and we have (8.11),
all terms on both sides of (8.14) have the same sign (—1){W+EW)=IA_If cw - (
for infinitely many w, then either the RHS of (8.14) is nonzero for infinitely many
A, or the RHS of (8.14) is infinite for some A, either of which is a contradiction. O
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The following result follows from Theorem 4.15.

Proposition 8.12. We have A(B) C T'®B, giving B the structure of a T'-comodule.

8.4. Adjoining Q. The ring B has basis {<Q_5w | w € Sz}. The ring T'® R has basis
{Grx® &, | A€ Yand v € S} By Theorem 4.15, we have a strict containment
B CI'® R. In this section, we show that the containment becomes an equality by
adjoining the element Q := Qx_].

Ezample 8.13. By (4.28) we have

B, =G 16, — Gy B, =G1+(1—G1)m

1 — — — —

T = 1_701(681 - 6So) = Q(681 - 680)'

where we have used (4.33) for r = 1 to obtain 1 -G = Q[—x_] so that (1-G;)~! =
Q. The infinite expansion Q =1+ G; + G7 + - -+ shows that Q ¢ I' ® R.

The computation of Example 8.13 suggests the following result.

%
Theorem 8.14. Every element of T[Q®@RY is a finite linear combination of QF &,
for (k,w) € Z>o x Sz. Thus B[Q] 2T[Q] ® R*.
Define

The operators 0 satisfy the type Agz-braid relations. The following identity is
standard.

Lemma 8.15. For all w € S,,, we have
(8.16) fw =Y 0.
v<w

Let p(") = (n—1,n—2,...,1,0) € Z"™. We have 6w = x”(”), where w(()n) €S, is
0
the longest element. The following can also be proved using the pipedream formula
for &,,.

Lemma 8.16. We have the identity

n—1
(817) Z (—].)Z(w)@w — H(]' _ mi)n—i‘
weSy i=1
Proof. We have
D S D VL A

weSy, wWESn

(8.19) = (=1)¢wo) ( 3 (1)“@@) I

weSy,
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Now,

(—1)¢wo) Z (-1 @z, = (—1)"wo) Z (=1t ,

weSy, wES,, v<w

= (_1)€(wo) Z (_1)Z(v)5v (_1)Z(w)—f(v)

vESy,

Using 8;(z:f) = (1 — z;) f for s-invariant f we have

A n)

D1 -+ Doy (x”('

(n—1)

)= —z1)(1—z2)- - (1= zpq)”
Since H?‘:_ll(l — x;) is S, _1-invariant, induction completes the proof. |
Lemma 8.17. We have the identity
S (G, = ol
WES,
Proof. For N > n, applying 6 (v) to (8.17), by Corollary 8.6 we obtain
0
> (—D)MIG (. an) = (L—2) (1 —a2) -+ (L —an)"
weSy
Letting N — oo we have
S (1) G (ay) = [[(1 2™ = Q[—a ]
wESy i>0

Now replace x4 by z_. [

We will need the left weak order <j,. For v,w € Sz, we have v <, w if £(v) +
Lwv™t) = £(w).

Lemma 8.18. Let w € S; and define J :={i € Z | s;w < w}. Then

&, c0-2]"16,+ ¥ Te,.

v w
Proof. Tt is not hard to check that
{ue Sy |luxw=w}=85;="_s;|i€J).
By (4.28), we have
e £(u)
G, | Y (-G, | &, + > TS,
u€eSy v<pw

But S is the direct product of symmetric groups, so the result follows by applying
Lemma 8.17 for each factor of the product. O
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Proof of Theorem 8.14. Let S be the span of Qk%w for (k,w) € Z>o x Sz. We
show that &,, € S for all w € S, by induction on ¢(w). Clearly ;g =1 = &g € S.
Let id # w € S;. By Lemma 8.18 and its notation, we have
6, 16, + 3 Te,.
v<pw

By induction, we conclude that &, € S. But elements of I" are finite linear combi-

nations of G = &,,. By Theorem 8.11, we deduce that &,, € S.
Applying @, we deduce that &, € S for w € S4g. O

8.5. The algebra of double K-Stanley functions. Let
D(z(la) = @D R(a)G(x|a)
A

be the R(a)-subspace of A(z||a) spanned by the double K-Stanleys G (z||a).

Proposition 8.19. (1) For A €Y, we have Gy(z/a) € TI'(x||a).
(2) For w € Sz, we have Gy (z||a) € T'(z]|a).

Proof. The first statement follows from (5.34). For the second statement, Propo-
sition 5.27 expresses G, (z||a) as a finite R(a)-linear combination of the G,(z/a),
and Proposition 8.1 implies that G,(x/a) is a finite Z-linear combination of the

Gi(z/a). O
For w € Sz and A € Y let kY (a) € R(a) be defined by
(8.20) Gul(alla) =Y kY (a)Ga(zlla).
A

Ezample 8.20. Let w = sps;. We compute the expansion of G (z||a) in terms
of the Grassmannian double K-Stanley functions G, (z||a) using Proposition 5.27.
First, by Remark 8.3, we have G,,s, = G2 + G11 — G21. By Proposition 5.27, and
noting that &;,(a) ® &, (©a) = 0, we have
Gsoss (7]|a) = Gy (2/a) (B, (a) © G5,(00a))
+ GSOS2 (:c/a)(l - 682 (CL) D 632 (@a))
= Ga(z/a) + Gi1(z/a) — Ga1(z/a).

Using the computations in Example 5.37 we have

Gsosa (z]]a) = =(1 = (a1 © ag))Gar(z][a) + (1 = (a1 © a0)) G2 (z||a)
+ (1= (a1 © a9))Gri(2[|a) — (=(a1 © ao))G1(zl|a).
Ezample 8.21. Let w = s3s1. The coefficient of Ga(x/a) in Gs,s, (z]|a) is (1 —

6, (6(a)))(1 — B, (a)) and the coefficient of Ga(z||a) in Ga(z/a) is (1 — &g, (a)).
Since these are the highest degree terms, we have

_1—&1

k;251 = (1 - 652 (@(a‘)))(l - 681 (a’))2 =1- (a’l © ag).

_1—CL2

This agrees with Example 6.12.
Theorem 8.22. The R(a)-submodule T'(x||a) C A(x||a) is a R(a)-bialgebra.
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Proof. By Proposition 8.19 and (5.28), the coproduct A(Gy(z||a)) is finite and thus
belongs to I'(z|(a) @ () I'(x]|a). We now consider the product. By (5.33), Gx(x||a)
is a finite R(a)-linear combination of G, (z/a). The structure constants for the
family {G,(z/a)} are the same as for {G,,} C I, and thus finite by Proposition 5.27.
It follows that Ga(z||a)G,(z||a) € T'(z||a) for any \,v € Y. O

Define the total ordering < on Z by
1<2<3<---<-2<-1<0.
Conjecture 8.23. For w € Sz and A € Y, we have
(8.21) (—1) =N (@) € Zso[—(a; © aj) | i < j].

Furthermore, if d)*(a) denotes the coproduct structure constants of the basis
Ga(zl||a) of T'(z||a), then

(8.22) (—)AFIE=MgA (@) € Zso[—(a; © a;) | i < j].

For product structure constants, see (8.28). For double Stanley symmetric func-
tions an analogous positivity is proven in | , Theorem 4.22]. Similarly to [L.SS,
(5.4)], we have
(8.23) d(a)= Y (=nFTI(a).

wE Sy,
WHRW, =Wy

In particular, (8.22) follows from (8.21).
Example 8.24. Example 8.20 exhibits the conjectured positivity of kY (a) for w =
s082. Now let A = (1), u = (2), and v = (21). By (8.23), we can calculate the
coproduct structure constant in two ways:

i’ = ki =k =1 (a1 © ap)

dg,ll — k;—lSl _ k;718180 — (1 _ (al 9(10)) —0.
We have used Example 8.20, and the equality Gs_,s, (z||a) = Gs,s,(2||a) that can
be verified using Proposition 5.27.

8.6. The subring of back stable double Grothendieck polynomials. Let
<_
Bla:a) = @ R(@)8.u(r:0)
wE Sy,
be the(_R(a)—submodule spanned by the back stable double Grothendieck polyno-
mials &, (z;a). For u,v,w € Sy define €¥ (a) € R(a) by the formal expansion

- - -
(8.24) G (x;0) B, (x;50) = TV (a)® y(z;a).
weSy,

The existence of the expansion (8.24) follows from Theorem 5.25 and Proposi-
tion 2.5. By Proposition 5.22, we have

(8.25) C @) =7 (a).

For w,v,w € Sy, define ¢, (a) € R(a) by the expansion
(8.26) &, (x;0)8,(z;a) = Z Cory (@) B (5 ).

weS
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Proposition 8.25. Let u,v,w € Sy. For q such that v (u),y4(v),y4(w) € Sy, we
have Y

T (a) =77 (@),
Proof. Define the GKM ring ¥, to be the set of ¢ € Fun(Sy, R(T')) such that
(8.27) 1—e® | Y(sqw) —h(w) for all « € ® and w € S;.
One may show that ¥, is an R(T)-subalgebra of Fun(S;, R(T)) and that ¥, =
HZ€S+ R(T)1%, where % is the restriction of ¢* € ¥ to S C Sz. Using Propo-
sition 5.24, we see that an analogue of Theorem 5.25 holds ¥, replacing ¥ and

{6, | z € S1} replacing {<Q_§Z | z € Sz}. By triangularity (2.10), the coefficient
of 9" in the product 1" can be obtained from a finite computation that only
involves the values of the values of various 1)*-s on the lower order ideal in Sz, gener-
ated by w, v, w. When v9(u),v?(v), 4 (w) € Sy, this lower order ideal is contained

in 4, so C:Y/ZE:)),YQ(U)(G) = %3:&'}))7(2(”)(@). The result then follows from (8.25). O

It is shown in | ] that (—1){W+H)=w)ew (q) € Zsg[—(a; © ai) | i < j].

Ezample 8.26. We have &, (z;a) = 1 © a1 and By, (z50) = (1 © a1)(21 © ag).
Thus

&, (r;50)° = (71 6 a1)?
=(x10a1)((z1 ©a2) @ (a2 © aq1))
=(1— (a2 9 a1))Bs,s, (x;a) + (a2 © a1)®s, (z; a).
We have (1— (a2 ©a1)) € Zso[—(a; Sa;) | i < j) and (—1) (az S a1) € Zso[—(a;©
a;) | i< j].
It follows from Proposition 8.25 that we have
(8.28) (-1 AT (a) € Lo~ (a5 © ai) | i < 4.

w

w, are nonzero. That

Conjecture 8.27. For fized u,v € Sz, only finitely many ‘¢
18,

(8.29) B(z;a) is a R(a)-subalgebra of <E(JL‘, a).

Proposition 8.28. Suppose that the positivity (8.21) holds. Then Conjecture 8.27
holds.

Proof. The argument is the same as the proof of Theorem 8.11. Applying 7, to
(8.24), we obtain

Gulzlla)Gy(alla) =)y

uv

(@)G(2l]a).

By equation (8.20) we have

(8.30) Gu(@||a)Gy(z|la) = Y Ki(a)ki(a)eh, (a)Ga(z||a)
JTRZ9N

(8.31) T (@)Gu(alla) =Y Cl kY (a)Ga(z]|a)
w,A

(8.32) Z k:j(a)kﬁ(a)cf;l,(a) =Y ¢ (a)k¥(a) for all A.
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Let P = Z>¢la; © a; | © < j]. By Proposition 8.19 and Theorem 8.22, the left
side of (8.32) is finite and equals 0 for all but finitely many X. Since ¢}, (a) €
(—=1)[H+IVI=IN P and by assumption kY (a) € (—1)“®) AP, and we have (8.28),
all terms on both sides of (8.32) belong to (—1){WH@=Np_ 1 Ew (4) £ 0 for

infinitely many w, then either the RHS of (8.32) is nonzero for infinitely many A,
or the RHS of (8.32) is infinite for some A, either of which is a contradiction. O

The following follows from Theorem 5.31.

Proposition 8.29. The algebra T'(z||a)[2(z/a)] is a Hopf algebra over R(a). The
R(a)-algebra B(x;a) is a T'(x||a)[Q(x/a)] Hopf-comodule.

8.7. Adjoining Q(z/a). In this subsecti(gn7 we assume that Conjecture 8.27 holds,
that is, B(x;a) is a R(a)-subalgebra of R(z;a). We then compare the two subal-
gebras T'(z||a) @ ga) R(z;a)™ and B(x;a) by adjoining the element Q(z/a).

Remark 8.30. The element Q(z/a) has the following geometric interpretation: it is
the class [£4,] (in an appropriate equivariant K -group of F1) of the line bundle with
fundamental weight Ag. Indeed, in general the class [Ox, | is equal to 1 — [L_x,].

Thus [La,] = (1 — &4, (230)) " = Q(z/a).
Proposition 8.31. Assume (8.29). Then

(833)  T(zl|a)[Q(z/a)] @) R(z;a)" € > R(0)(x/a)* 6 (a3 ).
(kyw)€Z>gx Sz

Thus B(x; a)[2) = D(]a)[2(2/a)] ©n( Rlzia)*.

Proof. Let R’ be the right hand side of (8.33). Since I'(z||a) is spanned by the
elements G (z||a) = %wx (x;a) and assuming (8.29) the proof reduces to showing
that &, (x;a) € R’ for w € Sxo. Using & one may further reduce to w € S which
we now assume.

Arguing as in Lemma 8.18 and using its notation, let J = {i | s;w < w} and let
Sy =(sj|je€J). By (5.29) we have

<_
(8.34) 6y (ia) € Gy(wia) > (1) ™Gy (zlla) + Y T(zlla)®,.
u€eSy v<pw
By Proposition 5.27 we have

Z (=) ™Gy (x]|a) = Z (—1)4®) Z (—1)8(u)+E(uz)+E(us) —E(u) o

ueSy ueSy ULHU2LFKUZ=U

G 1(0(a))Gu, (2/a)Guy (a)

u

= > (DG, (e(@) Y (-D)IGy, (z/a)

u1 €Sy u2€Sy
x > (—1))e,,(a)
uz €Sy
= 3 ()G, (a/a)
U €Sy

= Q(a/z)"!
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v(lhere in the last step we have applied the superization of Lemma 8.17. Therefore

&u(z;a) € Ua/z) 1S (z;0) + 3, . |, T(2]|a)®,(x;a). The Proposition holds by

induction. O
9. DETERMINANTAL FORMULAE FOR G (z||a)

In this section, we recover the equality of the Grassmannian double K-Stanley
functions as Grassmannian back stable Grothendieck polynomials, with the deter-
minantal formulae in the literature.

Proposition 9.1. Forr > 1, we have
Gy(zlla) =75~ Gr(z/a)
Gir(z|la) = 7, Gy (2/a).

Proof. We prove the second formula as the first follows from it by Propositions
5.34, 5.14, and 5.13.

Let ¢, := w(ry = s1-p - 85_180 and ¢/, = W(1r)/(17) = S1—r " S_p for0 <p<
r. The 0-Hecke factorizations of ¢, with left factor in So are given by c,/, x ¢, for
1<p<randc 1) *cp for 2 <p <r. Letting A = (ap,a_1,...,a2_,) we have

®,1 (G0) = & o1 [A] = Gy_p[A]

SpSp+1Sr—

By (5.18) we have

Gy (z]|a) Z@ -1 @a)G(lp) (x/a) — Z(’ﬁ 2 @a )G 1ry(z/a)

- Z(Gr_p[A] — Gr—p1[A)Gry(2/a)
p=1

using the fact that Gi-[A] = 0 because A consists of » — 1 variables. We have
Yo~ (p1(2]]a) = pr(e]la) + A and

Y4 Gir(x/a) = Girlw<o — a<o + Al

By [ ] we have

Glr ZGlp ® Gir-» ZGlp ® Girti-p.

p=0 p=1

Since we are using the coproduct such that p,(z/a) are primitive we may superize
this formula, replacing K-Stanleys by superized K-Stanleys. We obtain

TGy ()a) = ZGU (x/a)Grr—p[A] = > Grp(x/a)Grrei—s[A]
p=1

= Z Gro(x/a)Grr—[A] =Y Gip(x/a)Grr—[A]

as required. O

Lemma 9.2. If s¢g = g then 7} ’e(fg) Nae(f)g'
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Lemma 9.3. Forp,q € Z and r € Z~q, we have

7dGr(z/a) ifp#q
' Gra(z/a) ifp=q.

(9.1) F4041G, (2 /a) = {

Proof. We have
~a,0 _ ~a,0
Ty vaGr(x/a) = a7, " Gr(x/a).

If p # ¢ then s G,(z/a) = G,(z/a) and 727 G (x/a) = vIG,.(x/a). If p = ¢

p—q aTp—q
then

Vi7g O G (z/a) = 475 Oy Ty G (2 /a)
= I R0S Gy (a|a)
=y Grq (2]a)

=7171G,_1(z/a). O

In the following, we denote by (Z) the signed binomial coefficient, the coefficient
of z¥ in the power series (1 + z)" for any integer n. In particular for n > 0,
() = DR,

n—

Formulas (9.2) and (9.3) are due to | ] and | ] respectively.

Proposition 9.4. With { = {()),

(92)  Ga(alla) =det [ 72" > (=1)F (Z ;j> Gi—itj+r(z/a)

k20 1<i,j<t

=\ p+ A —1
03 Galoll) = et {4 S0 (31T s o/

p=0 1<i, <A
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Proof. Assuming (9.2) we derive (9.3) as follows. Applying @ to (9.2) for G (z||a),
by Propositions 5.34, 5.13, 4.19, and 4.20 we have

N " 11— 7
Gatall) = et 427 521 ("7 ) Orgmanealafa)

k>0

= 11—
=det | va /\IZ(—l)k( kj>G1A;i+j+k(l’/a)

k>0

= det 'y(ifM Z(—l)k (Z ; j) X

k>0

(MmN itk —1
S () ( )emwiﬂ%(x/a)

m

m>0

i—\]
=det {72 ") (=1)Pex—ipjip(z/a) X

p=0
k m

k+m=p

= p+ N —1
= det (21 Ve paptefa) (TN Y

p>0

To prove (9.2) let

m m—1 iij
LG =7 Z(l)k< . )Gm—¢+j+k(l’/a)

k>0

so that Hy := det LE;‘i) is the right hand side of (9.2). By induction it suffices to
show that

H, ifp=X —iand A\/pis a box in the i-th row

9.4 FEOH, =
(94) poA {H,\ otherwise.

By Lemma 9.3, every entry LEJ)-”)
p = )\z — 1.

Suppose p # \; — i for all i. We have s§(H,) = Hy and ﬁg’eHA = H, which
agrees with (9.4).

Otherwise let p = A; — i for some i. Since this p is necessarily unique it follows
that ﬁ']‘;’e fixes all of the entries in the rows of the determinant other than the i-th.

By Lemma 9.3 we have

in the i-th row is sj-invariant for all p except

~a, i Ai—1
(9.5) 709 10 ):ng ),

i)
If A\ has a removable box in the i-th row and p is the partition obtained by removing
a box in row ¢ then we have Lg’;Q) = Lg?Q) for ¢ # i. By multilinearity of the
determinant, (9.4) follows from (9.5).
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Otherwise, let £ := \;11 = \;. Define F,,, := v, 'Gyn(x/a). Then by (9.6) with
d =1, and using G,[ag] = af}, we have

1

Gn(z/a) = o

(Fm - a(]Fm71)~
Thus

i— i—J
R SIET () e
k>0
1 i—j
= Z(—l)k( i >(F£i+j+k —aoF—ivjtk—1)

_1—0,0

k>0
it (t 7 i+1-7
Ya ZLZ('+)1,j =Ya ! E (—1)k< k )Ge—z‘+j+k—1($/a)
k>0

t+1—3
= Z(—l)k( 1 ])Fe—i+j+k—1~

k>0

1
1 i—j
T 1- ag Z(_l)k << k >(F€—i+j+k —aoFy—itjir-1)

k>0
i4+1—7
+ ( B j>Fl—i+j+l~c—1>

 —aoF i1+ Froigj1

- 1
Yo Lij +77ao% L§+)1,j

1—a0

R () () (1) e

k>0

i—J
=Froipjo1+ »_(-1)F! (k N 1) Fooitjin
k>0

i— /-1
=Y, ZLz(j ).

Applying 7=, we obtain L%_l) = Lz(f) + (’yﬁ_iﬁ'y;_g)ljl(?l’j, showing that

ﬁg’eH)\ = H, in this case. O
Ezample 9.5. Let A = (1,1). We have

Gui(zlla) = vl —Gy) Y. ' (Gy)

Note that 0 is not the residue of a corner box. We have

Gy G2+G3+G4+--~'

~a,0 _
Ty~ Gui(zlla) = vt —GY) Yo H(G1)

1 ’yal(G1+G2+G3+"')’
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The proof of Proposition 9.4 shows that

1
1=G -G
1+1—a07“( 1)

1
7;1(G1+G2+G3+):(G2+G3+G4+)—"_1—0,070'_1((;1)

SO ﬁg’eGu(xHa) = G11(z||a).

Ezample 9.6. Let A = (1,1). We check (9.2). First, suppose that a = 0. Using e.g.
[ , Thm. 5.4] we have G,G1 = G431+ Gp1 — Gry11 forall r > 1.

Gh Go+Gs+---
det(l_G1 e >

=G —(1-G1)(G2+Gs+--)
:(G2+G11—G21)—(G2+G3+"')
+((G3+G21—G31)+(G4+G31—G41)+"')
:Gll'

Now consider the general double case. By e.g. | , §6] and superizing we have

A(Gy(x/a)) ZG (z/a) ® Gr_p(z/a) — ZG (x/a) ® Gry1—p(z/a).

p=0 p=1
For d > 0 and letting A =ap+a_1 +---+ ay1_q we have
9.6) ;UG (z/a)) ZG (@/a)Gr—p[A] = > Gpla/a)Gri1p[Al.
p=1

For d = 1 we have
HGi(z/a)) = Gilao] + Gi(z/a) — Gi(x/a)G1[ao]
=ag+ (1 —ap)Gi(z/a).
Gi(z/a Go(xz/a) + Gs(z/a) + - -

det( A G ey PG )>
= Gi(z/a)(ao + (1 — ao)G1(z/a))
— (1 —ao— (1 —ao)Gi(z/a)))(Ga(z/a) + Gs(z/a) + - - )
= agGi(z/a) + (1 - ap)G1(z/a)?
— (1 —ao)(1 - Gi(z/a))(Gz(x/a) + G3(x/a) +---)
=aoG1(xz/a) + (1 — ag)G11(z/a).

Let us compare with Proposition 9.1.

A(Gyr(z/a)) ZGlp (z/a) @ Gyr—r(x/a) — ZG” (z/a) ® Grrrs(z/a).
p=0 p=1
Ghi(zlla) = ~, ' Gui(z/a)
= Gi(z/a)Gilao] + Gri(z/a) — Gi(z/a)Gri[ao] — Gi1(z/a)G1lao]
= aoG1(z/a) + (1 — ag)G11(z/a)

which agrees with the determinant.
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10. DEGENERACY LOCI

By | , Theorem 2.1] it is known that double Grothendieck polynomials are
the universal formulas for K-classes of certain degeneracy loci based on quivers.
Since back stable double Grothendiecks are certain limits of double Grothendieck
polynomials, they can also be computed by universal quiver locus formulas. Fol-
lowing the suggestion of Buch [ | we apply such a quiver formula and recover
one of our formulas for back stable double Grothendieck polynomials.

Without loss of generality we take w € S and then w € S,,. Let m > 0 be a non-

negative integer and let 2™ = (T1—my .-, 2_1,20) and o™ = (a1—m,---,a-1,a0)

be sets of m variables with nonpositive indices. Let 4™ (w) be the m-fold forward
shift of w. By definition

ol . m m
(10.1) 6, = mlgnOo ®7m(w)($(_ ),x;a(_ ),a).
We now apply a formula for double Grothendieck polynomials which is a variant
of | , Theorem 4] but whose overall form more closely follows [ )

Theorem 4]. We use a set of m variables followed by n — 1 sets of one variable
(m)

each. For the x variables we use x> and then z1, s, ..., ,_1. The equivariant
a variables are similarly grouped. This grouping of the variables is compatible with
™ (w) and y™(w™t) = (y™(w))~! in the language of | ]. Our variant of

[ , Theorem 4] states that

(10.2)  Smuy(sa) =Y (=DM IR Gramm [—an_1] -+ Gren [—ar] x
AO

G0 [m(_m)/a(_m)}GAu) (1] - Gren-v) [Tn—1]

where A* = (AU) | 1 —n < j <n — 1) runs over tuples of partitions and ¥, is the
number of tableau tuples 7 = (7= ... T(=1D) such that T is a decreasing
tableau (one whose rows strictly decrease from left to right and whose columns
strictly decrease from top to bottom) of shape AU) for 1 —n < j < n — 1 such that
the juxtaposition of the column-reading words 7C:=™) ... T ... (=1 s 0-Hecke
equivalent to w, and for 1 < i < n — 1, the entries of T*% are at least 1.

Remark 10.1. e To compare the formulas it is better to look at [ ,
Theorem 4]. Here we use decreasing tableaux instead of increasing, which
allows us to avoid transposing the shapes of the tableaux. We are using
a different form of double Grothendieck polynomial than | ]; see
Remark 5.2.

e The tuples of tableaux are in straightforward bijection with pipedreams;
the labels in a row of a decreasing tableau tell where to place the crossings
in a row of the corresponding pipedream.

We observe that for a single variable z, G)[z] = 0 unless A is a single row, say,
(r), in which case G,[z] = z". Similarly, Gx[—z] = 0 unless X is a single column, say
(17), in which case one may show that Gi-[—z] = (6z)". Therefore we may assume
that A\(9) is a single row for 1 < j <n — 1 and a single column for 1 —n < j < —1.
Next we observe that the Fomin-Kirillov formula for Grothendieck polynomials can
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be rewritten as follows. For z € S,, we have

n—1

z : . [€)]

Qﬁz(xl, e 71.77,71) = (—]_)Z(T )—€(z) | I xﬁ(TJ )
i=1

Te
where the sum runs over T7* = (T, ... T 1) where TV is a single row de-
creasing tableau whose entries are at least j, and such that 7} ... T =1 is Hecke
equivalent to z.

Applying inverses and evaluating at (&(a1),---,6(an—1)), for u € S, we see
that

n—1

\_4(u )

6,1 (8(a1), -+, 8(an-1)) = Y (1)U T (©a,)" )
U* j=1

where U® = (U(l), ...,U™= D) runs over tuples with UU) a decreasing tableau of
single column shape with entries at least j, with U™~ ...UM Hecke equivalent
to u.

Finally we use Remark 8.3 for the expansion of a super K-Stanley function
Go(2"™ /a!™) into Grassmannian super K-Stanleys G (z™ /a(™).
Combining the above, we see that (10.2) becomes

6'\/"”(111) (m(—m)a &€ a(—m)a CL)
_ Z (—1)““”‘5(“)“(2)_@(7’1)057,1(@(a))GU(x(,m)/a(,m))Qiz(:v).

Sending m to infinity we recover the triple coproduct formula Proposition 5.17.

11. FURTHER DIRECTIONS

11.1. Ideal sheaf basis. For w € S,,, define

6% (z;50) = Y (—1)'" &, (x;a).

veES,
v>w

These polynomials represent the ideal sheaf basis in the equivariant cohomology
of finite flag varieties, and depend on n. They can be generated by the operators
7 — 1, with &9, (z;a) := [liyj<n(zi©a; —1). For w € Sz, define the ideal sheaf
backstable classes
B = Y )G e b
v>w

Note that the value 1% (u) is well-defined for u € Sy since by (2.10), ¥¥(u) = 0
unless u > v. We expect many of the results of this work to have analogues for
the classes ¥}. We do not know whether ¢} is the image of an element of R (x;a)
under the res map of Theorem 5.25.

11.2. K-Peterson subalgebra. In [ ], we defined a commutative subalgebra
of the infinite nilHecke algebra and showed that it provided a model for the equi-
variant homology of the infinite Grassmannian. This commutative subalgebra is an
analogue of the Peterson subalgebra of an affine nilHecke algebra. We expect that
this construction can be extended to K-homology of the infinite Grassmannian.
The analogous K -Peterson subalgebra for modeling the equivariant K-homology of
the affine Grassmannian is constructed in [LSS]. We remark that recent work of
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Kato [Kat] (see also | ]) relate the K-homology of the affine Grassmannian
with quantum K-theory of flag varieties.

11.3. Relation to back stable Schubert polynomials. Lenart | ] showed
that Grothendieck polynomials expand into Schubert polynomials with alternating
coeflicients, and gave a combinatorial interpretation of the coefficients. It would be
interesting to study the expansion of back stable (double) Grothendieck polynomials
%w into back stable (double) Schubert polynomials %w, and the relation to our
other expansion formulae such as the coproduct formula (Theorem 4.15).

11.4. Relation to K-theory affine Schubert calculus. Affine Schubert calculus
is one of our main motivations to study back stable Schubert calculus. We expect
many interesting relations between these subjects. In particular, we expect that
a wealth of combinatorics can be found in the expansion coefficients of Schubert
classes of the infinite flag variety (or infinite Grassmannian) in terms of Schubert
classes of the affine flag variety (or affine Grassmannian) [ , , ]. In
cohomology, these expansion coefficients are known as k-branching coefficients.

APPENDIX A. GROTHENDIECK INVERSION

Let J C Z\ {0} and let S; be the subgroup of Sz generated by s; for j € J.
Let v,w € Sz be such that S;v = Syw. Say v/< w if there is a u € S such that
UKV = w.

Proposition A.1. Let W’ be a 7 < interval in Sz and let {f, | w € W'} and
{gw | w € W'} be families of elements. Then

(A1) o=y (-1, (o),

U*V=W

holds if and only if
(A2) fw=Y (1), 1 (ca)g,
does.

This is equivalent to the following. Let W’ be as above. Define the W/ x W’
matrices

(A.3) Apw = Z (—1){WH @~ g (q)

u€eSy

UXV=w

(A.4) Byw= »_ (-1)/HO~We, i (c(a)).

u€eSy
URV=W

Then A and B are inverse.

Let
(A.5) G=> (-1)™e,(a)f,
u€eSy
(A.6) H= Y (-1)""6,(5(a))fu.

u€eSy
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Here we are working in the 0-Hecke algebra with coefficients in the field Q(a; | i € Z)
where the field elements commute with the operators ;. The statement that A
and B are inverse, is equivalent to

(A7) (mw|GH|Ty ) = 6y

(A.8) (M HG|Ty ) = 0y

for all v”/< w. The notation ( f|g|h) means apply g to h and take the coefficient
of f.

Working on all cosets at once, this is further equivalent to
(A.9) (Tw|GH|Tia ) = Sid,w
(A.10) (Tw|HG|Tia ) = 0id,w
for all w € Sy since
(TwlGH|T,) = Y (FulGH|Tia)

u
UXV=W

and similarly for HG instead of GH.
Thus it suffices to prove (A.10), as (A.9) holds by formal properties of inverses.
But by Proposition 5.8 equation (A.10) is equivalent to

(A.11) Sid.w = By (a;a).
Equation (A.11) follows from the fact that ¥ ~1(&,,(va;a)) = [OY]|, is the localiza-
tion at v, of the equivariant class of the structure sheaf O™ of the opposite Schubert
variety B_wB/B in K}.(Fl,).

We state a “right-handed” version of Proposition A.1. With J as above let

v,w € Sz be such that v5; = wS;. Say v <7 w if there is a u € S; such that
vk U= W.

Proposition A.2. Let W’ be a <’ interval in Sz and let {f, | w € W'} and
{gw | w € W'} be families of elements. Then

(A.12) gu= Y (1) (a)f,

vxU=W

holds if and only if

(A13) fw = Z (_1)Z(u)+é(v)—£(u))6u7l(ea)gv

vxU=W

does.

APPENDIX B. SOME COMPUTATIONS

Recall that z_ = (zg,z-1,2_2,...). We write X; for (z1,za,...,2;).

e
B.1. Back stable Grothendieck polynomials. We compute &, from the def-
inition.

]

] — e2[Xo]

X3] — e2[X3] + e3[X3]
| —ea[Xn] +es[Xpn] — -+ (_1)n716n[Xn]~
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Therefore,

<_
G5, =G5 = lim & (z1_p,...,2-1,20) =€ —ea +e3—---=1—Q[—x].
n——0oo

o 4 4o
We compare Proposition 4.6 and Theorem 4.15 for &, &,,, &, ..

— —
B, =7(85)

=ez_ +x] —er_ + a1 +esfr_ +ai] —---
= (z1+e1)— (x1e1 +€2) + (w162 +€3) — -+
=z1—z1(e1 —eates—-)+(ex—eat+eg—---)
=06, — G, 6, +Gj,.
&, =12(6.,)

=ei[z_ + Xo| —esfz_ + Xo] +eglr_ + Xo] — - -
= (e1[X2] +e1) — (e2[X2] + e1[Xo]er +e2)
+ (e2[Xaler + e1[Xolea +e3) — - -
= (e1[Xo] — e[ Xo]) + (1 — ea[Xo] + e2[Xs])es
+ (14 e1[Xo] — ea[Xa])ea + (1 — e1[Xa] + ea[Xa])es + -+
= 6., + G, — G, 6y,

%s,l = 7_1(%50)
= ei[z_ — mo) — ea[w_ — wo] + ez[w_ —mo) — - -
= (e1 —x0) — (e — xoe1 + 23) + (e3 — woeq + xoes — a7) — - -+

—Zo —Zo
s—1

:GS _——
-t 1—1x 1—x
=G, ,+6, , —G,_ 6, .

Here,

—x0

&5, =w(Gs,) =w(an) =

1—zo
In particular for £ > 0 we have
%Sk =G DPr1 PP - Dy
gs,k =G18109110 - O Tk
We compute %LISO from the limit definition:

63152 == 62[X2]
68283 - 62[X3] - 263 [XS]
68354 - 62 [X4] - 263 [X4] + 364 [X4]'

Thus,

—
65—150 = Gs_lso = Gll = €2 — 263 + 364 -



BACK STABLE K-THEORY SCHUBERT CALCULUS 59

Using Proposition 4.6, we have

%
G s, = €2[T_ + x1] — 2e3[z_ + x1] + 3ea[x_ + 21]

= (ea+x1e1) — 2(e3 + x1e2) + 3(ea + x1e3) — - -
=x1(e1 —2e+3e3— - )+ (ea —2e3 +3e4 —--+)
=11Gs, —w1(€2 — 263+ -+ ) + Ggys,

= G585, — G5, 85, + Gy s

agreeing with Theorem 4.15. -
With sy denoting a Schur polynomial, we compute & g, 5, from the limit defini-

tion:

65251 = 82[X1]

Boys, = 52[Xo] — 521[X2]

Bo,ss = 53[X3] — 521[X3] + 5211 [X3]
(_

G550 = Gsyso = S2 — S21 + S211 — S2111 + -+ -

Therefore, using Proposition 4.6, we have

— e
650871 =7 1(65180)

olr— —xo] — sa1[r— — x0] + so11[r— — @0] — S2111[T— — W] + -

s
= (82 — xps1) — (S21 — ToS2 — Tos11 + 93(2)51)

+

2 2 3
(s211 — ToS21 — ToS111 + XTGS2 + THS11 — THS1)
2 2 3 3 4
— (82111 — T0oS211 — ToS1111 + TGS21 + THS111 — TS2 — T[S11 + L(S1)
+ P
= Gsos,l + Gsoﬁs,l - Gsos,l 63 1

B.2. K-Stanley polynomials.
We give some formulae for various G. See also Proposition 9.4 and Proposi-
tion 4.20.

G, =8 — 5,1+ 58,11~ Sp1,1,1+ 0

IR

T r+1
Gl" =€r — er+1+ Crq42 —
r—1 r—1

Ga1 = 821 — S22 — 25211 + 25221 — S222 + 352111 — 352211
+ 252091 — S2202 + -+
G31 = 831 — 532 — 25311 + 28321 — S320 + - - -

G211 = S211 — S221 + S222 — 382111 + 382211 — 382221 + 282200 + -+ .
We give some products of K-Stanley functions; see Proposition 8.1.

G1G1 = Ga2 + G11 — G
G2G1 = Gs + Go1 — G
G11G1 = Go1 + G111 — Go11.
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