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Abstract. We study the back stable K-theory Schubert calculus of the in-

finite flag variety. We define back stable (double) Grothendieck polynomials

and double K-Stanley functions and establish coproduct expansion formu-
lae. Applying work of Weigandt, we extend our previous results on bumpless

pipedreams from cohomology to K-theory. We study finiteness and positivity

properties of the ring of back stable Grothendieck polynomials, and divided
difference operators in K-homology.
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1. Introduction

In [LLS21] we initiated the study of back stable Schubert calculus. In the present
work, we generalize from cohomology to K-theory, and study back stable K-theory
Schubert calculus. We assume the reader has some familiarity with our earlier work,
and in the introduction we will emphasize some of the differences.

1.1. Back stable Grothendieck polynomials. Let w be a permutation of Z
moving finitely many integers and let p ≤ q be integers such that the interval of
integers [p, q] contains all nonfixed points of w. Lascoux and Schützenberger [LS]
defined the Grothendieck polynomial Gw(xp, xp+1, . . . , xq) ∈ Z[xp, xp+1, . . . , xq],
for the purpose of giving explicit polynomial representatives of classes of Schubert

T.L. was supported by NSF DMS-1464693 and NSF DMS-1953852.

1



2 THOMAS LAM, SEUNG JIN LEE, AND MARK SHIMOZONO

structure sheaves in the K-theory of the flag variety. A priori the definition of Gw
depends on the interval [p, q].

Whereas the back stable Schubert polynomials of [LLS21] are limits of Schubert
polynomials, in this paper we will be concerned with the back stable Grothendieck
polynomials, which by definition are the limits

←−
Gw(x) := lim

p→−∞,q→∞
Gw(xp, xp+1, . . . , xq).

It turns out that the q-limit is unnecessary, either by a well-known forward stabil-
ity property of the Grothendieck polynomials or by Proposition 4.4. The p-limit
is important: the back-stable Grothendieck polynomials are in fact formal series
involving all of the variables xi for i ≤ d where d ∈ Z is the maximum index such
that w(d) > w(d+ 1).1

The same definition of back stable Grothendieck polynomials has appeared in
the work of Marberg and Pawlowski [MP], who studied the principal specializations
(xi 7→ qi−1) of these power series. We remark that back stable Schubert polynomials
have been generalized to the involution setting by Pawlowski [Paw].

1.2. Infinite flag varieties. Infinite-dimensional flag varieties, such as flag vari-
eties of Kac-Moody groups, come in a number of algebro-geometric variants. Of
interest to us is a thin flag variety Fl that is an ind-finite variety and a thick flag
variety Fl that is an infinite-dimensional scheme. There are other versions such
as semi-infinite flag varieties and geometric models based on loop groups which
will not feature in this work. The K-groups in this work are certain Grothendieck
groups of coherent sheaves, and the choice of scheme structure plays a more sig-
nificant role than in our earlier work in cohomology. For a discussion of K-groups
on thin and thick flag varieties in the Kac-Moody setting, we refer the reader to
Kumar [Kum] and Baldwin and Kumar [BK].

Whereas in [LLS21] we only considered the thin infinite flag variety, in the present
work we also consider the thick infinite flag variety. Thick infinite flag varieties were
studied by Kashiwara [Kas] and we give a mostly elementary treatment in §2. A
different and elegant approach to infinite flag varieties is also given by Anderson
[And21]. We show in Theorem 5.25 and Corollary 5.26 that back stable double
Grothendieck polynomials represent classes of Schubert structure sheaves in the
equivariant K-group KT (Fl) of the thick infinite flag variety Fl.

1.3. Coproduct formula. Like their cohomological counterparts, back stable Gro-
thendieck polynomials (and their double versions) satisfy a coproduct formula (The-
orem 4.15), decomposing them into a symmetric part and a finite part:

(1.1)
←−
Gw =

∑
u∗v=w
v∈S 6=0

(−1)`(u)+`(v)−`(w)GuGv.

Here, u ∗ v denotes the Demazure or Hecke product, Gu denotes the K-Stanley
symmetric function [Buc02a, FK]2, and Gv is the Grothendieck polynomial [LS].
We deduce (1.1) from the coproduct formula in K-theory affine Schubert calcu-
lus [LLS+].

1We prefer to include the q-limit in the definition of
←−
Gw; otherwise we would have to pick a

particular q and write
←−
Gw(. . . , xq−1, xq).

2The symmetric function Gw is usually called a stable Grothendieck polynomial, but to avoid

conflicts in terminology we use a different name.
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1.4. Double K-Stanley symmetric functions. The back stable double Grothen-

dieck polynomials
←−
Gw(x; a) are defined as limits of double Grothendieck polyno-

mials Gw(x; a) in a similar manner. We define the double K-Stanley symmetric

functions as the image Gw(x||a) := ηa(
←−
Gw(x; a)) under an algebra homomorphism

ηa :
←−
R (x; a)→ Λ̂(x||a) (see §5.9) from back stable power series to symmetric power

series. The symmetric functions Gw(x||a) appear to be novel. (Setting a = 0, we
recover the K-Stanley symmetric function Gw.) We obtain as a subset the Grass-
mannian double K-Stanley symmetric functions Gλ(x||a). These functions form a
basis of a ring Γ(x||a) (Theorem 8.22), a double analogue of Buch’s Γ ring [Buc02a].
We explain determinantal formulae for Gλ(x||a) in §9, connecting our construction
to the literature [And17, HIMN].

We conjecture (Conjecture 8.23) that the coefficients of the expansion of Gw(x||a)
in the basis {Gλ(x||a)} have alternating signs. The analogous expansion coefficients
of double Stanley functions Fw(x||a) into double Schur functions {sλ(x||a)} were
shown to be positive in [LLS21, Theorem 4.22] using the quantum equals affine
phenomenon.

1.5. K-bumpless pipedreams. In [LLS21] we introduced bumpless pipe-dreams
to give explicit monomial expansions for back stable double Schubert polynomials.
Weigandt [Wei] connected bumpless pipedreams to earlier alternating sign matrix
formulae of Lascoux [Las], and thereby obtained formulae for double Grothendieck
polynomials in terms of K-bumpless pipe-dreams. Weigandt’s work immediately
gives a formula for back stable double Grothendieck polynomials in terms of K-
bumpless pipedreams, which we state in Theorem 6.2. We also use K-bumpless
pipedreams to give formulae for the double K-Stanley symmetric functions (The-
orem 6.5 and Corollary 6.6), and expansion formulae (Theorem 6.9 and Corol-

lary 6.10) for
←−
Gw(x; a) and Gw(x||a) in terms of double K-Stanley symmetric

functions.
Recently, bumpless pipedreams have found applications in the study of diagonal

Gröbner degenerations of matrix Schubert varieties [HPW, Kle, KW], in the study
of products of Schubert polynomials [Hua00, Hua01], and in other applications
[FGS, BS, Xio].

1.6. K-homology. In §7, we study a basis dual to the Grassmannian double K-
Stanley symmetric functions Gλ(x||a). We call these symmetric functions gλ(y||a)
the K-Molev functions. These symmetric functions are K-theory analogues of
Molev’s dual Schur functions ŝλ(y||a) [Mol]. At a = 0, the symmetric functions
gλ(y||a) reduce to the dual stable Grothendieck polynomials gλ(y) studied by Lam
and Pylyavskyy [LP]; see also [Len00]. Geometrically, the functions gλ(y||a) form
a basis of the equivariant K-group KT (Gr) of the thin infinite Grassmannian. We
show in Theorem 7.6 that the gλ(y||a) can be obtained recursively by applying
K-homology divided difference operators. In Theorem 7.8, we sketch the relation
between our gλ(y||a) and the deformation of symmetric functions studied by Knut-
son and Lederer [KL].

1.7. The algebra of back stable Grothendieck polynomials. We define the
algebra of back stable Grothendieck polynomials

B :=
⊕
w

Z
←−
Gw
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to be the span of all back stable Grothendieck polynomials. We show in Theo-
rem 8.11 that B is a ring, or equivalently, the product of back stable Grothendieck
polynomials is finite. This finiteness is quite nontrivial; for example, it fails to
hold for the K-theory of the affine flag variety of SL2. The ring B is an infinite
flag variety version of Buch’s Γ ring spanned by K-Stanley functions [Buc02a], an
analogous ring for the infinite Grassmannian.

We show in Theorem 8.14 that after adjoining an element Ω = Ω[x−], the ring B
can be decomposed as a tensor product Γ[Ω] ⊗R+, where R+ is spanned by finite
Grothendieck polynomials.

We conjecture that the similar finiteness also holds for back stable double Groth-
endieck polynomials. Curiously, we show in that Proposition 8.28 that this would
hold if the positivity conjecture (Conjecture 8.23) were true.

1.8. Flagged Grothendieck polynomials. In the course of studying the rela-
tionship between Grothendieck polynomials and their symmetrizations given by the
K-Stanley functions, we found it natural to study a family of polynomials which in-
terpolate between them. These are the flagged Grothendieck polynomials, which we
introduce in §8.2 for an arbitrary permutation using divided differences. We prove
in Proposition 8.5 a monomial expansion for flagged Grothendieck polynomials
that generalizes the Fomin-Kirillov formula for Grothendieck polynomials. For the
special cases of vexillary and 321-avoiding permutations, the flagged Grothendieck
polynomials were defined combinatorially in [KMY08] [KMY09] [Mat].

1.9. K-classes of degeneracy loci. Fulton [Ful] realized the double Schubert
polynomial as a universal formula for the cohomology class of a degeneracy locus
Ωw defined by rank conditions on composite maps in a sequence of maps of vector
bundles living on a common base. Recently, Anderson and Fulton [AF] studied
what might be called the “back stable limit” of this degeneracy locus construction,
obtaining enriched Schubert polynomials, which specialize (and are nearly equiva-
lent) to the back stable Schubert polynomials of [LLS21].

Buch [Buc02b] observed that the K-class of the structure sheaf of Ωw in a
flag bundle, has a universal formula given by the double Grothendieck polyno-
mial Gw(x; a), based on the work of Fulton and Lascoux [FL], who showed that
after a certain change of variable, the double Grothendieck polynomials map to
classes of structure sheaves of opposite Schubert varieties in the flag variety. Very
recently, Buch [Buc+] gave us a detailed explanation of a limit of the degeneracy
locus construction of double Grothendieck polynomials and suggested the result
should be the back stable double Grothendieck polynomials. He also suggested to
apply the degeneracy loci formulae in [BKTY05] and [BKSTY]. The result coin-
cides with one of our formulae for back stable Grothendieck polynomials, and is
explained in §10.

1.10. Further directions/relations. We were unable to pursue many obvious
avenues of investigation, for example, the study of the ideal sheaf basis, and the
relation to K-theory affine Schubert calculus [LSS, Mor]. We briefly discuss these
ideas in §11.

Acknowledgements. We thank Anders Buch for a suggestion that led to Sec-
tion 10, and Anna Weigandt for explaining the relation between bumpless pipe-
dreams and the work of Lascoux.
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2. Thick infinite flag scheme

2.1. Dynkin type AZ. The Dynkin diagram of type AZ has Dynkin node set I = Z
and simple bonds (i, i+ 1) for all i ∈ Z. It has weight lattice X ′ =

⊕
i∈I ZΛi with

basis of fundamental weights Λi. For i ∈ Z, the simple coroot α∨i ∈ HomZ(X ′,Z)
is defined by 〈α∨i , Λj〉 = δij for i, j ∈ Z. For i ∈ Z, let εi := Λi − Λi−1. For i ∈ Z,
let αi := εi − εi+1 be the simple root. Let Q :=

⊕
i∈I Zαi and X :=

⊕
i∈Z Zεi. We

have

Q ⊂ X ⊂ X ′.(2.1)

Let the Weyl group SZ be the subgroup of Aut(X ′) generated by the following
reflections si:

siλ = λ− 〈α∨i , λ〉αi for i ∈ I and λ ∈ X ′.(2.2)

We have

si(εj) =


εi+1 if j = i

εi if j = i+ 1

εj if j /∈ {i, i+ 1}.
Thus the restriction of the action of SZ to the basis {εi | i ∈ I} of the sublattice
X ⊂ X ′ is the permutation representation on the set Z: si exchanges i and i + 1
and fixes other integers.

The set Φ of roots are the elements of the form wαi for i ∈ I and w ∈ SZ; they
have the form αij = εi − εj for i, j ∈ Z with i 6= j. Let sij ∈ SZ be the associated
reflection; acting on Z it exchanges i and j and fixes other integers. Let Φ+ be the
set of positive roots, the αij with i < j. Let Φ− = −Φ+.

2.2. Dynkin diagram automorphisms. Let Aut(AZ) denote the group of au-
tomorphisms of the diagram AZ, the permutations of the node set I = Z which
preserve adjacency. Aut(AZ) is generated by the Dynkin shift γ(i) = i + 1 for all
i ∈ I and the Dynkin reversal ω(i) = −i for all i ∈ I. This is an infinite dihedral
group: ω2 = id and

ωγω = γ−1.(2.3)

The group Aut(AZ) acts by automorphisms on X ′: we have ζ(Λi) = Λζ(i) for all
ζ ∈ Aut(AZ) and i ∈ I. In particular, we have

γ(εi) = εi+1(2.4)

ω(εi) = −ε1−i for all i ∈ I.(2.5)

There is an induced action of Aut(AZ) by automorphisms on SZ: ζ(si) = sζ(i) for
all ζ ∈ Aut(AZ) and i ∈ I. We have

γ(si) = si+1(2.6)

ω(si) = s−i for all i ∈ I.(2.7)

2.3. Thin infinite flag variety. Let C((t)) and C((t−1)) denote the Laurent poly-
nomial rings. Denote

Ea :=

{ ∞∑
i=a

cit
i

}
⊂ C((t)) and Fa :=

{−∞∑
i=a

cit
i

}
⊂ C((t−1))

so that we have · · · ⊂ E1 ⊂ E0 ⊂ E−1 ⊂ · · · and · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · · .
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A subspace Λ ⊂ C((t)) (resp. Ξ ⊂ C((t−1)) is called admissible if we have
EN ⊂ Λ ⊂ E−N (resp. F−N ⊂ Ξ ⊂ FN ) for some N . The Sato Grassmannian Gr•

(resp. Gr•−) consists of the set of all admissible subspaces in C((t)) (resp. C((t−1)))
and has the structure of an ind-variety over C.

The virtual dimensions vdim(Λ) and vdim(Ξ) are given by

vdim(Λ) := dim(Λ/(Λ ∩ E0))− dim(E0/(Λ ∩ E0))

vdim(Ξ) := dim(Ξ/(Ξ ∩ F0))− dim(F0/(Ξ ∩ F0)).

The virtual dimension measures the size of the subspace Λ (resp. Ξ) relative to the

standard subspace E0 (resp. F0). Let Gr(d) ⊂ Gr• (resp. Gr
(d)
− ⊂ Gr•−) consist

of the admissible subspaces of virtual dimension d. Thus, Gr• is the disconnected

union of the Gr(d) for d ∈ Z.
An admissible flag in C((t)) of virtual dimension 0 is a sequence

Λ• = {· · · ⊂ Λ1 ⊂ Λ0 ⊂ Λ−1 ⊂ · · · }
of admissible subspaces satisfying the conditions: (1) vdim(Λi) = −i, and (2) for
some N , we have Λi = Ei for all i with |i| ≥ N . Similarly, we define admissible
flags in C((t−1)). The thin infinite flag variety Fl (resp. Fl−) consists of the set of
all admissible flags in C((t)) (resp. C((t−1))) of virtual dimension 0, and has the
structure of an ind-variety over C.

2.4. Thick infinite flag scheme. We describe the thick infinite flag scheme in
an elementary fashion; see [Kas] for further details. We say that a subspace V ⊂
C((t−1)) is opposed to a subspace Ξ ∈ Gr•− if the composite map V ⊂ C((t−1)) →
C((t−1))/Ξ is an isomorphism, and that V is thick if it is opposed to some Ξ ∈ Gr•−.

Denote by GrΞ the set of all V ⊂ C((t−1)) opposed to Ξ. The thick infinite
Grassmannian Gr is the space of all thick subspaces, that is,

Gr :=
⋃

Ξ∈Gr•−

GrΞ.

Each GrΞ is an affine space of infinite dimension. For example, for Ξ = F0, the
vectors t, t2, . . . , form a basis of C((t−1))/F0. Thus any thick subspace V opposed
to F0 has a basis of the form t + v1, t

2 + v2, . . . where v1, v2, . . . ∈ F0, and the vi
are arbitrary. Similarly, for any Ξ ∈ Gr•−, GrΞ can be identified with Ξ∞ ∼=

∏∞
1 Ξ.

Identifying Ξ∞ with C∞ ∼=
∏

Z C ∼= Spec(k[xi | i ∈ Z]), GrΞ is endowed with the
structure of an infinite-dimensional affine space.

As shown in [Kas], Gr has the structure of a separated scheme over C, and

GrΞ ⊂ Gr are affine open subschemes. We also define the subscheme Gr
i ⊂ Gr by

Gr
i

:=
⋃

vdim(Ξ)=i

GrΞ

and we note that Gr
i ∩Gr

j
= ∅ if i 6= j.

There is an injection Gr• ↪→ Gr, described as follows. Let Λ ∈ Gr•. Pick N so

that E−N ⊃ Λ ⊃ EN . Let B ⊂ Λ ∩
⊕N−1

i=−N Cti project to a basis of Λ/EN . Define

Λ := span (B ∪ {tN , tN+1, . . .}) ⊂ C((t)).

Then Λ is a thick subspace (opposed to E−N−1 ⊕ W for any complement W of

span(B) in
⊕N−1

i=−N Cti), and the map Λ 7→ Λ induces an injection Gr• ↪→ Gr.
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Let Ξ• ∈ Fl− be an admissible flag with vdim(Ξi) = i. A sequence V• of
subspaces of C((t−1))

· · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·

where Vi is opposed to Ξi is called a thick flag opposed to Ξ•. Let FlΞ• denote the
set of thick flags opposed to Ξ•. Let . . . , w−1, w0, w1, . . . ∈ C((t−1)) be such that
C((t−1))/Ξi is spanned by wi, wi+1, . . .. If V• is opposed to Ξ•, then there exist
vectors

vk = wk +
−∞∑
j=k−1

akjwj ∈ C((t−1))

such that Vi is the span of vi, vi+1, . . .. The coefficients akj ∈ C are arbitrary and

uniquely determine V•, endowing FlΞ• with the structure of an infinite-dimensional
affine space. The thick infinite flag scheme

(2.8) Fl =
⋃

Ξ•∈Fl−

FlΞ•

is the space of all thick flags, and has the structure of a separated scheme. The
construction Λ 7→ Λ induces an injection Fl ↪→ Fl. The thin standard flag E• ∈ Fl
gives a thick standard flag E• ∈ Fl.

We use the flag F• ∈ Fl− as the basepoint of Fl−. For w ∈ SZ, we have a point
wF• ∈ Fl− given by

(wF )i =
∏

j∈w((−∞,i])

Ctj .

Similarly, we have wE• ∈ Fl and wE• ∈ Fl.

Lemma 2.1. We have Fl =
⋃
w∈SZ

FlwF• .

Proof. Let V• ∈ Fl. Then there exists N such that for |i| ≥ N , we have that Vi
is opposed to Fi. The statement then reduces to the corresponding statement for
the flag variety of the finite-dimensional vector space FN/F−N . Namely, any flag
G• in C2N is opposed to (at least) one of the (2N)! flags wH•, where w ∈ S2N is a
permutation and H• is some choice of basepoint flag. �

Example 2.2. Define

Vi =

{
span(ti+1, ti+2, ti+3, ti+4, . . .) if i is even

span(ti, ti+2, ti+3, ti+4, . . .) if i is odd
,

so V0 = span(t, t2, t3, t4, . . .), V1 = span(t, t3, t4, . . .), V2 = span(t3, t4, . . .). It is
clear that · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ · · · and each Vi is opposed to some admissible
subspace. So it belongs to the set that Kashiwara has in [Kas, p. 190]. However, it
does not belong to Fl from (2.8) since it is not true that Vm is opposed to Fm for
large m, so it cannot be opposed to any admissible flag.

We also define the thick partial flag schemes Flk for k ∈ Z, consisting of partial
flags V• in C((t−1)) indexed by i ∈ Z\{k}, with Vi opposed to Ξi for some Ξ• ∈ Fl−.
There is a natural morphism Fl→ Flk defined by forgetting Vk.
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2.5. Infinite Schubert varieties. Let B ⊂ End(C((t−1))) consist of the invertible
linear transformations ϕ : C((t−1))→ C((t−1)) satisfying

ϕ(ti) ∈ citi +
⊕
j>i

Ctj ci 6= 0.

Let B− ⊂ EndC(C((t−1))) consist of the invertible linear transformations ϕ satis-
fying

ϕ(ti) ∈ citi +
∏
j<i

Ctj ci 6= 0.

Let T = TZ = B ∩B−. The groups B,B− act on Fl. The group B acts on Fl, but
B− does not. We have that B · E• = E• and B · E• = E•. The (thin) Schubert
cells and (thin) Schubert varieties are defined to be

Ωw := B · wE• ⊂ Fl and Xw := B · wE• ⊂ Fl.

We have the decomposition Fl =
⊔
w∈SZ

Ωw. Furthermore, Ωw ∼= C`(w) and Xw is

an irreducible projective variety of dimension `(w).
An order ideal in SZ is a subset S ⊂ SZ such that if x < y ∈ SZ with y ∈ S then

x ∈ S. Let KT (Fl) denote the K-group of T -equivariant coherent sheaves on Fl.
Since Fl is an ind-scheme, the K-group KT (Fl) is the inductive limit

lim−→
S

KT (
⋃
w∈S

Xw) =
⊕
w∈SZ

KT (pt)[OXw ].

The (thick) opposite Schubert cells and (thick) opposite Schubert varieties are
defined to be

Ωw := B− · wE• ⊂ Fl and Xw := B− · wE• ⊂ Fl.

We have the decomposition Fl =
⊔
w∈SZ

Ωw. Furthermore, Ωw is an affine space of

infinite dimension and of codimension `(w) in Fl.
For any finite order ideal S ⊂ SZ, let ΩS =

⋃
w∈S wΩe =

⊔
w∈S Ωw. Let KT (ΩS)

be the Grothendieck group of coherent T -equivariant OΩS -modules. One may show
that KT (ΩS) ∼=

⊕
w∈S KT (pt)[OXw ] [KS, Lemma 2.3]. Define

KT (Fl) = lim←−
S

KT (ΩS) =
∏
w∈SZ

KT (pt)[OXw ].

2.6. NilHecke ring, localization and the GKM ring. We recall some results
from [KS]. These results are stated in the Kac-Moody setting, but the proofs are
valid for our thick infinite flag scheme Fl.

We have K∗T (pt) ∼= R(T ) ∼= Z[X] (see §2.1 for the definition of X) with the
image of λ ∈ X written eλ. The infinite symmetric group SZ acts on T and
therefore on R(T ) = Z[X]. Let R(T )loc = R(T )[(1− eα)−1 | α ∈ Φ] and let Kloc =
R(T )loc[SZ] be the twisted group ring with multiplication (fv)(gw) = fv(g)vw for
f, g ∈ R(T )loc and v, w ∈ SZ. Then Kloc acts on R(T )loc. Let Di ∈ Kloc be the
element (1 − e−αi)−1(1 − e−αisi) for i ∈ Z. Let K be the K-theoretic nilHecke
algebra, the subring of Kloc generated by R(T ) and the Di. The algebra K acts
naturally on R(T ). In this context Di is known as the Demazure operator [Dem].

Let Fun(SZ, R(T )) be the R(T )-algebra of functions f : SZ → R(T ) under
pointwise product, and similarly define Fun(SZ, R(T )loc). The algebra K acts on
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Fun(SZ, R(T )loc) by

Di(f)(w) =
1

1− e−w(αi)
f(w)− e−w(αi)

1− e−w(αi)
f(wsi).(2.9)

The T -fixed points on Fl are the flags wE•, and we identify Fl
T

with SZ. For each
w ∈ SZ, localization at w gives a R(T )-module homomorphism i∗w : KT (Fl)→ R(T )
[KS, §2]. It satisfies

i∗w([OXv ]) =


∏

α∈Φ+∩w(Φ−)

(1− eα) if v = w

0 unless v ≤ w.

(2.10)

The map SZ ∼= Fl
T
↪→ Fl induces the R(T )-algebra homomorphism res : KT (Fl)→

Fun(SZ, R(T )) given by res(f)(w) = i∗w(f). Define

ψv = res([OXv ]) for v ∈ SZ.(2.11)

Recall that for i ∈ Z we have the projection pi : Fl→ Fli to the i-th minimal thick
partial flag scheme. We have [KS, Cor. 3.3]

p∗i pi∗(OXv ) =

{
[OXvsi ] if vsi < v

[OXv ] if vsi > v.
(2.12)

The following result is due to Kashiwara; see [LSS, Prop. 3.3].

Proposition 2.3. The following diagram commutes:

KT (Fl) Fun(SZ, R(T )) Fun(SZ, R(T )loc)

KT (Fl) Fun(SZ, R(T )) Fun(SZ, R(T )loc)

res

p∗i pi∗ Di

res

Proposition 2.4. There are functions {ψv | v ∈ SZ} ⊂ Fun(SZ, R(T )) which are
uniquely determined by the following conditions:

(1) ψv(id) = δid,v for v ∈ SZ.
(2) If wsi < w then

ψv(w) =

{
ψv(wsi) if vsi > v

e−w(αi)ψv(wsi) + (1− e−w(αi))ψvsi(w) if vsi < v.
(2.13)

(3) We have

ψv(w) ∈ Z[Q] for all v, w ∈ SZ.(2.14)

Proof. Part (1) follows from the support condition (2.10). Part (2) follows from

Di(ψ
v) =

{
ψvsi if vsi < v

ψv otherwise,
(2.15)

which holds by equation (2.12), Proposition 2.3, and the definition of ψv. Equation
(2.14) holds by induction. �

Let Ψ be the set of ψ ∈ Fun(SZ, R(T )) such that

1− eα | ψ(sαw)− ψ(w) for all α ∈ Φ and w ∈ SZ.(2.16)
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Proposition 2.5. The space Ψ is an R(T )-subalgebra of Fun(SZ, R(T )). Moreover

Ψ =
∏
v∈SZ

R(T )ψv.(2.17)

The ring Ψ is called the GKM ring [GKM]. In the case of Kac-Moody flag
varieties the analogous condition is due to Kostant and Kumar [KK]. The action
of K on Fun(SZ, R(T )) preserves Ψ.

Proposition 2.6. The map res induces an isomorphism KT (Fl) ∼= Ψ of R(T )-
algebras and K-algebras where Di acts by p∗i pi∗.

If there is an action of a group G on an algebra R and an R-module M , then
we say that M is a G-equivariant R-module if g(a) · g(m) = g(a ·m) for all g ∈ G,
r ∈ R, and m ∈M .

Proposition 2.7.

(a) The group Aut(AZ) acts on K by conjugation and acts on R(T ), making
R(T ) into an Aut(AZ)-equivariant K-module.

(b) Aut(AZ) acts on Fun(SZ, R(T )) by conjugation, stabilizing the subring Ψ,
making Fun(SZ, R(T )) and Ψ into Aut(AZ)-equivariant K-modules.

(c) For every ζ ∈ Aut(SZ) and v ∈ SZ, we have ζ(ψv) = ψζ(v).

2.7. Multiplicative formal group law. Let A be a ring. Define the binary
operation ⊕ on A by

a⊕ b := a+ b− ab.(2.18)

For b ∈ A such that 1− b is a unit in A, define

	b :=
−b

1− b
for b 6= 1.(2.19)

a	 b := a⊕ (	b) =
a− b
1− b

.(2.20)

The operation ⊕ is commutative and associative with neutral element 0 and b	b = 0
for b 6= 1.

2.8. From exponentials to polynomials. Define the Laurent polynomial ring
R and its subrings R+ and R−, as follows:

R := Z[(1− xi)±1 | i ∈ Z](2.21)

R+ := Z[(1− xi) | i ∈ Z>0][(1− xi)−1 | i ∈ Z≤0](2.22)

R− := Z[(1− xi) | i ∈ Z≤0][(1− xi)−1 | i ∈ Z>0].(2.23)

Note that Z[	(xi)] = Z[(1− xi)−1].
Let Θ : R(T ) → R be the ring isomorphism given by Θ(eεi) = (1 − xi)−1 for

i ∈ Z. This is merely a renaming of the generators of a Laurent polynomial ring,
but is convenient for combinatorial applications. We have

Θ(1− eαij ) = xj 	 xi for all i, j ∈ Z with i 6= j.(2.24)

The isomorphism Θ is SZ-equivariant.
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Let K̃ be the algebra generated by R and elements π̃i for i ∈ I, equipped with
an isomorphism Θ : K→ K̃ which restricts to the isomorphism Θ : R(T )→ R and
satisfies Θ(Di) = π̃i. We have

π̃i = Θ(Di)

= Θ
(
(1− e−αi)−1(1− e−αisi)

)
= (xi 	 xi+1)−1(1− (1− xi+1)−1(1− xi)si)
= (xi − xi+1)−1(1− xi+1 − (1− xi)si)
= (xi − xi+1)−1(1− si)(1− xi+1)

= Ai ◦ (1− xi+1),

where

Ai = (xi − xi+1)−1(1− si)(2.25)

is the divided difference operator[LLS21]. Consider now the Aut(AZ)-equivariant
K-module structure on R(T ). By (2.5), we have

ω(eεi) = e−ε1−i for i ∈ I,(2.26)

γ(eεi) = eεi+1 for i ∈ I.(2.27)

Via the isomorphism Θ, we obtain an Aut(AZ)-equivariant K̃-module structure on

R. The elements ω and γ of Aut(SZ) induce automorphisms of R and K̃ that we
denote by ω̃ and γ respectively. By (2.26), we have ω̃((1−xi)−1) = 1−x1−i. Thus
for all i ∈ Z, we have

ω̃(xi) = 	(x1−i)(2.28)

ω̃(π̃i) = ω̃(π̃−i)(2.29)

γ(xi) = xi+1(2.30)

γ(π̃i) = π̃i+1.(2.31)

Furthermore, we have

ω̃γω̃ = γ−1(2.32)

on K̃ and on R, by (2.3).
Let R(a) be the ring isomorphic to R, using the variables ai instead of xi. We

write Θa : R(T )→ R(a) for the isomorphism involving the ai variables.
Let (Θa)∗ : Fun(SZ, R(T )) ∼= Fun(SZ, R(a)) be defined by (Θa)∗(f) = Θa ◦ f .

Let Ψ̃ ⊂ Fun(SZ, R(a)) be the image of Ψ under (Θa)∗. Applying Θa to (2.16),
using (2.24), and observing that aj	ai and aj−ai generate the same ideal of R(a),

we see that Ψ̃ is the subring of functions f : SZ → R(a) such that

aj − ai | f(w)− f(sijw) for all w ∈ SZ and i, j ∈ Z with i 6= j.(2.33)

This induces an isomorphism (Θa)∗ : Ψ → Ψ̃. Finally, for v ∈ SZ, let ψ̃v ∈ Ψ̃ be

defined by ψ̃v = (Θa)∗(ψ
v) = Θa ◦ ψv.
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3. Grothendieck polynomials

3.1. Demazure operators. For i ∈ Z and w ∈ SZ, define

si ∗ w :=

{
siw if siw > w

w otherwise.

This defines a monoid (SZ, ∗) called the 0-Hecke monoid. The operation ∗ is called

the Hecke product or Demazure product. Recall the operators π̃i ∈ K̃ defined in
§2.8.

Lemma 3.1.

(1) The π̃i satisfy the braid relations π̃iπ̃i+1π̃i = π̃i+1π̃iπ̃i+1, and π̃2
i = π̃i.

(2) The π̃i generate a monoid isomorphic to the 0-Hecke monoid.

3.2. Subgroups of permutations. Our notation for symmetric groups and par-
titions follows [LLS21]. Define the following subgroups of SZ:

S+ = 〈si | i ∈ Z>0〉(3.1)

S− = 〈si | i ∈ Z<0〉(3.2)

S 6=0 = S− × S+ = 〈si | i ∈ Z \ {0}〉.(3.3)

3.3. Grothendieck polynomials. For w ∈ Sn, the Grothendieck polynomial Gw ∈
Z[x1, . . . , xn] is defined by [LS] [FK, §4]

Gw0 := xn−1
1 xn−2

2 · · ·xn−1(3.4)

Gw := π̃iGwsi for wsi > w.(3.5)

Example 3.2. The Grothendieck polynomials Gw for w ∈ S3 are given below with
Gs1s2s1 at the top.

x2
1x2

x1x2 x2
1

x1 x1 ⊕ x2

1

π̃1 π̃2

π̃2 π̃1

π̃1 π̃2

Remark 3.3. By Lemma 3.1, the polynomials Gw ∈ Z[x1, . . . , xn] for w ∈ Sn are
well-defined. Moreover for w ∈ S+ =

⋃
n≥1 Sn, Gw is independent of n in the

sense that for any n such that w ∈ Sn, Gι(w) = Gw under the standard embedding
ι : Sn → Sn+1.

Fomin and Kirillov give the following monomial expansion of Gw.

Proposition 3.4. [FK, Prop. 3.3] For w ∈ S+, we have

Gw =
∑

sa1∗sa2∗···∗saL=w
1≤i1≤i2≤···≤iL

ak≤ak+1⇒ik<ik+1

ik≤ak

(−1)L−`(w)xi1xi2 · · ·xiL ,(3.6)

where L is arbitrary.
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Proposition 3.5. The set {Gw | w ∈ S+} is a Z-basis of Z[x+] = Z[xi | i ∈ Z≥0].

Proof. By Proposition 3.4, the lowest homogeneous part of Gw coincides with the
Billey-Jockusch-Stanley formula for the Schubert polynomial [BJS]. The Schubert
polynomials form a basis [LLS21, Thm. 2.7]. This shows that the Gw are linearly
independent. The Monk Rule of [Len03] gives a finite Grothendieck polynomial
expansion of any product xkGw for k ≥ 1 and w ∈ S+. In particular, iterating
the Monk rule one may expand any monomial (times Gid = 1) as a finite linear
combination of Grothendieck polynomials. This proves that {Gw | w ∈ S+} span
Z[x+]. �

3.4. Negative Grothendieck polynomials. Recall the automorphism ω of SZ
from §2.2 and ω̃ of R from §2.8. The automorphism ω ∈ Aut(SZ) restricts to an
isomorphism S− ∼= S+. For w ∈ S−, define the negative Grothendieck polynomial
Gw ∈ R+ by

Gw := ω̃(Gω(w)) for w ∈ S−.(3.7)

Example 3.6. The polynomials Gw for w ∈ 〈s−1, s−2〉 are given below. The top
polynomial is Gs−1s−2s−1

.

(	x0)2(	x−1)

(	x0)(	x−1) (	x0)2

	x0 (	x0)⊕ (	x−1)

1

π̃−1 π̃−2

π̃−2 π̃−1

π̃−1 π̃−2

Proposition 3.7. The set {Gw | w ∈ S−} is a Z-basis of Z[(1− xi)−1 | i ∈ Z≤0].

Proof. The map ω̃ restricts to an isomorphism

Z[xi | i ∈ Z>0]→ Z[(1− xi)−1 | i ∈ Z≤0]

sending the basis {Gw | w ∈ S+} to the basis {Gw | w ∈ S−}. �

For w ∈ S 6=0 = S− × S+, there is a unique factorization w = uv with u ∈ S−
and v ∈ S+. Define

Gw := GuGv.(3.8)

Lemma 3.8. For w ∈ SZ, we have

ω̃(Gw) = Gω(w) for w ∈ S 6=0.(3.9)

Proposition 3.9. The set {Gw | w ∈ S 6=0} is a Z-basis of R+ = Z[(1 − xi) | i ∈
Z>0][(1− xi)−1 | i ∈ Z≤0].

Proof. Follows by tensoring the bases in Propositions 3.5 and 3.7. �
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4. Back stable Grothendieck polynomials

4.1. Back stable rings. Let

x+ := (x1, x2, x3, . . . ), x− = x≤0 := (x0, x−1, x−2, . . . ).

Let Λ = Λ(x−) denote the ring of symmetric functions in the variables x− with

coefficients in Z and let Λ̂ denote the graded completion of Λ. That is, an element
f ∈ Λ̂ is a formal linear combination f = f1 + f2 + · · · where fi ∈ Λ is homoge-
neous of degree i. Similarly, we define Λ̂(x+) using positive variables. When no

decorations are present, we assume negative variables are used: Λ̂ means Λ̂(x−).

Let pk, ek, hk ∈ Λ̂ denote the power sum, elementary, and homogeneous sym-
metric functions. We have isomorphisms Λ̂ ∼= Z[[e1, e2, . . .]] and Λ̂ ∼= Z[[h1, h2, . . .].

Despite the fact that Λ̂(x−) ) Z[[p1, p2, . . .]], since Λ̂(x−)⊗Z Q = Q[[p1, p2, . . .]] we

define maps from Λ̂ by describing the images of pk. That is, we define Q-algebra
homomorphisms using the topological generators pk and in all cases they restrict
to ring homomorphisms over the integers. Define the back stable rings

←−
R := Λ̂(x−)⊗R = R[[e1, e2, . . . ]]
←−
R+ := Λ̂(x−)⊗R+ = R+[[e1, e2, . . . ]].

The Dynkin shift automorphism γ ∈ Aut(AZ) from §2.1 induces the ring automor-

phism of
←−
R defined by γ(xi) = xi+1 for i ∈ Z and γ(pk(x−)) = pk(x−) + xk1 for all

k ≥ 1.
We identify Λ̂(x+) with Λ̂(x−) by setting

pk(x+) = −pk(x−) for k ≥ 1.(4.1)

This is consistent with the SZ-action: the element
∑
i∈Z x

k
i is set to zero, and

is SZ-symmetric. Under (4.1) we have en(x+) = (−1)nhn(x−) and hn(x+) =
(−1)nen(x−), thus preserving symmetric functions with integral coefficients.

4.2. Conjugation automorphism. Recall ω̃ ∈ Aut(R) from §2.8. Since the pk
are algebraically independent topological generators of Λ̂, we may extend ω̃ to an

automorphism of
←−
R by

ω̃(pk) := (−1)k+1
∑
r≥0

(
r + k − 1

k − 1

)
pk+r for k ≥ 1.(4.2)

Heuristically, we have ω̃(f(x)) = f(ω̃(x)) = f(	(x1−i)) for f ∈ Λ̂. Using (4.1), this
induces the map (4.2).

We call ω̃ the (K-theoretic) conjugation automorphism. Note that ω̃ differs from

the automorphism ω defined in [LLS21], and restricts to an automorphism of Λ̂
that differs from the usual conjugation automorphism ω of symmetric functions.

The automorphisms ω̃ and γ define an action of Aut(AZ) on
←−
R .

Proposition 4.1. The maps γ and ω̃ define an action of Aut(AZ) on
←−
R . That is,

ω̃ ◦ γ ◦ ω̃ = γ−1.(4.3)



BACK STABLE K-THEORY SCHUBERT CALCULUS 15

Proof. As this relation already holds on R by (2.32), it is enough to check the
identity applied to pk for k ≥ 1. We have

(γ ◦ ω̃)(pk) = γ((−1)k+1
∑
r≥0

(
r + k − 1

k − 1

)
pk+r)

= (−1)k+1

∑
r≥0

(
r + k − 1

k − 1

)
pk+r +

∑
r≥0

(
r + k − 1

k − 1

)
xk+r

1


= ω̃(pk)−

(
−x1

1− x1

)k
= ω̃(pk − xk0)

= ω̃ ◦ γ−1(pk). �

The conjugation automorphism ω̃ restricts to an automorphism of
←−
R+.

4.3. Group law negation automorphism. Denote by 	 : R→ R the involutive
ring automorphism of R defined by xi 7→ 	(xi) for all i. We will write f(	(x))
for 	(f(x)) for f(x) ∈ R. The map 	 restricts to an isomorphism R+ ∼= R−. It
satisfies the operator identities

	 ◦ w ◦ 	 = w(4.4)

	 ◦ π̃i ◦ 	 = siπ̃isi =: π̃	i = Ai(xi − 1).(4.5)

Lemma 4.2.

π̃	i (Gw(	x)) =

{
Gwsi(	x) if wsi < w

Gw(	x) otherwise.
(4.6)

We extend 	 to an automorphism of
←−
R , called the group law negation automor-

phism, by setting

	(pk) := −ω̃(pk) = (−1)k
∑
r≥0

(
r + k − 1

k − 1

)
pk+r for k ≥ 1.

4.4. Antipode automorphism. The antipode S is the involutive Q-algebra au-

tomorphism on
←−
R defined by S(pk) = −pk for all k ≥ 1 and S(xi) = x1−i for i ∈ Z.

We have

	 = S ◦ ω̃ = ω̃ ◦ S.(4.7)

Proposition 4.3. We have 	 ◦ γ = γ ◦ 	 and S ◦ γ−1 = γ ◦ S.

4.5. Back stable Grothendieck polynomials. For w ∈ SZ and an interval

[p, q] ⊂ Z that contains all integers moved by w, let G
[p,q]
w be the usual Grothendieck

polynomial except computed using variables xp, xp+1, . . . , xq instead of x1, x2, . . . .
That is,

G[p,q]
w := γp−1Gγ1−p(w)(4.8)

where γ denotes both γ ∈ Aut(
←−
R ) from §4.1 and γ ∈ Aut(SZ) from §2.2.
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The back stable Grothendieck polynomial
←−
Gw ∈

←−
R is defined by

←−
Gw := lim

p→−∞
q→∞

G[p,q]
w .(4.9)

It is immediate that we have

π̃iGw =

{
Gwsi if wsi < w

Gw otherwise.
(4.10)

Taking the limit of Proposition 3.4 gives the following formula in which the
indices ik are integers.

Proposition 4.4. For w ∈ SZ, we have
←−
Gw =

∑
sa1∗sa2 ···∗saL=w
i1≤i2≤···≤iL

ak≤ak+1⇒ik<ik+1

ik≤ak

(−1)L−`(w)xi1xi2 · · ·xiL ,(4.11)

where L is arbitrary.

Example 4.5. Consider
←−
Gs0 . For every L ≥ 1, s0 may be obtained as the Hecke

product of L copies of s0. For this Hecke factorization the associated sequence
(i1, . . . , iL) can be any sequence of integers with i1 < i2 < · · · < iL ≤ 0. Therefore,

we have
←−
Gs0 =

∑
L≥1(−1)L−1eL.

See Appendix B for more examples of back stable Grothendieck polynomials.

4.6. Aut(AZ)-action on back stable Grothendieck polynomials.

Proposition 4.6. For w ∈ SZ, we have
←−
Gγ(w) = γ(

←−
Gw).(4.12)

Proof. Follows from Proposition 4.4. �

Proposition 4.7. For w ∈ SZ, we have
←−
Gω(w) = ω̃(

←−
Gw).(4.13)

Proof. This holds by Proposition 5.23 and Proposition 5.21, using the fact that For
(defined in §5.6) and ω̃ commute. �

4.7. K-Stanley functions. There is a ring homomorphism η0 :
←−
R → Λ̂ given by

xi 7→ 0 for all i ∈ Z, and pk 7→ pk for all k ≥ 1. This “sets all xi to zero except
those in Λ̂(x−)”.

Define the K-Stanley function Gw ∈ Λ̂(x−) for w ∈ SZ by

Gw := η0(
←−
Gw).(4.14)

Remark 4.8. We call Gw the K-Stanley function because it is the K-theoretic
analogue of a Stanley function in cohomology [LLS21]. For w ∈ S+, the (forward-

)stable Grothendieck polynomial of [FK] is the element Gw(x+) ∈ Λ̂(x+) defined
by

Gw(x+) := lim
n→∞

Gγn(w),
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which by (3.6) is

Gw(x+) =
∑

sa1∗sa2∗···∗sap=w

1≤i1≤i2≤···≤ip
ak≤ak+1⇒ik<ik+1

(−1)p−`(w)xi1xi2 · · ·xip .(4.15)

Note that this gives the same symmetric series as the definition in (4.14), only with
variables x+ rather than x−.

In this work we use the name “K-Stanley” in lieu of “stable Grothendieck”
because the latter produces a conflict in the equivariant setting as there are three
different versions of limiting double Grothendieck polynomial: (1) a back stable
limit (the back stable double Grothendieck polynomial) which is not symmetric in
the x variables, (2) a forward stable limit (the super K-Stanley function), which is
supersymmetric, and (3) an equivariant analogue of (4.14) (the double K-Stanley
functions).

Proposition 4.9. We have

η0 ◦ γ = η0(4.16)

Gγ(w) = Gw for all w ∈ SZ.(4.17)

Proof. As both sides are algebra maps one may check (4.16) on the topological
algebra generators, which is straightforward. Equation (4.17) follows from equation
(4.16). �

Proposition 4.10. For w ∈ SZ, we have

Gw =
∑

sa1∗sa2∗···∗sap=w

i1≤i2≤···≤ip≤0
ak≤ak+1⇒ik<ik+1

(−1)p−`(w)xi1xi2 · · ·xip .(4.18)

Proof. By (4.17) we may assume that w ∈ S+ . Since wsi > w for i ∈ Z<0,
←−
Gw

is S−-symmetric. Hence may write
←−
Gw =

∑
α fαx

α
+ where fα ∈ Λ̂(x−) with only

finitely many fα 6= 0. Applying η0 to (4.11) we have Gw = f0. But f0 equals
the right hand side of (4.18), the sum of monomials in (4.11) having only xi with
i ≤ 0. �

Proposition 4.11. For w ∈ SZ, we have

Gω(w−1) = Gw.(4.19)

Proof. By (4.17) one may assume w ∈ S+ so that w ∈ Sn for some n. By [FK, Cor.
5.10] and the Sn-invariance of

Gw(x1, . . . , xn) := Gw(. . . , 0, 0, x1, x2, . . . , xn, 0, 0, . . . ),

we have

Gw(x1, . . . , xn) =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Guw0(Gw0v−1w0
)(4.20)

=
∑

u∗v=w

(−1)`(u)+`(v)−`(w)w0(Gu)Gw0v−1w0
.(4.21)

Since conjugation by w0 is a length-preserving automorphism of Sn and taking
inverses is a length-preserving anti-automorphism of Sn, u ∗ v = w if and only if
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(w0v
−1w0) ∗ (w0u

−1w0) = w0w
−1w0. Applying (4.20) for w0w

−1w0 and (4.21) for
w we have

Gw0w−1w0
(x1, . . . , xn) =

∑
u∗v=w

(−1)`(u)+`(v)−`(w)Gw0v−1w0
w0(Gu)

= Gw(x1, . . . , xn).

Letting n→∞ we deduce that Gw = Gw0w−1w0
in Λ̂.

The Dynkin reversal on Sn given by conjugation by w0, sends si to sn−i, whereas
ω sends si to s−i. Both are group homomorphisms, so w0w

−1w0 = γnω(w). The
result follows by (4.17). �

Proposition 4.12. For all w ∈ SZ, we have

ω̃(Gw) = Gω(w)(4.22)

SGw(x) = Gw−1(	x).(4.23)

Proof. Equation (4.22) follows from Proposition 4.7 and applying the specialization
xi 7→ 0, which commutes with ω̃. For (4.23), we calculate

SGw−1(	x) = (S ◦ 	)Gw−1 = ω̃Gw−1 = Gω(w−1) = Gw

by (4.7), (4.22), and (4.19). Applying S yields (4.23). �

4.8. Coproduct on symmetric functions. Let ∆ : Λ̂→ Λ̂⊗Λ̂ be the coproduct:
∆(pk) = pk ⊗ 1 + 1 ⊗ pk. We identify Λ̂ ⊗ Λ̂ with symmetric series in two sets of
variables, one set for each tensor factor. If we use x− for the first factor and a− for
the second then ∆(pk) = pk(x−) + pk(a−).

Proposition 4.13. For w ∈ SZ, we have

∆(Gw) =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu ⊗Gv.(4.24)

Proof. Plug two sets of variables into (4.18). �

4.9. Superization. For f(x) ∈ Λ̂ let f(x/a) denote the image of f in Λ̂ ⊗ Λ̂ =

Λ̂(x)⊗ Λ̂(a) under superization, which is the coproduct ∆ followed by id⊗S where
the antipode S acts on the “a” variables. The map f 7→ f(x/a) is the unique
Z-algebra homomorphism sending pk(x−) to pk(x/a) = pk(x−) − pk(a−), which
for historical reasons we denote by pk(x||a). We call Gw(x/a) the super K-Stanley
function.

Proposition 4.14. For w ∈ SZ, we have

Gw(x/a) =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu−1(	(a))Gv(x)(4.25)

=
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gv−1(	(a))Gu(x).(4.26)

Proof. This holds by Propositions 4.12 and 4.13. �



BACK STABLE K-THEORY SCHUBERT CALCULUS 19

4.10. Coproduct formula. The coproduct ∆ on Λ̂ can be extended to a map

∆ : R→
←−
R giving R the structure of a Λ̂-comodule, by defining ∆(xi) = 1⊗ xi for

i ∈ Z. It restricts to a map R+ →
←−
R+ that makes R+ into a Λ̂-comodule.

Theorem 4.15. For w ∈ SZ, we have

∆(
←−
Gw) =

∑
u∗v=w

(−1)`(u)+`(v)−`(w)Gu ⊗
←−
Gv,(4.27)

←−
Gw =

∑
u∗v=w
v∈S 6=0

(−1)`(u)+`(v)−`(w)GuGv.(4.28)

Proof. We first derive (4.27) from (4.28). By Proposition 4.13, we have

∆(
←−
Gw) = ∆

 ∑
u∗v=w
v∈S 6=0

(−1)`(u)+`(v)−`(w)GuGv


=

∑
u1∗u2∗v=w
v∈S 6=0

(−1)`(u1)+`(u2)+`(v)−`(w)Gu1
⊗Gu2

Gv

=
∑

u1∗z=w
(−1)`(u1)+`(z)−`(w)Gu1

⊗
←−
Gz.

The equality (4.28) can be deduced from [LLS+, Theorem 4.7] by taking a limit; see
[LLS+, Section 6.2] for an explanation of this limit in the very similar cohomology
setting. Presumably, (4.28) could also be deduced from a direct combinatorial
argument similar to the proof of the coproduct formula in [LLS21]. �

Example 4.16. We compute Gs1 and Gs−1 using Theorem 4.15. By (4.17) we have
Gs1 = Gs−1

= Gs0 .

←−
Gs1 = Gs1 + Gs1 −Gs1Gs1 = Gs0 ⊕ x1

←−
Gs−1 = Gs0 	 x0.

4.11. Grassmannian K-Stanley functions. We denote by S0
Z the subset of

Grassmannian elements, the set of w ∈ SZ such that wsi > w for all i ∈ Z\{0}. Let
Y be Young’s lattice of partitions. There is a bijection Y → S0

Z denoted λ 7→ wλ
[LLS21]. Consider the tableau of shape λ in which the box (i, j) in the i-th row
and j-th column is filled with the simple reflection sj−i. Then wλ ∈ S0

Z is the
element with reduced word given by reading the rows of this tableau from right to
left, starting with the bottom row.

Example 4.17. For λ = (3, 2) we have wλ = (s0s−1)(s2s1s0) where the parentheses
separate the reflections according to their row in the tableau.

s0 s1 s2

s−1 s0

Define the Grassmannian K-Stanley function

Gλ := Gwλ for λ ∈ Y.(4.29)

Some examples of Gλ are given in Appendix B.
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Lemma 4.18. For λ ∈ Y, we have

Gλ =
←−
Gwλ .(4.30)

Proof. Since wλ ∈ S0
Z, it follows that

←−
Gwλ is S 6=0-symmetric, that is,

←−
Gwλ ∈ Λ̂.

Thus Gλ = Gwλ = η0(
←−
Gwλ) =

←−
Gwλ , as required. �

Proposition 4.19. For λ ∈ Y, we have

ω̃(Gλ) = Gλ′ .(4.31)

Proof. We have ω(wλ) = wλ′ . This is a special case of Proposition 4.7 for wλ. �

The following is easily deduced from e.g. the Schur expansion of Gλ in [Len00,
Thm. 2.2].

Proposition 4.20. For all r ≥ 1, we have

Gr =
∑
i≥0

(−1)rsr,1i(4.32)

G1r =
∑
i≥0

(−1)i
(
i+ r − 1

r − 1

)
s1r+i .(4.33)

5. Back stable double Grothendieck polynomials

Recall the Laurent polynomial rings R(a) and R = R(x) from §2.8. Define the
R(a)-algebras

R(x; a) = R(x)⊗R(a)(5.1)

R(x; a)+ = R(x)+ ⊗R(a).(5.2)

For w ∈ SZ, let wx (resp. wa) denote the action of w on the x (resp. a) variables
in R(x; a). We use similar superscript notation for other operators.

5.1. Double Grothendieck polynomials. For w ∈ Sn, the double Groth-endieck
polynomial Gw ∈ R(x; a) is defined by

Gw0(x; a) =
∏

i+j≤n

(xi 	 aj)(5.3)

Gw(x; a) = π̃xi (Gwsi(x; a)) if wsi > w.(5.4)
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Example 5.1. The double Grothendieck polynomials Gw(x; a) for w ∈ S3 are given
below.

(x1 	 a1)(x1 	 a2)(x2 	 a1)

(x1 	 a1)(x2 	 a1) (x1 	 a1)(x1 	 a2)

x1 	 a1 (x1 	 a1)⊕ (x2 	 a2)

1

π̃1

π̃2

π̃1

π̃2

π̃1

π̃2

Remark 5.2. The literature defines Gw(x; a) using ⊕ instead of 	. This has the
convenient feature of avoiding denominators. However our convention is the most
natural with respect to localization.

One may show that Gw(x; a) is well-defined for w ∈ S+.

Lemma 5.3. For w ∈ S+, we have

Gw(x; 0) = Gw(x).(5.5)

Proposition 5.4. The set {Gw(x; a) | w ∈ S+} is a R(a)-basis of R(a) ⊗ Z[xi |
i ∈ Z>0].

Proof. Follows by Lemma 5.3 and Proposition 3.9. �

5.2. Negative double Grothendieck polynomials. The automorphism ω̃ of
R(x) defined by (2.28) can be extended to a ring automorphism of R(x; a) by
letting ω̃(ai) = 	(a1−i) for all i ∈ Z.

Recall that ω acts on SZ by (2.7). For w ∈ S−, define the negative double
Grothendieck polynomials by

Gw(x; a) := ω̃(Gω(w)(x; a)).

Example 5.5. We have Gs1(x; a) = x1 	 a1. Thus

Gs−1
(x; a) = ω̃(Gs1) = ω̃(x1 	 a1) = (	x0)	 (	a0) = a0 	 x0.

Proposition 5.6. The set {Gw(x; a) | w ∈ S−} is a R(a)-basis of R(a)[(1−xi)−1 |
i ∈ Z≤0].

Proof. This follows from the fact that ω̃ restricts to a R(a)-algebra isomorphism

R(a)[xi | i ∈ Z>0]→ R(a)[(1− xi)−1 | i ∈ Z≤0]

Gw(x; a) 7→ Gω(w)(x; a) for w ∈ S+. �

For w ∈ S 6=0, write w = uv with u ∈ S+ and v ∈ S−. Define

Gw(x; a) := Gu(x; a)Gv(x; a) for w ∈ S 6=0.

Proposition 5.7. The set {Gw(x; a) | w ∈ S 6=0} is a R(a)-basis of R(x; a)+.

Proof. Follows immediately from Propositions 5.4 and 5.6. �



22 THOMAS LAM, SEUNG JIN LEE, AND MARK SHIMOZONO

Proposition 5.8. For w ∈ S 6=0, we have

Gw(x; a) =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu−1(	a)Gv(x),(5.6)

Gw(x) =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu(a)Gv(x; a).(5.7)

Proof. For (5.6), by factoring and applying ω̃ one may reduce to the case that
w ∈ S+. Then w ∈ Sn for some n, in which case (5.6) holds by [FK, Prop. 3.2,
Lemma 5.5]. For (5.7) apply Proposition A.1. �

Example 5.9. We have Gs1(x; a) = x1	a1. Using (5.6) with the Hecke factorizations
u ∗ v = s1 given by (u, v) equal to (s1, id), (id, s1), and (s1, s1) we have

Gs1(x; a) = Gs1(	a)Gid(x) + Gid(	(a))Gs1(x)−Gs1(	a)Gs1(x)

= Gs1(	a)⊕Gs1(x) = 	(a1)⊕ x1 = x1 	 a1.

Proposition 5.10. For w ∈ S 6=0, we have

Gw−1(x; a) = Gw(	a;	x).(5.8)

Proof. This follows from (5.6) using that u∗v = w if and only if v−1∗u−1 = w−1. �

Proposition 5.11. We have

π̃a,	i Gw(x; a) =

{
Gsiw(x; a) if siw < w

Gw(x; a) otherwise.
(5.9)

Proof. Follows by Proposition 5.10 and Lemma 4.2. �

5.3. Double symmetric function ring. Let S = Z[[ai | i ∈ Z]] be the ring of

formal power series in variables ai for i ∈ Z with coefficients in Z. Let Λ̂(x||a) :=

Λ̂(x/a)⊗Z⊗S be the S-algebra of formal power series in ek(x/a) with coefficients in

S. The ring Λ̂(x||a) is a Hopf algebra over S with coproduct such that the elements

pk(x||a) are primitive, counit εa : Λ̂(x||a)→ S given by εa(pk(x||a)) = 0 for k ≥ 1,
and antipode S(pk(x||a)) = −pk(x||a) for all k ≥ 1.

5.4. Double back stable rings. Define the S-algebras, called double back stable
rings,

←−
R (x; a) = Λ̂(x||a)⊗R(a) R(x; a)(5.10)
←−
R (x; a)+ = Λ̂(x||a)⊗R(a) R(x; a)+.(5.11)

The infinite symmetric group SZ has two commuting actions on
←−
R (x; a), one acting

on x variables and the other on a variables, including “the variables in Λ̂(x||a)”,
where pk(x||a) is as in §4.8:

sxi (pk(x||a)) = pk(x||a) + δi0(xk1 − xk0)

sai (pk(x||a)) = pk(x||a) + δi0(ak0 − ak1).

The algebra Λ̂(x||a) is the S-subalgebra of Sx6=0-invariants in
←−
R (x; a).

Remark 5.12. Since formal series in pk(x||a) are allowed, in order to admit an SZ-
action, series in the ai must also be allowed. This is why S is used for the coefficient
ring rather than R(a).
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5.5. Aut(AZ)-action on double back stable rings. The group Aut(AZ) acts on
←−
R (x; a) by ring automorphisms. Define γ :

←−
R (x; a)→

←−
R (x; a) by

γ(xi) = xi+1, γ(ai) = ai+1, γ(pk(x||a)) = pk(x||a) + xk1 − ak1 .

Let ω̃ be the ring automorphism of
←−
R (x; a) extending the automorphism ω̃ of

R(x; a) in §5.2 by

ω̃(pk(x||a)) = (−1)k+1
∑
r≥0

(
r + k − 1

k − 1

)
pk+r(x||a) for all k ≥ 1.(5.12)

This is consistent with the definition of ω̃(pk(x−)) and the parallel definition of
ω̃(pk(a−)) in §4.1 (using the convention pk(a+) = −pk(a−)).

Proposition 5.13. The maps γ and ω̃ define an action of Aut(AZ) on
←−
R (x; a).

That is,

ω̃ ◦ γ ◦ ω̃ = γ−1.(5.13)

Proof. This can be readily verified on the generators. �

Proposition 5.14. For all w ∈ SZ, we have

ω̃(Gw(x/a)) = Gω(w)(x/a).(5.14)

Proof. Follows from Proposition 5.23 and Lemma 5.20. �

5.6. Back stable double Grothendieck polynomials. Given w ∈ SZ, let [p, q] ⊂
Z be an interval that contains all elements of Z moved by w. Define G

[p,q]
w (x; a) ∈

R(x; a) by

G[p,q]
w (x; a) = γp−1(Gγ1−p(w)(x; a)).

Define the back stable double Grothendieck polynomial
←−
Gw(x; a) by

←−
Gw(x; a) = lim

p→−∞
q→∞

G[p,q]
w (x; a).

It is immediate that we have

π̃xi Gw(x; a) =

{
Gwsi(x; a) if wsi < w

Gw(x; a) otherwise.
(5.15)

Proposition 5.15. We have

π̃a,	i (
←−
Gw(x; a)) =

{←−
Gsiw(x; a) if siw < w
←−
Gw(x; a) otherwise.

(5.16)

Proof. Follows from Proposition 5.11. �

Proposition 5.16. For w ∈ SZ, we have
←−
Gw(x; a) =

∑
u∗v=w

(−1)`(u)+`(v)−`(w)←−Gu−1(	(a))
←−
Gv(x).(5.17)

Proof. This holds by Proposition 5.8 and the definitions. �

Proposition 5.17. For w ∈ SZ, we have
←−
Gw(x; a) =

∑
u∗v∗z=w
u,z∈S 6=0

(−1)`(u)+`(v)+`(z)−`(w)Gu−1(	a)Gv(x/a)Gz(x).(5.18)
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Proof. Let w = u ∗ v, u−1 = u1 ∗ v1 and v = u2 ∗ v2 with v1, v2 ∈ S 6=0, so that

w = v−1
1 ∗ u−1

1 ∗ u2 ∗ v2. By Propositions 5.16, 4.15, and 4.14 we have
←−
Gw(x; a) =

∑
u∗v=w

(−1)`(u)+`(v)−`(w)←−Gu−1(	(a))
←−
Gv(x)

=
∑

v−1
1 ∗u

−1
1 ∗u2∗v2=w

v1,v2∈S 6=0

(−1)`(u1)+`(v1)+`(u2)+`(v2)−`(w)

Gv1(	(a))Gu1(	(a))Gu2(x)Gv2(x)

=
∑

v−1
1 ∗y∗v2=w
v1,v2∈S 6=0

(−1)`(v1)+`(y)+`(v2)−`(w)Gv1(	(a))Gy(x/a)Gv2(x). �

Example 5.18. We have
←−
Gs0(x; a) = Gs0(x/a) = G1(x/a)
←−
Gs1(x; a) = Gs1(	a) +Gs1(x/a) + Gs1(x)

−Gs1(	a)Gs1(x/a)−Gs1(	a)Gs1(x)−Gs1(x/a)Gs1(x)

+ Gs1(	a)Gs1(x/a)Gs1(x)

= Gs1(	a)⊕G1(x/a)⊕Gs1(x)

= 	(a1)⊕G1(x/a)⊕ x1 = G1(x/a)⊕Gs1(x; a).

Proposition 5.19. For w ∈ SZ, we have
←−
Gw−1(x; a) =

←−
Gw(	a;	x).(5.19)

Proof. This holds by Proposition 5.16 and the fact that u ∗ v = w if and only if
v−1 ∗ u−1 = w−1. �

Lemma 5.20. For all w ∈ SZ, we have

Gw(x/a) =
←−
Gw(x; a)|xi 7→0,ai 7→0.(5.20)

Proof. This follows by Proposition 5.17 and the fact that Gz(x)|xi 7→0 = 0 for z 6=
id. �

Define the forgetful ring homomorphism For :
←−
R (x; a)→

←−
R by

For(pk(x||a)) = pk(x−)

For(xi) = xi

For(ai) = 0.

Proposition 5.21. For all w ∈ SZ, For(
←−
Gw(x; a)) =

←−
Gw(x).

Proof. Follows from Propositions 5.17 and 4.15. �

5.7. Aut(AZ)-action on back stable double Grothendieck polynomials. The
group Aut(AZ) of automorphisms of the Dynkin diagram AZ, permutes the back
stable double Grothendieck polynomials. By Theorem 5.25 and Proposition 2.7 the
following hold.

Proposition 5.22. For w ∈ SZ, we have
←−
Gγ(w)(x; a) = γ(

←−
Gw(x; a)).(5.21)
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Proposition 5.23. For w ∈ SZ, we have
←−
Gω(w)(x; a) = ω̃(

←−
Gw(x; a)).(5.22)

5.8. Back stable double Grothendieck polynomials are the equivariant

Schubert basis. For f ∈
←−
R (x; a) and w ∈ SZ define

f |w = f(wa; a) = εa(wx(f(x; a)).

The map f 7→ f |w is an S-algebra homomorphism
←−
R (x; a)→ S.

Proposition 5.24.

(1) For w, y ∈ S+,
←−
Gw(x; a)|y = Gw(x; a)|y.

(2) For w, y ∈ SZ let M ∈ Z≥0 be such that γM (w), γM (y) ∈ S+. Then
←−
Gw(x; a)|y = γ−MGγM (w)(x; a)|γM (y).

Proof. For (1) consider (5.18). Since y ∈ S+, Gv(x/a) is invariant under ya and
vanishes at x = ya unless v = id. Therefore by (5.6) we have

←−
Gw(x; a)|y =

∑
u∗z=y
u,z∈S 6=0

(−1)`(u)+`(z)−`(w)Gu−1(	a)Gz(ya)

= Gw(x; a)|y.
Part (2) follows from part (1) and (5.21). �

Theorem 5.25. There is a S-algebra and SZ-equivariant embedding res :
←−
R (x; a)→

S⊗R(a) Ψ̃ defined by res(f)(w) = f |w for all w ∈ SZ. Moreover, res(
←−
Gv) = ψ̃v for

all v ∈ SZ.

Proof. We observe that the values of f |w are in S. Let f ∈
←−
R (x; a). wx(f) −

(sijw)x(f) is sxij-antisymmetric and therefore divisible by xi − xj . It follows that

f |w − f |sijw is a multiple of ai − aj . Thus res(f) ∈ S⊗R(a) Ψ̃ by (2.33).

Next we show that res(
←−
Gv(x; a)) = ψ̃v for all v ∈ SZ. By Proposition 2.4, this

is equivalent to showing that
←−
Gv(a; a) = δid,v for v ∈ SZ(5.23)

and if wsi < w then
←−
Gv(wa; a) =(5.24) 

←−
Gv(wsia; a) if vsi > v
1− aw(i)

1− aw(i+1)

←−
Gv(wsia; a) +

aw(i) − aw(i+1)

1− aw(i+1)

←−
Gvsi(wa; a) if vsi < v.

Equation (5.23) follows by Proposition 5.24 and (A.11).
Suppose w 6= id. Let i ∈ I be such that wsi < w. Suppose first that vsi > v.

Then
←−
Gv(x; a) = π̃xi

←−
Gv(x; a). Since the image of π̃xi is sxi -invariant, we deduce that

←−
Gv(wa; a) =

←−
Gv(wsia; a) as required.

Suppose vsi < v. Then
←−
Gvsi(x; a) = π̃xi

←−
Gv(x; a). This yields

←−
Gvsi(wa; a) =

(1− aw(i+1))
←−
Gv(wa; a)− (1− aw(i))

←−
Gv(wsia; a)

aw(i) − aw(i+1)

which rearranges to (5.24), as required. �



26 THOMAS LAM, SEUNG JIN LEE, AND MARK SHIMOZONO

Corollary 5.26. The back stable Grothendieck polynomials
←−
Gw represent the Schu-

bert classes in the K-theory K(Fl). The back stable double Grothendieck polyno-

mials
←−
Gw(x; a) represent the Schubert classes in the torus-equivariant K-theory

KT (Fl).

5.9. Double K-Stanley functions. Let ηa :
←−
R (x; a)→ Λ̂(x||a) be the S-algebra

homomorphism sending xi 7→ ai and pr(x||a) 7→ pr(x||a). Define the double K-

Stanley function Gw(x||a) ∈ Λ̂(x||a) by

Gw(x||a) := ηa(
←−
Gw(x; a)).(5.25)

Proposition 5.27. For w ∈ SZ, we have

Gw(x||a) =
∑

u∗v∗z=w
u,z∈S 6=0

(−1)`(u)+`(v)+`(z)−`(w)Gu−1(	(a))Gv(x/a)Gz(a).(5.26)

Proof. This follows immediately from Proposition 5.17. �

Example 5.28. Since Gs0s1 = Gs−1s0 = G11 and Gs0 = G1 we have

Gs0s1(x||a) = Gs0s1(x/a) +Gs0(x/a)Gs1(a)−Gs0s1(x/a)Gs1(a)

= Gs0s1(x/a) +Gs0(x/a)a1 −Gs0s1(x/a)a1

= (1− a1)G11(x/a) + a1G1(x/a).

Since Gs−1
(	a) = a0 we have

Gs−1s0(x||a) = Gs−1
(	a)Gs0(x/a) +Gs−1s0(x/a)−Gs−1

(	a)Gs−1s0(x/a)

= (1− a0)G11(x/a) + a0G1(x/a).

Proposition 5.29. For w ∈ SZ, we have

ω̃(Gw(x||a)) = Gω(w)(x||a).

Proof. It is straightforward to check that ηa ◦ ω̃ = ω̃. Thus (5.27) follows from
Proposition 5.22. �

Proposition 5.30. For all w ∈ SZ, we have

(5.27) Gw−1(x||a) = Gw(x||a)|x 7→	a,a 7→	x.

Proof. The transformation x 7→ 	a, a 7→ 	x commutes with ηa. The result follows
from (5.19). �

5.10. Coproduct formula. The Hopf algebra structure on Λ̂(x||a) is defined by

letting pk(x||a) be primitive for all k ≥ 1. We give
←−
R (x; a) the structure of a

Λ̂(x||a)-comodule by letting ∆ act on the tensor factor Λ̂(x||a) in
←−
R (x; a).

Theorem 5.31. For w ∈ SZ, we have

∆(
←−
Gw(x; a)) =

∑
u∗v=w

(−1)`(u)+`(v)−`(w)Gu(x||a)⊗
←−
Gv(x; a)(5.28)

←−
Gw(x; a) =

∑
u∗v=w
v∈S 6=0

(−1)`(u)+`(v)−`(w)Gu(x||a)Gv(x; a).(5.29)
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Proof. Equation (5.29) follows from Propositions 5.17, 5.27, and (5.7).
For (5.28), using Propositions 5.17, 5.27, and A.2 we have∑

u∗v=w

±Gu(x||a)⊗
←−
Gv(x; a)

=
∑

u1∗v1∗z1∗u2∗v2∗z2=w
ui,zi∈S 6=0

±Gu1
−1(	(a))Gv1(x/a)Gz1(a)

⊗G−1
u2

(	(a))Gv2(x/a)Gz2(x)

=
∑

u1∗v1∗v2∗z2=w
u1,z2∈S 6=0

±Gu1
−1(	(a))Gv1(x/a)

⊗Gv2(x/a)Gz2(x)

=
∑

u1∗v∗z2=w
u1,z2∈S 6=0

±Gu1
−1(	(a))∆(Gv(x/a))Gz2(x)

= ∆(
←−
Gw(x; a)). �

5.11. Grassmannian double K-Stanley functions. Recalling wλ from §4.11,
define

Gλ(x||a) := Gwλ(x; a) for λ ∈ Y.(5.30)

Lemma 5.32. For λ ∈ Y, we have

Gλ(x||a) =
←−
Gwλ(x; a).(5.31)

Proof. For any Hecke factorization wλ = u ∗ v ∗ z with u, z ∈ S 6=0, we have z =
id. The result then follows from the definition (5.25) by comparing (5.18) and
(5.26). �

Corollary 5.33. The Grassmannian K-Stanley functions {Gλ | λ ∈ Y} represent

the basis of structure sheaves of opposite Schubert varieties in the K-theory K(Gr
0
).

The Grassmannian double K-Stanley functions {Gλ(x||a) | λ ∈ Y} represent the
structure sheaves of opposite Schubert varieties in the torus-equivariant K-theory

KT (Gr
0
).

Proof. Since KT (Gr
0
) = (KT (Fl))S

x
6=0 , the statement about Gλ(x||a) follows from

Corollary 5.26, Lemma 5.32, and the fact that the Gλ(x||a) are precisely the Sx6=0-

invariant Schubert basis elements for KT (Fl). Applying the forgetful homomor-
phism KT (Gr) → K(Gr), the equivariant Schubert basis is sent to the Schubert
basis. The proof is completed by applying Proposition 5.21. �

Proposition 5.34. For λ ∈ Y, we have

ω̃(Gλ(x||a)) = Gλ′(x||a).

Proof. Follows from Proposition 5.29 and the fact that ω(wλ) = wλ′ . �

A rook strip is a skew shape ν/µ which has at most one box in each row and in
each column. Write ν/µ ∈ RS if ν/µ is a rook strip. The Durfee square of λ is
largest square partition contained in λ; denote its side length by d(λ).
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If µ ⊂ λ, we define

wλ/µ := wλw
−1
µ .(5.32)

Lemma 5.35. Let µ ⊂ λ ∈ Y and u ∈ S 6=0. Then u ∗ wµ = wλ if and only if
u = wλ/ν where ν ⊂ µ, d(ν) = d(λ), and µ/ν ∈ RS.

The coproduct formula gives the transition matrix between the Grassmannian
double K-Stanley functions and the super K-Stanley symmetric functions.

Proposition 5.36. For λ ∈ Y, we have

Gλ(x||a) =
∑

ν⊂µ⊂λ
d(ν)=d(λ)
µ/ν∈RS

(−1)|µ|−|ν|Gw−1
λ/ν

(	a)Gµ(x/a)(5.33)

Gλ(x/a) =
∑

ν⊂µ⊂λ
d(ν)=d(λ)
µ/ν∈RS

(−1)|µ|−|ν|Gwλ/ν (a)Gµ(x||a).(5.34)

Proof. Equation (5.34) follows from (5.33) using Proposition A.1. Equation (5.33)
is an instance of Proposition 5.17. In this application z = id since wλ ∈ S0

Z. The
Proposition follows from Lemma 5.35. �

In §9, we give determinantal formulae for Gλ(x||a).

Example 5.37. By Proposition 5.36 and using that Gs1(a) = a1, Gs−1
(a) = 	(a0),

and Gs1s−1
(a) = a1(	(a0)), we have

G2(x/a) = (1−Gs1(a))G2(x||a) + Gs1(a)G1(x||a)

= (1− a1)G2(x||a) + a1G1(x||a)

G11(x/a) = (1−Gs−1(a))G11(x||a) + Gs−1(a)G1(x||a)

= (1−	(a0))G11(x||a) +	(a0)G1(x||a)

G21(x/a) = (1−Gs1(a)−Gs−1
(a) + Gs1s−1

(a))G21(x||a)

+ (Gs−1(a)−Gs1s−1(a))G2(x||a) + (Gs1(a)−Gs1s−1(a))G11(x||a)

+ Gs1s−1(a)G1(x||a)

= (1− (a1 	 a0))G21(x||a) +	(a0)(1− a1)G2(x||a)

+ a1(1−	(a0))G11(x||a) + a1(	(a0))G1(x||a).

6. K-Bumpless pipedreams

In [LLS21], we introduced bumpless pipedreams and showed that back stable
(double) Schubert polynomials can be obtained as sums over bumpless pipedreams.
Weigandt [Wei] connected bumpless pipedreams to alternating sign matrices and a
formula of Lascoux [Las], and thereby obtained a bumpless pipedream formula for
(double) Grothendieck polynomials.

6.1. Back stable double Grothendieck polynomials. Recall that a bumpless
pipedream is a tiling of the plane by the tiles: empty, NW elbow, SE elbow, hori-
zontal line, crossing, and vertical line.



BACK STABLE K-THEORY SCHUBERT CALCULUS 29

-2 -1 0 1 2 3

-2

-1

0

1

2

3

-2 -1 0 1 2 3

-2

-1

1

0

3

2

Figure 1. A K-bumpless pipedream for w = s0s2 =
(. . . ,−2,−1, 1|0, 3, 2, . . .) with weight wt = −(x−1 	 a−1)(x−1 	
a0)(x1	 a0)(1− (x0	 a1)(1− (x2	 a2)). In the left hand diagram
the labels are Cartesian. In the right hand diagram, the row labels
give the permutation w(D), whose computation only considers the
first time two pipes cross and ignores later crossings.

We shall use matrix coordinates for unit squares in the plane. Thus row coordi-
nates increase from top to bottom, column coordinates increase from left to right,
and (i, j) indicates the square in row i and column j. A K-bumpless pipedream
is a bumpless pipedream D covering the whole plane, such that for all N � 0
and all N � 0, there is a pipe traveling north from (∞, N) to the square (N,N)
where it turns east and travels towards (N,∞). The permutation w(D) ∈ SZ of a
K-bumpless pipedream is obtained as follows. For each i ∈ Z, there is a pipe that
heads north from (∞, i). We follow this pipe until it heads east towards (j,∞), ig-
noring all crossings between pairs of pipes that have already crossed (reading pipes
from SW to NE). Then w(D) is determined by w(j) = i, as i ∈ Z varies.

The weight wt(D) of a K-bumpless pipedream D is given by

(6.1) wt(D) :=
∏

empty tiles (i,j)

(−(xi 	 aj))
∏

NW−elbows (i,j)

(1− (xi 	 aj)),

where the first product is over empty tiles (i, j) and the second product is over
elbow tiles (i, j) that connect the north and west sides.

Example 6.1. The one-line notation for w ∈ SZ is the list

(. . . , w(−2), w(−1), w(0)|w(1), w(2), . . . )

with the vertical divider separating the images of nonpositive and positive integers.
In one line notation, w = s0s2 = (. . . ,−2,−1, 1|0, 3, 2, . . . ) where . . . denotes fixed
points. Figure 1 shows a K-bumpless pipedream D for w, where we have only
drawn the region {(i, j) | i, j ∈ [−2, 3]} (the rest of the pipes head north, turn
once and head east). In the left picture, the empty tiles have been indicated, as
have the row and column numbers. In the right picture, we have indicated the
calculation of w(D), labeling each pipe by the column where it enters the picture.
The pipes labeled 0 and 1 intersect twice, and the second intersection is ignored
when computing w(D).

The following result follows from [Wei, Theorem 1.1], reproduced as Theo-
rem 6.13 below.
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Theorem 6.2. Let w ∈ SZ. Then
←−
Gw(x; a) = (−1)`(w)

∑
D

wt(D)

where the summation runs over all K-bumpless pipedreams D with permutation
w(D) = w.

Example 6.3. Let w = s0. Then for each j ≥ 0, there is one K-bumpless pipedream
Dj for w with one empty tile (−j,−j) and j NW-elbow tiles (−k,−k) for 0 ≤ k < j
and

wt(Dj) = −(x−j 	 a−j)
∏

0≤k<j

(1− (x−k 	 a−k)).

By Proposition 5.36, we have
←−
Gs0(x; a) = G1(x/a) and by Proposition 4.14, we have

G1(x/a) = G1(x) +G1(	a)−G1(x)G1(	a) = 1−
∏
j≥0(1−x−j)/(1− a−j). Using

this, one checks that indeed
←−
Gs0(x; a) =

∑
j≥0(x−j	a−j)

∏
0≤k<j(1−(x−k	a−k)).

6.2. Pipedreams for Grassmannian double K-Stanley functions. Let λ ∈
Y. Recall from [LLS21] that a λ-halfplane pipedream is a bumpless pipedream in
the upper halfplane Z≤0 × Z such that the crossing tile is not used, and

(1) there are (unlabeled) pipes entering from the southern boundary in the
columns indexed by I ⊂ Z;

(2) setting (I+, I−) = (I ∩Z>0,Z≤0 \ I), we have I± = Iwλ,± (see (7.1), (7.2));
(3) the i-th eastmost pipe entering from the south heads off to the east in row

1 − i. (Equivalently, for every row i ∈ Z≤0, there is some pipe heading
towards (i,∞).)

Since crossing tiles are not used, there is no distinction between a halfplane pipe-
dream and a K-halfplane pipedream.

The weight of a halfplane pipedream D is given by (6.1) (this is different from
the weight used in [LLS21]).

Example 6.4. Let λ = (5, 3, 2, 2). In Figure 2 the Rothe pipedream (see [LLS21,
Section 5.2]) and another λ-halfplane bumpless pipedream are depicted.

Theorem 6.5. Let λ ∈ Y. Then

Gλ(x||a) = (−1)|λ|
∑
D

wt(D)

where the summation runs over all λ-halfplane pipedreams.

Proof of Theorem 6.5. Let wλ ∈ SZ be a Grassmannian permutation, and set I =
w−1
λ (Z≤0) = Iwλ,+t(Z≤0\Iwλ,−) and I ′ = Z\I. Let D be a K-bumpless pipedream

for wλ. Then the pipes labeled by I head off to the east in the rows labeled by
Z≤0, while the pipes labeled by I ′ head off to the east in the rows labeled by Z>0.
Furthermore, pipes of each type do not cross pipes of the same type. It follows
immediately that the part D≤0 of D that lies in rows indexed by Z≤0 contains no
crossing tiles and is a halfplane pipedream.

On the other hand, we claim that the bottom half D>0 of D that lies in rows
indexed by Z>0 depends only on wλ and furthermore contains no empty tiles, and
no NW-elbows. Indeed, D>0 is given as follows: any pipe labeled by i ∈ I+ travels
northward until row 0, and any pipe labeled by i ∈ I− travels northward until row
w−1(i), turns and travels eastward. This description can be proven, for example,
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Figure 2. The Rothe and another (5, 3, 2, 2)-halfplane bumpless pipedream.

by descending induction on the label i ∈ Z. (Note that it follows that D is actually
a bumpless pipedream – there are no pipes that cross twice.) We also deduce that
the top half D≤0 is thus a λ-halfplane pipedream.

The stated formula for Gλ(x||a) =
←−
Gwλ(x||a) now follows from Theorem 6.2. �

We restate Theorem 6.5 using semistandard tableaux. Given k ∈ Z and a box
s = (i, j) ∈ λ define

wt(k, s, λ) = (xk 	 ak+`(λ)+j−i).(6.2)

Corollary 6.6. Let λ ∈ Y. Then

Gλ(x||a) = (−1)|λ|
∑
T

∏
s∈λ

(
wt(T (s), s, λ)

∏
k

(1− wt(k, s, λ))

)
(6.3)

where T runs over the semistandard tableaux of shape λ with entries in Z≤0, s runs
over the boxes in λ and k ∈ Z≤0 runs over values such that T (s) < k and replacing
the s-th entry of T by k results in a semistandard tableau.

Proof. Every λ-halfplane bumpless pipedream can be obtained from the Rothe
bumpless pipedream, the unique one that has no NW elbow tiles. This corresponds
to the unique semistandard tableau of shape λ having λi copies of the value 1− i.
Moreover each droop moves an empty tile one row north and one row west. Since the
tiles move diagonally, reading along diagonals from northwest to southeast starting
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from the southwestmost empty tiles, the row indices of the empty tiles define the
values in a corresponding diagonal in the semistandard tableau. This yields a bijec-
tion between the λ-halfplane bumpless pipedreams and the semistandard tableaux.
The NW elbow tiles correspond to entries k that can be increased while preserving
semistandardness. �

Example 6.7. The semistandard tableaux for the pipedreams of in Figure 2 are
given by

−3 −3 −1 0 0

−2 −2 0

−1 −1

0 0

−5 −4 −3 0 0

−4 −3 0

−2 −1

−1 0

The outlined empty tile in the second pipedream in Figure 2 corresponds to the
outlined −3 tableau entry. The fact that this −3 can be replaced by the larger
elements −2 and −1 corresponds to the presence of the two NW elbow tiles that
are directly to the southeast of the outlined empty tile. The contribution of the
box of the outlined −3 is given by

(x−3 	 a3)(1− (x−2 	 a4))(1− (x−1 	 a5)).

Remark 6.8. (1) In the nonequivariant setting the original formula for Gλ uses
set-valued tableaux [Buc02a]. These are in bijection with marked bumpless
pipedreams [Wei, §7].

(2) We biject from λ-halfplane pipedreams to semistandard tableaux with non-
positive entries. Upon replacing entries i by 1− i one obtains reverse semi-
standard tableaux with entries {1, 2, . . . , }. In this context our formula is
an equivariant upgrade of the symmetric Grothendieck special case of [SY,
Theorem 1.3]. This result is also implicit in [BSW].

(3) In the more general case of vexillary permutations, a more complicated ver-
sion of (6.3) was given in part 3 of the second corollary in §1.2 of [KMY08].
The article [SY] makes the observation that using reverse tableaux often
leads to simpler formulas.

6.3. Expansion formulae. Let w ∈ Sn. A w-rectangular K-bumpless pipedream
is a K-bumpless pipedream in the n × 2n rectangular region Rn := {(i, j) | i ∈
[1, n] and j ∈ [1−n, n]}. The pipes are labeled 1−n, 2−n, . . . , 0, 1, . . . , n entering
the south boundary from left to right. The positively labeled pipes exit the east
boundary, and determine w ∈ Sn using the same prescription as for K-bumpless
pipedreams. The nonpositively labeled pipes exit the north boundary, and these
pipes cannot intersect any other pipe. The weight of a w-rectangular K-bumpless
pipedream is again given by (6.1). We also associate a partition λ(D) to an Sn-
rectangular K-bumpless pipedream: it is obtained by reading the north boundary
edges from right to left, to then obtain the boundary of a partition inside a n× n
box, where empty edges correspond to steps to the left, and edges with a pipe
exiting correspond to downward steps.

Theorem 6.9. Let w ∈ Sn. Then
←−
Gw(x; a) = (−1)`(w)

∑
D

(−1)|λ(D)|wt(D)Gλ(D)(x||a)
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where the summation is over w-rectangular pipedreams.

Proof. Let D be a K-bumpless pipedream for w ∈ Sn. The pipes labeled by
n + 1, n + 2, . . . travel northward and turn east in the row corresponding to their
labels. The pipes labeled by 1, 2, . . . , n travel northward until row n, perform one
or more turns inside the square [1, n]× [1, n] and then travel eastward once they exit
the square in one of the rows 1, 2, . . . , n. The pipes labeled by 0,−1,−2, . . . , cannot
cross other pipes. In particular, the pipe labeled i ∈ Z≤0 travels northward until
row n+i−1 before it makes its first turn. Thus the pipes labeled 0,−1,−2, . . . , 1−n
travel northward until row n, possibly perform some turns, and then exit the north
boundary of the rectangle Rn. The pipes labeled −n,−n − 1, . . . travel vertically
at least until row 0.

To summarize: (1) the top half D≤0 of D is a λ-halfplane pipedream for some
λ ∈ Y; (2) the interesting part of the bottom half D>0 of D is contained in the
rectangular region Rn, which in particular contains all the empty tiles and NW-
elbows of D>0. Since wt(D) = wt(D≤0)wt(D>0), we obtain the stated formula by
combining Theorem 6.2 with Theorem 6.5. �

The following result follows immediately from Theorem 6.9 and the definition of
Gw(x||a).

Corollary 6.10. Let w ∈ Sn. Then

Gw(x||a) = (−1)`(w)
∑
D

(−1)|λ(D)|ηa(wt(D))Gλ(D)(x||a)

where the summation is over w-rectangular pipedreams.

Example 6.11. Let w = s1 ∈ S2. Theorem 6.9 gives
←−
Gs1(x||a) = (x1 	 a1) + (1− (x1 	 a1))G1(x||a),

and noting that G1(x||a) = G1(x/a) this agrees with Example 5.18. Corollary 6.10
gives

Gs1(x||a) = G1(x||a).

Example 6.12. Let w = s2s1 ∈ S3. In one line notation, w(1, 2, 3) = (3, 1, 2). The
w-rectangular K-bumpless pipedreams are shown in Figure 3. For first halfplane
bumpless pipedream D the sequence of top boundary edges translates to left, left,
down, down, down. This is the edge sequence of the partition λ(D) = ∅. By
Theorem 6.9, we have

←−
Gw(x; a) = (x1 	 a1)(x1 	 a2) + (x1 	 a2)(1− (x1 	 a1))G1(x||a)

+ (1− (x1 	 a2))G2(x||a),

and by Corollary 6.10, we have

Gw(x||a) = (a1 	 a2)G1(x||a) + (1− (a1 	 a2))G2(x||a).

6.4. Weigandt’s formula for double Grothendieck polynomials. Let w ∈
Sn. A w-square K-bumpless pipedream is a bumpless pipedream in the n × n
square region [n]× [n]. The pipes are labeled 1, . . . , n entering the south boundary
from left to right, and all pipes exit the east boundary. The permutation w ∈ Sn
is determined as for K-bumpless pipedreams. The weight wt(D) of a w-square
K-bumpless pipedream is defined by (6.1) as before. Weigandt’s formula [Wei,
Theorem 1.1] for double Grothendieck polynomials is the following.
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Figure 3. w-rectangular K-bumpless pipedreams for w = s2s1.

Theorem 6.13. Let w ∈ Sn. Then

Gw(x; a) = (−1)`(w)
∑
D

wt(D)

where the summation is over all w-square K-bumpless pipedreams D.

6.5. Hecke bumpless pipedreams. LetD be a w-squareK-bumpless pipedream.
Following Weigandt [Wei], we call D a Hecke bumpless pipedream if all the empty
tiles are in the northeast corner, where they form a partition shape λ = λ(D),
called the shape of D. The following result was proven by Weigandt [Wei].

Theorem 6.14. The coefficient kλw of Gλ in Gw (see (8.1)) is equal to (−1)`(w)−|λ|

times the number of w-Hecke bumpless pipedream with shape λ.

Proof. Substituting a = 0 into Corollary 6.10, only rectangular pipedreams with
no empty tiles contribute. Erasing the nonpositively labeled pipes from such a
rectangular pipedream gives a w-Hecke bumpless pipedream. �

Theorem 6.14 is a K-theoretic analogue of [LLS21, Theorem 5.14], a direct bi-
jective proof of which was given by Fan, Guo and Sun [FGS]. Weigandt [Wei]
gave a more general bijection between Hecke bumpless pipedreams and decreasing
tableaux [BKSTY].

7. K-homology and Hopf structure

7.1. Hopf structure on GKM ring. Let ΨGr ⊂ Ψ denote the subspace of func-
tions ψ satisfying ψ(v) = ψ(w) if vS 6=0 = wS 6=0, and similarly define Ψ̃Gr ⊂ Ψ̃.

Then ΨGr (resp. Ψ̃Gr) has basis (allowing infinite sums) {ψwλ | λ ∈ Y} (resp.

{ψ̃wλ | λ ∈ Y}). We have KT (Gr
0
) ' ΨGr.

The map res :
←−
R (x; a) → S ⊗R(a) Ψ̃ of Theorem 5.25 restricts to a map res :

Γ(x||a)→ Ψ̃ with image given by
⊕

λR(a)ψ̃wλ . Following [LLS21], we now describe
a Hopf structure on ΨGr that is compatible with the bialgebra structure on Γ(x||a).
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For any w ∈ SZ, let

Iw,+ := Z>0 ∩ w(Z≤0)(7.1)

Iw,− := Z≤0 ∩ w(Z>0).(7.2)

The map w 7→ (Iw,+, Iw,−) is a bijection from S0
Z to pairs of finite sets (I+, I−)

such that I+ ⊂ Z>0, I− ⊂ Z≤0, and |I+| = |I−|. There is a partial multiplication
map S0

Z × S0
Z → S0

Z. The product of x ∈ S0
Z and y ∈ S0

Z is equal to z ∈ S0
Z if (1)

Ix,+ ∩ Iy,+ = ∅ = Ix,− ∩ Iy,− and (2) Ix,± ∪ Iy,± = Iz,±.
The following result is proved in the same manner as [LLS21, Proposition 7.11].

Proposition 7.1. There is a coproduct ∆ : Ψ̃Gr → Ψ̃Gr⊗̂R(a)Ψ̃Gr such that the

map res : Γ(x||a)→ Ψ̃Gr is a R(a)-bialgebra morphism. The coproduct satisfies

(7.3) ∆(ψ)|x⊗y = ψ|xy
whenever x, y,∈ S0

Z and xy ∈ S0
Z is defined.

7.2. K-homology basis. Let Λ(y) denote the Z-algebra of symmetric functions

in y = y≤0 = (y0, y−1, y−2, . . . and Λ̃(y||a) =
∏
λ∈YR(a)sλ(y) the completion of

R(a)⊗Λ(y) whose elements are formal (possibly infinite) R(a)-linear combinations∑
λ∈Y aλsλ(y) of Schur functions, with aλ ∈ R(a). The ring Λ̃(y||a) is a R(a)-Hopf

algebra with coproduct ∆(pk(y)) = 1⊗ pk(y) + pk(y)⊗ 1.
Define the Cauchy kernel

Ω[(x− − a−)y] =
∏
i,j≤0

1− aiyj
1− xiyj

= exp

∑
k≥0

1

k
pk(x||a)pk(y)

 .

This induces the structure of dual R(a)-Hopf algebras on Λ̃(y||a) and (a completion

of) Γ(x||a). Write 〈· , ·〉 for the corresponding pairing Γ(x||a)⊗R(a) Λ̃(y||a)→ R(a).
Then by definition

〈sλ(x/a) , sµ(y)〉 = δλ,µ.(7.4)

Let gλ(y) be the dual stable Grothendieck polynomials of [LP]. They are defined by

〈Gλ(x/a) , gµ(y)〉 = δλ,µ.(7.5)

Define the K-Molev functions gλ(y||a) ∈ Λ̃(y||a) by duality with the Grassmannian
double K-Stanley functions Gλ(x||a):

〈Gλ(x||a) , gµ(y||a)〉 = δλµ.(7.6)

The ring Λ̃(y||a) consists of formal R(a)-linear combinations of the gλ(y||a). At
a = 0, the polynomials gλ(y||a) reduce to the dual stable Grothendieck polynomials
gλ(y). The functions gλ(y||a) are K-theoretic analogues of Molev’s dual Schur
functions.

Remark 7.2. Since the Grassmannian double K-Stanley functions Gλ(x||a) repre-

sent the structure sheaves of Schubert varieties in the equivariant K-theoryKT (Gr
0
)

of the thick infinite Grassmannian (Corollary 5.33), the functions gλ(y||a) represent
the dual basis of ideal sheaves of boundaries of Schubert varieties in the K-group

KT (Gr(0)) of finitely supported equivariant coherent sheaves on the thin infinite
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Grassmannian. Note that the Schubert varieties of Gr
0

and of Gr(0) are “oppo-
site”. See [Kum, BK] for details on the duality between thin and thick K-groups,
and [LSS] for a discussion of the Hopf structure.

Recall the element wλ/µ ∈ SZ from (5.32). Proposition 5.36 implies the following.

Proposition 7.3. For µ ∈ Y, we have

gµ(y) =
∑

ν⊂µ⊂λ
d(ν)=d(λ)
µ/ν∈RS

(−1)|µ|−|ν|Gw−1
λ/ν

(	(a))gλ(y||a)(7.7)

gµ(y||a) =
∑

ν⊂µ⊂λ
d(ν)=d(λ)
µ/ν∈RS

(−1)|µ|−|ν|Gwλ/ν (a)gλ(y).(7.8)

7.3. K-Homology divided difference operators. Recall that by convention we
have x := x≤0 = (. . . , x−1, x0) and similarly, y := y≤0 and a := a≤0.

For i ∈ Z, define the operators (see (8.15))

s̃ai = Ω[(x− a)y]saiΩ[(a− x)y](7.9)

δa,	i = Ω[(x− a)y]π̃a,	i Ω[(a− x)y].(7.10)

It is clear that these operators, being conjugate to the operators sai and π̃a,	i re-
spectively, satisfy the type A braid relations. In operator expressions, a symmetric
function or polynomial f denotes left multiplication by f . We have

s̃ai δ
a,	
i = δa,	i(7.11)

δa,	i f = δa,	i (f) + s̃ai (f)π̃a,	i .(7.12)

Let αi = ai − ai+1 for i ∈ Z. Since Ω[(a− x)y] is sai invariant for i 6= 0 we have

s̃ai = sai for i 6= 0(7.13)

δa,	i = π̃a,	i for i 6= 0.(7.14)

s̃a0 = Ω[−α0y]sa0(7.15)

δa,	0 = α−1
0 (1− s̃0)(a0 − 1).(7.16)

The diagonal index of a box in row i and column j is by definition j − i. For
λ ∈ Y and d ∈ Z, let λ + d denote the partition obtained by adding a corner to λ
in the d-th diagonal if such a corner exists, and λ+ d := λ if such a partition does
not exist. Define λ− d similarly for removal of the corner in diagonal d.

By Proposition 5.15, we have

π̃a,	i Gλ(x||a) = Gλ−i(x||a) for all λ ∈ Y and i ∈ Z.(7.17)

Let ∂̂ai = π̃ai − 1 = (1− ai)Aai and τi = Ω[(x− a)y]∂̂ai Ω[(a− x)y].

Lemma 7.4. For i ∈ Z, we have

∂̂ai = sai − π̃
a,	
i(7.18)

τi = s̃ai − δ
a,	
i .(7.19)
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Proof. Equation 7.19 follows from (7.18) by conjugation by Ω[(x− a)y]. We have

sai − π̃
a,	
i = sai −Aai (ai − 1)

= sai − (1 + (ai+1 − 1)Aai )

= (−αi − (ai+1 − 1)Aai

= (1− ai)Aai
∂̂ai = π̃ai − 1 = −1 +Aai (1− ai+1)

= (1− ai)Aai . �

Proposition 7.5. For all µ ∈ Y and i ∈ Z, we have

τi(gµ(y||a)) = gµ+i(y||a).(7.20)

Proof. Using (7.12), we have

Ω[(x− a)y] = Ω[(x− a)y] π̃a,	i (1) = δa,	i (Ω[(x− a)y])

= δa,	i
∑
λ

gλ(y||a)Gλ(x||a)

=
∑
λ

(
δa,	i (gλ(y||a))Gλ(x||a) + s̃ai (gλ(y||a))π̃a,	i (Gλ(x||a))

)
=
∑
λ

(
δa,	i (gλ(y||a))Gλ(x||a) + s̃ai (gλ(y||a))Gλ−i(x||a)

)
.

Taking the coefficient of Gµ(x||a) we obtain

gµ(y||a) = δa,	i (gµ(y||a)) + s̃ai (gµ+i(y||a)).

Acting by s̃ai , using (7.11), and rearranging we have

gµ+i(y||a) = (s̃ai − δ
a,	
i )(gµ(y||a)) = τi(gµ(y||a)). �

The τi satisfy the type A braid relations and τ2
i = −τi. Thus τw = τi1 · · · τi`

makes sense for any reduced decomposition w = si1 · · · si` ∈ SZ.

Theorem 7.6. For any λ ∈ Y, we have gλ(y||a) = τwλ(1).

Example 7.7. We have

g1(y||a) = τ0(1) = Ω[(x− a)y](1− a0)Aa0Ω[(a− x)y]

= (1− a0)α−1
0 Ω[−a0y](1− sa0)Ω[a0y]

= (1− a0)α−1
0 (1− Ω[(a1 − a0)y])

= (1− a0)
∑
i,j≥0

(−a0)iaj1s(j+1,1i)(y).

In particular, setting all ai = 0 we obtain g1(y) = s1(y). Let

Z =
∑
i,j≥0

(−a0)iaj1s(j+1,1i)(y).
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We have

g11(y||a) = τ−1g1(y||a) = ∂̂ai g1(y||a) = (1− a−1)Aa−1(1− a0)Z

= (1− a−1)(1 + (1− a−1)Aa−1)Z

= (1− a−1)(1 + (1− a−1)Aa−1) (s1(y)− a0s11(y) + a1s2(y) + · · · )
= (1− a−1)(s1(y)− a0s11(y) + · · · ) + (1− a−1)2(s11(y) · · · ).

We obtain g11(y) = s11 + s1. These computations of g1 and g11 agree with [LP].

7.4. Connection to Knutson-Lederer. Knutson and Lederer [KL] define a de-

formation of the ring of symmetric functions, denoted RK
S

. The ring RK
S

has a
basis [Xλ] = [OXλ ] (representing structure sheaves of opposite Schubert varieties
in the Grassmannian) as λ ranges over all partitions. The product structure of

RK
S

is given by the direct sum operation on Grassmannians. We refer the reader
to [KL] for the details and to [LLS21, Section 8.3] for a synopsis of the very similar
situation in homology.

Let hλ(y||a) :=
∑
µ⊂λ gλ(y||a). Whereas gλ(y||a) represents the ideal sheaf of a

boundary of a Schubert variety in KT (Gr), the symmetric function hλ(y||a) rep-
resents the structure sheaf of the same Schubert variety. Further, let hλ(y||δ) be
obtained from hλ(y||a) by the specialization

ai 7−→

{
δ if i > 0,

0 if i ≤ 0.

See [LLS21, Section 8.3] for a more precise description. The following result is
proved in the same manner as [LLS21, Theorem 8.12].

Theorem 7.8. There is, up to a completion, an isomorphism of Z[δ]-algebras

RK
S

→ Λ(y)[δ] [Xλ] 7→ hλ(y||δ)
where δ corresponds to 1− exp(−t) in [KL].

8. The ring of back stable Grothendieck polynomials

8.1. The subring of K-Stanley functions. Define

Γ = Γ(x−) :=
⊕
λ∈Y

ZGλ ⊂ Λ̂

to be the span of Grassmannian K-Stanley functions. The structure of Γ was
studied by Buch [Buc02a].

Proposition 8.1. [Buc02a] Γ is a commutative and cocommutative bialgebra con-
taining Gw for all w ∈ SZ. In particular, the expansion

Gw =
∑
λ

kwλGλ(8.1)

exists and is finite, and furthermore we have (−1)`(w)−|λ|kwλ ∈ Z≥0.

For λ, µ, ν ∈ Y, define cλµν ∈ Z by

GµGν =
∑
λ

cλµνGλ.

By [Buc02a], we have the positivity property cλµν ∈ (−1)|µ|+|ν|−|λ|Z≥0.
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Remark 8.2. Explicit combinatorial formulae for the product and coproduct struc-
ture constants of Γ with respect to the basis Gλ were given by Buch [Buc02a].

Remark 8.3. The following explicit tableau formula is given in [BKSTY, Theorem
1’]: (−1)`(w)−|λ|kwλ is equal to the number of decreasing tableaux (rows strictly
decrease from left to right and columns strictly decrease from top to bottom) T of
shape λ whose column-reading word is a Hecke word for w, that is, if the column-
reading word of T is i1i2 · · · i` then si1 ∗ si2 ∗ · · · ∗ si` = w.

8.2. Flagged Grothendieck polynomials and K-Stanley functions via sym-
metrization. A polynomial truncation of the K-Stanley function Gw can be ob-
tained from the Grothendieck polynomial Gw by symmetrization operators. The
intermediate polynomials are what we shall call flagged Grothendieck polynomials.

Let θi := Ai◦xi(1−xi+1) for i ∈ Z where Ai is defined in (2.25). These operators
satisfy the braid relations and are idempotent: θ2

i = θi. Thus they generate a 0-
Hecke algebra.

Say that a sequence f = (f1, f2, . . . , fn) of positive integers is admissible if
1 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ n and fi ≥ i for all i. Then either f = fmin =
(1, 2, . . . , n − 1, n) or there is a minimum i such that fi > i. Let f− be f with fi
replaced by fi − 1. Then define σf ∈ Sn by

σf =

{
id if f = fmin

sfi−1σf− if i is minimum such that fi > i.
(8.2)

Also, define the sequence f ′ = (f ′1, f
′
2, . . . , f

′
n) by f ′i = min{j | fj ≥ i}.

Example 8.4. Let n = 7, f = (3, 4, 4, 5, 7, 7, 7). Then f ′ = (1, 1, 1, 2, 4, 5, 5) and

σf = (s2s1)(s3s2)(s3)(s4)(s6s5)(s6).

We illustrate the construction. In the following diagram the j-th column has size
fj and a box in row i + 1 below the diagonal has corresponding simple reflection
si. We have f ′1 = 1 and for i ≥ 2, in the diagram f ′i is the leftmost column in the
i-th row containing a gray or black square.

1

2 2

3 3

4

5

6 6

For f = (f1, f2, . . . , fn) admissible, define the flagged Grothendieck polynomial
Gw,f by

Gw,f := θσf (Gw).
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Proposition 8.5. For w ∈ S+, we have

Gw,f =
∑

sa1∗sa2∗···∗sap=w

1≤i1≤i2≤···≤ip
ak≤ak+1⇒ik<ik+1

ik≤fak

(−1)p−`(w)xi1xi2 · · ·xip ,(8.3)

where p is arbitrary.

Note that compared to (4.11), only the bound ik ≤ ak has been changed to
ik ≤ fak .

Corollary 8.6. For w ∈ Sn, we have

θw0(Gw) = Gw(x1, . . . , xn).(8.4)

Proof. Apply Proposition 8.5 with f = (n, n, . . . , n), which satisfies σf = w0, and
compare with Proposition 4.10. �

To prove Proposition 8.5 we use 0-Hecke algebra generating functions as in [FK].
Consider the algebra A over P = Z[x1, . . . , xn] generated by elements ui for i in
the Dynkin node set I = {1, 2, . . . , n − 1} of type An−1, which satisfy the type
An−1 braid relations and u2

i = −ui for all i ∈ I. For w ∈ Sn, the element uw =
ui1ui2 · · ·ui` is well-defined, where w = si1si2 · · · si` is a reduced expression. Then

A =
⊕
w∈Sn

Puw.(8.5)

We have (1 + aui)(1 + bui) = 1 + (a⊕ b)ui. In particular, 1 + xiuj is invertible in
AF := F ⊗P A, where F = Frac(P ) denotes the fraction field of P . By [FK], we
have the following identity:

n−1∏
j=1

j∏
i=n−1

(1 + xjui) =
∑
w∈Sn

Gwuw(8.6)

where in the inner product the index i goes from n − 1 down to j going from left
to right. Taking the coefficient of uw one obtains the monomial expansion (3.6).

Proposition 8.7. For admissible f , we have

Gf (x, u) :=
n∏
i=1

f ′i∏
j=n−1

(1 + xiuj) =
∑
w∈Sn

Gw,fuw.

Proof. Follows by Lemmas 8.8 and 8.9. �

Proof of Proposition 8.5. This follows by taking the coefficient of uw in Gf (x, u),
noting that j ≥ f ′i if and only if fj ≥ i. �

Lemma 8.8. Suppose the value 0 < k < n occurs exactly once in f . Then

θk(Gw,f ) = Gw,g,(8.7)

where g is obtained from f by replacing k by k + 1 in f .

Proof. This is easily proved by induction. �
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Lemma 8.9. With the same assumptions as in Lemma 8.8, we have

θk(Gf (u, x)) = Gg(u, x).

Here, the operator θk is acting on the coefficients of elements in A.

Proof. Let j be such that fj = k. We are assuming that fj+1 > k. Thus f ′k = j
and f ′k+1 = j + 1. The operator θk commutes with all operators 1 + xiuj except
when i ∈ {k, k + 1}. It therefore suffices to show that

θk ((1 + xkun−1) · · · (1 + xkuj)(1 + xk+1un−1) · · · (1 + xk+1uj+1))

= (1 + xkun−1) · · · (1 + xkuj)(1 + xk+1un−1) · · · (1 + xk+1uj).

Without loss of generality we may assume k = 1 and j = 1. Let

h =
n−1∏
i=3

i∏
j=n−1

(1 + xiuj).

This element is invertible in AF and commutes both with θ1 and 1 + x2u1. It
therefore suffices to show

θ1

n−1∏
i=1

i∏
j=n−1

(1 + xiuj)

 =

n−1∏
i=1

i∏
j=n−1

(1 + xiuj)

 (1 + x2u1)

as this is the required identity after multiplication by h. We have θ1 = A1x1(1 −
x2) = (1− x2) + x2A1(1− x2) = (1− x2) + x2π̂1. Using (8.6), we compute

θ1

∑
w∈Sn

Gwuw = (1− x2)
∑
w∈Sn

Gwuw + x2

∑
w∈Sn
ws1<w

Gws1uw + x2

∑
w∈Sn
ws1>w

Gwuw

=
∑
w∈Sn

Gwuw +
∑
w∈Sn
ws1<w

(−x2Gw + x2Gws1)uw,

and ( ∑
w∈Sn

Gwuw

)
(1 + x2u1)

=
∑
w∈Sn

Gwuw + x2

∑
w∈Sn

Gwuwu1

=
∑
w∈Sn

Gwuw + x2

∑
w∈Sn
ws1>w

Gwuws1 − x2

∑
w∈Sn
ws1<w

Gwuw

=
∑
w∈Sn

Gwuw + x2

∑
w∈Sn
ws1<w

Gws1uw − x2

∑
w∈Sn
ws1<w

Gwuw,

as required. �

8.3. The subring of back stable Grothendieck polynomials. The back stable

Grothendieck polynomials
←−
Gw are defined as elements of the ring

←−
R+ of §4.1. They

are linearly independent because their lowest degree components are back stable
Schubert polynomials, which are linearly independent. However, they do not span←−
R+, or even the “finite” subring Γ⊗R+ ⊂

←−
R+. The following example shows that

x1 and s1 are not finite linear combinations of
←−
Gw.
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Example 8.10. By (4.33), we have the Schur function

s1 =
∑
p≥1

G1p =
∑
p≥1

←−
Gs1−p···s−1s0 .

Applying γ, we obtain

s1 + x1 =
∑
p≥1

←−
Gs2−p···s−1s0s1 .

Subtracting we obtain x1 as an infinite linear combination of back stable Grothen-
dieck polynomials.

Let

B :=
⊕
w∈SZ

Z
←−
Gw(8.8)

denote the subspace of
←−
R+ spanned by back stable Grothendieck polynomials. For

u, v, w ∈ S+ define cwuv ∈ Z by

GuGv =
∑
w∈S+

cwuvGw.

It is shown in [Bri] that

(−1)`(u)+`(v)−`(w)cwuv ∈ Z≥0.(8.9)

Theorem 8.11. For all u, v ∈ SZ, there are constants ←−c wuv ∈ Z such that
←−
Gu
←−
Gv =

∑
w∈SZ

←−c wuv
←−
Gw(8.10)

with only finitely many←−c wuv nonzero. That is, B is a Z-subalgebra of
←−
R . Moreover,

(−1)`(u)+`(v)−`(w)←−c wuv ∈ Z≥0.(8.11)

Proof. For sufficiently large q, we have ←−c wuv = c
γq(w)
γq(u)γq(v); see the more general

Proposition 8.25 below. Thus (8.11) follows from (8.9). Applying η0 to (8.10), we
obtain

GuGv =
∑
w

←−c wuvGw.

By Proposition 8.1, we have a finite expansion Gw =
∑
λ k

w
λGλ. Thus

GuGv =
∑
µ,ν,λ

kuµk
v
νc
λ
µνGλ(8.12)

∑
w

←−c wuvGw =
∑
w,λ

←−c wuvkwλGλ(8.13)

∑
µ,ν

kuµk
v
νc
λ
µν =

∑
w

←−c wuvkwλ for all λ.(8.14)

By Proposition 8.1 the LHS of (8.14) is finite and equals 0 for all but finitely many
λ. Since (−1)|µ|+|ν|−|λ|cλµν ∈ Z≥0 and (−1)`(w)−|λ|kwλ ∈ Z≥0 and we have (8.11),

all terms on both sides of (8.14) have the same sign (−1)`(u)+`(v)−|λ|. If ←−c wuv 6= 0
for infinitely many w, then either the RHS of (8.14) is nonzero for infinitely many
λ, or the RHS of (8.14) is infinite for some λ, either of which is a contradiction. �
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The following result follows from Theorem 4.15.

Proposition 8.12. We have ∆(B) ⊂ Γ⊗B, giving B the structure of a Γ-comodule.

8.4. Adjoining Ω. The ring B has basis {
←−
Gw | w ∈ SZ}. The ring Γ⊗R+ has basis

{Gλ ⊗ Gv | λ ∈ Y and v ∈ S 6=0}. By Theorem 4.15, we have a strict containment
B ( Γ⊗R. In this section, we show that the containment becomes an equality by
adjoining the element Ω := Ω[x−].

Example 8.13. By (4.28) we have

←−
Gs1 = Gs1 + Gs1 −Gs1Gs1 = G1 + (1−G1)x1

x1 =
1

1−G1
(
←−
Gs1 −

←−
Gs0) = Ω(

←−
Gs1 −

←−
Gs0).

where we have used (4.33) for r = 1 to obtain 1−G1 = Ω[−x−] so that (1−G1)−1 =
Ω. The infinite expansion Ω = 1 + G1 +G2

1 + · · · shows that Ω /∈ Γ⊗R.

The computation of Example 8.13 suggests the following result.

Theorem 8.14. Every element of Γ[Ω]⊗R+ is a finite linear combination of Ωk
←−
Gw

for (k,w) ∈ Z≥0 × SZ. Thus B[Ω] ∼= Γ[Ω]⊗R+.

Define

∂̂i = π̃i − 1 = (1− xi)Ai.(8.15)

The operators ∂̂i satisfy the type AZ-braid relations. The following identity is
standard.

Lemma 8.15. For all w ∈ Sn, we have

π̃w =
∑
v≤w

∂̂v.(8.16)

Let ρ(n) = (n−1, n−2, . . . , 1, 0) ∈ Zn. We have G
w

(n)
0

= xρ
(n)

, where w
(n)
0 ∈ Sn is

the longest element. The following can also be proved using the pipedream formula
for Gw.

Lemma 8.16. We have the identity

∑
w∈Sn

(−1)`(w)Gw =
n−1∏
i=1

(1− xi)n−i.(8.17)

Proof. We have∑
w∈Sn

(−1)`(w)Gw =
∑
w∈Sn

(−1)`(w)π̃w−1w0
Gw0

(8.18)

= (−1)`(w0)

( ∑
w∈Sn

(−1)`(w)π̃w

)
xρ

(n)

.(8.19)
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Now,

(−1)`(w0)
∑
w∈Sn

(−1)`(w)π̃w = (−1)`(w0)
∑
w∈Sn

(−1)`(w)
∑
v≤w

∂̂v

= (−1)`(w0)
∑
v∈Sn

(−1)`(v)∂̂v
∑
w≥v

(−1)`(w)−`(v)

= (−1)`(w0)
∑
v∈Sn

(−1)`(v)∂̂vδv,w0

= ∂̂w0
.

Using ∂̂i(xif) = (1− xi)f for si-invariant f we have

∂̂n−1 · · · ∂̂2∂̂1(xρ
(n)

) = (1− x1)(1− x2) · · · (1− xn−1)xρ
(n−1)

.

Since
∏n−1
i=1 (1− xi) is Sn−1-invariant, induction completes the proof. �

Lemma 8.17. We have the identity∑
w∈Sn

(−1)`(w)Gw = Ω[−x−]n−1.

Proof. For N � n, applying θ
w

(N)
0

to (8.17), by Corollary 8.6 we obtain∑
w∈Sn

(−1)`(w)Gw(x1, . . . , xN ) = ((1− x1)(1− x2) · · · (1− xN ))n−1.

Letting N →∞ we have∑
w∈Sn

(−1)`(w)Gw(x+) =
∏
i>0

(1− xi)n−1 = Ω[−x+]n−1.

Now replace x+ by x−. �

We will need the left weak order ≤L. For v, w ∈ SZ, we have v ≤L w if `(v) +
`(wv−1) = `(w).

Lemma 8.18. Let w ∈ S+ and define J := {i ∈ Z | siw < w}. Then

←−
Gw ∈ Ω[−x−]|J|Gw +

∑
v<Lw

ΓGv.

Proof. It is not hard to check that

{u ∈ SZ | u ∗ w = w} = SJ = 〈si | i ∈ J〉.

By (4.28), we have

←−
Gw ∈

(∑
u∈SJ

(−1)`(u)Gu

)
Gw +

∑
v<Lw

ΓGv.

But SJ is the direct product of symmetric groups, so the result follows by applying
Lemma 8.17 for each factor of the product. �
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Proof of Theorem 8.14. Let S be the span of Ωk
←−
Gw for (k,w) ∈ Z≥0 × SZ. We

show that Gw ∈ S for all w ∈ S+ by induction on `(w). Clearly Gid = 1 =
←−
G id ∈ S.

Let id 6= w ∈ S+. By Lemma 8.18 and its notation, we have

Gw ∈ Ω|J|
←−
Gw +

∑
v<Lw

ΓGv.

By induction, we conclude that Gv ∈ S. But elements of Γ are finite linear combi-

nations of Gλ =
←−
Gwλ . By Theorem 8.11, we deduce that Gw ∈ S.

Applying ω̃, we deduce that Gw ∈ S for w ∈ S 6=0. �

8.5. The algebra of double K-Stanley functions. Let

Γ(x||a) =
⊕
λ

R(a)Gλ(x||a)

be the R(a)-subspace of Λ̂(x||a) spanned by the double K-Stanleys Gλ(x||a).

Proposition 8.19. (1) For λ ∈ Y, we have Gλ(x/a) ∈ Γ(x||a).
(2) For w ∈ SZ, we have Gw(x||a) ∈ Γ(x||a).

Proof. The first statement follows from (5.34). For the second statement, Propo-
sition 5.27 expresses Gw(x||a) as a finite R(a)-linear combination of the Gv(x/a),
and Proposition 8.1 implies that Gv(x/a) is a finite Z-linear combination of the
Gλ(x/a). �

For w ∈ SZ and λ ∈ Y let kwλ (a) ∈ R(a) be defined by

Gw(x||a) =
∑
λ

kwλ (a)Gλ(x||a).(8.20)

Example 8.20. Let w = s0s2. We compute the expansion of Gw(x||a) in terms
of the Grassmannian double K-Stanley functions Gλ(x||a) using Proposition 5.27.
First, by Remark 8.3, we have Gs0s2 = G2 +G11 −G21. By Proposition 5.27, and
noting that Gs2(a)⊕Gs2(	a) = 0, we have

Gs0s2(x||a) = Gs0(x/a)(Gs2(a)⊕Gs2(	a))

+Gs0s2(x/a)(1−Gs2(a)⊕Gs2(	a))

= G2(x/a) +G11(x/a)−G21(x/a).

Using the computations in Example 5.37 we have

Gs0s2(x||a) = −(1− (a1 	 a0))G21(x||a) + (1− (a1 	 a0))G2(x||a)

+ (1− (a1 	 a0))G11(x||a)− (−(a1 	 a0))G1(x||a).

Example 8.21. Let w = s2s1. The coefficient of G2(x/a) in Gs2s1(x||a) is (1 −
Gs2(	(a)))(1−Gs1(a)) and the coefficient of G2(x||a) in G2(x/a) is (1−Gs1(a)).
Since these are the highest degree terms, we have

ks2s12 = (1−Gs2(	(a)))(1−Gs1(a))2 =
1− a1

1− a2
= 1− (a1 	 a2).

This agrees with Example 6.12.

Theorem 8.22. The R(a)-submodule Γ(x||a) ⊂ Λ̂(x||a) is a R(a)-bialgebra.
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Proof. By Proposition 8.19 and (5.28), the coproduct ∆(Gλ(x||a)) is finite and thus
belongs to Γ(x||a)⊗R(a) Γ(x||a). We now consider the product. By (5.33), Gλ(x||a)
is a finite R(a)-linear combination of Gµ(x/a). The structure constants for the
family {Gµ(x/a)} are the same as for {Gµ} ⊂ Γ, and thus finite by Proposition 5.27.
It follows that Gλ(x||a)Gν(x||a) ∈ Γ(x||a) for any λ, ν ∈ Y. �

Define the total ordering ≺ on Z by

1 ≺ 2 ≺ 3 ≺ · · · ≺ −2 ≺ −1 ≺ 0.

Conjecture 8.23. For w ∈ SZ and λ ∈ Y, we have

(8.21) (−1)`(w)−|λ|kwλ (a) ∈ Z≥0[−(ai 	 aj) | i ≺ j].

Furthermore, if dλµν (a) denotes the coproduct structure constants of the basis
Gλ(x||a) of Γ(x||a), then

(8.22) (−1)|λ|+|µ|−|ν|dλµν (a) ∈ Z≥0[−(ai 	 aj) | i ≺ j].

For product structure constants, see (8.28). For double Stanley symmetric func-
tions an analogous positivity is proven in [LLS21, Theorem 4.22]. Similarly to [LSS,
(5.4)], we have

(8.23) dλµν (a) =
∑
w∈SZ

w∗wµ=wν

(−1)|ν|−|µ|−`(w)kwλ (a).

In particular, (8.22) follows from (8.21).

Example 8.24. Example 8.20 exhibits the conjectured positivity of kwλ (a) for w =
s0s2. Now let λ = (1), µ = (2), and ν = (21). By (8.23), we can calculate the
coproduct structure constant in two ways:

d1,2
21 = k

s−1

1 − ks−1s1
1 = 1− (a1 	 a0)

d2,1
21 = k

s−1s1
2 − ks−1s1s0

2 = (1− (a1 	 a0))− 0.

We have used Example 8.20, and the equality Gs−1s1(x||a) = Gs0s2(x||a) that can
be verified using Proposition 5.27.

8.6. The subring of back stable double Grothendieck polynomials. Let

B(x; a) =
⊕
w∈SZ

R(a)
←−
Gw(x; a)

be the R(a)-submodule spanned by the back stable double Grothendieck polyno-

mials
←−
Gw(x; a). For u, v, w ∈ SZ define ←−c wuv(a) ∈ R(a) by the formal expansion

←−
Gu(x; a)

←−
Gv(x; a) =

∑
w∈SZ

←−c wuv(a)
←−
Gw(x; a).(8.24)

The existence of the expansion (8.24) follows from Theorem 5.25 and Proposi-
tion 2.5. By Proposition 5.22, we have

←−c γ(w)
γ(u)γ(v)(a) = γ←−c wuv(a).(8.25)

For u, v, w ∈ S+, define cwuv(a) ∈ R(a) by the expansion

Gu(x; a)Gv(x; a) =
∑
w∈S+

cwuv(a)Gw(x; a).(8.26)
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Proposition 8.25. Let u, v, w ∈ SZ. For q such that γq(u), γq(v), γq(w) ∈ S+, we
have

←−c wuv(a) = γ−qc
γq(w)
γq(u)γq(v)(a).

Proof. Define the GKM ring Ψ+ to be the set of ψ ∈ Fun(S+, R(T )) such that

1− eα | ψ(sαw)− ψ(w) for all α ∈ Φ and w ∈ S+.(8.27)

One may show that Ψ+ is an R(T )-subalgebra of Fun(S+, R(T )) and that Ψ+ =∏
z∈S+

R(T )ψz+, where ψz+ is the restriction of ψz ∈ Ψ to S+ ⊂ SZ. Using Propo-

sition 5.24, we see that an analogue of Theorem 5.25 holds Ψ+ replacing Ψ and

{Gz | z ∈ S+} replacing {
←−
Gz | z ∈ SZ}. By triangularity (2.10), the coefficient

of ψw in the product ψuψv can be obtained from a finite computation that only
involves the values of the values of various ψz-s on the lower order ideal in SZ gener-
ated by u, v, w. When γq(u), γq(v), γq(w) ∈ S+, this lower order ideal is contained

in S+, so c
γq(w)
γq(u)γq(v)(a) =←−c γ

q(w)
γq(u)γq(v)(a). The result then follows from (8.25). �

It is shown in [AGM] that (−1)`(u)+`(v)−`(w)cwuv(a) ∈ Z≥0[−(aj 	 ai) | i < j].

Example 8.26. We have Gs1(x; a) = x1 	 a1 and Gs2s1(x; a) = (x1 	 a1)(x1 	 a2).
Thus

Gs1(x; a)2 = (x1 	 a1)2

= (x1 	 a1)((x1 	 a2)⊕ (a2 	 a1))

= (1− (a2 	 a1))Gs2s1(x; a) + (a2 	 a1)Gs1(x; a).

We have (1− (a2	 a1)) ∈ Z≥0[−(aj 	 ai) | i < j] and (−1)1(a2	 a1) ∈ Z≥0[−(aj 	
ai) | i < j].

It follows from Proposition 8.25 that we have

(8.28) (−1)`(u)+`(v)−`(w)←−c wuv(a) ∈ Z≥0[−(aj 	 ai) | i < j].

Conjecture 8.27. For fixed u, v ∈ SZ, only finitely many ←−c wuv are nonzero. That
is,

(8.29) B(x; a) is a R(a)-subalgebra of
←−
R (x; a).

Proposition 8.28. Suppose that the positivity (8.21) holds. Then Conjecture 8.27
holds.

Proof. The argument is the same as the proof of Theorem 8.11. Applying ηa to
(8.24), we obtain

Gu(x||a)Gv(x||a) =
∑
w

←−c wuv(a)Gw(x||a).

By equation (8.20) we have

Gu(x||a)Gv(x||a) =
∑
µ,ν,λ

kuµ(a)kvν(a)cλµν(a)Gλ(x||a)(8.30)

∑
w

←−c wuv(a)Gw(x||a) =
∑
w,λ

←−c wuvkwλ (a)Gλ(x||a)(8.31)

∑
µ,ν

kuµ(a)kvν(a)cλµν(a) =
∑
w

←−c wuv(a)kwλ (a) for all λ.(8.32)
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Let P = Z≥0[ai 	 aj | i < j]. By Proposition 8.19 and Theorem 8.22, the left
side of (8.32) is finite and equals 0 for all but finitely many λ. Since cλµν(a) ∈
(−1)|µ|+|ν|−|λ|P , and by assumption kwλ (a) ∈ (−1)`(w)−|λ|P , and we have (8.28),

all terms on both sides of (8.32) belong to (−1)`(u)+`(v)−|λ|P . If ←−c wuv(a) 6= 0 for
infinitely many w, then either the RHS of (8.32) is nonzero for infinitely many λ,
or the RHS of (8.32) is infinite for some λ, either of which is a contradiction. �

The following follows from Theorem 5.31.

Proposition 8.29. The algebra Γ(x||a)[Ω(x/a)] is a Hopf algebra over R(a). The
R(a)-algebra B(x; a) is a Γ(x||a)[Ω(x/a)] Hopf-comodule.

8.7. Adjoining Ω(x/a). In this subsection, we assume that Conjecture 8.27 holds,

that is, B(x; a) is a R(a)-subalgebra of
←−
R (x; a). We then compare the two subal-

gebras Γ(x||a)⊗R(a) R(x; a)+ and B(x; a) by adjoining the element Ω(x/a).

Remark 8.30. The element Ω(x/a) has the following geometric interpretation: it is
the class [LΛ0 ] (in an appropriate equivariant K-group of Fl) of the line bundle with
fundamental weight Λ0. Indeed, in general the class [OXsi ] is equal to 1 − [L−Λi ].

Thus [LΛ0
] = (1−

←−
Gs0(x; a))−1 = Ω(x/a).

Proposition 8.31. Assume (8.29). Then

Γ(x||a)[Ω(x/a)]⊗R(a) R(x; a)+ ⊂
∑

(k,w)∈Z≥0×SZ

R(a)Ω(x/a)k
←−
Gw(x; a).(8.33)

Thus B(x; a)[Ω] ∼= Γ(x||a)[Ω(x/a)]⊗R(a) R(x; a)+.

Proof. Let R′ be the right hand side of (8.33). Since Γ(x||a) is spanned by the

elements Gλ(x||a) =
←−
Gwλ(x; a) and assuming (8.29) the proof reduces to showing

that Gw(x; a) ∈ R′ for w ∈ S 6=0. Using ω̃ one may further reduce to w ∈ S+ which
we now assume.

Arguing as in Lemma 8.18 and using its notation, let J = {i | siw < w} and let
SJ = 〈sj | j ∈ J〉. By (5.29) we have

←−
Gw(x; a) ∈ Gw(x; a)

∑
u∈SJ

(−1)`(u)Gu(x||a) +
∑
v<Lw

Γ(x||a)Gv.(8.34)

By Proposition 5.27 we have∑
u∈SJ

(−1)`(u)Gu(x||a) =
∑
u∈SJ

(−1)`(u)
∑

u1∗u2∗u3=u

(−1)`(u1)+`(u2)+`(u3)−`(u)×

Gu−1
1

(	(a))Gu2(x/a)Gu3(a)

=
∑
u1∈SJ

(−1)`(u1)Gu−1
1

(	(a))
∑
u2∈SJ

(−1)`(u2)Gu2
(x/a)

×
∑
u3∈SJ

(−1)`(u3)Gu3(a)

=
∑
u2∈SJ

(−1)`(u2)Gu2
(x/a)

= Ω(a/x)|J|
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where in the last step we have applied the superization of Lemma 8.17. Therefore←−
Gw(x; a) ∈ Ω(a/x)|J|Gw(x; a) +

∑
v<Lw

Γ(x||a)Gv(x; a). The Proposition holds by
induction. �

9. Determinantal formulae for Gλ(x||a)

In this section, we recover the equality of the Grassmannian double K-Stanley
functions as Grassmannian back stable Grothendieck polynomials, with the deter-
minantal formulae in the literature.

Proposition 9.1. For r ≥ 1, we have

Gr(x||a) = γr−1
a Gr(x/a)

G1r (x||a) = γ1−r
a G1r (x/a).

Proof. We prove the second formula as the first follows from it by Propositions
5.34, 5.14, and 5.13.

Let cr := w(1r) = s1−r · · · s−1s0 and cr/p = w(1r)/(1p) = s1−r · · · s−p for 0 ≤ p ≤
r. The 0-Hecke factorizations of cr with left factor in S 6=0 are given by cr/p ∗ cp for
1 ≤ p ≤ r and cr/(p−1) ∗ cp for 2 ≤ p ≤ r. Letting A = (a0, a−1, . . . , a2−r) we have

Gc−1
r/p

(	a) = Gspsp+1···sr−1 [A] = Gr−p[A].

By (5.18) we have

G(1r)(x||a) =
r∑
p=1

Gc−1
r/p

(	a)G(1p)(x/a)−
r∑
p=2

Gc−1
r/(p−1)

(	a)G(1p)(x/a)

=
r∑
p=1

(Gr−p[A]−Gr−p+1[A])G(1p)(x/a)

using the fact that G1r [A] = 0 because A consists of r − 1 variables. We have
γ1−r
a (p1(x||a)) = p1(x||a) +A and

γ1−r
a G1r (x/a) = G1r [x≤0 − a≤0 +A].

By [Buc02a] we have

∆(G1r ) =
r∑
p=0

G1p ⊗G1r−p −
r∑
p=1

G1p ⊗G1r+1−p .

Since we are using the coproduct such that pr(x/a) are primitive we may superize
this formula, replacing K-Stanleys by superized K-Stanleys. We obtain

γ1−r
a G1r (x/a) =

r∑
p=0

G1p(x/a)G1r−p [A]−
r∑
p=1

G1p(x/a)G1r+1−p [A]

=

r∑
p=1

G1p(x/a)G1r−p [A]−
r∑
p=1

G1p(x/a)G1r+1−p [A]

as required. �

Lemma 9.2. If sai g = g then π̃a,	i (fg) = π̃a,	i (f)g.
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Lemma 9.3. For p, q ∈ Z and r ∈ Z>0, we have

π̃a,	p γqaGr(x/a) =

{
γqaGr(x/a) if p 6= q

γq−1
a Gr−1(x/a) if p = q.

(9.1)

Proof. We have

π̃a,	p γqaGr(x/a) = γqaπ̃
a,	
p−qGr(x/a).

If p 6= q then sap−qGr(x/a) = Gr(x/a) and γqaπ̃
a,	
p−qGr(x/a) = γqaGr(x/a). If p = q

then

γqaπ̃
a,	
0 Gr(x/a) = γqaπ̃

a,	
0 γ1−r

a γr−1
a Gr(x/a)

= γq+1−r
a π̃a,	r−1Gr(x||a)

= γq+1−r
a Gr−1(x||a)

= γq−1
a Gr−1(x/a). �

In the following, we denote by
(
n
k

)
the signed binomial coefficient, the coefficient

of xk in the power series (1 + x)n for any integer n. In particular for n ≥ 0,(−n
k

)
= (−1)k

(
k+n−1
n−1

)
.

Formulas (9.2) and (9.3) are due to [HIMN] and [And17] respectively.

Proposition 9.4. With ` = `(λ),

Gλ(x||a) = det

γλi−ia

∑
k≥0

(−1)k
(
i− j
k

)
Gλi−i+j+k(x/a)


1≤i,j≤`

(9.2)

Gλ(x||a) = det

γi−λ′ia

∑
p≥0

(−1)p
(
p+ λ′i − 1

λ′i − 1

)
eλ′i−i+j+p(x/a)


1≤i,j≤λ1

.(9.3)
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Proof. Assuming (9.2) we derive (9.3) as follows. Applying ω̃ to (9.2) for Gλ′(x||a),
by Propositions 5.34, 5.13, 4.19, and 4.20 we have

Gλ(x||a) = ω̃ det

γλ′i−ia

∑
k≥0

(−1)k
(
i− j
k

)
Gλ′i−i+j+k(x/a)


= det

γi−λ′ia

∑
k≥0

(−1)k
(
i− j
k

)
G

1λ
′
i
−i+j+k(x/a)


= det

γi−λ′ia

∑
k≥0

(−1)k
(
i− j
k

)
×

∑
m≥0

(−1)m
(
m+ λ′i − i+ j + k − 1

m

)
em+λ′i−i+j+k(x/a)


= det

γi−λ′ia

∑
p≥0

(−1)peλ′i−i+j+p(x/a) ×

∑
k+m=p

(
i− j
k

)(
p+ λ′i − i+ j − 1

m

)
= det

γi−λ′ia

∑
p≥0

(−1)peλ′i−i+j+p(x/a)

(
p+ λ′i − 1

p

) .

To prove (9.2) let

L
(m)
ij = γm−ia

∑
k≥0

(−1)k
(
i− j
k

)
Gm−i+j+k(x/a)

so that Hλ := detL
(λi)
ij is the right hand side of (9.2). By induction it suffices to

show that

π̃a,	p Hλ =

{
Hµ if p = λi − i and λ/µ is a box in the i-th row

Hλ otherwise.
(9.4)

By Lemma 9.3, every entry L
(λi)
ij in the i-th row is sap-invariant for all p except

p = λi − i.
Suppose p 6= λi − i for all i. We have sap(Hλ) = Hλ and π̃a,	p Hλ = Hλ which

agrees with (9.4).
Otherwise let p = λi − i for some i. Since this p is necessarily unique it follows

that π̃a,	p fixes all of the entries in the rows of the determinant other than the i-th.
By Lemma 9.3 we have

π̃a,	λi−iL
(λi)
ij = L

(λi−1)
ij .(9.5)

If λ has a removable box in the i-th row and µ is the partition obtained by removing

a box in row i then we have L
(µq)
qj = L

(λq)
qj for q 6= i. By multilinearity of the

determinant, (9.4) follows from (9.5).
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Otherwise, let ` := λi+1 = λi. Define Fm := γ−1
a Gm(x/a). Then by (9.6) with

d = 1, and using Gr[a0] = ar0, we have

Gm(x/a) =
1

1− a0
(Fm − a0Fm−1).

Thus

γi−`a L
(`)
ij =

∑
k≥0

(−1)k
(
i− j
k

)
G`−i+j+k(x/a)

=
1

1− a0

∑
k≥0

(−1)k
(
i− j
k

)
(F`−i+j+k − a0F`−i+j+k−1)

γi−`a L
(`)
i+1,j = γ−1

a

∑
k≥0

(−1)k
(
i+ 1− j

k

)
G`−i+j+k−1(x/a)

=
∑
k≥0

(−1)k
(
i+ 1− j

k

)
F`−i+j+k−1.

We have

γi−`a L
(`)
ij +

1

1− a0
γi−`a L

(`)
i+1,j

=
1

1− a0

∑
k≥0

(−1)k
((

i− j
k

)
(F`−i+j+k − a0F`−i+j+k−1)

+

(
i+ 1− j

k

)
F`−i+j+k−1

)
=
−a0F`−i+j−1 + F`−i+j−1

1− a0

+
1

1− a0

∑
k≥0

(−1)k
((

i− j
k

)
+ a0

(
i− j
k + 1

)
−
(
i+ 1− j
k + 1

))
F`−i+j+k

= F`−i+j−1 +
∑
k≥0

(−1)k+1

(
i− j
k + 1

)
F`−i+j+k

= γi−`a L
(`−1)
ij .

Applying γ`−ia , we obtain L
(`−1)
ij = L

(`)
ij + (γ`−ia

1
1−a0 γ

i−`
a )L

(`)
i+1,j , showing that

π̃a,	p Hλ = Hλ in this case. �

Example 9.5. Let λ = (1, 1). We have

G11(x||a) =

∣∣∣∣ G1 G2 +G3 +G4 + · · ·
γ−1
a (1−G1) γ−1

a (G1)

∣∣∣∣ .
Note that 0 is not the residue of a corner box. We have

π̃a,	0 G11(x||a) =

∣∣∣∣ 1 γ−1
a (G1 +G2 +G3 + · · · )

γ−1
a (1−G1) γ−1

a (G1)

∣∣∣∣ .
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The proof of Proposition 9.4 shows that

1 = G1 +
1

1− a0
γ−1
a (1−G1)

γ−1
a (G1 +G2 +G3 + · · · ) = (G2 +G3 +G4 + · · · ) +

1

1− a0
γ−1
a (G1)

so π̃a,	0 G11(x||a) = G11(x||a).

Example 9.6. Let λ = (1, 1). We check (9.2). First, suppose that a = 0. Using e.g.
[Buc02a, Thm. 5.4] we have GrG1 = Gr+1 +Gr,1 −Gr+1,1 for all r ≥ 1.

det

(
G1 G2 +G3 + · · ·

1−G1 G1

)
= G2

1 − (1−G1)(G2 +G3 + · · · )
= (G2 +G11 −G21)− (G2 +G3 + · · · )
+ ((G3 +G21 −G31) + (G4 +G31 −G41) + · · · )
= G11.

Now consider the general double case. By e.g. [Buc02a, §6] and superizing we have

∆(Gr(x/a)) =
r∑
p=0

Gp(x/a)⊗Gr−p(x/a)−
r∑
p=1

Gp(x/a)⊗Gr+1−p(x/a).

For d ≥ 0 and letting A = a0 + a−1 + · · ·+ a1−d we have

γ−da (Gr(x/a)) =
r∑
p=0

Gp(x/a)Gr−p[A]−
r∑
p=1

Gp(x/a)Gr+1−p[A].(9.6)

For d = 1 we have

γ−1
a (G1(x/a)) = G1[a0] +G1(x/a)−G1(x/a)G1[a0]

= a0 + (1− a0)G1(x/a).

det

(
G1(x/a) (G2(x/a) +G3(x/a) + · · · )

γ−1
a (1−G1(x/a)) γ−1

a (G1(x/a))

)
= G1(x/a)(a0 + (1− a0)G1(x/a))

− (1− a0 − (1− a0)G1(x/a)))(G2(x/a) +G3(x/a) + · · · )
= a0G1(x/a) + (1− a0)G1(x/a)2

− (1− a0)(1−G1(x/a))(G2(x/a) +G3(x/a) + · · · )
= a0G1(x/a) + (1− a0)G11(x/a).

Let us compare with Proposition 9.1.

∆(G1r (x/a)) =
r∑
p=0

G1p(x/a)⊗G1r−p(x/a)−
r∑
p=1

G1p(x/a)⊗G1r+1−p(x/a).

G11(x||a) = γ−1
a G11(x/a)

= G1(x/a)G1[a0] +G11(x/a)−G1(x/a)G11[a0]−G11(x/a)G1[a0]

= a0G1(x/a) + (1− a0)G11(x/a)

which agrees with the determinant.
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10. Degeneracy loci

By [Buc02b, Theorem 2.1] it is known that double Grothendieck polynomials are
the universal formulas for K-classes of certain degeneracy loci based on quivers.
Since back stable double Grothendiecks are certain limits of double Grothendieck
polynomials, they can also be computed by universal quiver locus formulas. Fol-
lowing the suggestion of Buch [Buc+] we apply such a quiver formula and recover
one of our formulas for back stable double Grothendieck polynomials.

Without loss of generality we take w ∈ S+ and then w ∈ Sn. Let m ≥ 0 be a non-

negative integer and let x
(m)
− = (x1−m, . . . , x−1, x0) and a

(m)
− = (a1−m, . . . , a−1, a0)

be sets of m variables with nonpositive indices. Let γm(w) be the m-fold forward
shift of w. By definition

←−
Gw = lim

m→∞
Gγm(w)(x

(m)
− , x; a

(m)
− , a).(10.1)

We now apply a formula for double Grothendieck polynomials which is a variant
of [BKTY05, Theorem 4] but whose overall form more closely follows [BKTY04,
Theorem 4]. We use a set of m variables followed by n − 1 sets of one variable

each. For the x variables we use x
(m)
− and then x1, x2, . . . , xn−1. The equivariant

a variables are similarly grouped. This grouping of the variables is compatible with
γm(w) and γm(w−1) = (γm(w))−1 in the language of [BKTY04]. Our variant of
[BKTY05, Theorem 4] states that

Gγm(w)(x; a) =
∑
λ•

(−1)|λ
•|−`(w)cwλ•Gλ(1−n) [−an−1] · · ·Gλ(−1) [−a1]×(10.2)

Gλ(0) [x
(m)
− /a

(m)
− ]Gλ(1) [x1] · · ·Gλ(n−1) [xn−1]

where λ• = (λ(j) | 1− n ≤ j ≤ n− 1) runs over tuples of partitions and cwλ• is the

number of tableau tuples T • = (T (1−n), . . . , T (n−1)) such that T (j) is a decreasing
tableau (one whose rows strictly decrease from left to right and whose columns
strictly decrease from top to bottom) of shape λ(j) for 1− n ≤ j ≤ n− 1 such that
the juxtaposition of the column-reading words T (1−n) · · ·T (0) · · ·T (n−1) is 0-Hecke
equivalent to w, and for 1 ≤ i ≤ n− 1, the entries of T (±i) are at least i.

Remark 10.1. • To compare the formulas it is better to look at [BKTY04,
Theorem 4]. Here we use decreasing tableaux instead of increasing, which
allows us to avoid transposing the shapes of the tableaux. We are using
a different form of double Grothendieck polynomial than [BKTY05]; see
Remark 5.2.
• The tuples of tableaux are in straightforward bijection with pipedreams;

the labels in a row of a decreasing tableau tell where to place the crossings
in a row of the corresponding pipedream.

We observe that for a single variable z, Gλ[z] = 0 unless λ is a single row, say,
(r), in which case Gr[z] = zr. Similarly, Gλ[−z] = 0 unless λ is a single column, say
(1r), in which case one may show that G1r [−z] = (	z)r. Therefore we may assume
that λ(j) is a single row for 1 ≤ j ≤ n− 1 and a single column for 1− n ≤ j ≤ −1.
Next we observe that the Fomin-Kirillov formula for Grothendieck polynomials can
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be rewritten as follows. For z ∈ Sn we have

Gz(x1, . . . , xn−1) =
∑
T•

(−1)`(T
•)−`(z)

n−1∏
j=1

x
`(T (j))
j

where the sum runs over T • = (T (1), . . . , T (n−1)) where T (j) is a single row de-
creasing tableau whose entries are at least j, and such that T (1) · · ·T (n−1) is Hecke
equivalent to z.

Applying inverses and evaluating at (	(a1), · · · ,	(an−1)), for u ∈ Sn we see
that

Gu−1(	(a1), · · · ,	(an−1)) =
∑
U•

(−1)`(U
•)−`(u)

n−1∏
j=1

(	aj)`(U
(j))

where U• = (U (1), . . . , U (n−1)) runs over tuples with U (j) a decreasing tableau of
single column shape with entries at least j, with U (n−1) · · ·U (1) Hecke equivalent
to u.

Finally we use Remark 8.3 for the expansion of a super K-Stanley function

Gv(x
(m)
− /a

(m)
− ) into Grassmannian super K-Stanleys Gλ(x

(m)
− /a

(m)
− ).

Combining the above, we see that (10.2) becomes

Gγm(w)(x
(m)
− , x; a

(m)
− , a)

=
∑

u∗v∗z=w
(−1)`(u)+`(v)+`(z)−`(w)Gu−1(	(a))Gv(x

(m)
− /a

(m)
− )Gz(x).

Sending m to infinity we recover the triple coproduct formula Proposition 5.17.

11. Further directions

11.1. Ideal sheaf basis. For w ∈ Sn, define

G∂w(x; a) :=
∑
v∈Sn
v≥w

(−1)`(vw)Gv(x; a).

These polynomials represent the ideal sheaf basis in the equivariant cohomology
of finite flag varieties, and depend on n. They can be generated by the operators
π̃xi − 1, with G∂w0

(x; a) :=
∏
i+j≤n(xi 	 aj − 1). For w ∈ SZ, define the ideal sheaf

backstable classes

ψ̃w∂ :=
∑
v≥w

(−1)`(vw)ψ̃v ∈ Ψ̃.

Note that the value ψ̃w∂ (u) is well-defined for u ∈ SZ since by (2.10), ψ̃v(u) = 0
unless u ≥ v. We expect many of the results of this work to have analogues for

the classes ψ̃w∂ . We do not know whether ψ̃w∂ is the image of an element of
←−
R (x; a)

under the res map of Theorem 5.25.

11.2. K-Peterson subalgebra. In [LLS21], we defined a commutative subalgebra
of the infinite nilHecke algebra and showed that it provided a model for the equi-
variant homology of the infinite Grassmannian. This commutative subalgebra is an
analogue of the Peterson subalgebra of an affine nilHecke algebra. We expect that
this construction can be extended to K-homology of the infinite Grassmannian.
The analogous K-Peterson subalgebra for modeling the equivariant K-homology of
the affine Grassmannian is constructed in [LSS]. We remark that recent work of
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Kato [Kat] (see also [LLMS]) relate the K-homology of the affine Grassmannian
with quantum K-theory of flag varieties.

11.3. Relation to back stable Schubert polynomials. Lenart [Len99] showed
that Grothendieck polynomials expand into Schubert polynomials with alternating
coefficients, and gave a combinatorial interpretation of the coefficients. It would be
interesting to study the expansion of back stable (double) Grothendieck polynomials
←−
Gw into back stable (double) Schubert polynomials

←−
Sw, and the relation to our

other expansion formulae such as the coproduct formula (Theorem 4.15).

11.4. Relation to K-theory affine Schubert calculus. Affine Schubert calculus
is one of our main motivations to study back stable Schubert calculus. We expect
many interesting relations between these subjects. In particular, we expect that
a wealth of combinatorics can be found in the expansion coefficients of Schubert
classes of the infinite flag variety (or infinite Grassmannian) in terms of Schubert
classes of the affine flag variety (or affine Grassmannian) [LLS+, LSS, Mor]. In
cohomology, these expansion coefficients are known as k-branching coefficients.

Appendix A. Grothendieck Inversion

Let J ⊂ Z \ {0} and let SJ be the subgroup of SZ generated by sj for j ∈ J .
Let v, w ∈ SZ be such that SJv = SJw. Say v J≤ w if there is a u ∈ SJ such that
u ∗ v = w.

Proposition A.1. Let W ′ be a J≤ interval in SZ and let {fw | w ∈ W ′} and
{gw | w ∈W ′} be families of elements. Then

gw =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu(a)fv(A.1)

holds if and only if

fw =
∑

u∗v=w

(−1)`(u)+`(v)−`(w)Gu−1(	a)gv(A.2)

does.

This is equivalent to the following. Let W ′ be as above. Define the W ′ ×W ′
matrices

Avw =
∑
u∈SJ
u∗v=w

(−1)`(u)+`(v)−`(w)Gu(a)(A.3)

Bvw =
∑
u∈SJ
u∗v=w

(−1)`(u)+`(v)−`(w)Gu−1(	(a)).(A.4)

Then A and B are inverse.
Let

G =
∑
u∈SJ

(−1)`(u)Gu(a)π̃u(A.5)

H =
∑
u∈SJ

(−1)`(u)Gu−1(	(a))π̃u.(A.6)
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Here we are working in the 0-Hecke algebra with coefficients in the field Q(ai | i ∈ Z)
where the field elements commute with the operators π̃i. The statement that A
and B are inverse, is equivalent to

〈πw|GH|π̃v 〉 = δv,w(A.7)

〈πw|HG|π̃v 〉 = δv,w(A.8)

for all v J≤ w. The notation 〈 f |g|h 〉 means apply g to h and take the coefficient
of f .

Working on all cosets at once, this is further equivalent to

〈 π̃w|GH|π̃id 〉 = δid,w(A.9)

〈 π̃w|HG|π̃id 〉 = δid,w(A.10)

for all w ∈ SJ since

〈 π̃w|GH|π̃v 〉 =
∑
u

u∗v=w

〈 π̃u|GH|π̃id 〉

and similarly for HG instead of GH.
Thus it suffices to prove (A.10), as (A.9) holds by formal properties of inverses.

But by Proposition 5.8 equation (A.10) is equivalent to

δid,w = Gw(a; a).(A.11)

Equation (A.11) follows from the fact that Ψ−1(Gw(va; a)) = [Ow]|v is the localiza-
tion at v, of the equivariant class of the structure sheaf Ow of the opposite Schubert
variety B−wB/B in K∗T (Fln).

We state a “right-handed” version of Proposition A.1. With J as above let
v, w ∈ SZ be such that vSJ = wSJ . Say v ≤J w if there is a u ∈ SJ such that
v ∗ u = w.

Proposition A.2. Let W ′ be a ≤J interval in SZ and let {fw | w ∈ W ′} and
{gw | w ∈W ′} be families of elements. Then

gw =
∑

v∗u=w

(−1)`(u)+`(v)−`(w)Gu(a)fv(A.12)

holds if and only if

fw =
∑

v∗u=w

(−1)`(u)+`(v)−`(w)Gu−1(	a)gv(A.13)

does.

Appendix B. Some computations

Recall that x− = (x0, x−1, x−2, . . . ). We write Xi for (x1, x2, . . . , xi).

B.1. Back stable Grothendieck polynomials. We compute
←−
Gs0 from the def-

inition.

Gs1 = e1[X1]

Gs2 = e1[X2]− e2[X2]

Gs3 = e1[X3]− e2[X3] + e3[X3]

Gsn = e1[Xn]− e2[Xn] + e3[Xn]− · · ·+ (−1)n−1en[Xn].
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Therefore,

←−
Gs0 = Gs0 = lim

n→−∞
Gsn(x1−n, . . . , x−1, x0) = e1 − e2 + e3 − · · · = 1− Ω[−x].

We compare Proposition 4.6 and Theorem 4.15 for
←−
Gs1 ,

←−
Gs2 ,

←−
Gs−1

.

←−
Gs1 = γ(

←−
Gs0)

= e1[x− + x1]− e2[x− + x1] + e3[x− + x1]− · · ·
= (x1 + e1)− (x1e1 + e2) + (x1e2 + e3)− · · ·
= x1 − x1(e1 − e2 + e3 − · · · ) + (e1 − e2 + e3 − · · · )
= Gs1 −Gs1Gs1 +Gs1 .

←−
Gs2 = γ2(

←−
Gs0)

= e1[x− +X2]− e2[x− +X2] + e3[x− +X2]− · · ·
= (e1[X2] + e1)− (e2[X2] + e1[X2]e1 + e2)

+ (e2[X2]e1 + e1[X2]e2 + e3)− · · ·
= (e1[X2]− e2[X2]) + (1− e1[X2] + e2[X2])e1

+ (−1 + e1[X2]− e2[X2])e2 + (1− e1[X2] + e2[X2])e3 + · · ·
= Gs2 +Gs2 −Gs2Gs2 .

←−
Gs−1

= γ−1(
←−
Gs0)

= e1[x− − x0]− e2[x− − x0] + e3[x− − x0]− · · ·
= (e1 − x0)− (e2 − x0e1 + x2

0) + (e3 − x0e2 + x2
0e1 − x3

0)− · · ·

= Gs−1 +
−x0

1− x0
− −x0

1− x0
Gs−1

= Gs−1
+ Gs−1

−Gs−1
Gs−1

.

Here,

Gs−1 = ω(Gs1) = ω(x1) =
−x0

1− x0
.

In particular for k > 0 we have

←−
Gsk = G1 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xk
←−
Gs−k = G1 	 x0 	 x1 	 · · · 	 x1−k.

We compute
←−
Gs−1s0 from the limit definition:

Gs1s2 = e2[X2]

Gs2s3 = e2[X3]− 2e3[X3]

Gs3s4 = e2[X4]− 2e3[X4] + 3e4[X4].

Thus,

←−
Gs−1s0 = Gs−1s0 = G11 = e2 − 2e3 + 3e4 − · · · .
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Using Proposition 4.6, we have

←−
Gs0s1 = e2[x− + x1]− 2e3[x− + x1] + 3e4[x− + x1]

= (e2 + x1e1)− 2(e3 + x1e2) + 3(e4 + x1e3)− · · ·
= x1(e1 − 2e2 + 3e3 − · · · ) + (e2 − 2e3 + 3e4 − · · · )
= x1Gs0 − x1(e2 − 2e3 + · · · ) +Gs0s1

= Gs0Gs1 −Gs0s1Gs1 +Gs0s1 ,

agreeing with Theorem 4.15.

With sλ denoting a Schur polynomial, we compute
←−
Gs1s0 from the limit defini-

tion:

Gs2s1 = s2[X1]

Gs3s2 = s2[X2]− s21[X2]

Gs4s3 = s3[X3]− s21[X3] + s211[X3]
←−
Gs1s0 = Gs1s0 = s2 − s21 + s211 − s2111 + · · · .

Therefore, using Proposition 4.6, we have

←−
Gs0s−1 = γ−1(

←−
Gs1s0)

= s2[x− − x0]− s21[x− − x0] + s211[x− − x0]− s2111[x− − x0] + · · ·
= (s2 − x0s1)− (s21 − x0s2 − x0s11 + x2

0s1)

+ (s211 − x0s21 − x0s111 + x2
0s2 + x2

0s11 − x3
0s1)

− (s2111 − x0s211 − x0s1111 + x2
0s21 + x2

0s111 − x3
0s2 − x3

0s11 + x4
0s1)

+ · · ·
= Gs0s−1

+Gs0Gs−1
−Gs0s−1

Gs−1
.

B.2. K-Stanley polynomials.
We give some formulae for various Gλ. See also Proposition 9.4 and Proposi-
tion 4.20.

Gr = sr − sr,1 + sr,1,1 − sr,1,1,1 + · · ·

G1r = er −
(

r

r − 1

)
er+1 +

(
r + 1

r − 1

)
er+2 − · · ·

G21 = s21 − s22 − 2s211 + 2s221 − s222 + 3s2111 − 3s2211

+ 2s2221 − s2222 + · · ·
G31 = s31 − s32 − 2s311 + 2s321 − s322 + · · ·
G211 = s211 − s221 + s222 − 3s2111 + 3s2211 − 3s2221 + 2s2222 + · · · .

We give some products of K-Stanley functions; see Proposition 8.1.

G1G1 = G2 +G11 −G21

G2G1 = G3 +G21 −G31

G11G1 = G21 +G111 −G211.
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